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Abstract. Two sufficient conditions for the non-existence of an additional
analytic integral are given for Hamiltonian systems with non-homogeneous
polynomial potential of an arbitrary degree. An application is made to the
truncated three-particle Toda lattice, which is proved to be non-integrable at
any order.

1. Introduction and the Main Result

The so-called three-particle periodic Toda lattice [10] is defined by the Hamiltonian

H = (l/2)(px

2 + p2) + e^x + y + e~^x+y + e~2\ (1.1)

and integrable because of the existence of a second analytic integral [4,6]

Φ=(lβ)Px(px

2 ~ W) + (Px - ^Pyy*x+y + (P, + j3py)e-^+r - Ip^1*.
(1.2)

We now truncate the Taylor series of exponential functions in (1.1) at a finite order
[3], i.e., consider the potential

Vs=Σ {φχ + y)k + (-^χ + yf + (-2y)k}/k\. (1.3)

V2 is the harmonic oscillator and V3 is identified with the so-called Henon-Heiles
potential [5],

F 3 = (l/2)(x2 + y2) + x2y - (l/3)y3, (1.4)

after a proper change of scale. In the process of proving the integrability of the
Toda lattice [4,6], the exponential function plays a crucial role. Therefore, by
truncating the exponential function to a finite order polynomial, we can no more
expect the existence of an additional integral like (1.2). Indeed the main result of
this paper is to prove
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Theorem 1.1. The truncated Toda lattice Hamίltonίan with potential VN cannot have
an additional analytic integral Φ= const, when N ^ 3.

As a powerful method to prove the non-existence of an additional analytic
integral for a given system, Ziglin's theorem [17] was applied to (i) homogeneous
potentials [12,13], (ii) some generalized Toda lattice [16], (iii) some perturbed
Kepler potentials [14], and (iv) non-homogeneous polynomial potentials of degree
3 or 4, [7,8,9], in addition to Ziglin's original example, i.e., the motion of a rigid
body around a fixed point [17].

In the case of systems with homogeneous potential, everything necessary for
Ziglin's theorem to be applied (monodromy matrices) is given explicitly. The logic
used in [7,8,9] to prove the non-integrability of a non-homogeneous potential
strongly depends on the speciality of a polynomial potential of degree 3 and 4,
and therefore it cannot be applied to arbitrary degree cases like (1.3).

Simple observation shows that when the value of the energy is very large, i.e.
h-> oo, the behavior of the system is dominated by the highest degree term of the
potential. Also in the limit ft->0, the lowest degree term dominates. Therefore at
both limits we can make use of the knowledge on homogeneous potentials entirely.
For example, the change of trace of the monodromy matrix as a function of energy
[7,9] can be seen by comparing these two limits if continuity is assumed.

This paper gives, on the basis of Ziglin's theorem, two sufficient conditions
for the non-existence of an additional analytic integral for non-homogeneous
polynomial potentials, which completely use the previous knowledge on the
homogeneous potential case. Section 2 introduces Ziglin's theorem, i.e., necessary
assumptions and the statement of the theorem. Known results on homogeneous
potentials are reviewed in Sect. 3. The main technical theorems are given as
Theorem 4.1 and Theorem 4.2 in Sect. 4. In Sect. 5, the truncated Toda lattice is
proved to be non-integrable as direct applications of Theorem 4.1 and Theorem 4.2.
There truncations of other integrable generalized Toda lattices are also considered.

2. Ziglin's Theorem: General

Consider the Hamiltonian system

H = {l/2){px

2+py

2)+V(x9y)9 (2.1)

with an algebraic potential V(x,y), and assume that there exists a straight-line
solution of the form

x = cxφ(t\ y = c2φ(t)9 (2.2)

with constants c1 and c2- By an orthogonal transformation of coordinates, it is
always possible that the straight-line solution (2.2) is re-expressed as

x = 0, y = φ(t). (2.3)

Then φ(t) satisfies the differential equation

+ Vy(O,φ) = O, (2.4)
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(Vty = dV/dy, etc.), with the integral

(l/2)(dφ/dt)2 + V(0,φ) = h. (2.5)

Therefore the function φ(t) is determined by the inverse function of

t = \dw/jP(w) (2.6)
with

P(w) = 2{h-V(0,w)}. (2.7)

We now consider the normal variational equation (NVE). The variational equations
for ξ1 = δx and ξ2 = δy decouple and by NVE (with respect to x = 0) we mean the
equation for ξx, i.e.

d2ξi/dt2+Vxx(0,0(ί)Ki=O. (2.8)

A Riemann surface Γ is defined by the function

z = y/P(yή, (2.9)

with P(w) given by (2.7). There are branch points at w = w^, w2, w3,..., the roots
of P(w) = 0. Take an arbitrary closed circuit y on the Riemann surface Γ. After
this closed circuit, the value of t in (2.6) is increased by

(2.10)

If this value is not zero, T in (2.10) is considered a period of the function φ(t). For
each closed circuit y on Γ, we can associate a 2 x 2 matrix g(y), called the
monodromy matrix, with the evolution of the fundamental set of solution of the
NVE (2.8) along the circuit y. The set of all monodromy matrices, which share a
common base point of the closed circuit form a group G, called the monodromy
group of the NVE.

We now define a monodromy matrix g to be non-resonant when the eigenvalues
(p, 1/p) are not roots of unity. Then we have the following necessary condition for
the existence of an additional analytic integral:

Theorem 2.1 [Ziglin, 17~\. Suppose (2.1) has an additional integral Φ— const, which
is holomorphic at least in the neighborhood of the given straight-line solution
x — px = 0. Further, suppose there exists a non-resonant monodromy matrix g1 in G.
Then any monodromy matrix g2 in G must have the property, that either (i) gγ and
g2 commute, or (ii) trace g2 = 0.

A completely self-contained proof is given in [13] for the homogeneous potential
case. This statement can be rephrased as a sufficient condition for the non-existence
of an integral, i.e.,

Theorem 2.2. If there exist two monodromy matrices gι,g2 in G which enjoy one of
the following properties, then (2.1) cannot have an additional analytic integral.

(i) 0i>02 both non-resonant and \_gι^g2~\ φO (non-commuting).
(ii) g1: non-resonant, g2:tmceg2 / 0 , and [gl9g2'] ΦO.

(iii) gγ\ non-resonant, g2:tΐ&CQg2= ±2 but non-diagonalizable.
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Condition (i) is useful for the non-integrability proof of homogeneous potentials
(Sect. 3), while conditions (ii) and (iii) are used for non-homogeneous potentials in
general.

3. Review of Known Results on Two Dimensional Homogeneous Potentials

When the potential V(x9 y) is homogeneous (degree k), we have always straight-line
solutions (2.2). Indeed, suppose c = (c 1,c 2) is a solution of the algebraic equation

c = gradF(c), (3.1)

and suppose φ(t) satisfies the non-linear differential equation

2 2 + φk~1=0. (3.2)

Then expression (2.2) is known to be a solution of the equations of motion. The
NVE (2.8) has the expression [13]

~2ξ = 0, (3.3)

where (Δ V = VfXX + VtVy9 the Laplacian of V)

λk = ΛV(cuc2)-(k-l) (3.4)

was called the Integrability Coefficient (IC) [13].
In homogeneous potentials there exists a scaling transformation which changes

the value of the energy of a given straight-line solution to h = ί/k, provided the
original energy is not zero. Then in (2.7),

- wfe), (3.5)

and the branch points of the Riemann surface Γ defined by z = y/P(w) are located at

w = l , ω , ω 2 , ω 3 , . . . , ω | k | - 1 , (3.6)

with ω = e2πm.
For an arbitrary integer k, we can define two fundamental closed circuits y1

and y2 as follows; y1: a counter-clockwise circuit which encircles two branch points
w = l and w = ω, and will be denoted by (l->ω->l). y2:(1 —>co! '̂~x —> 1).
A common base point w0 is taken on the real w-axis. Then with the help
of the Gauss hypergeometric equation, we know the explicit expression of two
fundamental monodromy matrices g(yγ) and g(y2) in the form [13]

Γl + ΩAB9 B(2 + ΩAB)
9{yi>~ lA(Ω- 1 - ΩAB), 1 + (Ω-2)AB - Ω(AB)2

Γ 1+(2Ω-I)AB-Ω(AB)2, ΩB(2-AB)~
gyyi) - yA^γ _ γ/Ω_AB^ j _ A B

where
A = ί-Ω-1e~2πia

9 B=l-Ω~1e-2πib

and
Ω = e2πi/k, a + b = 1/2 - 1/fe, ab = - λk/2fc. (3.8)

'}
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Indeed, since the NVE (3.3) is transformed to the Gauss equation by the change
of the independent variable z = {φ(ή}k, g(yι) and g(γ2) are obtained as products
of basic monodromy matrices M0,M1 of the Gauss equation i.e.,

g(yΐ) = M1M0M1Mό\ g(y2) = M^M1M0M1. (3.9)

For the details, see [13].
Therefore, a simple computation shows that

trace g{yγ ) = trace g(y2) = Ek(λk), (3.10)

where

Ek{λk) = 2cos(2π//c) + 4 cos2 [(π/2/c) J{{k - 2)2 + 8/dk} ], (3.11)

and we can confirm that g(yι) and g(y2) commute when and only when λk has
values such that

Ek(λk) = 2 or 2cos(2π/k) (3.12)

or k = ± 2. By using condition (i) of Theorem 2.2 we get the following sufficient
condition for the non-integrability:

Theorem 3.1. [13] If IC λk is in the region Sk such that Ek(λk) > 2, then there cannot
exist an additional analytic integral Φ = const. The non-integrable region Sk can be
computed as follows: (Note that when k = 0, + 2 , such regions are not defined.)

(i) k ^ 3: Sk = {λ < 0,1 < λ < k - 1, k + 2 < λ < 3k - 2,...,

(ii) S1 = R - { 0

(iii) S_1 = R -

(iv) k g - 3:

In the case when k is an even integer k = 2m > 0, there is another naive way
to define two closed circuits on Γ [12]. One is a counter-clockwise circuit encircling
two branch points 1 and — 1, which define a real period, thus yreal = (1 ->
— 1 -* 1). Another one is to define an imaginary period, y imag = (ω -> —
ω->ω). Here, however, we use the full closed circuit for which the monodromy
matrices can be obtained as the square of those given in [12]. Thus

- 1 , -BC

A, ABC-I

Γ - 1 - ΩAB, -,

ABC + ΩAB - 1

with C = 2Ω/(Ω- 1), and A,B,Ωare given in (3.8). Therefore

trace ̂ (yreal) = trace <7(yimag) = F2m(λ2m), (3.14)
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where

F2m(λ2m) = 4cos2[(π/2m)y{(m - I) 2 + 4m22m}]/sin2(π/2m) - 2, (3.15)

and #(yreai) and g(yimag) commute only when F2m{λ2m) = ± 2. From these expres-
sions we get exactly the same non-integrability region S2m as in Theorem 3.1.

4. Two Sufficient Conditions for the Non-existence of an Additional
Analytic Integral for Non-homogeneous Potentials

When the potential is non-homogeneous, monodromy matrices depend on the
value of the energy, i.e. g(y; h\ and there exists no analytical method to express
them explicitly. However the following consideration tells us that we can compute
monodromy matrices in the limits fc->0 and ft-> oo. For simplicity, take the case
where the potential is composed of two different degree terms, k and K (k< K).
The equation (2.4) for φ(t), can be written, after a proper change of scale, in the form

+ φk~1 + φκ~ί=0 (4.1)

with the energy integral

(l/2)(dφ/dή2 + (l/k)φk + (1/K)φκ = ft. (4.2)

In the same scale, the NVE (2.8) has the form

d2ξ/dt2 + (λkφ
k'2 + λκφ

κ~2)ξ = 0. (4.3)

We now make a change of scale as

φ-+h1/κφ, t^hi2'K)/(2K)t. (4.4)

Then Eqs. (4.1), (4.2) and (4.3) are transformed to

d2φ/dt2 + μφk-1 + φκ-1=O, (4.5)

(l/2)(dφ/dή2 + μ(l/k)φk + (1/K)φκ = K (4.6)

d2ξ/dt2 + (μλkφ
k-2 + λκφ

κ-2)ξ = 09 (4.7)

respectively, where

μ = hk/κ-\ (4.8)

Therefore in the limit h -• oo, the NVE(4.7) tends to the NVE for the homogeneous
potential of degree K, since μ goes to 0. Similarly by the change of scale

φ-+h1/kφ, t^h{2-k)l{2k)t, (4.9)

we recover, in the limit h -• 0, the NVE for the homogeneous potential of degree
fc, for which we know the explicit expression of monodromy matrices. Note that
the presence of intermediate degree terms does not change this situation at all.

Any non-homogeneous polynomial potential V(x, y) is written as a finite sum
of homogeneous parts:

V(x,y) = Σvk(*>y) (4.10)
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Assume that x = 0 is a straight-line solution, i.e. Vx(0,y) = 0. From the lowest part
Vkmin and highest part Vkmax we can compute the λkmin and λkmax, the lowest IC
and the highest IC. The first sufficient condition for the non-existence of an
integral is

Theorem 4.1. If either λkmineSkmin or λkmaxεSkmax holds, then there cannot exist an
additional analytic integral.

This theorem means that if the lowest or the highest part of the potential is
shown to be non-integrable, using Theorem 3.1, then the total system (4.10) is also
non-integrable.

Proof. Suppose λkmaxeSkmax holds. We define two closed circuits yx and y2 on Γ
continuously as h varies such that those tend to (1 —>ω —• 1) and (1 -»ωfc~1 —• 1) as
defined in Sect. 3 in the limit ft->oo. By the assumption that λkmaxeSkmax, there
exists an open interval of fte(ft0, oo) in which

trace g{y{\ ft) > 2 (i = 1 and 2) (4.11)

hold. This means that in the interval (ft0, oo), the matrices g{yι\h) and g{y2\h) a r e

both non-resonant. Therefore in order to have integrability they must commute
identically in the interval (ft0, oo). However we know already that if λkmaxeSkmax,
i)\Qng(y1\ oo)and^(72? oo)do not commute by (3.12). The same consequence follows
when λkmineSkmin is assumed. D

Next we consider the restricted cases when fcmin = 2, /cmax = 2m and

Vkmin = (α2x2 + b2y2). (4.12)

One further crucial assumption is that the real function K(0, y) is convex, i.e., the
only real root of Vy(0,y) = 0 is y = 0. Under this assumption we can define the
real period of φ(t) continuously from h = 0 to h = oo. At both limits we know the
explicit expression of trace g(yreSLι;h) and we could confirm, a priori, whether
trace #(yreal; ft) changes or not as a function of ft, since it is a continuous function
of fte(0, oo). Let λ2m be the highest IC in this case. Then the second sufficient
condition is

Theorem 4.2. If λ2m is not α value such that F2m(λ2m) = {2,0, — 2,2cos(2πα/b)},
then the system cannot have an additional analytic integral.

Proof. We define two closed circuits yreal and y imag on Γ, so that yτeal encircles only
two real roots of P(w) = 0 in (2.7) for all ft, and y imag tends to (ω-> — ω->ω), i.e.,
7imag °f Sect. 3, in the limit ft-> oo. Then we know

traceg(yreal;0) - 2cos(2πα/b) (4.13)
and

trace#(yreal; oo) = trace #(y i m a g; oo) = F2m(λ2m). (4.14)

Since trace g{yτeaύh) is a continuous analytic function of ft in the whole interval
fte(0, oo), it follows that trace#(yrea]; ft) actually changes as ft varies if F2m(λ2m) Φ
2cos(2πα/b). Suppose F2m(λ2m) Φ2cos(2πα/b) holds. Then in a dense subset of
fte(0, oo), g(yr&al;h) becomes non-resonant. Therefore for the integrability, it is
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necessary that either

i;A)^(7inuιg;Λ)]=O (4.15)

holds, or

trace g(yimag;h) = 0 (4.16)

holds in the same dense set of ft. Since (4.15) and (4.16) are analytic relations in ft,
if they hold in some dense set of ft, they should hold identically for all fte(0, oo).
In order that (4.15) holds at ft-> oo, it is necessary that F2m(λ2m) = ±2. For (4.16)
to hold as ft->oo we need F2m{λ2m) = 0. Therefore if F2m{λ2m) Φ {2,0, - 2,
cos(2πα/b)} is assumed, the none-existence of an additional integral follows. D

5. Application to the Truncated Toda Lattice

We now go back to the truncated Toda lattice (1.3). x = 0 is a trivial straight-line
solution. Then

Σl (5-1)

The highest IC, λN is computed as

λN = 6(N-\)/{2 + (-2)N}. (5.2)

It is clear that if N is an odd integer (N ̂  3), then λN < 0, i.e. in the non-integrable
region SN. Thus, by Theorem 4.1, (1.3) is non-integrable if N is an odd integer.
Now consider the case, N = 2m. We can first confirm that F(0, y) is a convex
function of y (see Appendix). For small m's the values of λ2m and σ2m = F2m(λ2m)
are

A 4 = l , λ6 = 0.454, ;i8 = 0.163, λlo = 0.053, λί2 = 0.016,

σ 4 = l , σβ=- 1.975, σ8 = - 0.543, σ 1 0 = 1.056, σ 1 2 = 1.704.

When m is large, F2m(λ) approaches the limiting curve

Fα,(λ)=l6{λ-lβ)2-2 (5.3)

and λ2m is monotonically decreasing to zero. Thus σ2m is in the interval between
0 and 2 and approaches to 2. Since the lowest term of the potential is 6(x2 + y2),
it follows that 2cos(2πα/b) = 2 in Theorem 4.2. Thus if N = 2m = 6, Theorem 4.2
implies the non-integrability of the system. The case N = 4 is exceptional in the
sense that the highest term yields an integrable potential, i.e. (x2 + y2)2. This case
was extensively studied in [15], and the main result is summarized as follows. Near
h = 0, a perturbation expansion of the solution of NVE shows

trace^(yreal;fc) = 2 + α/z3 + O(/24), (α*0), (5.4)

i.e., trace #(yreal; ft) is not a constant function and therefore for a dense set of ft,
#(yreal;ft) is non-resonant. There is another monodromy matrix g(yM;h\ where yall

enclose all roots of P(w) = 0 in (2.7). Then it is shown that g(yaU;h) is non-
diagonalizable independent of ft. Therefore for a dense set of ft, F 4 is non-integrable
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by the condition (iii) of Theorem 2.2. In conclusion the truncated Toda lattice (1.3)
is always non-integrable when N ^ 3. This completes the proof of Theorem 1.1.

Apart from the three-particle periodic Toda lattice (1.1), there exist several
integrable generalized Toda lattices with two degrees of freedom [1,2,11]. The
existence of a straight-line solution x = 0 is related to the symmetry of the Dynkin
diagram which represents the system. The Dynkin diagram of (1.1) is symmetric
and labeled by A2Λ. Other symmetric cases are [1,11]

A2: v = e^χ+y + e-^x+y, (5.5)

B22: v = ex+y + e-χ+y + e~2y, (5.6)

C 2 i l : V=ex+y + e-χ+y + e-y. (5.7)

As in the case of (1.1) we consider truncated potentials. Then the highest IC are

A2: λN = 3(N-l% (5.8)

B2,2: λN = 2(N-l)/{2 + (-2f}, (5.9)

C 2 i l: λN = 2(N-l)/{2 + (-l)N}. (5.10)

(i) Λ2:

λN is in the non-integrable region N + 2 < λN < 3N — 2 if N ^ 3.

(ϋ) B2t2:
When N is an odd integer (N ^ 3), λN < 0 and is in the non-integrable region.

If N is an even integer (JV = 2m ^ 4), we could confirm the assumption of
Theorem 4.2,

F2m(A2m) Φ {2,0, - 2,2 cos(2πfl//>) = - 1.768},

thus all cases are non-integrable.
(iii) C2Λ:

If N is an even integer (JV = 2m ^ 4), λ2m is in the non-integrable region,
1 < λ2m < 2m — 1. If N is an odd integer (N ^ 5), λN is in the non-integrable region
N -f 2 < λN < 3N ~ 2. Unfortunately, non-integrability of the case N = 3 cannot be
shown by the present analysis.

These examples illustrate that the existence of integrable systems is indeed a
rare phenomenon, as expected.

6. Appendix. Proof that (5.1) is a Convex Function if N=2m

First we show that every even order polynomial obtained by a truncation of the
exponential function is convex. Let us define

fn(y)=tyi/β- (6 i)

Then observe two identities; i.e.,

fiJμy) = Sim-1 (ay) + {ay)2ml{lm)\ (6.2)
and

(6.3)
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The minimum value of polynomial f2m(ay) is taken at y0, such that f'2m(ay0) = 0.
Thus

fiΛay) ^ f2m(ayo) = fim-ΛWo) + (ayo)
2m/(2m)\

= (ayo)
2m/(2m)\>0, (6.4)

for all real a and y. Since f"2m{ay) = a2f2m-2(ay), it also follows that f"2m(ay) > 0.
Since F2m(0, y) = 2f2m(y) + / 2 m ( — 2j/), a sum of two convex functions (both with

positive second derivative), V2m(0,y) itself is a convex function.
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