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Abstract. Consider an interaction-round-face potential on the lattice Z¢,
which may include nearest-neighbor and next-nearest-neighbor pair inter-
actions, as well as more general plaquette terms. Assuming some periodicity
of the potential it is shown that, under the condition that equilibrium states
can be distinguished by expectation values of sufficiently local observables,
equilibrium states possess a global Markov property. The condition under
which this Markov property is shown to hold is met in particular in case the
equilibrium state is unique or determined by the magnetization. The proof is
based on an application of the variational principle to states which are
constructed like Markov chains.

1. Introduction

We consider systems of classical spins on Z¢ with, per lattice point, values in a
compact metric space. The Markov property entails that upon fixing the confi-
guration on the boundary of a volume the distribution of the spin configurations
inside the boundary becomes independent of the spin configuration outside the
boundary. The very definition of Gibbs states for a finite range potential states
that Markov properties hold for finite volumes, see e.g. [1]. In this case one speaks
of a local Markov property. In case such a property holds for an infinite volume
this is called a global Markov property.

Gibbs states for finite-range potentials possess thus local Markov properties.
However, the question whether or not Gibbs states possess global Markov
properties is not easy to answer. Indeed, for the three-dimensional Ising model
Goldstein has constructed an example of a Gibbs state that does not have the
global Markov property with respect to a plane, [1]. Other examples of this type
are given in [10].

Global Markov properties are an important ingredient in Nelson’s scheme of
Euclidean field theory because these properties are essential in constructing the
Hamiltonian of the theory (see e.g. [2]). Despite their importance, global Markov
properties are known to hold in relatively few cases. These cases can be divided
into two main groups:
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A) The interaction is attractive or such that F.K.G. inequalities hold. The maximal
Gibbs measure ( + magnetization) and the minimal Gibbs measure ( — magneti-
zation) then have global Markov properties. Such cases are discussed in [1, 3,
and 4].

B) The potential satisfies Dobrushin’s uniqueness criterion, implying that there
exists a unique Gibbs state, cf. [9]. This unique Gibbs state then has the global
Markov property with respect to all surfaces, [3 and 5].

One consequence of Theorem 1 below is that these results can be extended: If the
interaction has the properties specified in Theorem 1 and admits a unique Gibbs
state then this state has a global Markov property specified below.

This paper is inspired by methods used by Schlijper in [6]. In particular the
technique of entropy inequalities used in Lemma 2 is taken from [6].

The proof of the main result (Theorem 1) of this paper uses the variational
principle. Briefly outlined the argument goes as follows. Consider a state on two
planes of the lattice. A construction is presented which yields a state on all of the
lattice having a global Markov property and which is an extension of the state on
the two planes. [In fact two versions of such a construction are presented in this
paper.] This construction is then applied to the restriction u,, to two planes of an
equilibrium state u on Z¢ yielding a (new) state i on all of Z% If u already had
the global Markov property then u = ji, but irrespective of this it is shown that
always is an equilibrium state (with a global Markov property and coinciding with
u on the two planes).

The proof that j is an equilibrium state rests on two observations,

1) the energy density of u equals the energy density of f,

2) the entropy density of j is not smaller than the entropy density of y, since these
two observations, by the variational principle (Theorem 0), imply that i is also an
equilibrium state. The second of the just mentioned observations is obtained making
use of two lemmas (Lemma 1 and Lemma 2). Theorem 2, for the case of a
two-dimensional lattice, states a further relation between the constructed state
and the original equilibrium state u.

We introduce some notation. Let £, be a compact metric space. For A < 74
we put Q,=(0,)" We write Q,«=Q We equip 2, with the product topology
and denote by C(£2,) the space of continuous functions on 2. Let a4 4:2, -2,
be the restriction map for A'>A. We write a,=a,,4. Define ,={f:2-C|;
there exists f,:2,— C such that f = f, a,}. Denote by F(A) the set of complex
valued functions on Q.

The map

FA)2f 4> 22 AEF A

gives then a one-to-one correspondence between &(A) and & ,. Henceforth we will
identify §(A) and & 4 by this one-to-one correspondence. Under this correspondence
C(R2,) = C,={feC()| there exists f,C(2,) such that f = f, o ,}.

Denote by B , the smallest g-algebra of subsets of 2 with the property that functions
from C, are measurable with respect to it. B, is the g-algebra generated by
cylinder sets with finite base in A. Write B, = B. Let B(A) be the Borel g-algebra
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of Q,. Upon identifying sets with their characteristic function, B(A) as a subset
of §(A) is identified with B, < §,. States on C,= C(2,) are identified with
probability measures on B , = B(A), through the Riesz—Markov Theorem.

For keZ we introduce P, = {xeZ%|x, =k} and

(Z2%),s={xez%6x, 20} for 6=+.

We say that a state u on C(£2) has the Markov property with respect to P, if Ef f =
B~ f for all fel*(y; 23(2 .), where Ef and E%, are orthogonal projections on
L2 (u; B) with ranges given respectlvely by L*(u;Bp,) and L*(u; B @, )

For aeZ? consider t:79—7* which maps xeZ onto r‘“)er” given by
1@ x = x + a. By transpositions (with the inverse) Z acts on £, and §,«. Note that
C() is invariant under this action. Thus by one more transposition Z acts on
E¢ ), where E¢(g, is the set of states on C(2). All these actions of aeZ? on the
various spaces are also denoted by t“. Then, for instance, 7% , = F 444

Let @: () 2,-R,
AcZ?
A finite
with @0 ,eC(£2,) for all A finite, be a potential which is nonzero only round faces
of 74 ie, ®oay =0 whenever there exist x, yeX such that maximum {Ix; —
vlli=1,...,d}>1.

We will make use of the variational principle. To this end we assume that @
is H-invariant, i.e., @t = @ for all aeH, where H = 7¢ is a subgroup of finite
index in Z% Let p, be a probability measure on 2. Denote by u{ the product
measure on 2, = (£2,)" constructed from p,.

The pressure P, is defined by

Py,=1lim—InZ,

Az J/lf

where
fu‘A) Aexp[—H 4(4)]

with

HA(Ep) = Z Dooy A& 4)-

XcA

Lin} denotes limit in the sense of van Hove and |A| denotes the number of points
ATZ
of Ac 7

If u is a state on C(£2) such that its restriction to C(£2,) is absolutely continuous
with respect to u¥ we denote its Radon—Nikodym derivative by u‘Y. The average
entropy density per lattice point, s(u), of a G-invariant state u where G is a subgroup
of 7% with finite index in Z¢ is defined by

1
=1li
s(1) AITI;MI AW
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with S ,(u) = — f PV AE ) (UAE ) In V(& ) if the restriction of u to C(R,) is

absolutely contmuous with respect to p4® and S 4(1) = — oo otherwise.

Let M, = Z be such that {1 M}, is a partition of Z%. Note that |[M,| < co
since G has finite index in Z% Suppose {A,},. is a van Hove sequence
such that each A, is a union of sets from the collection {t”M,}.,q. Then
s(u)=ian(1/|A,,l)SA"(u). In particular s(u) <(1/]A,1)S 4, (1) for all neN. Further-

more the functional s is upper-semicontinuous on the set of G-invariant states.
The proofs of these assertions for a general subgroup G < 7¢ with finite index
are a modification of the proofin case G = Z¢ cf. [8]. For xe Z¢ define A eC(2) by

(x)
AP =Y Doy,
X

)
where ) means taking the sum over finite subsets of X of Z* with x as first element

X
of X for the lexicographic order of 7
The variational principle is stated in the next theorem where E¢ g < E¢(g is
the set of G-invariant states and where % ,is the set of Gibbs states for the potential
)

Theorem 0.
1
1. For all ueE§ o), s(1) — Y WAG) S Po.
|M0’ xeMo
2. If peE¢ g, then
1
HEY g=>s(u) — Z WAG) =Py O
|M0| xeMo

2. The Main Result

Introduce P (N)= {xeZ%x;=k;—N<x;<N for i=2,...,d}, where keZ and
NeNu{oo}. Let uf” be a state on Cp iy p,n and et EVand EMbe the
orthogonal projections in L*(u$" ,%PO(N)U P, (N)) with ranges glven respectlvely by
L2(u; By, vy) and L2 (4 By, (). Put AV = {xeZ| - N < x, < Nfori=2,...,d}
and put 7, = 1'% for (1,0,...,0)eZ%

Next we introduce two states y‘aﬁ‘? and (™ which are extensions of & to Cxm.

mv

The state i) will be constructed such that it is reflectionally invariant. In fact

alt
A% is the unique state on C;m that is a reflectionally invariant extension of u$"

which has the Markov property with respect to Po(N) and P, (N). Formally, let
A be the state on Cym defined by

u;’fe( QLfl> JaR ((EN (T (T p e E o (F-n) )]

So [r[EN(HLEV (- By (f) )T}
for LeN and f,eCp ) [= — L,..., L.
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We have introducedf;=1, '*°-1-v'f,and also — 11 = | and + 11 =1.In case uJ"
satisfies u§V(z, f) = ud(f) for all feCp,, we also introduce the state {}) on Czm.
The state ) is the unique state on C;m that is a 7,-invariant extension of ,u‘N’

to Cym which has the Markov property with respect to Py(N) and is defined by
L
ufﬁ&( n > jdﬂ(N){[Tfl[E(N)(f_lfl 1[EN)(f 5 ,Tl—l[E(TN)(f/_L)...))]

Sof il BV BV (S V() -)) 1)
for LeN and fieCp y); I = — L,..., L. We have introduced

N when [<0
fi= {rf’“f, when [>0.

The method given above for constructing i) and i®) relates to a method
discussed in [2], see pages 122-125 and references given there. Let 6, be the
reflection of the lattice in the plane P,. Thus 6, maps xeZ* onto 0, xeZ* where
0,x is given by (6,x); =2k — x, and (0, x);=x; for i=2,...,d. A reflection 6, acts
in a natural way on £2;m, Cym and on the space of states on Cj;m. These actions
are denoted by 6, too. Note that 0, is also well-defined for keZ + 1. The state g%)
is O;-invariant for all keZ, while the state a{N) is t,-invariant. Note that if x4V is
0, ,-invariant then gl = a{). If @ u™ = pu§* for some aeZ? with a, =0, then
also t“@ ) = ) and 19 = ,umv’ By construction the states iy’ and i{®
have the Markov property with respect to P, forall keZ. [For instance considering

A one readily verifies that [E”““ (fofifu) = Lo E(fL(E oo’(fz E—
(f.)--))), where f,eC p, and neN and Where the same deﬁmtlon of f, has been
used as above for [=1,...,n.] For neN and [ a state on C;m we denote by ®
the product state on C(.Q) defined by

®@
ﬂ® _ _L.((O,Znnz ,,,,, 2nnd))ﬂ.
(nz,.“,nd)eZd -1
Consider the situation where p$™ is a state on Cp,p, and y("’ is, for neN, defined

as the state on Cp,,p, @ Obtained by restricting u5™, i.
(n) — ()
Ko =1 rfpom Py

Like above define the states {a%)}, v, A% and, assuming 7, (15 Pep) = U5 Py

also the states {a{"},., and a{%).

Lemma 1. Let n,eN, ny = 1. Let H be the subgroup of Z* generated by {a®¥}; -,
where a\’ = ny0, ;. Assume ps* is H-invariant.
1) Define for keN k=1 the state p*) on C(Q) by

k) (a) (kng)®
pgl: 2k d—1 Z T luallo .
( ) acHnPg(kng)

.....

Then

weak* lim p%) = (5.
k—
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2) Assume 1, (u5® fe,) = use) lc, - Define for keN, k= 1 the state o) on C(2) by

1
(k) — (@) ;(kng)®
Pinv = 478d=-1 T Hiny -
(2k)d ! asHmZPZO(knO)
Then
weak* lim p®, = (=),
k— oo
Proof. The proof of 2) parallels the proof of 1). We therefore only present the
proof of 1).

1) Take f = fof1,...,fr with fieCpy, for [=0,...,L and some N <oo. It is
sufficient to prove

kllm PR = a5 (f)-

Choose ¢:0 < ¢eR.
Since the monotone sequences of projections {E?)},_ converge strongly to
E'%) there exists #meN such that for m = m,

[I( ((m)m ((wfn)(flﬂf(( 't (fz+1 fL 1”5(001)) T(fL) N=Ze
forall I=2,...,L. Thus for acH and m = m,
[l (T(H)OIE((T)”’TOT(—‘U - E((iol))IT)((T(a)ﬁ)(E((iol))“IT( "‘(T(a)fL— 1)[E((20) (T(a)fL M2 = e,

where we used E{(®);,ot® =1@-E®);, and the fact that H acts isometrically on

the L? space.
Both of these last properties are consequences of the H-invariance of u§”). If

1@ Py(m) = Py(n) then,
@6 M | o) < E®
T O[E(fl)zTC‘L‘ ¥ < [E('ll)IT

Hence, for aeyy(m; n) where X ;(i;n) = {aeH |t Py (i) = Po(n)},
H(T(“’fo)(f(a)fi)[E(T")((T(a)fz)Eﬂ")((T(a}fa)"'(T(")J?z— DE g — E2N)
-1
(O ES e, (- (O - ) EY T(T(a)fL) ))"'))||L2§8k[[0 I fiell o

for 1=2,...,d. For ae X y(i;n) one thus readily deduces,
1@ 1)@ f1) E"’((ﬂ“’f DEP(C B, 69F1) )
— O Of EEOT) B g 0O L) ) o

L I-1
é“fO“oo”leoc[s_'_gz I1 ”fk”ao]
1=3k=2

From the definitions of z!}® and (%’ it follows therefore

AR f) ~ B EON)| £2C,
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whenever ae X (#;n) and n = N. Consider the estimate

A RS e IR~ R
0(kng)n X g (i kng
+# LT ) = AR )
= (Zk)l"‘ i _aeﬂﬁpo(kn%mxﬂ(mw 201 N

The first sum in the last upper bound is a sum over a number of terms bounded
by a constant times (2k)* 2
Hence,

limsup [p%)(f) — a5 (/) <

k— o
and the lemma follows. []
For m, L, KeN define A(m; L, K) = 7¢ as
Am; LK) ={xeZ|—L<x;<K+1 and —m<x;<m for i=2,...,d}.

Let M., be the Radon-Nikodym derivative of the restriction of A% (= the
restriction of u) to C,m with respect to 149, Define M_,=0,,M,,.
Furthermore define

— (P 1(n))
M, = j duo ™M 4,
'Qlen)

and
M_,= f d#(opl("»M— 1

2p,m

. AT - _
Then the Radon—Nikodym derivative, u('")(  of the restriction of a8 to Cymex
with respect to x4 is given by
g T My M T Moy Mg
o T_LHM(_U‘L“ M, o Moy Tll(M(—l)K

1

(Note that M, ,,M_,,M . ,and M _, can be assumed to be continuous functions
in case u$® is the restriction of a Gibbs state of A%*).) Then

S A () = 2L+ 1) Spymy U Py (m)(U5™) — LS pymy (15™) — LS pomy (U5™)- (%)
Reasoning similarly one also obtains

S mLL)(#mv)) =L+ ])SPO(m)uP m)(ﬂz ) — 2LSP0(,")(#2°°))

Lemma 2

a) Consider the situation in 1) of Lemma 1. Then



184

s(aSe)) = lim ——a )d 1 [SPO(n UP, n)(ﬂz ) — %SPo(n)(.U(zw)‘%pr(n)(#(zw))]-

n— o (20
b) Consider the situation in 2) of Lemma 1. Then

1
(:u'mv)) = lim n )d 1[ Po(m)UPy( n)(ﬂz )* SPo(n)(ﬂz N1

Proof. The proof of b) is analogous to the proof of a).
We present the proof of a).
a). By Lemma 1 one obtains, using upper-semicontinuity of the entropy,

s(asyy’) 2 limsup s(p(t) = limsup s(a{)).

k— o0 k—

From () for neN, n =1,

1 oL €O
s(a é’l?) (2n )d 1[ Po(muP, (n)(ﬂz ) %Spo(n)(.u(z ))—_%SPx(n)(:u(Z ))]

Therefore

R. Kuik

1 kel
S(uah)>hmsupm—l[ PO(kno)uPl(kno)(:uZ ) — ZSPO(kno)(Hz ) — %SP1(kng)(u(2 N1

. 1 w
= lim W[spo(n)uPl(n)(#(z ) — ZSPo(n)( o)) — SP1(n)(,U2 N1

h— o0

On the other hand, by repeated use of the strong subadditivity property of the

entropy,
S ptingin EST) S S gngiaa— 1 V) + Shyingror, ying) (5t = Spying (i)
= S Mgt - )+ Sp mgror, zno)(llm )

- P,_l(lno)(ﬂau )+ SP,(lno)uP,_l(lno)(ua]l )— p,(/no)(/zg?f))

é .........
é .........
S+ DSppgor uno)(/v_‘a(flxt))) - pouno)(ﬂan ) — (1n0)(ﬂa ).

We used that by 0,-invariance of i’ for all keZ,
7)) — ()
SPk(an)qu+1(ln0}(uaT(t) )= SPO(an}uPl(an)(ualt )
and
SPZk(an)(ﬁg(]?)) = Spo(lno)(ﬁgﬁ))
and

SP2k+ 1<zn0>(/1§‘i?’) = SPI(InO)(ﬁSaCl?))‘
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Therefore,

1
7(0) - S 7(0)
s(ftay)) = 111}2 [2(1 + )2 Ing)" A(Ino,[,l)(:ualt )]

1 t Prigeel
= zhm W [SPO([nO)uP‘(an)(:ugcﬁ)) - %SpounoJ(ﬂ;u zsp, (Ing) (ﬂgﬁ))]
— 0

: 1 0 0
= llm (2n)d 1[SPO(n uPy n)(lu ) 1S[’O(n)(:u(Z )) (.u( ))] D

Consider now an interaction @ like in the introductory section, i.e., @ is nonzero
only round faces of Z and invariant under a group G with finite index in Z%

Theorem 1. Let u be a G-invariant Gibbs state for the interaction @, where
|7%/G| < c0. Put

K =ule, -
1) Assume that @ and u are 8, -invariant for all keZ. Construct the state il from
uy. Then @$) is a Gibbs state for ®.

2) Assume that @ and u are invariant for translation over (k,0,...,0)eZ for all keZ.
Construct i\%) from us?). Then i{>) is a Gibbs state for @.

Proof. Since G has finite index in Z¢ there exists ny =1, n,eN such that
{a®},_,. 4< G, where a’ =ny6, ;. Let H be the subgroup of G generated by

1) By the same reasoning as in the last part of the proof of Lemma 2,
. .
s(p) ,}fﬁ n )d T [Spo(n)vp n)( (200)) - %SPo(n)(:u(ZOC)) - %Spl(n)(ﬂ(zw))]

Thus s(u) < s(u(). Furthermore, for pairs (x, X) with xe P,U P, and X < Z¢ such
that xe X is the first element of X (in the lexicographic order of Z%) and @-ay # 0,
we define X (x, X) = Z¢ by
a) if X < PyuP,, then X(x,X)=X

b) if X ¢ Pou Py, then X(x,X)=0,X.
Thus always X(x,X)< P,UP,. Then since the states u and {3’ as well as the
potential @ are invariant under the reflection 6,,

wAG) = #(;m @e O‘)?(x,X))
and
A (A = ﬁ&?f’(;‘x’ d’°“x(x,x)>
for xeP, U P;. But

w(Doog, y) = s (@o U g.x))
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for xeP,u P;. Therefore, if xe Py U Py,
H(AG) = 1 (AF).

Next note that u and i}’ as well as @ are invariant under the group generated
by H and (2,0,...,0)eZ¢

An application of Theorem O for this last group (with M, = Py(ny)u P, (ng))
gives, from the inequality
T VT ER " -
(2no)* ™! (2ne)* 1

xePgy(ng)uPy(ng)

that s(ii{%) = s(u) and that a{%) is a Gibbs state for @.
2) The proof of 2) is analogous to the proof of 1). [

Y A,

xePgy(ng)u Pq(ng)

() —

Corollary 1.

1) Consider the situation described in Theorem 1.1). Let G be the group generated
by GNPy and (2,0,...,0)eZ Assume @ is 0,-invariant for all ke Z. Consider the
condition C;:

If the Gibbs states u, and p, for the potential @ are both G@P-and
O -invariant for all keZ and p, fCPOUP =palc, ,»then py=p,.

If C holds then every G- and 0,-invariant (for all keZ) Gibbs state for the
potential @ has the Markov property with respect to P, for all keZ.

2) Consider the situation described in Theorem 1.2). Assume (1,0,...,0)eG. Consider
the condition C,:

C {Ifthe Gibbs states u, and u, for the potential @ are both G-invariant and
2
My rc,,ou,,l = MUy Tc,,ov,,l, then py = .

If C, holds then every G-invariant Gibbs state has the Markov property with
respect to P for all keZ. []

Note that Corollary 1 implies the following. If the states determining equilibrium
are recognizable by observations on a plaquette (and have some invariances),
Theorem 1 implies that Markov properties hold with respect to P, for all keZ. A
particular case of such situations occurs for models with a phase diagram described
by the expectation value of the spin on a lattice site (magnetization).

Note. In a forthcoming paper we show that for models with nearest-neighbor
interactions (and with some periodicity properties) leading to an invertible transfer
matrix (for instance the g-state Potts model for nontrivial coupling) the conditions
stated in Corollary 1 are met.

In two dimensions a further relation between the states u and 'y’ (or p and
) can be given which shows that these states do not become disjoint over finite
distances in the 1-direction. We will make use of the concept of relative entropy
of states. When u and v are probability measures on (2 the relative entropy S(u|v)

is defined by
S(ulv) = —j—l< >
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if u « v and the Radon—Nikodym derivative of u with respect to v, (du/dv), is such
that (du/dv)In(du/dv) is v-integrable. Otherwise S(u|v)= — oo by definition. If
{Vn}.en 18 @ sequence of states converging to the weak* topology to a state v and
wis a state such that S(u|v,) = — k for all neN, where k = 0 is some finite constant,
then u « v. Application of this result together with some more details can be found
in [7].

Theorem 2. Let the lattice be two dimensional, i.e., Z*>. We use notation introduced
in the proof of Lemma 2.

1) Consider the situation described in Theorem 1.1). Then

)
'urf/um;u) 'ua“ rCA(xLL)

for all LeN.
2) Consider the situation described in Theorem 1.2). Then

H rCA 0;L.L) «'u””) rCM/ (L)
for all LeN.

Proof. We only present the proof of 1) since the proof 2) is analogous. 1) introduce
no:1 < nyeN like in the proof of Theorem 1. Let Ey: L*(11;B ... 1)) = L (15 By kny..1)
be the orthogonal projection for keN.

Note that the restrictions of two Gibbs states to a finite volume are mutually
absolutely continuous. Thus the following definition of the state i, on C,,., , is
justified:

= [ E(f)
for feCA(,bLL) The Radon- leodym derivative h, of u [CM o with respect to [,

is given by
M(A{kno,L,L))

k= (Athng LL) *
7 (kno) "0
Hait

Therefore

S(p rc,,mu,lﬂk) = fdﬁkhk Inh, = — jdﬂ Inhy
= — JdulIn (o) — In(age™ )]
From the product-type structure of the density of j%r LBM " with respect to

pit ko) ike already used in the proof of Lemma 2 for calculating entropies, and

the fact that u coincides with %" on C, one obtains

Pylkng)u Py 4y (kng)>

JAlkng.L.L))

[duin(alyo"™" ) = [ dpleo n (@™ ).
Hence,

S(P‘lcm%i_”[ﬁk) = S/\(knO,L,L)(/“t) - SA(knO,L,L)(ﬂg;?O))

L-2
= kg 3. [H" ) = b0 (i) ),
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where

N 1
b}k 0)(-) = 4—](113 [SA(kno,L,L~ 2[)(') - SA(knO;L,L—Z(H- I))(.)]'

On the other hand

for

bgkno) (ﬁ(kno) _

_m 1 _
S(,uf,’f‘ °)®) = M [SPO(knO)uPl(knO)(:u) - %SPo(kno)(:u) - %SPl(kno)(.u)] = bfk"O)(ﬂgf?O))

[=0,...,L—2.
The variational principle implies

A® (A%)) < s(w) — Y 1(AP).

alt
4kng xeP(kng) U P (kng) 4kno epynmyop,hng)

Since the number of xeP,(kny)u P, (kny), such that there exists X = Z¢ with @.
ay #0, X has x as first element in the lexicographic order of 74, and X ¢ A%, is
uniformly bounded

s(u) — bikno)(jglknory >
(lu) 1 (/Jall )_ 4kn0

where K = 0 is a constant independent of k. Thus

L—2
S(le,, i) = 4kne Y [b{ () — s(1] — K.

=0

Moreover

b () = s(p).

One obtains

S(/‘ fcm[’ulﬁk) é - K.

Theorem 2 1) therefore follows. [
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