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Abstract. In this paper I analyse lattice Yang-Mills theories with continuous
time. After a short discussion of more conceptual questions, such as the existence
of a Hamilton operator in the infinite volume limit, I study the phase diagram.
The existence of a strong coupling/low temperature confinement phase (which
was not proven up to now) is established for arbitrary compact groups,
continuous or discrete. For discrete compact groups the deconfinement region
decomposes into (at least) two phases, which are distinguished by the
behaviour of spatial Wilson loops: a deconfinement phase where spatial
Wilson loops still show area law behaviour, and a "freezing" phase with
perimeter law behaviour for spatial Wilson loops. The methods to prove these
results rely on cluster expansion methods, combined with renormalisation
ideas.

Introduction

Lattice gauge theories (LGT) with continuous time have some advantages over
LGT defined on a symmetric lattice: First, the theory is defined directly by a

g2

Hamiltonian H= —- Δ + V, where V is some potential term and A the Laplace-

Beltrami operator on the classical configuration space. Therefore the quantum
mechanical interpretation is much more direct as for LGT with discrete time,
where the Hamiltonian is given rather abstractly as the logarithm of the transfer
matrix. Secondly, LGT with continuous time have advantages if one is interested
in high temperature effects. This is due to the fact that the inverse temperature β is
given by the length of the lattice in time direction. Therefore, the temperature on
the symmetric lattice can never be chosen higher than the inverse lattice spacing,
whereas it can be chosen arbitrarily high for continuous time.

Unfortunately, however, there have been very few rigorous results [1-4] about
the phase structure of the theory with continuous time. For the pure Yang-Mills
theory, to which I stick in this article, they all concern the high temperature



310 C. Borgs

deconfinement phase [1-3]. But it was not proven, e.g., that the theory shows
confinement for strong couplings (up to now, convergence of the strong coupling
expansion sketched by Kogut and Susskind [5] has not been established
rigorously). The reason for the fact that the corresponding rigorous results for
symmetric lattices (see e.g. [6, 7]) could not be proven for continuous times is due
to the fact, that the expansions used to prove these results on the symmetric lattice
are divergent in the limit of continuous time.

One could hope, however, that an effective theory on a time scale of order unity
can still be treated by strong coupling cluster expansion methods. Indeed I will
show in this article that the combination of renormalisation ideas and standard
cluster expansion methods leads to a convergent strong coupling expansion for the
theory with continuous time. One obtains confinement for infinitely heavy quarks,
a non-vanishing mass gap and area law behaviour for spatial Wilson loops,
provided the coupling constant g2 and the inverse temperature β are large.

On the other hand it is known [1] that confinement breaks down if g2 <g\(β)
= constβ~ 1 . This does not exclude, however, an area law for spatial Wilson loops,
as already pointed out in [8]. In fact, it can be proven that spatial Wilson loops do
show area law behaviour, provided g2β'l^>\ [3]. Thus, for sufficiently high
temperatures β"1, there is a region gι(/0<g2<g2(β) where the theory shows
deconfinement (in the sense of Polyakov [9]) and area law behaviour for spatial
Wilson loops.

For discrete groups there should be an additional phase, the so-called "freezing
phase," with deconfinement in the sense of Polyakov and perimeter law behaviour
for spatial Wilson loops. I will show the existence of this freezing phase in Sect. 4,
using a variant of Ginibre's [10] quantum contour expansion (for technical
reasons I only treat discrete abelian groups in Sect. 4; discrete non-abelian groups
are discussed in Appendix B).

The organisation of this paper is as follows: In the remaining part of this
introduction I explain the main ideas for the continuous time strong coupling
expansion. In Sect. 1 I define the theory and discuss several conceptual questions,
such as the existence of the Hamilton operator H in the infinite volume limit. In
Sect. 2 I derive the strong coupling cluster expansion sketched below. Conver-
gence, as well as the resulting physical properties like mass gap or confinement,
are proven in Sect. 3. The quantum contour expansion for the freezing phase is
derived in Sect. 4. In Sect. 5 I summarize the results of this paper and discuss the
resulting phase diagram. Appendix A is devoted to a compactness argument
concerning the existence of the infinite volume limit for arbitrary couplings
g2>0, Appendix B to the generalisation of quantum contours to nonabelian
discrete groups.

In the remaining part of this introduction I want to sketch the main ideas on
which the strong coupling expansion is based: Consider a lattice Λτ with small
lattice spacing τ in time direction1.1 choose free boundary conditions (b.c.) and the
lattice spacing of the space lattice is set to one. The partition function in the box Aτ

18 / ί / 1 M f τ
Z= J UA dgxy (exp j Σ» (-2 Reχ(g0>)-K(τg2)J| exp j^g ̂  Reχ(gβp

___J^_τ ^ τ P (0.1)

1 I take for Λτ a box of the form Λτ — τ{0,1,..., L'J x Ω, where Ω C Zd is the space lattice and Lt is
some positive integer. For convenience I assume that τ" 1 and Lt = τLt are integers
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Here g2 is the coupling constant, χ( ) is the trace in some faithful representation of
G, and gdp is the plaquette variable gdp = f] gxv, where the product is ordered

<xy>edp

around the loop dp. The sum £ϋ goes over vertical (= time-like) plaquettes in Λτ, the
sum Σh over horizontal (= space-like) plaquettes in Λτ. dgxy is the Haar measure for
the gauge field gxy and K(τg2) is the constant2 K(τg2} = log j dg exp {(1/τg2) Reχ(g)}.

It is clear from the above form that the usual strong coupling expansion is
divergent in the time continuum limit τ-»0, because the coupling for the time-like
plaquettes is τg2, rather than g2. One could hope however, that the effective theory
on the block lattice Abl = {091, ...,Lf} x ΩcZd + 1 is again strongly coupled (recall
that we took τ and L'f in such a way that Lt = τLt is an integer).

Let us first consider the simplified model where the coupling τ/g2 for the
horizontal plaquettes is set to zero. Since we have chosen free boundary conditions
we may fix a gauge by setting gxy to one for all time-like links (A0 = 0 gauge). The
partition function of the simplified model then becomes

Z = ί Π dgxy exp { Σ" (Λ
< * V > C / l τ (pCΛT \Tg

where the product goes over horizontal links in Λτ.
To obtain a model on the block lattice Λbl we use a decimation procedure (i.e. we

integrate out all variables gxy, for which <xy> lies not in the block lattice, keeping
the variables gxy with <xy> cΛbl fixed). A minute of reflection shows that for the
simplified model in A0 = 0 gauge this leads to the following representation of Z on

Z = J Π* dg^expί Γ s(gep)j, (0.2)
(xyycΛbi [pcΛbι J

where es('} is the l/τ ίh convolution power of exp{(l/τg2)Reχ( ) —K(τg2)}.
Next we expand e*('} around 1.

exp<^ L s(gsp)\= Π d+ep)= Σ [ } Q p , (0.3)
' - ' p e Λ 2 PCΛ2 peP

where Λ^ denotes the set of vertical plaquettes in Abl and ρp = Qxp{s(gdp)} — 1. As
usual (see e.g. [7]) one obtains a representation of the model as a hard core
interacting polymer system. Here polymers are connected sets y of vertical
plaquettes in Abl and their activity z(y) is

Φ)=f Π QP Ylh dgxy. (0.4)
p e y < x v > c Λ b j

/g2 \

Note that in the limit τ-^0 esί'} becomes the kernel exp I — A I (•), where A is the

/g2 \

Laplace Beltrami operator on G. Since exp I -—A )(•) — ! is small for large g2, z(y)

falls off exponentially with the size \γ\ of 7 for large g2, uniformly in τ—> 0. Therefore
one can apply the technique of Mayer expansions for dilute polymer systems [11]

2 The constant X(τg2), which drops out in expectation values, is introduced to ensure the existence
of the time continuum limit lim Z of the partition function Z



312 C. Borgs

to obtain a convergent strong coupling expansion for the simplified model with
continuous time.

For the full model we combine the above steps with an expansion in the
horizontal plaquettes. Again we start with the change to A0 = Q gauge. The next
step is the expansion in the horizontal plaquettes. This expansion will not be done
separately in every single plaquette of the fine lattice, however. Instead we group
together certain plaquettes : let c be a cube in the block lattice which is spanned by a
horizontal plaquette and a unit lattice vector in time direction (I call such cubes
time-like cubes or vertical cubes). Then IP(c) denotes the set of all horizontal
plaquettes in Aτ which lie inside c (including the top and bottom). The last factor in
(0.1) can now be written as

Σ" Reχ(g a ; ) )= fi ̂  (0-5)
g pCΛτ

where s(c) = (τ/g2) Σ ^ezfeδp) and AV

3 denotes the vertical cubes in Abl

2. Note
peP(c)

that IP(c) contains 1/τ plaquettes and therefore the supremum norm of s(c) is equal
to χ(H)/g2; it follows that s(c) becomes small (in the supremum norm) for large g2,
uniformly in τ. It seems therefore reasonable to expand (0.5) around 1,

Π [l+(e*>-l)] = Σ Π (es(c)-l). (0.6)
ceΛv

3 WCΛ" ceW

Inserted into (0.1) we obtain a representation of Z as a sum of terms Z(W), where W
is a set of vertical cubes in the block lattice and

Z(W)= I Π dgxy (exp { Συ (Λ Reχ(ga,)-K(τg2) Π (es(c)- 1)
< x y > c y l τ V (PcΛτ\τg ^ J) ceW

To each term Z(W) in this sum we now apply the steps "decimation" and "expand
is around 1 ", with the only difference that the expansion <?s = 1 + ρp is only done for
those vertical plaquettes p in Λbl which do not lie in the boundary dc of a cube ceW
(everything else already got a small factor from the expansion (0.6) and needs no
further treatment). I do not want to explain the details in this introduction, but it
should be plaubislbe by now that one gets again a representation of the model as a
hard core interacting polymer system, where now polymers are built out of
plaquettes and cubes in Λbl.

For large g2 the polymer system is again dilute uniformly in τ and we obtain the
desired convergent strong coupling expansion for the full model. Confinement for
infinitely heavy quarks, a mass gap and other interesting properties of the strong
coupling phase follow with a little extra work.

Two remarks should be added: First the choice of the A0 = Q gauge is not
essential in any sense. It was only chosen to simplify the exposition of the main
ideas. Secondly the expansion in Sect. 2 will differ from the one presented here by
the fact that there is no fine lattice Λτ. Instead we work directly in the time
continuum, using the operator formulation of the theory. For the purpose of this
introduction I started from a fine lattice Λτ because the derivation of the strong
coupling expansion is much more intuitive in this formulation.

3 In fact the plaquettes in the top and bottom of c should get a factor 1/2 in the definition of s(c),
because otherwise they are counted twice in (0.5)
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1. Lattice Yang-Mills Theories with Continuous Time

I consider lattice Yang-Mills theories with continuous time, defined on the lattice
&Zd with lattice spacing ε = 1 . Ω C Zd is the finite box {x e Zd : |x f | ̂  L} and Ω l 5 Ω2, . . .
denotes the set of positively oriented links, plaquettes, . . . in Ω. As gauge group I
choose either a finite group G (i.e. G = ZN) or a compact Lie group [i.e. G = SU(N)
or [/(AT)]. The classical configuration space GΩί consists of all maps g from Ωj into
G : <.xy)^— >gxr For a loop C of nearest neighbour (n.n.) pairs in Ω one defines the
loop variable gc= ["] gxy) where the product is ordered around C; if <xy> is

<*>>>eC

positively oriented one sets gxy = gy^ Finally a gauge transformation is given by a
map h : Ω-»G; the gauge transformed field gh = hgh~ l is defined as gh

xy = hxgxvh~ {

and for a function ψ of the gauge fields one defines φh(g) = φ(h~1gh).
Let LcΩ } . I denote by dgL the product Haar measure f j dgxv, instead of

<*)>>eL

dgΩl I often simply write dgΩ. The quantum mechanical Hilbert space J^Ω is now
defined as the space of square integrable (with respect to dgΩ), gauge invariant
functions ψ from GΩί into the complex numbers (C. Note that J^Ω is an orthogonal
subspace of J^Ω = L2(dgΩ):

^Ω = PQ^Ω, (1.1)

where P0 denotes the orthogonal projection onto gauge invariant functions

Λ ) = f Π dgxU(h) (C7(h)φ)(g) = φ(h- 1gh). (1.2)
xeΩ

To define the Hamiltonian HΩ one first chooses a faithful representation of G.
Denote by χ( ) the trace in this representation and by d(- , •) the metric induced by χ:

For finite groups G I set d0 = min d(g, H) and define Axv as the discretised Laplace
operator # φ l

V x y x y o x ~ u J2 '
hxy:d(hxy,g^y) = do W Q

and for compact Lie groups I denote by Δxy the Laplace Beltrami operator with
respect to the Riemannian metric induced by d. The Hamiltonian HΩ is now
defined [5] as

Ω (1.3)

with the kinetic term

^0>=y Σ 4,, (1-4)
^ < x j ? > e Ω ι

and the potential

^β=ΛΣ^ga/. 0-5)
^β p

The kinetic term corresponds to the term E2 (the square of the electric field) and the
potential to the term B2 (the square of the magnetic field) in the Hamiltonian
^\(E2jrB2) of the continuum theory.
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Next I introduce the notion of a local observable. One defines the algebra J/Ω of
observables in Ω as the algebra of all bounded operators A in J^Ω which commute
with the gauge transformation U(h). For Ω C Ω',tfΩ can be viewed as a subalgebra of
.s/Ω' The algebra j/ of local observables is defined as

where the union goes over all finite Ω C Zd. I finally define, following a widespread
abuse of notation, the support supp(^) of a local observable A as the set of all links
leΩ1 for which there is a bounded operator Bt in L2(dgl) that does not commute
with A. By Schur's lemma an observable A with L — supp(^4) C Ώ j can be written as
H(χM' with an operator A in βf(L) = L2(dgL) and the unit operator i in ^(Ω^L).
Most of the time I will not distinguish between A and A'.

For a local observable A one defines the expectation value (A)β at inverse
temperature β and the vacuum expectation value </!> by

<>!>,= lim <A\Ω, (1.6)
Ω-+Zd

<^>Ξ lim 04>,,Ω, (1.7)
β^Zd

/ ? - > o c

with
~ l T rβ, Ω J r

where the limit £2-+Zd is the limit L^oo, Ω =

Remarks, i) Obviously HΩ commutes with the gauge transformations U(h) and
hence with P0.

ii) Let g2>0 and jβ>0. Then e~^Hfi and P0e~βίίΩ are positive trace class
operators with strictly positive kernel. Furthermore \\e~βHn\\ = \\P0e~βHΩ\\>0.
These facts are proven below.

iii) The finite volume quantities (1.8) and (1.9) are well defined for all β, g2 >0
due to the above remark ii).

iv) For large g2 the existence of the limits (1.6) and (1.7) will be shown in
Sects. 2 and 3. If the group G is finite one can use standard compactness arguments
(see e.g. [12]) to show that for arbitrary g 2>0 there exists at least a convergent
subsequence. For Lie groups the standard argument breaks down, because s/ is
not separable in this case. The more involved arguments of [13] are however still
valid (see Appendix A).

Proof. Only ii) needs to be proven. Obviously e~βHf* and P0e~βHf* are positive.

e~βHn ;s a trace-class operator with strictly positive kernel. Using Holder's
inequality and Trotter's formula, one obtains the corresponding results for e~βHf*,
and hence for P0e~βHΩ.

The last statement of remark ii) follows by the methods of [14]: Let ψ be an
eigenvector of e~βHίί to the eigenvalue ||^~^Hβ||. Due to remark i) ψ can be chosen
to be an eigenvector of P0 and due to the Perron-Frobenius theorem ψ can be
chosen strictly positive. But then it is not possible that P0ψ = 0. Hence P0ψ = ip and
\\PQe-βHn\\ = \\e-βH"\\. D
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I finally recall the definition of the quark-antiquark potential V^ at finite β, as
first given by Polyakov in [9]. In the finite volume, Ω, V^ is the free energy
difference

Vβ-Ω(x,y) = Fq(x*)q(x') ~F (1.10)

where FβtΩ is the free energy of the system without external quarks

— _ 1Πσ Ύ (\ \\\
β.Ω~ nl(Jto^β,Ω^ U 11]

P

and Fq

β

(x

Ω

q(y) is the free energy of the system with an external quark q at x and the
antiquark q at y

1

^ώ? Γ) -ffl / ' j -j A\

χg( ) denotes the trace in the respresentation g of G and ^ = χq(H).
For the rest of this section I will assume that the thermodynamic limit of (1.10)

exists and is translation invariant:

V&(*-y)= K™dV&Ω(x>y)- (1.16)

If V/q(x — y) grows linearly with the distance |x — y\ as |x — y|-»oo, one speaks of
linear confinement for external (or infinitely heavy) quarks; if V^(x — y) stays
bounded for |x —y|-»oo one speaks of deconfinement. The (Polyakov-) string
tension is defined as

σ^:=, 'T bΓ^\v^x~y) (U7)
\χ-y\-*cc I-* —3/1

Remarks, v) Let C be a loop in the space lattice Ώ and χg( ) be the trace in some
irreducible representation q of G, assumed to represent the center Z(G) of G in a
non-trivial way. One often is interested in the question, whether the expectation
value <χg(gc)>/? decays exponentially with the perimeter |C| of C or with the area
A(C) of the minimal surface that can be spanned into C (one says: spatial Wilson
loops show perimeter respectively area law behaviour). In contrast to the theory
on a symmetric space time lattice of zero temperature however, this behaviour is
no confinement criterion in the context considered here. In fact spatial Wilson
loops probably show area law behaviour for all β < co and all g2 > 0, provided
d +1 ̂  4 and G is continuous [3], whereas σq is known to be zero for β ~1 > const g2

in d-i-1^4 dimensions [1].
vi) For the theory defined on a space-time lattice the u2-point-function"

Zβ,Ω

(1.18)

is nothing else but the expectation value of two Polyakov-loops (also called
Wilson-lines in the literature) at distance |x — y|, times the trivial multiplicative
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factor dq (see e.g. [1]). Clearly exponential clustering of the 2-point function (1.18)
is equivalent to linear confinement and long range order is equivalent to
deconfinement.

Finally I want to discuss the existence of the Hamilton operator H in the infinite
volume Zd. I first recall the GNS construction of the infinite volume Hubert space
tf : let Jf ΞΞ {A e d : (A* Ay = 0}. Then (A + Λr , B + A^} = <,4*£> defines a positive
sealer product on stf[Λr. ffl is the completion of s^l^f with respect to ( , •). For
A E sέ I denote by ΨA the corresponding vector in ffl . The vector Ω = Ψ^ is called
the vacuum.

For A,Be,tf and for ί^O let

ωit(A,B)= lim ω?f'%4,β), (1.19)
Ω^Zd

β-^^

where for t < β and A, B e .$# ,

Using the log convexity of ωit(A,A) and the fact that Q^ωit(A,A)^ \A\\2

9 one
shows the monotonicity of ωit(A,A): ωit(A,A)^ωit>(A,A) if O^ί'^ί. We now
define an operator T(ί) in $f by

(ΨA,T(t)ΨB) = ωit(A,B). (1.20)

Then obviously O^Γ(f)^l and T(t + s) = T(t)T(s) for all s, ί^O. Ω is an
eigenvector of T(t) to the eigenvalue ||T(ί)|| = 1.

Lemma 1.1. Assume that lim ωit(A, A) = (A* Ay MA e jtf. Then there is a self adjoint
r->0

operator H^O on Jf, such that HΩ = Q and

Proof. Due to the assumption (Ψ, T(t)Ψ)->(Ψ, Ψ) as ί-»0 for all vectors Ψ in a
dense subset DCJf.lt follows that

goes to zero for f-»0. Hence Γ(ί)->i strongly as ί->0. ίί is the generator of the
strongly continuous semi-group of contractions {T(t):t^0} [15]. Since

= Q because Γ(ί)Ω - Ω. Π

Remarks, vii) For finite groups one can use standard methods (see e.g. [12]) to
construct a strongly continuous time evolution αf( ) on sέ '. Since ω^,^)
= (A*uίt(A}y this immediately implies the assumption of the above lemma and
hence the existence of the infinite volume hamiltonian H.

viii) For general compact groups one can use the expansion of Sect. 2 to show
that the assumption of the above lemma holds within the region of convergence of
the expansion, i.e. for large β and g2.

ix) Denote by J^ the set of vectors in Jf which are orthogonal to Ω. Assume
that there is a constant M>0 such that V ί ^ O and MA, Bε&tf

\ωίt(A,B)-(A*y(By\^conste-Mt (1.21)

with a constant const which does not depend on t. Then, obviously, H ̂  M on jf 1.
Hence (1.21) implies a mass gap which is at least M.
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2β The Strong Coupling Cluster Expansion

In this section I derive an expansion for the time continuum theory which
converges for large couplings g2 (the corresponding bound g2(β) depends on the
inverse temperature β). Within the region of convergence ΐ show a mass gap,
confinement for external quarks and an area law for spatial Wilson loops. The
expansion will be explained in this section; convergence and the above mentioned
physical consequences will be shown in Sect. 3.

It is convenient to introduce two coupling constants μ, λ and to consider the
expectation values

9 (2.1)

where

T = eD + w, (2.2)

Σ W(p), (2.3)
peΩ2

Dxy = - λΔxy , W(p) = μ Refefe,) - χ(l)) . (2.4)

Here N is a positive integer and Z^μ

Ω is chosen in such a way that
Clearly (A^fa is equal to (Ayβ>Ω as defined in Sect. 1 if N, λ and μ are chosen
appropriately. Large g2 correspond to large λ and small μ. Throughout this section
I will chose λ > 0, μ > 0.

In a first step we rewrite the partition function as an integral involving the
kernel T( , •) of T,

N N N

= ί Π ^Sί Π ^nf Π ^(hfSfnΓS Sf-f ι ) j (2-5)
ί= 1 ί= 1 ί=1

where for t = 1,.. .,ΛΓ gr and ht are functions from Ω1 and Ώ, respectively, into G. dht

and dgt denote the corresponding product Haar measures; h^h"1 is the gauge
transformed field.

Next we expand the kernel of T around one. This is done in two steps: first we
expand T around T(0) = e° using the Duhamel expansion (a reference concerning
the Duhamel expansion is e.g. [16]) and then we expand the kernel T(0)(g, g')
around one, using the fact that the heat kernel e~λAχy('''} does not differ very much
from 1 for large λ. The first step corresponds to the expansion in the horizontal
plaquettes described in the introduction, the second to the expansion in the vertical
plaquettes.

The Duhamel expansion gives

= eD+^W(P}=\ Π ( Σ Λί^ < p )b Γ W> (2.6)

where T(t) is obtained from T(0) by "inserting" W(p) at the times ί^, ...,ί^.
Formally this can be described as follows: Let p1? ...,pκ be the plaquettes in Ω2, let
n{ = npι and n = n^ + ... -h nκ. Let
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be a permutation of ί^,..., f£* such that sί ^ s2 :g ... ̂  sn and set

where on the right-hand side each pk occurs exactly nk times (fe = l, ...,K). Then

T(t) = esιl> W^) e(S2 ~Sl)DH%2).. .e

(Sn~Sn- ^DW(qn)e(ί ~Sn}D. (2.7)

Next we resum (2.6) to obtain

T=e = Σ
Pcί22

Σ^μ^ .^imt). (2.9)

To describe the factorization properties of the kernel T(P)(g, g') I need the
following definitions: For a set LcΩl I introduce the operators

D(L)= Σ DI, (2.10)
Z e L

(2.11)

on β?(L) = L2(dgL). For PcΩ2

 let L(^) be tne set of links / which belong to the
boundary of at least one plaquette in P. I then define an operator T(P) on $(L(P}}
which is obtained from 7^ in the same way as T(P) is obtained from T(0). More
precisely define TL(P)(t) as the right-hand side of (2.7) with D replaced by D(L(P))
and f(P) as the right-hand side of (2.9) with T(t) replaced by ΓL(P)(t). Obviously the
kernel of T(P) has the factorization property

,g')= π Twfeg') π ^"fegί), (2.i2)
LeLc(P)

where η(0) - eD\ LC(P) = Ωί\L(P) and 3£(P} denotes the connectivity components of
P. Note that Γ(P)(g,g/) depends only on gl and gj if ίeL(P).

In the second step we expand the kernel of 7](0) around 1

;), (2.13)

provided /eL%P). Combined with (2.8) and (2.12) this gives

T= Σ Σ T(P,L)9 (2.14)
PcΩ2 LCLC(P)

where T(P, L) is the operator on ffiΩ with kernel

[T(P,L)](g,g')= Π T(Pi)(&g')Uκι(Sι,g'ι) (2.15)
leL

Inserting (2.14)-(2.15) into (2.5) we get a representation of Z^ as the partition
function of a polymer system, where polymers are built out of time-like cubes and
plaquettes in the space-time lattice Λ = {Q,l,...,N}xΩ. [The cubes come from the
plaquettes in (2.14), the plaquettes from the links in (2.14).] More precisely I define
(A has to be taken periodic in time direction; AV

2 and AV

3 denote the positively
oriented time-like plaquettes and cubes in Λ\ V stands for "vertical"):
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Definition 2.1. Let e, e'^Av

2^jΛ^. Then e and e' are called incompatible (or
connected) if they have at least one common link. For WcΛv

3 P(W) denotes the set
of time-like plaquettes pεΛv

2 which belong to the boundary of at least one cube
c£W; PC(W)~ΛV

2\P(W).
A pair y = (W9 P) with W C AV

3, P C AV

2 is called a polymer if P C PC(W) and Pu Wis
a nonempty connected set. Two polymers y = (W,P) and y' = (W',Pf) are called
incompatible if FFuPu FF'uP' is connected (write y ̂  y'}. Otherwise they are called
compatible (write y~y'). Finally the size |y| of y = (WζP) is defined as |PF| + |P|,
where \W\ and |P| denote the number of cubes and plaquettes in P and W,
respectively.

For each plaquette peΛv

2 there is exactly one time t e { 1 , . . . , N} and one nearest
neighbour pair <xy > e Ω 1 such that p = ((£, x), (ί, y), (ί + 1 , y\ (t + 1 , x)). I denote ί and
<xy> by ί(p) and π(p), respectively. For ceAv

3 ί(c)e{l, . . . ,JV} and π(c)e£22 are
defined analogously. To define the activity z(γ) of a polymer y = (W, P) I decompose
y into "time-slices": yl =(Wί9 P^, ...,γN = (WN,PN) with ί(l/^) = ί(Pί) = i. I set

Q(y)= Π βίWQβίΛ), (2-16)
i = l

Π T(P)(htgthΓ ',&+!), (2.17)
Pe3 (π(W,))

ρ(Pt)= Π ^(Λ gA^WίgrMW (2.18)
<xy>eπ(P t)

We now use (2.14)~(2.18) to rewrite the integrand of (2.5) as

Π T(h(&hr ',&+!)= Σ Σ Φ(y,,...,yn) fl ρ(y;), (2.19)
ί = l « = 0 {}Ί,..., yn} i = l

where the sum goes over sets {y1? ...,yn) of polymers and Φ(y1? ...,yn) = \ i f y l 5 . ..,yn

are pairwise compatible and =0 otherwise. Combined with (2.5) this gives the
desired representation of Z^μ

Ω as the partition function of a polymer system:

Zfr£= Σ Σ Φ(7ι,. ..,?„) Π Φf) (2.20)
n = 0 {y ι , . . . ,y n } i = l

with

Φ)=ίβω ΓM& n A. (2.2i)
f = 1 ί= 1

[Note that ρ(yf) and ρ(y; ) have no common variables for y f~τ, .] The Mayer
expansion for polymer systems then gives an expansion for the free energy

logZ^β= Σ Σ Φc(yι—7n) Π Φi), (2.22)
w = 1 y i ..... l>n ^ ! i = 1

where Φc is the connected part of Φ (see e.g. [7] or [1 7]). Note that this expansion is
absolutely convergent, provided the polymer system is dilute, i.e. \z(y)\^e~b^ with
a large constant b. We will show such a bound in Sect. 3, using the ς'trace-
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representation"

o Π T(π(Wt),π(Pt))\ (2.21')
ί= 1

of z(y) 1(2.21') follows immediately from (2.21) and (2.15)-(2.18)].
It is not hard to generalize the above steps to obtain an expansion for

expectation values. One considers the modified partition function4

Z(A) = ττjra(ί + A)TN = Σ Tr^Po^ΓMPoTf-1 (2.23)
n = 0

and derives again a polymer representation for Z(A). The expectation value of A is
obtained by taking only the terms linear in A in the Mayer expansion of \ogZ(A).

To obtain the desired polymer representation of Z(A) we apply the same
strategy as before. We expand T according to (2.14) and AT according to

Σ Σ AT(P,L), (2.24)
PcΩ2 LcLc(P)

getting again polymers built out of cubes and plaquettes in A. In addition they
carry a label n indicating whether n = 0 orn = 1 in the terms on the right-hand side
of (2.23).

The factorisation properties of the kernel of AT(P, L) become evident if we
write (2.15) as an equation between operators: Let Ql 0 be the operator on ̂
= L2(dgt) with kernel 1 , (Qlt 0 is the projector on the "vacuum" of 7J), KI= 7^ — QL 0.
Then Eqs. (2.15) reads

Γ(P,L)=Γ (x) TTO]®[(g)Kr |<8>r (x) a,ol (2-25)
|_P,eZ(P) J [leL J [/eL c(P)\L J

Let j/ C Ωί be the support of A, let P l 5 . . ., Pw be those connectivity components
of P which are not connected with j/, and set PA = P\(P1u...^jPm)9 LA = Lr\.^.
Using (2.25) one immediately gets

m

[/lT(P,L)](g,g') = [^T(P^LJ](g,g')x Π T(P;)(g,g') Π K^gJ). (2.26)
i = l leL\LA

Note that the kernel of A T(PA, LA) depends only on the link variables gb gj with
lejtfvL(PA), and that of f(Pi) only on those with leL(Pi).

The rest is straightforward. One obtains Z(A) as the partitions function of a
polymer system

Z(A)= Σ Σ Φ^-.^J Π ^W, (2-27)
« = 0 {y ι , . . . , )Ή} i=l

where polymers are now certain 3-tuples γ = (W,P,n), with WtAv

3, PCAV

2 and
rce{0, 1}. If (^jPJ, ...,(WN,PN) are the time-slices of y (defined as before), then

D, π(Pf)) . (2.28)

4 In (2.23) I use the fact, that by definition an observable A commutes with the gauge
transformations and hence with P0
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The precise definition of a polymer and of the notion "compatible" is given in the
following Definition 2.2.

Definition 2.2. Let stf be the support of A, considered as a subset of A1} i.e. &0
consists of the links of the form (t = 1, /) e A t with / e supp (A). I define: A polymer is
a 3-tuple γ = (W,P,n) with WCAV

3,PCAV

2 and n e {0,1} such that either n = 0 and
(W,P) is a polymer according to Definition 2.1 (in this case I say γ is an ordinary
polymer and define 7: = PFuP) or n= 1 and (Wζ P) is the (possibly empty) union of
polymers (W^P^, ...,(Wk,P^ according to Definition 2.1, such that for i = 1, . . . ,k

is connected with j/ (in this case I say y is an A-polymer and define

7 is called the enlarged support of 7 and \y\ = \W\ + \P\ the size of 7. Two polymers
7, y' are called compatible (write 7 — y') if y and / are not connected to each other.

Remark, i) If supp(A) is not a connected set, 7 is not necessary a connected set. In
this case the last definition should be read "if none of connectivity components of y
is connected to a connectivity component of/." Note that two A -polymers are
always incompatible.

From (2.27) we get the expectation value of A

00 Φ ( y < , . . . y } n

-̂ —-̂  I} ZA(yt)9 (2.29)
nl i = i

where the £' goes over terms linear in A. Φ and Φc are defined as before. Again, this
expansion is convergent, provided the polymer system is dilute. Here one needs a
bound of the form

\zA(γ)\£\\A\\ne-bM (2.30)

with b > 1 and a suitable norm on A (we will use the operator norm).
I finally derive a cluster expansion for the quark-antiquark potential, or more

precisely for the 2-point-function Gβ ,β = exp( — βVq^
Ω). Again I use the parameters

Λ, μ and N

The modified partition function is now defined as

7(rΛ — Ύv (ip T£_j\\λj— JL 1 %ώ? i ^i Q L

n = 0, 1

where

ft Λ t 9 (2.32)

The 2-point function is obtained from Z(α) in the same way as </ί> was obtained
from Z(A):

~
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I now proceed very similar to the derivation of (2.27): For z e Ω let Lz be the set
of links <(ί, z) (ί +1, z)>, t = 1,..., N. A polymer is then defined as in Definition 2.2,
with the only difference that LxuLy plays the role ofjtf. The notion "^4-polymer" is
replaced by "Polyakov-polymer" The activity z Λ p ( X t y ) ( y ) is defined by (2.21') if y is an
ordinary polymer and by

Vwrt Π T(n(Wt\n(P,)}\ (2.34)
ί=l

if 7 is a Polyakov-polymer with time slices (W^P^...,(WN,PN). With these
definitions one gets

oo n

and hence

Gλ'μ (r vϊ — V V •••>/«/ π / \ /o oc\
^N.ΩV ̂ jyj"" L L i 11 zP(jc,y)UiΛ V^.JJj

where the sum £' goes over sequences y l 5 . . ., yn containing exactly one Polyakov-
polymer. To provve convergence of the expansion (2.35) we will show a bound

both for ordinary and for Polyakov-polymers.

Remarks, ii) The resummation leading to (2.8) can be justified by the fact that (2.6) is
convergent in trace norm. This can easily be seen from the inqueality

(2.37)

to be proven below. Here \A\ denotes the operator |v4|=(yl*^4)1/2 and κ2 — 2χ(l)
x |μ|. The resummation leading from (2.8) to (2.14) needs no justufication because

it is a finite resummation.
iii) Equations (2.5) and (2.2Γ) need a justification, because for a trace class

operator A on /fΩ with kernel KA, it is in general not true, that ΎrA = J dgKA(g, g).
On the other hand it is well known that the corresponding equality for Hubert-
Schmidt operators

is true. Therefore (2.5) is well justified for JV^2 [take, e.g. A = P0T and
B = (P0Tf~ 1]. To prove the equalitity of (2.21) and (2.21') (assume again IV ̂  2) it
is obviously enough to show that T(P, L) is Hubert-Schmidt. This will be done in
Sect. 3; in fact we will prove the stronger statement that T(P,L) is trace class
[inequality (3.7H3.8)].

The case N=l needs some care in the definition of T( , •), but Eqs. (2.5) and
(2.2Γ) can be justified also in this case. I don't present any details (they are easy!),
because the problem can be completely avoided for N = 1 (see Remark iv)).

iv) If one defines the activity z(γ) by (2.21 '), the kernels of T, T(P) and Γ(P, L)
only occur in intermediate steps. One could try to derive the polymer represen-
tation (2.20) of Zfcfa without using integral kernels. Clearly this doesn't cause any
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difficulties up to Eq. (2.14) [Γ(P, L) has to be defined by (2.25) instead of (2.1 5)]. But
after inserting (2. 1 4) into Tr(P0 T)N, we have heavily used the fact that ρ(y t ) and ρ(y 7)
had no common variables if yi~jj. And I don't see how the resulting factorisation
property could be proven using only (2.25), at least if N ̂  2. For TV = 1 this is easy
because now two polymers y, / are connected if and only if their projections onto
the space lattice Ω are connected.

Proof of Remark ii). Let α0, ..., απ be positive numbers such that α^1

-f . . . -f α~ 1 = 1. Then, by Holder's inequality

^ γι \\w(qi)\\ π σΦs'T)αr1.

Choosing α—5^1 and bounding | |VK(^ f)| | by κ2 we get (2.37) (recall that
T^ = eD). D

3e Convergence of the Strong Coupling Cluster Expansion

In this section we will show that the expansion derived in the last section is
convergent for large λ and small μ, i.e. for large g2. With a little extra work we then
obtain an area law for horizontal Wilson loops, confinement for external quarks,
and exponential clustering for local observables.

Lemma 3.1. i) There is a constant ί>0? depending only on the dimension d, such that
the cluster expansions (2.29) and (2.35) are absolutely convergent, provided

\ z A ( γ ) \ £ \ \ A n ( y ) \ \ e - b M , (2.30)

\zP{Xty}(γ)\£e-bM, (2.36)

with b > b0. The convergence of (2.35) is uniform in Ω and the convergence of (2.29) is
uniform in Ω and N.

ii) There are constants μ0>0 and λ0< oo, such that (2.30) and (2.36) are true
with b>b0, provided Re/l>Λ 0 and |μ| <μ0. The constants μ0, λ0 only depend on 60,
the gauge group G and the character χ used to define the Hamiltonian.

iiϊ) Let ReA>0. Then zA(γ) and zp(jc>y)(y) are jointly analytic in μ and λ.

Proof, i) is standard (see e.g. [7]). The convergence of (2.29) is uniform in Ω and N
because the support of A, considered as a subset of the space-time lattice
Λ = {1, ...,N} x Ω is independent of Ω and N.

ii) We prove ii) using Holder's inequality, the factorisation property (2.25) and
the fact that Tr^JKjl and ||P^(p)|| are bounded by

ω t = Σ d^"(Reλ)C« = Tr^e"(Re;i)^-l, (3.1)
< ? Φ O

κ2 = 2χ(t)\μ\9 (3.2)

respectively. Here Cq is the quadratic Casimir operator in the irreducible
representation q, dq = χq(ί) and 0 denotes the trivial representation.

We first prove the bound (3.1) [(3.2) needs no proof] and then use (3.1) and (3.2)
to show ii). Let Ql q be the operator on ̂  with kernel

Qa%M = dlχq(g^h^ (3.3)
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Then, by Fourier expanding the kernel of TJ

and hence
*,= Σ £~λCqβu (3 4)

4 Φ O

Equation (3.4), and the observation that Ύΐ\Qlq\ = ΎΐQlq = dq immediately imply
the bound (3.1).

To bound the left-hand side of (2.30) and (2.36) we use the definitions (2.2Γ),
(2.28) and (2.34) and Holder's inequality. Since ||P0|| = \\Pq(xΓq(y}\\ = i, we get

\zA(y)\ ^ \\A»™\\ Π Tι>JΓ(π(WO, π(P,))| , (3.5)
ί= 1

l^*.y)(7)l^ Π Tι>JΓ(πW),π(Pt))|, (3.6)
ί= 1

if 7 is a polymer with time slices (W^P^ ...,(WN,PN).
Next we use the factorisation formula (2.25), the bound (3.1) and the fact that

j 0 = 1 to obtain the inequality

Tι>JT(P,L)| =
leL

^< Π Tr^JTCP,.)!. (3.7)
Pτe&(P)

Recall that T(P) was defined as a sum over integrals of certain operators TL(P)(t).
With the help of Holder's inequality (cf. Sect. 2, proof of Remark i)) the bound (3.2)

Π Tr^JTCP,.)!. (3.7)
P

(P) was defined as a su
of Holder's inequality (c

implies that

Tr*(L

and hence (we set ω2= Σ K2 and bound TrlTJ^^Trlg, 0 + ̂ /| by (1

Π ^f} ΠpeP J peP ίeL(P)

(3.8)

Equations (3.5H3.8), together with the observation that M=Σl π

and |L(P)|^4|P|, give the bounds (2.30) and (2.36), with

4} . (3.9)

This completes the proof of ii), because ωλ and ω2 go to zero, if |μ| ->0 and Re/ί-> oo,
respectively.

iii) Let Re/I > 0. Then T(0) is trace class and zA(y) can be written as an absolutely
convergent sum of integrals JΛ.. . , involving integrands which are the trace of
products of operators A, P0, W(p) and e~tD. Using the basis

ab( }}q \ n

?Ω, where C/^( ) denotes the matrix elements in the irreducible representation q
of G, we obtain zA(y) as a sum of integrals Jdt . . . , involving integrands which are
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sums of finite products of matrix elements,

(Ψ9AΨ'y,(Ψ,P0Ψ'y,(Ψ,W(p)Ψ'y9 and (Ψ,e-tDψy,

Ψ, Ψ' 6 B. Discretising integrals and truncating sums we get zA(y) as a limit of
functions, which are obviously jointly analytic in μ and λ in the region 3) = {(μ, λ):
Re/l>0}. Let now K be a compact subset of 2. By bounds very similar to those
used to prove ii) one shows that the approximants to zA(y) are uniformly bounded
in K. Therefore by MontePs theorem [21], the approximants converge uniformly
in any compact subset of 2. By Weierstrass's theorem it follows that zA(y) is
analytic in the region &. Π

We now address the question, whether, given β and g2, we can choose JV, μ and
λ in such a way that |μ|<μ0, Re/l>/l0 and

<A,β=<^>» μ

β and Gβtί£x9y) = Gλ

N Mx,y). (3.19)

The answer is given by the following

Lemma 3.2. Let g2

0 = (4λ0/μQ)ίl2

9 j80 = (W2 and

Then, for β>Q and Reg2 > g2(β\ N, μ, and λ can be chosen in such a way that (3.19)
holds and |μ|<μ0, Re/i>/l

Proof. Choose N = N(β) = mm{N\2N> β/β0} and μ = μN{β, \/g2} =
. Π

The following theorem is an immediate consequence of Lemmas 3.1 and 3.2.
tx(-) denotes translation by x e Ω.

Theorem 3.3. i) Let β>ΰ and Reg2>g2(β). Then the infinite volume limit

(Ayβ = lim (A\Ω
Ω-+Z*

exists for all local observables y4ej/. < >β is translation invariant and <^4>β is
an analytic function of 1/g2 in the region %(β) = { l / g 2 : l/g2φO, Reg2>g2(jS)}
(see Fig. i).

ii) For β > 0, Reg2 > g2(β) and A,Be^ there are constants KAB < oo and M > 0,
such that

e-M^ (3.20)

1/g2 (β)

Fig. 1. The region ^(β) according to Theorem 3.3
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V x e Ώ (exponential clustering in the spatial directions). M>0 can be chosen
independently of A and B.

Proof. Theorem 3.3 follows from Lemma 3.1 and 3.2 by standard methods. The
analyticity of <A)« follows from the analyticity of ^Ay^μ = lim 04 ># μ

Ω and the
Ω-+Zd

fact that μN and λN are analytic functions of 1/g2 in the region &(β). Π

Theorem 3.4. i) Let Reg2>go. Then the "full" thermodynamic limit

= lim

exists VAξ£#. <•> is translation invariant and (A) can be continued to an analytic
function of 1/g4 in the region ^ = {l/g4: |l/g4 |<l/g4}.

ii) For Reg2 > go and A,B<E$tf there are constants KAB<ao and M>0, such
that

\(Atx(B)y - (A) <£>| ̂  KABe~MW , (3.21)

e-Mt, (3.22)

VxeΩ and Vί^ O, respectively (for the definition of ωit see (1.19), Sect. ί). Again
M>0 can be chosen independently of A and B.

Proof. The proof of Theorem 3.4 is again fairly standard. The only statement that
needs an explanation is that concerning the analyticity properties of <v4>. We first
assume that go<g2<°o Then

= lim < 4 > = lim (Ay = 4Nλ2= lim

So we have shown that for real g 2>go {^4) is equal to /^(1/g4), where fA is the
function

JA\Z)= nm \A/fl

Due to Lemma 3.1 (note that μ0 = 4/l0/go)/4 is analytic in the circle |z < 1/g4. fA is
the desired analytic continuation of <v4>. Π

Remarks, i) It is left as an exercise to the reader to derive an expansion for ωit(A, A)
which is convergent for Reg2 > g2,, uniform in t e [0, ί0] for any ί0 < oo (choose the
cylinder [0, t0~]xsupp^ as the set, which replaces j/ in Definition 2.2). One
immediately obtains that ωit(A, A)-*(A*Ay as t-»0 and hence, by Lemma 1.1, the
existence of the infinite volume Hamiltonian H ̂  0.

ii) As explained in Sect. 1 the bound (3.22) implies a mass gap for H which is at
least M.

iii) The analyticity property of <^> is due to the fact that the theory with
Hamiltonian

V

has the same vacuum as the theory with Hamiltonian HΩ= -ττΣΔxy+ V.
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To show confinement for infinitely heavy quarks we need the following lemma
[recall that for x e Ω, Lx denotes the Polyakov loop passing through (0, x) 6 Λ its
consists of the links <(£,x), (ί+l,x)>, ί = l,...,N].

Lemma 3.5. i) Let γ = (W,P,n) be a Polyakov polymer with non-vanishing activity.
Then each time slice of y contains a connected subset, which connects Lx and Ly9

provided the representation q used to define zp(x^^(y) represents the center of G in a
non-trivial way.

ii) Under the above conditions \y\ = \W\ + \P\^N x |x — y\.

Proof. If y has time slices (Wί9P1),...9(WN9PN\ then

N

Π Pq(xΓq(y}T(π(Wt\π(Pt}).
t=ι

It therefore is enough to show that for PCΩ2, LcL%P),

if LuL(P) does not contain a path ω which connects x and y.
I now assume that LuL(P) does not contain such a path. Let & be the set of

vectors

Ψ(a.*.®e#0, «Wi(g) = Π W'fe),
leΩi

where Q(l) denotes an irreducible representation of G. Since J* is a base of JfeΩ, it is
enough to show that

Pq(χ)q(y) *(P, L) Ψ{a bt Q} = 0 .

Without loss assume that suppβCLuL(P) (otherwise T(P9L)Ψ{atbtQ} = 0). Since
T(P9 L) commutes with gauge transformations, it is enough to show that

Pq(x)q(y)Ψ(a>*>,Q}~Q (3.23)

Assume that (3.23) is false. Then obviously

1 4 if z = x

-q if z = y , (3.24)

0 otherwise

where for an irreducible representation Q of G Q denotes the corresponding
representation of the center Z(G)5. Equation (3.24), however, implies that suppg,
contains a path connecting x and y, which is in contradiction to our assumption
that LuL(P)3suppβ3supp2 contains no path connecting x and y. Therefore
(3.23) must be true.

ii) follows immediately from i). Π

The following theorem is a direct consequence of Lemma 3.1, 3.2, and 3.5.

5 We have written Z(G), the dual of Z(G), as an additive group; d* denotes the lattice divergence,
i.e.

(d*φ)(x)=
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Theorem 3.6. i) Let β>Q and Reg2>g2(β). Then the infinite volume limit

exists. It is translation invariant and, as a function of 1/g2, analytic in the region &(β}
(see Fig. 1).

ii) For representations q which represent the center Z(G) in a non-trivial way, and
for β>0, Reg2>g2(β), there are constants K< oo, α>0 such that

\Gβ

qq(x,y)\^Ke-«lx~yl (3.25)

Vx, yεΩ.
iii) The constant α in ii) can be chosen in such a way that α = ά/β stays bounded

away from zero in the limit β—>co.

Remarks, iv) The statement ii) clearly implies confinement for infinitely heavy
quarks.

v) Statement iii) shows that the string tension σ^ stays bounded away from
zero in the limit β-»oo (zero temperature).

Proof of Theorem 3.6. ί) immediately follows from Lemma 3.1 and 3.2

ii) For a power series £ anx
n with leading power n0 and radius of convergence

IΣ anx
n\ ^e~n°MΣ \anx

n\enM ^ const e ~ n°M

if \x\eM <r0. By the same argument one concludes from Lemma 3.1 and 3.5 that,
given q, μ and λ with q as specified in ii) and |μ| < μ0, Re/I > λ0, there is a constant
M > 0 such that

\imdG
λ

N^Ω(x,y) £e-Nlχ-*'M.

Together with Lemma 3.2 this immediately implies ii), with α — N - M.
iii) We choose N = N(β) as in the proof of Lemma 3.2. Then N(β)/β, and hence

α//?, stays bounded away from zero as /?-»oo. Π

I close this section with the proof of the following Theorem 3.7 (χq( ) denotes the
trace in the irreducible representation q).

Theorem3.7. V/?>OVg 2 with Reg2>go(j8) there are constants .K<oc, α>0 such
that

(3.26)

("area law for spatial Wilson loops"), provided q fulfills the condition stated in
Theorem 3.6, ii), and C is selfavoiding (\A(C)\ denotes the number ofplaquettes in the
minimal surface A(C] with boundary C). K and α can be chosen in such a way that K
stays finite and α stays bounded away from zero in the limit β-*oo.

Proof. Let ω:Ω1->G be a gauge field which takes values in the center of G. Let
PcΩ2 be a set of plaquettes such that ωdp = 1 for p e P. Then

T(P)(ωg,ωg'HT(P)(g,g') (3.27)

[use the fact that βsD(L)(ωg,ωg')-esD(L)(g,g') and that Wp(g) = Wp(ωg) if
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I now consider a polymer γ = (W,P,n) with n = \ (I call such polymers Wilson
polymers in the sequel). Due to the invariance property (3.27) its activity is zero if it
is possible to choose a co-closed set TcΩ2\P such that C has winding number one
with respect to T(The proof is left to the reader, see also [19]). It follows that only
Wilson polymers y with \y\ ̂  \A(C)\ contribute to the cluster expansion of <^(gc) V
This immediately implies the theorem. Π

4. Deconfinement vs. Freezing for Discrete Groups

In the last section we have shown confinement for infinitely heavy quarks and an
area law for spatial Wilson loops for strongly coupled lattice Yang-Mills theories
with continuous time. On the other hand it is known [1, 3] that for high enough
temperatures β~l there is a region g\(β)<g2 <g\(β), where spatial Wilson loops
still show area law behaviour, while infinitely heavy quarks are deconfined.

Here I show the existence of a third phase with deconfinement for external
quarks and perimeter law behaviour for spatial Wilson loops for discrete abelian
groups G. In this phase the deconfinement is due to the discreteness of G, and not to
high temperatures. Indeed we will be able to prove a lower bound g2(β) on the
transition coupling g^, which stays bounded away from zero in the limit β->oo.

In order to prove these results we are going to derive a "quantum contour"
expansion similar to the expansion introduced in [10]. It is convenient to
normalise the Hamiltonian HΩ = H(£} + VΩ a little bit differently by setting

, (4.1)

(ΛxyΦxy)(gxy)=- Σ d«2Ψxy(hxJ. (4.2)
hxy:d(hxy.gxy) = do

I again start with an expansion for Zfafa = Ύr#,ΩTN, where T is defined as in Sect. 2
[clearly Axy in (2.4) has to be replaced by Axy^. But now we expand T around

S™ = ew (4.3)

instead of T(Ό) = eD. One obtains

(4.4)

S ( L ) = π Σ — ^ . ^ t ) , (4.5)
\_leL \m=l n z ! 0 /J

where S(t) is obtained from S(0} by inserting Dl at the times t\, ..., t"1.
Next I introduce a base of 3tfΩ = P0^Ω in which S(0) is diagonal. It is conveniant

to write the group G additively. For functions g : Ωl ->G, / : £22-»G, I denote by dg
and df the corresponding exterior derivative

(dg)(p)= Σ g(0,
ledp

(df)(c)= Σ f(P}
peac
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For g Ώϊ-^G /i— >g,
W= Π <5(g,,gί). (4.6)

leΩi

Let /: ί22— >G be a function with df = Q;l call such a function a contour in Ω and
denote the set of contours in Ω by .̂ Since (Ω, Ω1? Ω2, . . ., Ωd) is a closed subcomplex
of Zd (we have chosen free boundary conditions) every function /e^7 can be
written as f = dg with g:Ω1^G(d^2). I set

whenever feΉ and f = dg. Note that ί̂  does not depend on the choice of g
because P0 Ψg = P0 Ψ /, whenever Jg — dg'. It is easy to show that for contours /, /'
in Ω (Ψf, Ψf'} = \\Ψ?\\2δ(fJr] with \\Φf\\ >0. Hence

8 = { ψ f = φ f / \ \ φ f \ \ \ f ε < g } (4.8)

is a system of orthonormal vectors in $fΩ. Since the vectors Ψg form a base oϊβfΩ, $
is an ONB (orthonormal base) for ffla. I call ̂  the contour base of 2tfΩ. FT (and
hence S(0)) are diagonal in the base ,̂

W¥"=W(/)¥", ^(/)=_£ £ (rf(0,/(p)))2. (4.9)
^ peΩ 2

[Recall that we have written G additively. Consequently we write d(0, •) instead of
d(l, •).] But S(t) and S(L) are not because Δxy induces transitions

g~ * θAχyΨg= — 2^

hxy:d(hxy,0) = d

where the sum goes over functions h such that d(h(l\ 0) = d0 if / = <x _y> and /ι(/) = 0 if
/φ<xy>. For Ψf(Eέ% one obtains

^y*ί/=- Σ dv2Ψf + d\ (4.10)
A χ y e Φ

where fy C G contains the nearest enighbour of 0 in G, i.e. the elements /i e G with
d(h,0) = dQ. Using (4.4) and the fact that $ is on ONB for 2tfa we obtain

Zλ

N\μ

Ω= Σ Π (^SSίL,)^-1), (4.11)
/1, . , . ,/Λre^ ί=l

L 1 , . . . ,L j V cΩι

where /^+ ! is to be identified with /t.
For LcΩt I set P(L):-{peΩ 2:3/eLwith eδp} and PC(L):-Ω2\P(L); for a

link / = <xj;> in Ω, I define p(ί, /) as the plaquette ((ί, x), (ί, A), (f + 1 , λ), (ί + 1 , x)) in
Λ = {\,...,N}xΩ. I call K = ( f i 9 . . . , f N , L1 ?...,LN) with /Je^, LtcΩ an α/fowed
configuration, if /t = / t + 1 on Pc(Lt) (ί = l, ..., A/) and define the activity z(K) as

z(K)= Π (^SSίA)^^)- (4-12)
ί = l

Finally the support supp(K) of a configuration K = (fl9 .. .,fNLΐ9 . . ., L#) is defined
as the set of vertical and horizontal plaquettes p(ί, /) and (ί,p) such that leLt and
p e supp/r, respectively. Note that only allowed configurations contribute to (4.1 1)
due to (4.10) and the fact that S(0) is diagonal in the basis .̂
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We now analyse the factorisation properties of z(K). For /e# and LcΩ^ let
suppL/ = P(L)usupp/. We consider contours /15 /2, g l 3 g2 and sets L l 5 L2 C Ω, such
that yj = gf on PC(L;). We say that (/1? L l s gi) and (/2, L2, g2) are compatible if there is
no cube ce£23 which contains a plaquette p iesuppL l/ 1 and a plaquette
p2esuppL 2/2

6. Assume that (/1? L1; g t) and (/2, L2, g2) are compatible and set

2. Then

This motivates the following definitions: We say two plaquettes p, p' eΩ2 are
incompatible (or connected) in Ω, if there is a cube c in Ω such that pedc and p' 6 dc.
Two horizontal plaquettes (ί, p), (ί7, p;) in Λ are connected if t = t' and p and p' are
connected in Ω. Two vertical plaquettes p(t, /) and p(ί', /') in /I are called connected if
P({/})uP({/'}) is a connected set and |f — ί ' |^jl. A vertical plaquette p(tj) and a
horizontal plaquette (f',p') are called connected if P({/})up' is a connected set and
t' = t or t' = t+ί. An allowed configuration K is called simple or α polymer if its
support is a non-empty, connected set. Two polymers K and K' are called
compatible if supp(K)usupp(K') is not a connected set. If

and

^ = (/i ? 3 /NJ AJ j ^N)

are compatible, K + K' denotes the configuration

(/i +//, •> /ΛΓ + /;v> Lι?

 uL'ι? - •> LNvLN) .

Note that

z(lC)= Π ̂ i) (4.13)
i= 1

if K j , . . . , Kn are pairwise compatible and K = K i + . . . -f Kn.
Due to (4.1 1 H4.1 3) Z^ can be written as the partition function of the polymer

system just defined

ZJ»£= Σ Σ φ(Kί,...,Kn}flz(Ki) (4.14)
n = 0 < K ι , . . . , X n > i= 1

(as usual, φ takes values 1 or 0. depending on whether Kl9 ...,Kn are pairwise
compatible or not). For logZ^ one obtains the Mayer expansion

oo φ (Sf 1̂  \ n

β= Σ Σ Λ 1 ;-' " ;π^) (4.15)

The following lemma gives absolute convergence of the expansion (4.15) provided
\λ\ is small enough and Reμ is large enough.

' Note that suppLι ft = suppLι g( because ft = gf on PC(L, )
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Lemma 4.1. Let G be a finite abelian group, % = { g £ G : d ( g , Q ) = d0}, and ω3, ω4,
e~b the constants

Jι- L '
g φ o

e-* = max{ω3, ωi/2, (ω3 + \}

Assume that e~b ̂ \. Then z(K) is jointly analytic in μ and λ and

e-bW (4.16)
K : supp(K) = tf

for all connected sets Jf of plaquettes in Λ.

Proof. LetL^I/eΩ^pfcOeJf} and Pf = ( JpeΩ 2:(ί,p)eJf}. Then

Σ KK)I = Σ Π \(Ψfi,S(LjΨf^)\. (4.17)
K : sυpp(K) = jf /i, ...,/Ne^ i= 1

suρp/j = F l

I first bound sums of the form

Σ Π \(Vfi

9S(t^ + i)\9 (4.18)
/!,..., /Ne^ i=l
supp/i = Pi

where tf is a function which assigns to each ίeL f exactly n(i, /) times ί̂ , ..., ί"(|f/)

between 0 and 1. Using (4.5), the bounds on (4.18) will give the desired bounds on
(4.17). I take a typical term of the form (4.18), namely

^= Σ Π \(Ψfi,eSίWDl<?*wDl.e
sίwΨf' + l)\,

with 0^s f, 5f, s j^l, Sj H-Sf + s^l. Inserting the base 3$ we obtain

where

Next we remark that due to the "transition rules" (4.10) only contours gf with
Pί C supp(gj) C PJ contribute to the above sum. Here P^P^uP^) and Pf

= Pt\P(Q. I define

l if PCsupp(g)cP
0 otherwise

Then

^^ Σ Π {̂ .
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The right-hand side can be viewed as trace in /2(^). Using Holder's inequality we
obtain the bound

N

'==- 1 J- ί—l '

Pi C SUpp f i C PΪ

where K is the norm of the operator Dl in L2(^) with kernel Dt(-, •). Bounding K by ώ
we obtain

N

^Γ^ [~] {(^^''(l 4-ω3)'F^Pl'ώ2}.
ΐ = 1

If one considers the general term in (4.18) instead of ̂ , ώ2 has to be replaced by
Y\ ώn(ίj}. Using (4.5) we finally get the bound

N

Π ίω'p^p(L)'ίl+co yp(Ll-)'co'Ll')
ί= 1

for the sum (4.17), where we used that Pf\P~P(L). Since every link lεΩ± is
contained in at most 2(d— 1) plaquettes p<EΩ2 we can bound

provided ω4 ̂  1. Using the fact that

N N

μri= ^ (|Lf H- iPf i )^ Σ (lAi + l -

we finally obtain the bound (4.16) Π

The following Corollary 4.2, as well as Theorem 4.3 need no explicit proof at
this point.

Corollary 4.2. Let G be a finite abelian group, χ the character defining the
hamiltonian H, and d^2 the space dimension. Then there are constants g2>0 and
βl < oo, depending only on G, χ and d, such that the following statement is true:
V/?>OVg 2 with

3JV, μ, λ such that i) ZβtΩ = Zχt

l

Ω and ii) the Mayer expansion (4.15) for logZjy^ is
absolutely convergent. logZ^ Ω is an analytic function of g2 in the region

3ιGS)= jg2eC\{0}:Re-1

I>™
I v J rt ^ Γt ^l

Theorem 4.3. ϊ) Let d^2, β>Q and Re(l/g2)> l/g2(β). Then the infinite volume limit

(Ay- lim

/or α// /oca/ observables A e j t f . (-yβ is translation invariant and (Ayβ is an
analytic function of g2 in the region <&ι(β).
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ii) For β > 0 and Re(l/g2) > l/g2(β] and VA, BE<$/ there are constants KAB < oo
and M > 0 such that

~M^

VxeΩ. M>0 can be chosen independently of A and B.
iii) Vg2 with Re(l/g2)>l/g2 the "full thermodynamic limit (1.7) exists. < > is

translation invariant and <^4) can be continued to an analytic function of g4 in the

In addition the statements analogous to Theorem 3.4, ii) and Remark i), Sect. 3 are
true, i.e. Vg 2 > 0 with g2 > g2 the infinite volume Hamiltonian H exists and has a mass
gap ^M.

Theorem 4.4. Let d^3, β>0 and Re(l/g2)> l/g2(jS). Then horizontal Wilson loops
show perimeter law behaviour, i.e.

with a constant γ< oo, which does not depend on C.

Remark i. The 1 -f 1 dimensional theory on a symmetric space-time lattice shows
area law behaviour for all couplings g2 > 0. Using a correlation inequality (see [3])
one concludes that <;^(gc)>/? shows area law behaviour for all g2 > 0 and β < oo in
2+1 dimensions.

Proof of Theorem 4.4. I consider the modified partition function

Since χq(gc) is diagonal in the contour base 3$ and

N

ί= 1

V/e^ with / = /! + ...+/„ and /je^, Z^(C) can be written as a partition
function with modified activities

zi,\UQ= Σ Σ
κ = 0 {K l s...,.κn} i = ι

where for a configuration K" = (/l5 ..., fN, L j , ...,NN),

zc(K) = z(
i= 1

The Mayer expansion for logZ^(C), combined with that for logZ^, gives

Λ

c)>fe- Σ Σ ^f^M Π ^c(^ )- Π
«=ι K ι , . . . , κ n n \ i = ι ί = ι

Telescoping the difference of the products and using the bound \zc(K)\ ^ \z(K)\ we
obtain the bound

^ Σ Σ n\ i = 2
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We now proceed as in the proof of the perimeter law for the Wilson-type theory
(see e.g. [7]). Note that there are not more than |C| const5 contours / with
connected support of size s in three and more space dimensions, for which

1? because this implies that / winds around C. Π

Remarks, ii) In Theorems 4.3 and 4.4 we assume that G is a finite abelian group. As
can be seen from the proof of Lemma 4.1, the finiteness of G is not essential, it is
enough to assume that G is discrete because only the finiteness of tfl (see
Lemma 4.1) was used.

iii) The "quantum contour'" expansion derived in this section has given
several rigorous results concerning the expectation values of local observables
A e stf (including horizontal Wilson loops). It is not obvious, however, how this
expansion can be used to prove deconfinement in the sense of Polyakov. This does
not mean, however, that the theory does not show deconfinement in the region
&ι(β). In fact deconfinement in the sense of Polyakov can be shown by other
methods, at least in a certain subregion of ^v(β\ provided d^2 (see Remark iv).

iv) The deconfinement proof of Borgs and Seiler [1] works for discrete groups
as well as for continuous groups, but only for d^3. To prove deconfinement for
finite abelian groups Vd^2, one might proceed for example as follows:

By a correlation inequality the 2-point function G^ = e~βF^ is bounded from
below by the 2-point function G^ without potential term. G^, however, can be
written as the 2-point function in a G-valued spin system at temperature βg2. Long
range order for this spin system for g2β < 0(1) implies deconfinement for the gauge
theory in d^.2, provided 0<g2< const/?"1.

v) It is clear that the "quantum contour expansion" described in this section
has to be modified for non-abelian groups, because for non-abelian groups
equivalence classes of gauge equivalent classical configurations cannot be
described by the corresponding plaquette variables7. The details will be discussed
in Appendix B.

5, Discussion

In this paper we proved several rigorous results concerning the phase structure of
lattice Yang-Mills theories with continuous time: For arbitrary compact gauge
groups G we derived a convergent strong coupling expansion proving confinement
in the sense of Polyakov, exponential clustering for local observables and an area
law for spatial Wilson loops in a region

0/0}. (5.1)

This result should be compared to that of [1], where deconfinement was shown for

g2 < gl(β) = const Γ1, (5.2)

provided d^ 3. Since spatial Wilson loops do not provide a confinement criterion
for the theory at nonzero temperature, this does not exclude an area law for spatial

7 This fact was overlooked in [7], where the weak coupling expansion for the Wilson theory was
treated on equal footings for finite abelian and finite non-abelian groups
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Wilson loops for g2<gl(β). In fact there are convincing arguments [3, 8] for the
conjecture that spatial Wilson loops show area law behaviour for all β< oo and
g2>0, provided G =[/(!)) or SU(N) and rf+lg4orrf+1^5, respectively. For
G = l/(l) this conjecture has been proven in [3]; for arbitrary compact groups
(discrete or continuous) this area law behaviour has been proven for

g2 >g?(j8) = const' β. (5.3)

The above discussion is summarised in Fig. 2; I is the deconfinement region (5.2)
established in [1], II the confinement region (5.1) established in Sects. 2 and 3 of
this paper. In addition I indicates the generally assumed phase transition line Γ
[G =17(1) or SU(N), d +1 =4]. Area law behaviour for spatial Wilson loops has
been proven for all g2>0, β< oc for G= C/(l); for G = SU(N) the same should be
true, but rigorously it is only known in the region (5.3). The corresponding bound
is indicated by a dashed line. Exponential clustering has been shown in the
confinement region II; for G = SU(N) it should, however, also be true in the
deconfinement region, at least for N = 2, 3 (see [8]). For large N the deconfinement
region might decompose into a Coulomb-phase and a phase with exponential
clustering, see [1]. For G= C/(l) one does not expect exponential clustering in the
deconfinement phase.

The phase diagram for discrete compact groups (we treated the abelian case in
Sect 4; the non-abelian case is discussed in Appendix B) is quite different (Fig. 3).
Here the deconfinement region decomposes into (at least) two phases which can be

Fig. 2. a The phase diagram for G=U(1) in d + l = 4 dimensions, b The phase diagram for
G = SU(N) in d + 1 = 4 dimensions
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C2-
ll

^
Fig. 3. The phase diagram for discrete compact groups in d+ 1 ̂ 4 dimensions

distinguished by the behaviour of spatial Wilson loops. In the region Ib,8 where
deconfinement is due to high temperatures, they still show area law behaviour,
whereas in the region la, where deconfinement is due to the discreteness of the
gauge group, they show perimeter law behaviour (provided d + 1 ̂  4).9 Deconfine-
ment in the sense of Polyakov was proven in the subregion

of region la, but it should be true in the whole region la.
Exponential clustering was shown in region la and in region II, but not in

region Ib. The following cluster expansion, however, is convergent in the region Ib
and implies exponential clustering in the region Ib.

I first consider the theory without potential term. This theory corresponds to a
G-valued classical spin system in d dimensions and can be handled by a standard
Peierls contour expansion, provided the temperature βg2 of this spin system is
small enough. To include the potential term one combines this expansion with a
Duhamel or Trotter product expansion in V. The resulting "high/low-
temperature" expansion is convergent provided βg2 and β/g2 are small.

I close this section with some remarks concerning the analyticity properties of
the string tension σq at zero temperature. I again consider the rescaled theory with
Hamiltonian

x, 2g4

The string tension σ'q in the rescaled theory and that one in the original theory
are related by

The following Quasi-theorem can be proven by a combination of the methods
developed in [18, Chap. 2] (see [22] for a short review) and those of Sects. 2 and 3

8 Region la corresponds to the inequality

>l/g2(β) (5.4)

with g2(β) according to Corollary 4.2, region Ib is the region where both (5.2) and (5.3) are true, and
region II is characterised by the inequality (5.1)
9 The theory in 2+1 dimensions probably shows an area law behaviour for all g2>0 and all
/?<oo; for abelian groups this was shown in [3]; see also Remark i), Sect. 4
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of the present article. To simplify our notation we stick to the groups G = U(N) or
G = SU(N).

Quasi-Theorem 5.1. Let v=d+1^3 and assume that q is the fundamental repres-
entation of G — U(N) or SU(N). Then o'q = σjg2 is an analytic function of 1/g4 in a
neighbourhood of zero.

Sketch of Proof. Fix a constant λ > 0 to be chosen later and consider the two point
function

GM = lim Gi ,?Γ2λ'Λθ,feι),
Ω^Zd

where eί is the unit lattice vector in 1-direction. Denote the Polyakov loops in
Λ = {\, . . . , N ] xΩ which pass through 0 and (0, let) by C0 and Cb respectively. We
consider the cluster expansion (2.35) for GN(l). For large g2 the leading polymer y0

will contain no cubes, because the activity of a polymer y falls like g~4 k with the
number k of cubes in y. So y0 consists of the plaquettes in the minimal surfaces S0

with boundary C0uCz. As in [18], Chap. 2, we consider the deviations from y0 as a
gas of particles living on yQ. GN(l) [more precisely GN(Γ)/z(y0)~] is its partition
function and σ' its free energy density. For large λ and small λ/g4 this gas is dilute
and the resulting Mayer expansion for σ' is convergent. Note that the excitations of
y0 may contain cubes and plaquettes while they were only built out of plaquettes in
the case considered in [18]. This adds some complications to the geometrie
analysis of the surfaces bounded by C 0uC l 5 but there is no doubt that the above
theorem can be proven with the technique developed in [18]. Π

Remarks, i) The above "proof clearly gives also the analyticity of the quark-
antiquark potential K?|=° m a region [1/g4: |l/g4|<0(l)}, as well as certain
properties of the asymptotic behaviour of Vqq(l), as /^oo; cf. [18, Theorem 2.2].

ii) Combining the above techniques with the particle analysis of Bricmont
and Frohlich [23], one obtains the analyticity of M/g2, where M is the mass gap, in
a neighborhood of l/g4 = 0.

iii) One can use the techniques of the above "proof to show that the
perturbative expansion (in 1/g2) for σq and for M (as sketched in [5]) is convergent
for large g2.

Appendix A

In this appendix I construct a translation invariant infinite volume vacuum
(β~ 1 = 0) state <•> for arbitrary couplings g2 > 0. 1 start with a sequence Ω(n} of finite
boxes

with periodic boundary conditions and the corresponding vacuum states on s^^(n}

ωn(A)= lim (A\Ω(n) (A.I)

(use the Perron-Frobenius theorem to show the existence of the limit /?-» oo). Using
a lemma of Glimm and Jaffe [13] and a bound on ωn(Δxy) which is uniform in π, 1
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show the existence of a weakly convergent subsequence ωw(ί)( ). The limit

<•> = limωn ( ί )( ) (A.2)
i-» oc

is the desired translation invariant infinite volume vacuum.

Remarks, i) In fact we will show the stronger statement that ωn(i) is locally norm
convergent, i.e. for any bounded region ΩcZd,

ωπ(£)L,n-><•>!.*„ in norm.

ii) From i) it follows immediately that <•> is locally normal, because a local
norm limit of normal states is locally normal.

The following lemma states the desired uniform bound on ωn(Axy).

Lemma A.I. Let g2>0. Then

for all links <xy) in Ω(n) χ( ) is the character used in the definition of the potential VΩ

(see Sect. 1).

Proof. Let E(Ω) — inf specίί^. Then

<|Ω (

1

n ) |, (A.3)n / 7 \ 2 \ <~\ 2
g 2g

where |1 > is the constant function 1 in L2(dgΩ(n)) and Ω^, Ω(

2

M) denote the sets of links
and plaquettes in ί2(n). Using the translation invariance of ωn and the stability of VΩ

(with our choice of normalisation, VΩ ̂  0) we get for

2
<

where we have used (A.3) and the fact that E(Ω(n}] •= ωn(HΩ(n)} in the last step. Π

To continue we need the following lemma, which is proven in [13].

Lemma A.2 ( = Lemma 4.7 of [1 3]), Let 3S be the algebra of all bounded operators on
some separable Hilbert space &? and let N>0 be an operator on $ with compact
inverse N~ί<Ξ&. Then the set

is compact in the trace norm for all 0<fc< oo.

To apply the lemma we fix a finite volume Ω C Zd and set ffl = L2(dgΩ\

By construction ωw>β is normal, i.e. ωn>β( ) = Tr Tn with some operator
on #e . We set

N = t+ Σ Axy.
< x v > c Ω
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Clearly N'1 is compact and

by Lemma A.I. We therefore can apply Lemma A.2 to obtain a subsequence n(ί)
such that ωπ(ί)jβ is norm convergent on <P#Ω. By the diagonal sequence trick n(ί) can
be chosen independently of Ω, which proves the convergence stated at the
beginning of this appendix.

Appendix B

In this appendix I discuss the modifications which are needed to generalize the
expansion of Sect. 4 to non-abelian groups. For simplicity of notation I assume
d = 3. The complex (Ω,ΩΪ9Ω2,Ω3) is now taken as the open subcomplex of Z3

generated by Ω (this corresponds to Dirichlet boundary conditions). For later use I
define dΩ as the set {xeZ3\Ώ:3);eί2 with<xj;>6ί21}.

As in Sect. 4 I set
w)= π <5(grvz)leΩi

but a contour is now defined more abstractly as an equivalence class [g] of gauge
equivalent classical configurations. I set Ψ[9] = P0Ψg and claim that

is an orthonormal basis of 2tfQ = P0^Ω; K(Ω) is the constant p | Ω l 1 ~ |β|, where p is the
cardinality of G. Since J = { ϊFJg:Ω1->G} is abasis of &Ωand(Ψg,P0Ψg,) = Qiϊg
and g' are not gauge equivalent, it only remains to show that

\\PQΨ9\\2 = K(Ω) (B.I)

for all g'.Ω^ ^G. By an explicit calculation

IIJW 2 =ί Π dhx π δ(hxgxyh^g^).
xeΩ (xyyeΩi

We show that for abelian as well as for non-abelian groups only h = 1 contributes
to the right-hand side. Consider a link <xy> e Ώv such that one of its endpoints, say
x, lies in dΩ. Due to our choice of boundary conditions ̂  = 1 for such an x. Using
the invariance of the ̂ -function and the fact that 1 commutes with gxy, we find that
only hy = 1 contributes to the integral. Iterating this argument one proves that only
/ZΞΞ! gives a nonzero contribution to the integral. This proves (B.I) (note that
(5(1) = p, if the ^-function is normalized in such a way that J dgδ(g) = 1).

G
Consider the simplified model without kinetic term. Its partition function is

7 -Tr P-βγn^Ω~ Lrj?ne

Since $ is an orthonormal basis for 3^Ω we can rewrite ZΩ as a sum over contours.

with F([g]) = (l/2g2) Σ d(t,g8p)
peΩ2
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I need some notation: For a set WeΏ31 define W as the subset W:= (J c of
_ ceW

R3; P for PeΩ2 is defined accordingly. A connected set FKcΩ3 is called a simply
connected thick surface if W is simply connected. We say ίίP1 C Ω2 and P2 C Ω2

 are

separated by the simply connected thick surface W" if Ω3\W has two connectiv-
ity components X l 5 K2 such that i) P1CK1 and P2CK2, and ii) dist(K l5K2) = l

We call a non-empty set P of plaquettes simple if it cannot be decomposed into
sets PI, P2 which can be separated by a simply connected thick surface. P1 ?..., Pn

C Ω2 are called the components of a set P C Ω2 if i) P = P t u... uPπ? ii) P1;..., Pn are
simple, and iii) Pt and P; can be separated by a simply connected thick surface for
all iΦ7. I define: The support of a contour [g] is the set of plaquettes p for which
gepφi; a polymer is a contour with simple support; two polymers α l 5 α2 with
support P1? P2, respectively, are compatible if P1? P2 are the components of Px uP2.
I say α is a component of a contour α, if supp(α) is a component of supp(α) and if one
can find gauge fields g, g such that i) α = [gg], ii) α = [g] and iii) supp(g)nsupp(g) = 0
(as a set of links in ΩJ.

I claim that each contour [g] can be decomposed in a unique way into pairwise
compatible components [gj,..., [gJ. For simplicity I only consider the case that
P = supp([g]) has two components (I denote them by P1 and P2) and leave the
general case as an exercise. Let W be a simply connected thick surface that
separates f\ and P2, and Kl and K2 the connectivity components of Ω3\W which
contain Pr and P2, respectively. Since W is simply connected, we can find a gauge
transformation g-»g, such that g = i for all links in W. I define (g,-)/ = gl if / lies in Kt

and (g^^i if / lies not in Kt. Obviously [gt] and [g2] are pairwise compatible
components of [g]. To show uniqueness one has to show that the equivalence
classes [gt] and [g2] do not depend on the particular choice of W and g. This is an
easy exercise.

Given the above decomposition of contours into pairwise compatible compo-
nents one immediately obtains a representation of ZΩ as the partition function of a
polymeter system. Note, however, that there is an additional combinatoric
difficulty with respect to Sect. 4: To show diluteness of the polymer system one has
to show that the number n(s, α) of polymers β of size s which are incompatible with
a given polymer α is bounded by |α| const5, where |α| denotes the number of
plaquettes in the support of α. This was easy in the abelian case, because there
supp(α) and supp(β) were connected sets. Here supp(α) and supp(β) are not
necessarily connected sets, but may be built out of several closed loops which wind
around each other. With a little bit of experience with cluster expansions, however,
it is not hard to show that a bound of the above form is nevertheless true.

The generalisation from the simplified model with Hamiltonian HΩ = VΩ to the
full model with Hamiltonian HΩ =VΩ + H(

Ω

} is straightforward (use the Duhamel
expansion to expand in H{

Ω

}): as in Sect. 4 the kinetic term H(

Ω

} induces transitions
between different contours and we obtain a polymer system in A = {1,..., N] x Ω.
Up to technical details we thus have proven the following

Quasi-Theorem B.I. Let d^3. Then Theorems 43 and 4 A remain valid for non-
abelian discrete groups as well
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