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Abstract. The normal correlation between spin and statistics is shown to be
valid for arbitrary kinks, among them the SU(n) Skyrmions for n^3. It is
assumed in the proof that no gauge-ambiguity attaches to the values of the
underlying scalar field, and that conversely each configuration of this field is
represented quantum mechanically by a Hubert subspace of dimension
precisely one.

I. Introduction

As has been known for several years, objects bearing fermionic statistics can occur
in theories whose "elementary particles" are all bosons, for example, in field
theories which impose only CCR's (Canonical Commutation Relations) but never
CAR's (Canonical Anti-Commutation Relations) on their fundamental field
operators. In the same way spinorial states - ones of angular momentum 1/2, 3/2,
etc. - can occur in theories whose elementary particles are all tensorial (i.e. of
integer spin), for example, field theories in which all the fundamental fields are
scalars or vectors.

Such "emergent" fermionicity and spinoriality occurs in a large number of
situations, the oldest example being a system of non-relativistic electrically and
magnetically charged particles, interacting via the associated inverse-square forces
(together with any short-range attractive forces that may be included in order to
provide for the formation of bound states). In such a situation a bound state can be
a spinorial fermion even if its elementary constituents are all (for example) bosons
of spin zero [1]. Specifically, a "Saha dyon" formed from an electric monopole e
and a magnetic monopole g will have "anomalous" spin and statistics whenever the
product eg is an odd multiple of Planck's constant h.

Dyons with emergent spin and statistics can also occur in Lorentz invariant
quantum field theories in flat space. This can occur, for example, in a theory
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built on three basic bosonic fields: an SU(2) vector-potential of "gauged isospin,"
an isovector Higgs scalar breaking this isospin to an "electromagnetic" U(l), and
an additional scalar field which transforms under SU(2) as an iso-spinor (i.e., a field
carrying spacetime spin 0 and isospin 1/2). If one of the minimal electric charges
associated with this last field binds to one of the magnetically charged solitons of
the theory ft Hooft-Polyakov monopoles) then the resulting dyon will again be a
spinorial fermion precisely when eg/h = odd integer. (See [2] and references
therein.)

In curved spacetime, an analogous possibility occurs in a theory with only one
fundamental field - the metric tensor of five-dimensional Kaluza-Klein gravity.
Here, as well, there exists a magnetically charged1 soliton (stable, at least
classically) whose charge is minimal in the sense that it is related to the unit e of
electric1 charge by eg/h = 1. And once again any dyonic bound state uniting one of
these solitons with one of the minimal electric charges of the theory (the so-called
"pyrgons") would have to be a fermion of half-integer spin (see [3,4]).

In the examples mentioned so far, magnetic monopoles enter in a crucial way,
but there are also examples of a different type in which long-range, velocity-
dependent forces play no role. One such case is that of topological geons
occurring in "ordinary," 3 + 1 dimensional, quantum gravity. Suppose, for
illustration, that precisely N geons are present, all of the same type X, where K
might be - among many other possibilities - the spherical manifold S3/O*. (Here
0* is the 48-element covering group in SU(2) of the symmetry group of the
octahedron, or equivalently, the cube. Some discussion of the space S3/0* may
be found in [5].) The corresponding spacetime is topologically
R x (R3 # X # K # . . . # X ) , where # is the connected sum; and we may suppose its
metric to be globally hyperbolic and asymptotically flat. The formal rules of
canonical quantum gravity in such a spacetime then imply that the quantum
hilbert space possesses state-vectors for which all the geons (the N particles
associated to the N topological structures K) are identical fermions of half-integer
spin. Once again there is "emergence" because the only fundamental field is the
metric gμv, a tensor field quantized without the use of Grassmann numbers or their
equivalent.

Another such example - the one of primary interest to us in this paper - is that
of "kinks," which will be defined in detail below. Specifically, one may think of the
longest known kink, the SU(2) "Skyrmion" and of its more recently studied
generalizations to SU(n ̂  3). In the simplest examples of this sort (pure nonlinear σ
models) the only fundamental field is a spacetime scalar. Nonetheless, the quantum
kinks may - and sometimes must - turn out to be spinorial fermions.

It is noteworthy that each of the gravitational examples mentioned above bears
a close analogy to one of the flat-space examples. Thus, the Kaluza-Klein
monopole, a topological geon in 5-dimensions, resembles a gauge-theory-
monopole; and S3/0*, a topological geon in 4-dimensions, resembles an SU(2)-
Skyrmion. There is also, however, a different sort of gravitational analog of the
flat-space kinks, in which the topology is flat but the light-cones are twisted-up in a

1 Whether one chooses to call this charge electric or magnetic is really a matter of convention
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way formally identical to the twisting that characterizes an SO(3) Skyrmion. In
higher dimensions (though not in four) such kinks appear to afford a further
example of "emergent" spin and statistics, albeit their role in quantum gravity is
clouded by their unusual causal properties [6].

As a final example of "emergence" one may mention the possibility of spinorial
states of the null string in 3 + 1 dimensions [7]. Still further examples of a sort
occur in 1 +1 and 2+1 dimensions, of course, but it is doubtful whether they
illustrate genuine emergence because there is no real meaning to spin or statistical
types in less than three spatial dimensions [4].

Having called to mind the above array of examples in which spin type and
statistical type both behave, in a sense, anomalously, it is natural to inquire
whether the normal correlation between spin and statistics might not also show an
"anomaly" in some of these cases. In this connection the well-known spin-statistics
Theorem of Axiomatic Field Theory [8] is powerless because the axioms on which
it rests are not all obeyed in these examples. Indeed none of the particles we have
discussed is obviously created by any local field operator. Moreover, in the case of
gauge theories the fundamental local operators which do exist fail to transform
simply under the Lorentz group; in string theories such operators either don't exist
at all or have an infinite number of components. Further, certain of the above
examples lack Lorentz invariance, while others involve a spacetime which is not
even topologίcally flat, and on which, therefore, an action of the Poincare group
could not even be defined.

Despite these difficulties, a spin-statistics correlation has been established for
many of the above cases, and the results so far suggest that such a correlation will
exist whenever - and to the extent that - the underlying theory incorporates the
possibility of pair creation and annihilation (cf. [9-11, 2, 12, 13]).

This principle would imply, in particular, that all Skyrmions - not just the
SU(2) ones - should manifest a spin-statistics correlation, since pair creation is
certainly available to them. In the sequel we will establish such a correlation for
arbitrary kinks, including of course the SU(n^3) Skyrmions as special cases. A
consequence is that spin-l/2-baryons modelled as Skyrmions are correctly
predicted to be fermionic independently of whether one assumes two, three, or
more flavors for the underlying chiral field.

The proof per se is presented in Sect. V, but three preliminary sections are taken
up with introducing the concepts and notation which will underlie our argument.
Specifically Sect. II is a discussion in general of the "mechanism" which in
particular makes emergent spinoriality and fermionicity possible for kinks Sect. Ill
defines spin-type and statistical-type in correspondingly general language, intro-
ducing the maps /stat and / s p i n; and Sect. IV specializes to kink theories the key
definitions of Sects. II and III, notably the definitions of the configuration space Q
and of the two maps just mentioned. The proof itself, as given in Sect. V, then
amounts to demonstrating that the mapping /s tat can be deformed continuously
into a certain restriction of/spin. To conclude the paper, Sect. VI discusses possible
extensions of the present results, and intimates that the present derivation might be
the root of a general argument that would comprehend all other instances of spin-
statistics correlation as special cases.
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II. Concerning the Bundle of Configuration Eigenvectors

Earlier investigations [4, 9] have made it clear that distinctions like that between
bosons and fermions are most adequately expressed in terms of a certain U(l)
bundle which occurs as a subset of the quantum hilbert space H. Let us recall the
definition of this bundle, which in the next section will afford us a convenient
formulation of the spin-statistics correlation that we are aiming to prove.

To begin with, let Q be the joint spectrum of a complete set of (mutually
commuting) "position observables" of the system in question. For example, if the
system is a "free top" then the points of Q can be parametrized by three cartesian
coordinates locating the top's center of mass together with three Euler angles
specifying its orientation. Thus Q in this case is the six-dimensional manifold
R3 x SO(3).

Or, to take another example, if the system is a scalar field $, then a single
configuration point qeQ will be a mapping φ from physical space R3 to the
manifold, Φ, in which the field takes its values: Q = Map(K3, Φ). This example is, of
course, the one of primary interest to us; and we will assume additionally that the
mappings φeQ are continuous and approach a fixed constant eeΦ as the spatial
radius r->oo.

We must also assume in general that Q is given to us, not just as a set, but as a
topological space. For example, the free top's configuration space R3 x SO(3)
would be endowed with its product topology. For the scalar field (nonlinear sigma
model) we can endow Q with any convenient topology induced by the manifold
topology of Φ, e.g. the restriction to Q of the compact-open topology [14] on
continuous functions from R3 to Φ.

Now by assumption there exists for each qeQ a state-vector \ψ}eH which
corresponds to q in the sense that if {Qk} is a complete set of position observables
and {c[k} are the corresponding coordinates of q, then \ψ} is a joint eigenvector of
the Qk such that for all k, Qk\ψ} = qk\ψ) This condition, however, does not
determine \ψ} uniquely. Even if supplemented by the requirement that (\p \ ψ) = 1,
it leaves free at least the phase of |ip). In general, much more than a phase will be
left free because the system will have additional degrees of freedom beyond those
corresponding to changes of the configuration point qeQ. For systems of point
particles these additional degrees of freedom might of course be spin, isospin,
color, etc., but they might also be the non-local degrees of freedom which
characterize exchange relations of the parastatistical sort. (Some amplification of
this statement can be found in [12].) In what follows, however, we will ignore all
such possibilities and assume that there corresponds to each q e Q an eigenvector
I ψ} which is unique up to phase.

[We are also ignoring here the fact that normalizable eigenvectors of the Qk can
exist only in the trivial case that Q is a collection of isolated points. In all other
cases I ψ} is really a slightly smeared eigenvector, representing not just the single
point qeQ, but a small neighborhood thereof. This tacit use of smeared
eigenvectors will not affect our considerations below, but it does have the
interesting consequence that the bundle Q which we will define will not inherit a
connection from its natural embedding in H.~]

Now let us associate to each qeQ the "fiber" Q(q) comprising all | ψ) e H which
correspond to q in the sense just described. For us this fiber will be a circle (since it
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is parameterized by a phase) and the union of all such fibers will be a principal (7(1)
bundle over β. The bundle is principal because the rule \ψ}^eιθ\ψ} defines a
global action of (7(1) on it. (Here multiplication by eιθ is just the scalar
multiplication that is part of the definition of the vector space H.)

We can summarize the relations among β, β, and H in the following diagram:

β

Until now we have been dealing with an arbitrary quantum system not
necessarily related to any classical system, and in particular not necessarily
possessing any meaningful "classical limit." However, if we now do imagine that β
is the configuration space appropriate to such a limit, then we can describe the
possibility of different bundles β over the same β as a species of "quantization
ambiguity" inherent in the passage from the given classical system to one of its
quantum analogues. Now it is known [15] that the distinct (7(l)-bundle structures
over β are parametrized by the elements of H2(Q;Z), the second cohomology
group of β with coefficients in the integers. It is also known [16] that there is a
(non-natural) isomorphism between H2(Q, Z) and the direct sum

where the torsion subgroup is defined in general by Ύor(A)\= {aeA\ na = 0 for
some integer n}, and H2{Q)*: = Hom(i/2(β), Z) is2 effectively the non-torsion part
of H2(Q). Thus there are in a certain sense distinct "quantization ambiguities"
associated with the groups H2{Q)* and Toτ(Hγ(Q)).

In the treatment of spin and statistics by Finkelstein and Rubinstein [13] only
H^Q) comes into play. Such a treatment suffices for the 5(7(2) chiral model which
they considered, but it cannot handle more than two flavors. But taking the cases
Nf^3 into account would seem to be particularly desirable, because the SU(Nf)
chiral models for Nf^3 have the advantage of explaining in a certain sense why
the proton must - and not only can - be a fermion. In the following sections we shall
extend the proof of [13] to general kinks, including in particular the higher chiral
models just mentioned.

In concluding this section let us remark that a principal (7(l)-bundle β
embedded in the quantum hilbert space H can arise in ways other than that we
have just been considering. In fact such a bundle will automatically come into play
whenever one has reason to refer to some distinguished subset β of the pure-states
of some quantum system: an arbitrary normalized hilbert-space vector | ψ} is then
an element of β iff it represents one of the elements of β. For example if β is a set of
adiabatically related stationary states of a variable Hamiltonian H(λ\ then we
have the situation of [17]. In that case the | φ> are genuinely normalizable and β is
not only a (7(l)-bundle, but one with a connection. For still another case - one
where β inherits a Lorentzian metric rather than a connection - see Sect. 7 of [18].

1 Unless otherwise mentioned, all homology groups will have coefficients in the integers Z
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III. Characterization of Spin-Type
and Statistics in the Present Framework

The distinction between the spinorίal angular momenta (/= 1/2, 3/2, 5/2,...) and
the tensorial ones (j = 0, 1, 2,...) would ordinarily be expressed in terms of the
distinction between double-valued and single-valued representations of the
rotation group £0(3, R). To re-express it in the language we will need, consider first
any pure state of tensorial angular momentum and a corresponding state vector
\ψ0}. By acting on \xp0} with an arbitrary rotation ge£O(3) we produce an
association

, (3.1)

where R(g) is the rotation operator representing g in H. The set of all state-vectors
|φ> representing rotates of the original pure-state, or more accurately the set £ s p i n

of all pairs (g, \ψ}) such that g e SO(3) and \ψ} = uR(g) \ψ0) for some u = eiθ e U(\\ is
then a principal U(ί) bundle over £0(3); and the mapping (3.1) is a cross-section of
E s p i n . Therefore E s p i n is a trivial bundle in this case. On the other hand, if we had
begun with a spinorial state \ψ} then we would again have obtained a bundle £ s p i n

= {(g, \ψ})} over SO(3), but it would not have been trivial. Instead (3.1) would have
been double-valued; and we know that there is for spinorial \ψ0} no way of
redefining the phases of the R(g) to resolve this double-valuedness.

Now there are in fact only two distinct (7(l)-bundles over £0(3), as follows from
the diffeomorphism £0(3) ~ P 3 = £ 3 /Z 2 , together with the formula # 2 ( P 3 , Z) = Z 2 .
Hence the question whether a given pure state is tensorial or spinorial is the same
as the question whether the bundle Espin over P 3 = £0(3) to which it gives rise is
trivial or twisted ( = non-trivial).3

Let us now specialize this conclusion to the situation where |φo> represents a
single "configuration" eigenstate belonging to β, as introduced in the previous
section. Then (3.1) induces a map

and £ s p i n is by definition the pullback4 of Q via this map: £ s p i n = fspin(Q). More
generally, if \ψ0} is any linear combination of elements of Q all of which give rise to
the twisted (respectively trivial) bundle over P 3 , then by continuity \ψ0} also gives
rise to the twisted (respectively trivial) bundle.

For the general non-linear σ-model, these relationships will reduce the
determination of kink spin-type (namely spinorial vs. tensorial) to the question
whether the pullback of Q via a certain class of maps fspin' P3^Q is trivial or
twisted. In the same way the determination of kink statistics will be reduced to the
question whether the pullback of Q via a certain map

is trivial or not, where P2 = S2/Z2 is real projective 2-space.

3 Notice how only the topology of S0(3) figures in this formulation, but not the multiplication
structure which makes it a group
4 A definition of pullback can be found in Appendix B of [1]
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To understand this latter reduction, recall [4] that the statistical type of a
particle species can be deduced by referring to the bundle of position eigenvectors
of a pair of such particles both of which are in the same, freely chosen but fixed,
internal state. The base-space of this bundle (which need be defined only for
sufficiently widely separated particles) is contractible onto P2, with the contraction
having the meaning of going to the center of mass system and placing the particles
at a fixed separation. The inclusion of this P2 into Q defines the map / s t a t; and the
bundle /stat(β) (in other language, the restriction of Q to P2) is non-trivial iff the
particles are fermions.

We have thus reduced both the tensorial-spinorial dichotomy and the boson-
fermion dichotomy to the triviality or not of certain bundles / s p i n(© and /stat(β)
respectively.5 In these terms the spin-statistics correlation will be expressed by the
statement that the one bundle is trivial if and only if the other one is trivial. To
prove this statement we must define the maps / s p i n and / s t a t more specifically for the
case where Q is (the above defined subset of) Map(#3, Φ).

IV. The Maps / s t a t and / s p i n for Kinks

Henceforth let us restrict ourselves to the case of (ungauged) σ-models, in which
the only dynamical variable is a scalar field valued in a manifold we are calling Φ.
For the subcase of primary interest, kinks will be "Skyrmions" and Φ=SU(n) will
be the "target manifold" of an S£/(n)-"chiral model." (See [19] for background on
such models.)

In all such cases Φ contains a distinguished value e which φ assumes in its
vacuum state and which, therefore all φeQ must approach at spatial infinity. In
this way the configuration space Q becomes as usual a space of "pointed"
continuous maps of ^S3 into eΦ [i. e.maps φ:S3-+Φ such that φ(oo) = e]. Assuming
that the third homotopy group n3(Φ) is non-trivial, there will be elements φ of Q
not homotopic to the constant map φ(x) = e; and a φ whose equivalence class is
one of the generators of π3(Φ) is conventionally called a kink [13]. Here we will be
slightly more liberal, allowing a kink to be any specified configuration φ1:S

3^Φ.
More precisely we will assume that φι(x) = e for |x |>L and call "one-kink
configuration centered at x = b" any φ obtained from φ1 by an overall rigid motion
which carries the origin to x = b:

Φ(g x + b) = </>&) (4.1)

5 One may wonder why the notion of fermion, say, can't be defined even more simply in terms of
the sign resulting from adiabatic exchange of two identical particles. The problem with such a
definition is that adiabatic transport around any loop - even one which doesn't exchange the
particles - will in general introduce a phase which depends as much on the details of the transport
process as on the particle statistics themselves [17]. For example, such "irrelevant phases" will
certainly arise if electrically charged particles are transported through a magnetic field. However,
this does not mean that it is impossible to define statistical- (and similarly spin-) type in terms of
adiabatic transport. On the contrary any determinate mechanism of transport will introduce a
connection on Estat = %tat(Q) and in that sense will fully determine the structure of £ s t a t since any
bundle with connection can be reconstructed from the holonomy elements of that connection
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for some rotation g e S0(3). A ίwo-kink configuration φ will be one whose support
[by definition the closure of the complement of φ" 1(eJ] is enclosed by two disjoint
spheres of radius L within each of which φ coincides with a 1-kink configuration.
Finally, an anti-kink configuration will be one obtained from φ1 by a rigid motion
together with a reflection.

Notice that a kink as we have defined it need not possess any form of dynamical
stability.6 Some degree of stability is of course needed - though not necessarily at
the classical level - for the kink to be interpretable as a particle; but it will not play
any direct role here. A quantum kink will in any case be a superposition of many
configurations, φ, more or less similar to φv In this respect our use of a single
configuration to represent "one-kink" is a convenient fiction, justified only because
the quantum fuzziness in φ does not lead to any ambiguity in the spin-type or
statistical-type of the associated quantum particle.

The definition of the maps/spin and /s tat is now fairly straightforward. To define
the former we need merely set, for geP3 = SO(3% /spin(g) = Φι°g, which is just the
φ of (4.1) with b = 0. More generally, we need not assume that the "initial" configura-
tion </> = /spin(l) is precisely φί9 but only that it coincides with a translate of the
latter in some ball of center b and radius >L. We then define </> = /spin(g) for
ge SO(3) by

\x-b)) for \x-

φ(x) = φ(x) for \x-b\^L.

In this way we can make sense of the spin-type of a kink without making the
unrealistic assumption that it is surrounded by nothing but vacuum. The specific φ
we will need is that which has kinks at ±fc=:(0,0, ±2L)eR3:

for (4.2)

x2 + y2 + (z±2L)2>L2.

Henceforth / s p i n will always be defined relative to this specific configuration
which I will call φ2.

By continuity, the bundle /spin(β) is constant for φγ within a fixed homotopy
class in π3(Φ). Its spinorial or tensorial character is therefore unambiguous within a
given such class or "kink-sector," being independent within such a sector of the
amplitudes ψ(φ) = (φ\ψ} with which individual configurations φ occur in the
actual quantum state. In particular, the spin-type of a quantum kink does indeed
not depend on the details of the configuration φu but only on the latter's
homotopy class.

In the same way the statistical type (bose or fermi) of a quantum kink also
depends only on the element of π3(Φ) to which φ1 belongs. Recalling that /s tat must
be defined with reference to a fixed "internal state" of the kink, we may construct it
as follows. To begin with, we identify P2 with the set of pairs of vectors
{ + b, -b}QR3 such that \b\ = 2L. Then for each such pair {±b}eP2, we define
/stat({ ±fr}) t° be the 2-kink configuration φ(x) which coincides with φ^x — b) for

' Precisely for this reason I have used the word "kink" rather than the word "soliton"
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|x + b\ Ξ> L and with φ^x + b) for \x — b\^ L. The spin-statistics correlation can now
be formulated as follows:

For any principal U(l)-bundle Q over g, the bundles /spin(Q) and / s t a t(β) ore either
both trivial or both non-trivial.

In the next section we will establish this correlation by relating the maps / s p i n

and / s t a t to each other. Before doing so, however, it may be helpful to dwell a
moment on the "chiral model" case where Φ = SU(n\ with e being the identity
within SU(n). For all values of the "flavor number," n = 2,3,4,... we have πo(β)
= π 0 + 3(Φ) = π3(SU(n)) = Z. Hence the kink-sectors are labelled by a single integer
[the "winding number" given by

which we may call "baryon number."
The possibilities for Q, however, are very different for n = 2 from what they are

for n^3. For n = 2 we have π1(Q) = π1 + 3(Φ) = πA(SU(2)) = Z29 whence [16]
Hί(Q) = Z2, whence Ύov(Hι(Q)) = Z2. The corresponding twofold ambiguity in Q
can also be described [13] without direct reference to U(l) bundles as the
possibility of generalizing the quantum t/ -functional from a function with domain
Q to one defined on a twofold covering space of Q. Depending on the "parity" of
this ψ, the kinks (Skyrmions) it describes will be either spinorial fermions or
tensorial bosons.

For n = 3, 4, 5,... on the other hand we have πί(Q) = π4(SU(ri)) = 0, whence
Hγ(Q) also vanishes. For these n, Q is its own universal covering space (all loops in
Q being contractible) but spinorial quantizations are nonetheless possible because
of the non-triviality oϊH2(Q)* [20,18, 21]. In fact, it is only for n ^ 3 that one sees
clearly the utility of defining / s p i n and / s t a t with their full domains P 3 and P 2 . For
n = 2 one can study kink-spin and kink-statistics entirely in terms of the loops in Q
defined by restricting these two maps to convenient non-trivial loops within their
respective domains [13]. For n^ 3, in contrast, the corresponding restrictions are
trivial because πx(Q) itself is trivial.

One last point worth mentioning is that for n^3 there is in practice less
ambiguity in the choice of Q than there is for n = 2, the reason being the general fact
that elements of H2(Q) stemming from H2{Q)* are typically determined by the
equations of motion (field equations) whereas those stemming from T o r ^ ^ g ) ) are
not. For n^3 the equations of motion exert their influence via the "chiral
anomaly," which, being known from other considerations, forces baryons to be
spinorial via the effect of the corresponding "Wess-Zumino term" in the action [20,
18]. This is precisely analogous to the way in which the equations of motion for an
electric charge moving in a coulombic magnetic field force the "orbital angular
momentum" to be spinorial for odd values of eg/h [11,18].

V. A Homotopy Between / s t a t and / s p i n

We wish to show that £ s p i n = /spin(Q) is trivial iff E s t a t = / s t a t(β) is trivial; or what is
the same thing, that the former is the unique non-trivial bundle over P 3 precisely
when the latter is the unique non-trivial bundle over P 2 .
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To that end let us note that a principal l/(l)-bιmdle over P3 is non-trivial if and
only if its restriction to an equatorial P2 Q P3 is non-trivial. This follows directly
from the circumstance that these non-trivial bundles are respectively the quotient
of S3 x (7(1) by i l 3 x (-1) and of S2 x 1/(1) by Π2 x (-1), where Πm is the antipodal
inversion of the m-sphere Sm (m = 2,3), and where U(\) has been identified with the
unit complex circle. Defining, then the inclusion i: P 2 - > P 3 of P2 = S2/Π2 as the
equator of P 3 = S3/773, and setting / s p i n = / s p i n ° i, we have that / s p i n(β) is trivial iff
/spin(6) = (/spino0(6) = J°/spin(β) i s trivial. The spin-statistics correlation is thus
reduced to the assertion that / s p i n(β) and fstat(Q) are either both trivial or both non-
trivial. By introducing / s p i n in place of / s p i n we have referred both spin-type and
statistical-type to maps / with the same domain, P2. If these two maps can be
shown to be homotopic then, by continuity, the corresponding pulled-back
bundles over P2 will have been proved equivalent, and the spin-statistics
correlation established for arbitrary kinks.

To construct a homotopy from / s t a t to / s p i n we can proceed in two steps. First
we fiber P2 into individual loops λ and then - in a manner varying continuously
with λ - deform / s t a t | λ, the restriction of/stat to λ, into the corresponding restriction
/spin I Λ- Now let us recall that we have represented P2 as a quotient of the unit
sphere in R3 by Π2. As such it can be conveniently parametrized by the usual
spherical coordinates θ, φ except that now both θ and φ run from 0 to π. The loops
λ(φ) of fixed φ then cover P2 without overlap, except at their common base-point
(namely the equivalence class uniting the north pole, θ = 0 with the south pole,
θ = π); and except for the fact that λ(π) is really just λ(0) parameterized oppositely
by θ.

Now our definitions are actually not complete until we have specified the
inclusion-map i of P2 into SO(3) = P 3 . This we do by taking i(θ, φ) to be the rotation
of angle 2Θ about the axis e(φ) whose spherical coordinates are (π/2, φ + π/2), or
equivalently whose Cartesian components are ( — sinφ, cosφ, 0). With this, the
restrictions fstSLt\λ(φ) and fspin\λ(φ) become definite maps of S1 into β, i.e. definite
loops in Q. We may call the former loop the "exchange with axis e(φ)" and the latter
loop the "2π-rotation with axis e(φ)."

With these definitions let us suppose that there exists for each φ e [0, π] a
based7 homotopy deforming / s t a t | λ(φ) into / s p i n | λ(φ) and let us suppose further
that this homotopy depends continuously on the angle φ. Then by assembling all
these homotopies into one, we can construct the desired deformation of the
complete map / s t a t into the complete map / s p i n . Thus let fs(φ) for se [0,1] be the
homotopy of/spin | λ(φ) into / s t a t | λ(φ). By definition we have fo(φ) = / s t a t | λ(φ\ fγ{φ)
= /spinUW>)> a n d

?

 f or all 5 and φ, fs(φ)\θ = o = fjtφ)\θ = π = fo{φ)\θ = o = φ2' N o w for
each 5 and φ, fs(φ) is a loop in Q parameterized by the angle θ. Making this
dependence on θ explicit yields a continuous sequence of functions

7 That is, a homotopy throughout which the loops' base-point, [/stat | λ(φ)~\ |θ = 0 remains unaltered.
Notice in this connection that /spin | λ(φ) has the same base-point as /stat | λ{φ) by virtue of the
definitions of/spin(l) = φ 2 and of the inclusion i
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from P2 to Q such that F0=fstat and Fί = / s p i n . This sequence of mappings Fs is the
homotopy we wanted. Of course we have supposed, in constructing the Fs, that we
had available the individual homotopies deforming the exchange with axis e(φ) to
the 2π-rotation with the same axis. Fortunately such homotopies are indeed
available, having been constructed in [13]. To see that they depend continuously
on e(φ) we need only observe that they depend continuously on what here has been
called φ1 and invoke rotational symmetry.

Unfortunately [13] does not exhibit the exchange -»rotation homotopy very
explicitly, although it does in effect give (in its Appendix C) a step by step analytic
representation of a homotopy related to the former as follows. Both / s t a t | λ(φ) and
/spin IKΦ) a r e loops in the 2-kink sector of Q; for both of them the initial and final
configurations are φ2, which has kinks at (0,0,2L) and (0,0 —2L). Such a loop is
symbolized in Fig. 1, in which the coordinates x and y (say) have been suppressed
and the loop parameter θ (let us call it "time") runs upwards. (Thus the initial and
final values of θ are to be identified.) In this figure the directed lines represent the
initial and final 2-kink configuration φ2, while the "blob" represents the non-trivial
portion of the homotopy. A corresponding "vacuum sector" loop (or "process" if
we think of θ as a time) is symbolized in Fig. 2. In it the 2 kinks are no longer
eternal, as in Fig. 1, but instead are paired with anti-kinks, from which they
separate at an early "time" and with which they recombine after the homotopy is
finished. Now the homotopy given (in effect) in Appendix C of [13] connects with
each other not / s t a t | λ(φ) and / s p i n | λ(φ), but the vacuum-sector processes which
correspond to them in the way that Fig. 2 corresponds to Fig. 1.

To convert such a vacuum-sector homotopy to one in the 2-kink sector we may
proceed as indicated by the scheme

(where the numbers refer to the diagrams). Let us imagine for example that the blob
in Fig. 1 is an exchange with axis e(φ). By an initial homotopy (which can be
induced by a deformation (isotopy) of the x-y-z-θ manifold) we deform Fig. 1 into
Fig. 3. Then, by a homotopy which affects only the region within the broken
rectangle, we deform Fig. 3 into Fig. 4. But Fig. 4 contains within it the process of
Fig. 2, which by assumption, we can deform into the vacuum sector correspondent
of the process which rotates one of the kinks through angle 2π about axis e(φ),

Fig. 1 Fig. 2 Fig. 3 Fig. 4



432 R. D. Sorkin

leaving the other kink alone. Carrying out this deformation on the vacuum
"subprocess" in Fig. 4 we arrive at a process which obviously can be deformed into
/spin I λ(φ) by reversing the steps which led from Fig. 1 to Fig. 4. It is clear that the
homotopy we finally obtain will vary continuously with φ2 insofar as this is true of
the one "given to us" (the one operating on Fig. 2).

Perhaps the one step in the above sequence whose implementation is not so
evident is the homotopy 3->4, which in effect only pertains to the region or
"subprocess" within the box in Fig. 3. Taking the origin of coordinates to be the
center of this box we may analytically define a homotopy of the required effect by
the formulas

φ(x, y, z, θ, s) = φ2(x9 y, Z(z, θ/π, s)),

) ( l ) l ]

where both t: = θ/π and the homotopy parameter s run from 0 to 1. \_φ2 has been
defined in Eq. (4.2).]

To see what this does, let us first examine its "end result" by setting s = 1. For
this s, Z = \z\ — 6L and

φ{x, y, z, πί, 1) = φ2{x, y, \z\ - 6L), (5.2)

which is actually independent of θ = πί. For z > 0 this ί-independent configuration
coincides with φ2, or to be precise, a translate of φ2 through (0,0,6L). For z < 0 it
coincides with the parity reverse of φ2, a configuration of two anti-kinks
corresponding to downward-directed line in the diagrams. Taken together the
z^O portions of (5.2) thus agree with the portion of Fig. 4 within the box.

The meaning of (5.1) for 5 = 0, i.e. the "initial process" of the homotopy may be
analyzed similarly. For s = 0 we find

Z = | z | - 6 L [ 8 ( ί - l / 2 ) 2 - l ] ,

which yields a φ(x,y,z; πί,0) describing a process like that in the box in Fig. 3
(though one not as smooth as that figure might suggest). In particular it coincides
with the s= 1 process for ί = 0,1, while for f = 1/2, we have

φ(x, y, z; π/2,0) = φ2(x, y, \z\ + 6L) = e,

which is pure vacuum.
Finally we should check that our homotopy becomes trivial on the boundary

of the box. For the boundaries at t = 0,1 we have Z(z, t = 0,1, s) = \z\ — 6L, which is
manifestly independent of s. For the "vertical" boundaries we merely note that, for
any t, Z ^ \z\ — 6L, whence we will always have φ = e on these boundaries, assuming
the box is large enough in the x, y, and z directions to enclose the cube defined by

VI. Conceivable Extensions and Generalizations

The Spin-Statistics correlation we have obtained is perfectly general with respect
to the manifold Φ in which φ takes its values. In particular it applies to Φ = SU(n)
for all values of n: n ^ 3 as well as n = 2. However, in deriving it we have limited
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ourselves rather strongly by assuming that each φeQis represented by a single ray
in hilbert space and not by a subspace of dimension two or more. Such multi-
dimensional representations figure prominently in canonical quantum gravity [22,
12] and also are an essential feature of any parastatistical quantization of a system
containing three or more indistinguishable point particles [12].

Whether "quantum multiplicity" of this sort can exist for kinks is, to my
knowledge, an open question, although the simplest such possibilities - those
based on promoting ψ to a function on a covering space of Q - are absent here,
because πί(Q) = π4(Φ) is always abelian, whence without irreducible represen-
tations of dimension 2 or greater. If there are non-trivial U(n) bundles Q over Q,
then it would be interesting to study spin-statistics correlations in that more
general case, and specifically to work out the implications there of our general
homotopy between / s t a t and / s p i n.

Another sort of generalization of our present results would be to a class of
theories larger than just the nonlinear-sigma-models. In fact the question arises to
what extent the topological methods pioneered in [13] furnish the basis for a
unified derivation of the spin-statistics correlation in all the cases where it is known
to hold.

One case in which this does appear to happen is that of the Saha Dyon. In fact
by embedding the multiparticle configuration space of [11,1] in a larger one which
includes the anti-particles of the dyons' constituents, one can provide for pair
creation and annihilation of the particles involved. The deformation of the analog
of / s t a t into the analog of / s p i n then proceeds in strict analogy with what we have
done above.

The case which seems least susceptible to being treated in this fashion is that of
point particles created by the operator-valued distributions of "axiomatic field
theory." The ingredients such as energy-positivity, Lorentz invariance, and
analyticity which enter the spin-statistics proofs in that context [8] seem very
different from the considerations of simple continuity which enter the topological
proofs. (Indeed we never even mentioned Lorentz invariance in the derivation
given above.) Nevertheless the two approaches might be harmonized if it turned
out that the role of Lorentz invariance etc. was really only to guarantee the
existence of the intermediate pure-states traversed in the course of deforming / s t a t

into / s p i n. Evidence for such an interpretation comes from the observation (often
attributed to Feynman) that the existence of anti-particles (which we have seen to
be crucial ingredients of these intermediate states) can be traced directly to the
combination of energy positivity with locality and Lorentz invariance.
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