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Abstract. It is shown how the algebraic geometry of the moduli space of
Riemann surfaces entirely determines the partition function of Polyakov's
string theory. This is done by using elements of Arakelov's intersection theory
applied to determinants of families of differential operators parametrized by
moduli space. As a result we write the partition function in terms of
exponentials of Arakelov's Green functions and Faltings' invariant on
Riemann surfaces. Generalizing to arithmetic surfaces, i.e. surfaces which are
associated to an algebraic number field K, we establish a connection between
string theory and the infinite primes of K. As a result we conjecture that the
usual partition function is a special case of a new partition function on the
moduli space defined over K.

1. Introduction and Summary

Recently it has become clear that Polyakov's formulation for quantizing a string
theory [38] has a profound geometrical interpretation. In this formulation one
considers the string partition function Z, expressed as a perturbation series over
random surfaces together with an integration over the space of metrics Mp of a
Riemann surface M of genus p, and an integration over the space <f, containing all
embeddings of the surface into d-dimensional space-time:

x\M-+Widxe£, (1.1)

Z = £ J dgdxvφ{-S[x,g\\geMp. (1.2)

We assume that both the two-dimensional worldsheet swept out by the string, as
well as the d-dimensional space-time in which the string moves can be Wick-
rotated to Euclidean spaces. Furthermore, we shall restrict ourselves to closed
strings so that we will be dealing exclusively with closed Riemann surfaces.
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The action S[x, g] in (1.2) is Polyakov's action for the bosonic string, which is
quadratic in x [38],

Slx,g] = iS]/ggabdβxdbx. (1.3)
M

We consider (1.2) for a given genus p> 1, so the object of interest is

Zp= J dgdxexp-Sίx,g]. (1.4)

The aim of this paper is to show that, after gauge fixing of the symmetries of S[x, g],
the integrand in (1.4) defines a natural holomorphic volume form on moduli space.
Furthermore, when Polyakov's prescription is generalized to include arithmetic
surfaces, we show, using the arithmetic geometry set up by Faltings [20], that the
partition function of a string theory is essentially determined by the infinite primes
of an algebraic number field.

We begin by summarizing the gauge fixing procedure which reduces the infinite
dimensional integral over Mp in (1.4) to a finite dimensional one over moduli space.
From the physical point of view one requires (1.4) to be a single valued function. So
it is natural to require that the volume form in (1.4) must have the same symmetries
as the classical action (1.3). To construct such a volume form we make use of the
fact that the tangent space TgMp at g e Mp, is algebraically reducible

TgMp = TMp®TgMp, (1.5)

where TMp contains the g-trace, while TgMp is spanned by the traceless
deformations of the metric. Correspondingly the measure dg in (1.4) factorizes
formally as

dg = dτ dh, dτ e TMp, dh e %Mp. (1.6)

The classical action is invariant under the group of diffeomorphisms Diff(M)
and the conformal group Conf (M). On Mp, the action of an element φ of DifΓ(M) is
given by the Lie derivative V of g with respect to the vector field V, the infinitesimal
parameter of φ in Diff (M), while Conf (M) acts through the conformal factor
σ: g->eσg, where g is an element of Mp and σ(z) is a scalar function. The combined
action of Conf (M) x Diffo(M) on Mp is given by

δgab = δσgab + gab(V V) + (PV)ab, (1.7)

where Diffo(M) is the identity component of Diff(M), i.e. it consists of the
diffeomorphisms continuously connected to the identity, and the operator P
projects into the traceless part of TgMp:

(PV)ab=VaVb+VbVa-gJV-V). (1.8)

It is well known that the measure in Zp cannot be invariant under both Diff (M)
and Conf (M). We choose it to be invariant under Diff (M), so a physical state in the
theory will be an equivalence class (x, g) with respect to the action of Diff (M). To
isolate the action of Diff (M) one applies the Faddeev-Popov procedure. Locally
the metric g is pure gauge, i.e. all metrics are locally equivalent. However, on a
generic Riemann surface with p > 0 this is not globally the case: there are
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deformations of the metric which cannot be obtained through diffeomorphisms
and conformal transformations. These deformations are the Teichmϋller defor-
mations of the metric. Together with the traceless diffeomorphic variations, they
span TgMp, hence it is seen that the Teichmϋller deformations belong to the kernel
of the adjoint of P, KerP f . (For p> 1, KerP is a trivial vector space.)

Teichmuller space 2ΓV is obtained by factoring out Conf (M) x Diffo(M) from

Mp,

^ M p / ( C o n f ( M ) x Diffo(M)), (1.9)

which is the space of conformal equivalence classes of Riemann surfaces of genus p.
Its dimension is given by the dimension of KerP f which is 6p — 6. Choosing real
coordinates ίl5...,f6p_6 on 3~p one can rewrite the integration over Mp, by a
change of variables, as a successive integration over Conf(M), Diffo(M) and 3Γp.
We will drop the integration over Diff (M). Then (1.4) can be written as [17,23,34]:

/*!£p, (uo,
\

\ M

where {SjffΓ6 forms a basis for KerP1" and all determinants are regularized by
means of the (-function regularization, where we omit the zero eigenvalues, cf.
[12].

On Teichmuller space we still have the action of the so-called mapping class
group /], = Diff(M)/Diffo(M), a discrete group, whose elements are represented
(modDiff0(M)) by diffeomorphisms that are not continuously deformable to the
identity. The integrand in (1.10) is not invariant under the action of Γp, which
implies that if we factor out Γp from &~p, we get an obstruction due to these global
diffeomorphisms. In other words, the integral in (1.10) does not define a function
on the space

(l.ii)

The space Jί is called the moduli space of Riemann surfaces of genus p. The action
of Γp on 9~p is not free, so Jί is in fact a F-manifold or orbifold [5]. Because the
classical action (1.3) is invariant under all diffeomorphisms it is natural to require
that we should construct a partition function having the same invariance, that is,
the integration over 2Γp should be replaced by an integration over Jί.

This amounts to studying a possible obstruction of the global diffeomor-
phisms. Such an obstruction means that there are no suitable global coordinates
on Jί. We will show however by using the complex algebraic geometry of mod-
uli space, that one can construct a globally defined invariant volume form out
of (1.10), which can be integrated over Jί.

The paper is organized as follows. In Sect. 2, we will present some mathemat-
ical background material which is used to rewrite the partition function as a
section of a determinant line bundle. The construction of an invariant volume form
then reduces to giving a Hermitian metric on this bundle. For this purpose we
make use of certain elements of Faltings' work on Arakelov geometry. In Sect. 3 we
then show how this material combines with the results of Quillen [39] together
with the socalled Grothendieck-Riemann-Roch theorem which leads to the
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conclusion that the Hermitian metric on the determinant line bundle describing
the integral in Zv is holomorphically flat in the critical dimension. We thus recover
the Belavin-Kniznik theorem [7] on moduli space, which states that if the theory is
conformally invariant, the integrand of the partition function is the square
modulus of a holomorphic function. We will write this function in terms of
Faltings' invariant and exponentials of Arakelov Green's functions.

Finally, in Sect. 4 we generalize Polyakov's formulation to arithmetic surfaces,
associated with an algebraic number field K. We then exhibit how the partition
function of a string theory is given in terms of the contribution of the infinite
primes associated with K to the so-called modular height of the ^-rational points
in Jί. This leads to the conjecture that the integral over moduli space in (1.10) can
be considered as a special case of a partition function involving arithmetic surfaces,
which is a summation over discrete objects.

2. Determinant Line Bundles and the Structure of the Partition Function

In this section we begin our analysis of the determinants that appear in the string
partition function (1.10) using complex geometry. First we will present some basic
properties of complex line bundles on a Riemann surface in terms of sheaf
cohomology. This material will be used throughout this paper. (A rigorous
treatment of sheaf cohomology can be found in [26].) Subsequently we will explain
in Sect. 2.2 which line bundles are of relevance in string theories. This leads to the
observation that the real determinants in (1.10) can be rewritten in terms of
complex determinants of Laplacians of Cauchy-Riemann operators.

In Sect. 2.3 we will introduce a determinant bundle as a generalization of the
usual determinant of an elliptic operator to an operator which has a non-zero
index and which acts on an infinite dimensional vectorspace. The problem of
defining an integrable volume element in (1.10) then amounts to putting a suitable
Hermitian metric on such a bundle. As a first step in this construction, we will, by
introducing certain aspects of Arakelov's intersection theory, discuss a theorem of
Faltings. Using this theorem one can compute a volume form on the formal
difference H°(M, L) — H1(M, L), where L is a Hermitian admissible line bundle on a
Riemann surface M. One thus obtains a metric on each fibre of the determinant
bundle.

2.1. Complex Line Bundles and Divisors on a Riemann Surface

A line bundle L over M can be constructed in terms of an open covering {Ua} of M
together with a set of local trivializations φa: L|ttα-> Ua x <C. The transition function
gaβ = φa°φβl, satisfying the cocycle condition, is a section over UanUβ of
Θ*(UanUβ\ the sheaf of non-zero holomorphic functions. One could equally well
consider other trivializations by taking fae Θ*(Ua) which is the sheaf of nowhere
zero holomorphic functions on (7α, and define fά = faφa with hOLβ = (fJfβ)gaβ as the
transition function.

Assigning a set of local trivializations to every covering {Ua} gives rise to the
space of holomorphic sections oϊ&*, which is denoted by H°(M, Θ*); similarly the



String Theory and Algebraic Geometry 649

space of sections of a line bundle L is given by H°(M,L). The 1-cocycles
gaβ e Θ*(Uan Uβ) of a line bundle L define elements of a group, the first cohomology
group Hι(M, Θ*). Actually H1(M, &*) is the group of isomorphism classes of line
bundles over M. So, an element of Hι(M, Θ*) determines a line bundle up to
isomorphisms. We can get more information from H1(M,Θ*)9 in particular
information on the existence of global trivializations by considering the exact sheaf
sequence:

0-+Z-U$^$*->0, (2.1.1)

where Έ is the constant sheaf, i.e. Z(Ua) = Έ for all Ua, i is the inclusion map of Έ
into Θ and exp the exponential map; i.e. if fe Θ(Ua) then exp(/) = e2πif. The kernel
of exp(/) is precisely the image of Z in $ hence (2.1.1) is indeed exact. For any exact
sequence like (2.1.1) we have a long exact sequence for cohomology groups, which
for (2.1.1) reads

O^H°(M,Z)^H°(M,Θ)^H°(M,Θ*)

-+H\M,Z)^>H1(M, Θ)->Hι(M, 0*)

^H2(M,Z)^H2(M,Θ)->.... (2.1.2)

The H° part in (2.1.2) is just the exact sequence of Abelian groups:

0->Z-»C->C*->0

which is induced by /. (This is because the global holomorphic functions on M are
necessarily constant.) Furthermore, since every compact Riemann surface is, as a
topological space, homeomorphic to a sphere with p handles, we have
H2(M,Z) = Z and H\M9X) = Z2p

9 while H\M,Θ)~<EP. Thus, from (2.1.2) we
deduce the following exact sequence

0^<Cp/Z2p^H\M9 0*)->Z->O. (2.1.3)

Therefore we can assign an integer, to any line bundle L over M, called the degree
of L. If we have a metric on the line bundle, one can express the degree of L as

deg(L)= J C l ( L ) , (2.1.4)
M

where cλ{L) is called the first Chern class of L, represented by the curvature form of
the metric on L. We now conclude from (2.1.3) that L is completely characterized
by its first Chern class and an element in H\M9 G)/H\M, Έ) ~ <DP/Z2p the group of
holomorphic flat line bundles over M. This is a complex torus, and in fact it is an
Abelian variety, called the Jacobian variety, of M. The first Chern class can be
interpreted as the obstruction to a global trivialization of L. Namely, if c1(L) = 0,
then the local functions representing an element oϊ Hί(M, Θ) corresponding to the
isomorphism class of L in Hι(M, Θ*) define a global trivialization.

It is useful to have a description of line bundles in terms of divisors. A divisor D
on M is a formal finite sum of points on M:D=Σ ^Pv where nf are integers,

i

Pt e M. The divisors on M form a group, denoted by Div(M). The connection with
line bundles can be established as follows. Suppose we restrict DeDiv(M) to an
open domain Ua C M. One can always find a meromorphic function fa of which the
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zeros and poles coincide with D restricted to Ua: D\Ua = £ niPb Pt e Ua and we can
construct the transition function gaβ = fjfβ e &*(Uan Uβ). The line bundle given by
the transition functions {gaβ = fjfβ) is called the associated line bundle, denoted by
[D]. Choosing a different function /α' to define D, then fjf'a e 0*(C/α) and g^ = /α'//^
^gapifa/Difp/fpy1' This function defines an isomorphic line bundle. A conse-
quence of this is that if D and D' are two divisors, given by {/α} and {/α'}5 then
D + D' is given by {/α/α'}, hence

[D + D] = [D]®[D'], [D]* = [ - D ] . (2.1.5)

Now suppose that D is the divisor of a meromorphic function: D = (/), then the
transition functions are the identity, 1, implying that [D] is the trivial line bundle.
This amounts to define an equivalence relation between the divisors as follows. We
say that D and D' are linearly equivalent, written as D~D' if D = D' + (/), or
equivalently, if [D] = [D']. It is thus seen that [ ] is actually a map from the group
of divisors to the group of isomorphism classes of line bundles modulo linear
equivalence. This group is called the Picard group Pic(M),

[ ] :Div(M)^Pic(M)-// 1 (M,^*) . (2.1.6)

Properties of holomorphic and meromorphic sections of line bundles are
conveniently discussed in terms of divisors. We associate to a divisor D the space
5£(Ώ) of meromorphic functions on M for which D + (/) ^ 0, i.e. these functions are
holomorphic on M — (J Pb with Ordp.(/) ̂  — nb where Oτάp.(f) is the order of the

i

zero or the pole of / at a point P t . Now let s0 be a global meromorphic section of
[D] with divisor D = (s0). Then for any global holomorphic section s of [D], the
quotient s/sQ is a meromorphic function on M with

i.e.

5/50 6 JSf(D), and (s) = D + (s/s0).

On the other hand if/eJSf(D), then the section s = fs0 of the line bundle [D] is
holomorphic, hence we conclude that multiplication by s0 gives an identification
with the space of holomorphic sections of [D]:

More precisely: let D= YuniPi a positive divisor on M and soeH°(M,Θ\_D~]) a,
section of [D] with divisor D. Then tensoring with s0 gives an identification
between the meromorphic functions on M with poles of order ^ nt at P f and the
holomorphic sections of [D].

We now introduce some notation. For a line bundle L, L(D) denotes the sheaf of
meromorphic sections of L with poles of order ^nt at P f and L( — D\ the sheaf of
sections of with zeros of order ^ nf at P t . It is thus seen that the identification (2.1.6)
is made by multiplication with either s0 or its inverse SQ X :
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Later on, the following exact sheaf sequence plays an important role:

^ O , (2.1.8a)

where L[P] is the fibre of L at P. More precisely, it is the skyscraper sheaf
concentrated at P with fibre LP at P. From this we deduce the following exact
sequence for cohomology groups

0^H°(M, L(-P))->H°(M, L)-+H°(M, L[P])

-^H1(M,L(-P))->Hί(M9L)-+O9 (2.1.8b)

Where we used the identification (2.1.7). (The sequence terminates since L\P^ is
concentrated at a point.)

What we now have seen is that a divisor gives a line bundle with a section,
namely the function representing it has its poles and zeros at the points specified by
the divisor. In this context there is a special section, called the distinguished or unit
section. It is constructed through a divisor consisting of a single point P. On a
neighbourhood U of P one defines the divisor D = P by the function f(z) = z, where
z is a local coordinate on U, such that f(P) = 0. Introducing V=M — {P} one
defines the transition function guv = z on Uc\V. The unit section 1$(P) can now be
defined in the notation of above by putting s0 = 1 and s = guvs0. Then \Θ{P) takes
the value 1 on U and has a first order zero at z = P. It extends meromorphically in
an obvious way to all of M. Likewise, one can define 1Θ{-P) which has a first order
pole at z = P. Furthermore one can define for any divisor D a unit section 1&(D) by
taking tensor products.

2.2. Cauchy-Riemann Operators

Let us now use the formalism in 2.1 to describe the operators that appear in the
string partition function. We consider the space T(n) of smooth sections of K®n,
where K is the canonical line bundle on M (i.e. K = <C{dz}, where z is local complex
coordinate). The space T(n) is formed by tensors T = T(z) (dz)n, transforming under

fdw\n

a change of coordinates z-+w(z) as T(w) = —— T(z). The power n can be integer
\dzj

or half integer. Following the notation of [2, 3,17] we define covariant derivatives
for the elements in T(n):

Vn

z:T{n)-+T(n+l); Vn

zT = gzzd-zT, (2.2.1)

Vz

n: T(n)-+T(n-ί); Vz

nT=(gzz)
n dz((gzzf T), (2.2.2)

where gzz is the local metric on M which can be brought into the form: gzzdzdz
= eσ dzdz. (We denote by gz~z the inverse of gzz)

The operators P7/ are the usual Cauchy-Riemann operators, that is, the kernel
of Vξ is formed by the holomorphic sections of K®n, the holomorphic
^-differentials (dz)n. The line bundle of these differentials is denoted by Ω®n, hence
we have

//0(M,ί2®"). (2.2.3)
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Using the operators Vz and P7/, one constructs Laplacians

Δ;:T(n)^T(n):Δ; = Vn

z^Vz\

The spectrum of non-zero eigenvalues of Δ» and Δ~ are identical. To deal with the
zero modes we need a duality property of cohomology groups and the Riemann-
Roch-theorem [29]. For any line bundle L over M, the following duality holds:

H\M, L) ~ H°(M, Ω®L~ι)*, (2.2.5)

which is known as Serre duality [29]. (The asterisk denotes the dual space.) The
Riemann-Roch-theorem states

dimH°(M,L)-dimHί(M,L) = degL-p + l (2.2.6)

which, using (2.2.5), is written as

° o 1 /7+l . (2.2.7)

Suppose L is a trivial line bundle, then dimiϊo(M,L) = l since there is only one
global holomorphic function on M, i.e. the constant function. From (2.2.7) we thus
have

dimH°(M,Ω) = p. (2.2.8)

For L=Ω we find, using the above result and (2.2.7) that

dεgΩ = 2p-2. (2.2.9)

Using these results we can compute the index of Vz\

Ind Vz = dim Ker Vz - dim Coker Vz

= dimH°(M,Ω®n)-dimHι(M,Ω®n)

= dimH°(M, Ω®n) - dimH°(M, Ω®{1~n))

l). (2.2.10)

Furthermore, we can apply the Kodaira vanishing theorem [29] which says that if
for a line bundle L deg L < 0, then dim H°(M, L) = 0, so that in fact dim Coker Vn

z = 0
if n > 1, and therefore

dimKerFΛ

z = ( 2 n - l ) ( p - l ) , n>\. (2.2.11)

As an application of this formalism, we rewrite the real determinants in the
partition function (1.10) in terms of the Laplacians (2.2.4). We observe that the real
determinant detzl of the Laplacian Δ in (1.10) is identified with |detzl x |. Writing the
action of P in (1.8) in complex coordinates:

P( Vz dz + c.c.) = gz-z d-z V
z dz dz + c.c., (2.2.12)

it follows that (restricting to the holomorphic part)

Ker P = H°(M, Ω ~ι) = Ker Vz~
ι. (2.2.13)
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This is the space of holomorphic vector fields on M. It follows from above that for
genus p > 1 dim Ker V~ι = 0. On the other hand we have

CokerP = KerP f - H^M^Ω'1) ~ H°(M, Ω2) = Ker F2

Z, (2.2.14)

which is the space of holomorphic quadratic differentials, which is, according to
the Riemann-Roch theorem, of complex dimension 3p — 3. Thus, the space of
quadratic differentials is identified with the cotangent space of moduli space.
Subsequently, since PfP splits up into two parts, we have: (detP t P) 1 / 2 = |detzl2|.
This reformulation of determinants of real Laplacians into determinants of
complex Laplacians Λn is useful, because they can be expressed, as we shall see, in
terms of their holomorphic square root det V* which has nice properties.

23. Metrical Properties of Determinants of Cauchy-Riemann Operators

Because the index of P7/ is non-zero, and because it acts on an infinite dimensional
vector space, it is impossible to define the determinant of Vn

z in the usual way. In
this subsection a generalization of the definition of a determinant is discussed,
following the results presented in [11, 22, 39]. Subsequently we introduce the
Faltings metric which associates a volume with such a generalization.

Let V be a finite dimensional vector space, and consider a linear map δ: V-+ V.
The determinant of V can be defined by taking the highest exterior power Λ m a x V,
which is called the determinant map det δ. An explicit representation follows if we
introduce basis vectors {Vί}"==1 on V, since

d e t δ ί ^ Λ ... ΛVn) = δV1Λ ... ΛδVn, (2.3.1)

which is just multiplication by a complex number. This is a map Λ m a x F-» Λ m a x F,
or equivalent^, an element of (Λ m a x F)*(x) Λ m a x F.

Now we generalize this to the case where we have a linear elliptic operator D
acting between two different vector spaces Vγ and F2 of the same dimension,

D:VX-*V2. (2.3.2)

Taking exterior powers we have the induced map

detD: Λ m a x Vx -• Λ m a x V2. (2.3.3)

The determinant detD is now defined to be an element of the 1-dimensional linear
s p a c e ' detD G (Λ m a x Vx)* ® (Λ m a x V2). (2.3.4)

An extension to the case where Vi and V2 are infinite dimensional can be made
when D is a Fredholm operator of index zero. For such an extension, we first recall
the exact sequence

- A F 2 ^CokerD-+0, (2.3.5)

from which it follows, using the fact that kerD and CokerD are both finite
dimensional vector spaces, that the definition

detD - (Λ m a x KerD)* ® (Λ m a x CokerD) (2.3.6)

makes sense in this case.
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If the operators D have a non-zero index we do the following. Consider a family
of operators Dr varying smoothly with a complex parameter yeY, where Y is a
complex manifold. For each yeY (2.3.6) defines a complex 1-dimensional linear
space. This fits together yielding a section detD of a line bundle Sέ\ over the
parameter space Y, called the determinant line bundle of which the fibres are

JS?y->Y: <£y = (Λ m a x Ker£Γ)*®(Λ m a x CokeτD y ) . (2.3.7)

The notation of the determinant line bundle makes sense also when the index of
Dy is non-zero [39]. However the section detD is only nontrivial if D is invertible,
i.e. if the index of D vanishes. If the index is nonvanishing detD = 0 by definition. So
the only way to define the determinant of the Cauchy-Riemann operator V* is as a
section of a determinant line bundle. We postpone the precise construction of this
bundle until the next section. For the moment we focus our attention to properties
of the 1-dimensional complex space

(Λ m a x # ° ( M , Ω®n)f(x) Λ mΛX{H\M, Ω®n)). (2.3.8)

We will denote this space in the sequel by detRΓ(M, Ω®")'1. Using Serre duality
and the Kodaira vanishing theorem, it follows that for n> 1, det#Γ(M,Ω® n y ι is
given by

(det RΓ(M, Ω®n))~x = ( Λm a xH°(M, Ω®n)f, (2.3.9a)

and for n=l,

(dQtRΓ(M,Ω)yί=(ApH°(M,Ωψ®H°(M,Θ). (2.3.9b)

[For n = 0 we have the dual of (2.3.9b).] Note that by the argument given below
(2.10), H°(M,0) is trivial.

Putting a metric on (2.3.9) is equivalent with defining a volume form on the
difference H°(M, Ω®n) -H\M, Ω®n). This can be viewed as a generalization of the
usual case (2.3.1) where det<5 defines a volume for V. There exists a natural metric
on detRΓ(M,Ω®n) which turns out to be crucial in the construction of an
integrable volume from a moduli space. We discuss it in some detail.

One first constructs a metric on the Riemann surface which induces a natural
metric, the so-called Arakelov metric [4], on the bundles Ω®n. To construct it we
choose an orthonormal basis (wl9..., wp) in H°(M,Ω). On H°(M,Ω) we have the
natural Hermitian metric given by the inner product:

<w1? w2> = - J wί A w2. (2.3.10)
2 M

We will fix a metric g on the Riemann surface by requiring that it corresponds to
the Kahler form

We will use this metric on the Riemann surface throughout this paper, in particular
the covariant derivatives in (2.2.1-2) have been computed with this metric.

Now, suppose we have given a line bundle L together with a Hermitian inner
product on the fibre of L of each point ZEM. These inner products vary smoothly
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with z. Denote by || || the induced norm on the fibres of L, and let s any section of
L. The first Chern class c^L) satisfying (2.1.4) is given by:

^ (2.3.12)

The line bundle L over M is called admissible with respect to the metric (2.3.10) if

c1(L) = 2πideg(L)ω. (2.3.13)

This metric is also referred to as the Arakelov metric on L. Arakelov proved [4]
that in fact each line bundle over M has an admissible metric with respect to
(2.3.10) which is unique up to scalar multiplication.

Associated with this metric one can define in the following way, a Green's
function. Let P and Q be two given points on M and let z a complex coordinate on
M. Then there exists a real valued, non-negative function G(P, z) of z satisfying the
following properties:

a) For z = P it has a first order zero,

b) . . _ log G(P, z) dz Λdz = 2πiω,
ozoz

where ω is the volume form (2.3.11);
c) JlogG(P,z)ω = 0,

M

d) G(P,Q) = G(Q,P); i.e. G is a symmetric function.
One can show easily that if A is the complex scalar Laplacian acting on a

function / on M, then for P,QeM,

f(Q)= μogG(P,Q)Af(Q)ω. (2.3.14)
M

The function log G(P, Q) has a logarithmic singularity at Q = P:

log G(P, Q) = log \z\ + (C00 - function. (2.3.15)

One calls the function g(P, g) = log G(P, Q) the Green's function of M associated
with the metric g.

Using the function G(P, Q), one can explicitly construct an admissible metric on
Ω as follows. Consider ΘM(Q\ the sheaf of holomorphic functions at Q e M, and the
unit section \Θ{P) at the point P. One puts a unique Hermitian metric || || on ΘM(Q)
by letting

l|lL(P) = G(Λβ) = exp(g(P,β))9 (2.3.16)

where || 1 \\&{P) is the norm of the unit section 1Θ{P), PeMΛt is obvious that this is an
admissible metric. By tensoring we obtain an admissible metric on &(D) for each
divisor D. This metric is called the Green's metric on Θ(D).

Now we do the following. Let P be a point on M, and let Θ(P) have its Green's
metric. Furthermore, suppose we have a differential fdz, which has a pole of order
one at z = P. (z is a local coordinate at P.) Then the residue of this differential gives
an isomorphism from the fibre at P of the line bundle

(2.3.17)
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to (C. One can do this for all points P, such that, if (C has its canocical metric | |, the
residue map is an isometry. To see this explicitly, consider the generating section at
P, which is fdz. Then the norm of this section at P is given by:

= |resp/dz|, (2.3.18)

where the residue is given by

ΐQspfdz= l i m ^ - . (2.3.19)
z^pz — P

Using the fact that the residue map is an isometry we thus see that we may put a
norm on Ω by defining

J z | l i m ^ P ^ . (2.3.20)
C(zr)

By taking tensorial powers, we thus obtain an admissible metric on Ω®n. The
reason we use this metric on Ω®n is because it is possible to "transfer" this metric
onto the space detRΓ(M, Ωn)~ι. The metric on detRΓ(M, Ω®n) is referred to as the
Faltings metric. To construct it one needs the following theorem.

Theorem 1 (Faltings [20]). There exists for any line bundle L over M with an
admissible metric on L a unique way to assign a Hermίtίan metric on the space

det RΓ(M, L ) Ξ Λ m a xH°(M, L)® (Λ mΆXHι(M, L))*, (2.3.21)

such that the following properties hold:
1. An isometry f'.L^L induces an isometry from detRΓ(M, L) to detRΓ(M, L').
2. // the metric on L is changed by a factor a> 0 then the metric on det RΓ(M, L)

is changed by αχ ( L ), where

3. The metrics on det RΓ(M,L) are compatible with the Green's metrics on
(9{D)[P~] in the following sense. Suppose Dί and D are divisors on M such that
D = D1+P, PEM. Then the isomorphism

det RΓ(M,(D))~ det RΓiM^D,))®^) [P], (2.3.22)

which is induced by the exact sequence (cf. 2.1.8a,b)

0-+Θ(D1)->Θ(D)-+Θ(D)[P']-+09 (2.3.23)

is in fact an isometry.

4. The metric on detRΓ(M,Ω)= ΛPH°(M,Ω) is the one determined by the
canonical scalar product on H°(M, Ω).

We will give the line of reasoning in the proof of this theorem, because it has an
interesting consequence in string theory. It is essentially enough to prove property
1, because the Faltings metric may be put on the det RΓ(M, L)'s in a unique way so
that Properties 2, 3, 4 hold. Recall that one can always construct a divisor D such
that Θ(D) and Ω are isomorphic as line bundles. Since we have the Green's metric
on Θ{D\ which is a scalar multiple of the fixed metric on Ω, conditions 2 and 4
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determine the metric on det RΓ(M, Θ(D)). With property 3 it then follows that one
may determine a metric on det i£Γ(M, Θ(D')\ for any divisor D' by adding or
subtracting points. Since G(P, Q) is symmetric in P, Q the order in which one adds
or subtracts points is irrelevant for the metric on det KΓ(M, &{D')).

So it remains to prove that for any isometry Θ(D) ~ Θ(D') induces an isometry

det RΓ(M, Θ(D)) ~ det RΓ(M, G{D')).

For this purpose one adds or subtracts points such that the divisors D and D' are
both of degree p — ί. Then they can be written as

ΐ = 1

for a fixed divisor E and some points Pl9...,Pr on M. For ^> = (P1, . . . ,P r )eM r ,

rr = M(g).. .(g)M\ define L(^) to be ^ E - Σ ^ )• O n e t h e n proceeds in

proving property 1) by constructing a line bundle N on Mr whose fibre at & is
naturally identified with det RΓ(M,L(0>)). The isomorphism classes of this line
bundle are easily obtained since they belong to the Picard group of line bundles of
degree p—ί, PiCp.^M). We thus have a mapping

ViAΓ-ίPic i(M) (2.3.24)

which sends (P 1 ? ...,P,) to E - Σ Pt

Now, recall that in Picp _ x (M) there is the theta divisor θ consisting of bundles
with global sections over M. It is proved (e.g. explicitly in [35]) that the bundle N is
in fact given by the pull back of ψ:

N = ψ*Θ(-θ) (2.3.25)

in which the unit section of &( — θ) goes over in the meromorphic section s of N.
Since the fibre of N at P has been identified with det RΓ(M, L(0>)\ the metrics that
have been put on det RΓ(M, L) yield a metric || | |N on N. Property 1) is thus proved
if the curvature of this metric is equal to the curvature of the Hermitian metric
|| || 0 on &( — θ). This can be done by using the Green's metric on Θ(D). (We refer to
[20] for this part of the proof.)

Important for us is, that apparently there exists a scalar Δ such that

\ \ ' U = Λ \ \ ' \ \ Θ . (2.3.26)

When appropriately normalized, this factor can be expressed in terms of the new
invariant δ(M) on a Riemann surface introduced in [20, pp. 401-403]. To describe
it we will compute the Faltings metric on det RΓ(M,L) explicitly.

For the reader's convenience we first explain how property 3 of Theorem 1
works. We restrict to the case where L is of degree d^2p — ί, so that
dimi/1(M5L) = 0 by the Kodaira vanishing theorem. Similar as above let {Pi}

r

i=1

be r distinct points on M, such that r = d+1 —p = dimH°(M,L), and let

= Θ[E- Σ pih N o w > w e f o r m t h e vector space (x) L[PJ = Λr @ L[PJ, which
/ = ! / ί = l ί = l



658 D.-J. Smit

is a product of complex vector spaces of rank 1. It carries a natural metric || | |n a t
r

coming from each component in 0 L[P[\:

Mlnat=llαi® . . .®α r | | n a t = J7 i | |α i | |.

On the space (x)L[PJ one defines the Faltings metric || | |Γ as
i

ll llF=ll l l M t Π ? ^ - p T (2-3.27)

Using the exact sequence

0 - L ( - Σ P ) ^L-> © L [ P J - 0 , (2.3.28)

one obtains the isomorphism

M,ί/- £ Λ ) ® { ® Li[Pj|). (2.3.29)

To see that this is in fact an isometry, one has to show that each term has the
Faltings metric on it. This follows from successive application of property 3.
Deleting one point at the time one has the isomorphism:

- £ p))

) -^)[PJ.(2.3.30)

On Θ(-Pj) [Pj] we have the Green's metric, so that the norm on 0{ — P^ [PJ is
given by χ

-γ ( 2 3 3 1 )

Furthermore, the metric on deti^ΓI M,LI — Σ P f ) ) is isometric with the flat

metric on (C, because L[ — Σ PΛisoϊ degree p — 1. Hence (2.3.29) is indeed an
V i = l /

isometry, for the Faltings metric.
The Faltings metric on the space det RΓ(M,L) can now be constructed as

follows. Let U be an open covering of Mr such that for (P l 5 ...,Pr)eU the exact
sequence (3.2.28) induces the isomorphism

α: det#Γ(M, L)-» (g) L[PJ . (2.3.32)
ϊ= 1

/ /

(Note that this condition is equivalent with H0\M,L\ — Σ
V i 1

= Hι [M,L - Σ Pi = 0 ) I f {αJi = i denotes a basis in H°{M,L% then this
V V i = l
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isomorphism can be given explicitly by
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OL1A ... Λ (2.3.33)

From Theorem 1 it follows that the map i/>:Mr->Picp_1(M), is such that
UCψ~ί(Picp_1-θ). Moreover the space detRΓ(M,L((0>)) is identified with the
fibre over ψ(Pί9...,Pr) of Θ(-θ). Denote by lθ the unit section of Θ(-θ) in
(Pic p_!-0) and by λ(Pu...,Pr) the function on U such that

%Pl9...,Pr)=\\lθψ(Pl9...,Pr)\\2. (2.3.34)

Using (2.3.26) and the exact sequence (2.3.28), one obtains the Faltings metric on
det RΓ(M,L):

= A\\lθψ(Pl9...,Pr)

1 = 1

1

(2.3.35)

Because this metric is unique up to scalar multiplication, one can use property 4) of
Theorem 1 to normalize it and describe the proportionality constant A in terms of
the invariant δ(M). Following [20], one first chooses a divisor D on M such that
Ω(-D)is of degree p - 1 . So D is given by: D = Pi+ ... +Pp-Q. Using the basis
w1?..., wp for H°(M,Ω) introduced earlier, one may derive along similar lines as
above the following equality:

1 lθΨ(Pu ...,Pr,Q)\\= e x p ( - P Q). (2.3.36)

(The representation of the proportionality factor in terms of δ(M) is for
convenience; this will be clarified in the next section.)

In the next section we will generalize the results presented in this section, to
compute the metric on the determinant line bundle of the holomorphic n-
differentials.

3. Isometric Isomorphisms of Determinant Line Bundles on Moduli Space

In this section we will discuss how the ideas of the previous section generalize to
the case of families of Riemann surfaces. Our first concern will be the construction
of the determinant line bundle associated to the holomorphic ^-differentials, and
the definition of the Quillen metric on this bundle. This is done in Sect. 3.1. Then in
Sect. 3.2 we introduce the Grothendieck-Riemann-Roch (G-R-R) theorem, and
use it to obtain holomorphic isomorphisms between determinant line bundles. As
a result we recover the Belavin-Kniznik theorem which states that the string
partition function is described by the square of a so-called Mumford form on
moduli space.
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In Sect. 3.3 we will relate the Quillen metric on the determinant bundle of
holomorphic ^-differentials with Arakelov Green's functions using a generaliz-
ation of the results in Sect. 2.3. This leads to an algebraic formulation of the string
partition function. We then derive in an algebraic way the modular forms
describing the partition function. Finally in Sect. 3.4 we discuss the asymptotic
behaviour of the partition function.

3Λ. The Construction of the Determinant Line Bundle on Moduli Space

The determinant line bundle associated to the holomorphic ^-differentials can be
constructed by varying the conformal structure on the Riemann surface. An
infinitesimal variation of the conformal structure is in fact a transformation along
a vector in the tangent space of Teichmuller space, hence it corresponds to a
traceless deformation of the metric on M. Using (2.2.1) one computes the induced
transformation on the differentials Vz [23]:

δVn

z = ±δgzzVz

n+^Vz

n(δgzz). (3.1.1)

It is crucial that this variation is holomorphic with respect to the complex structure
of Teichmuller space. (We recall the fact that locally Teichmuller space is
isomorphic to (L3p~3 from which one can prove that ^~p is a complex space [1, 10].)

The next step is to construct the universal Teichmuller curve 2£p, which is the
natural fibre space over 3Γp\

π\Xp^^p. (3.1.2)

It has the property that for t e &~p, n~ι{t) (i.e. the restriction to the fibre) is a space M
isomorphic to the Riemann surface M, represented by t. The differential

dπ:T2£p-+T&'p (a tensor of type (1,0)) (3.1.3)

has everywhere along the fibre a one-dimensional kernel, which is the tangent of
the fibre. So, Kerdπ defines a line bundle, Ώ " 1 , called the relative tangent line
bundle. (Note that this bundle is dual to the bundle of holomorphic quadratic
differentials, by virtue of Serre duality.) In a similar way one can obtain the relative
bundles Ω®n on SCp, to which the operators Vz are associated. By (3.1.1) these
bundles vary holomorphic with t e S~v. For each t e 2Γp one constructs

(det RΓ(M, Ω®"))-1 = (Λ m a x # ° ( M , βΘ"))*(x)( Λ ™xH\m, Ω®n)). (3.1.4)

Using direct images of the projection π, this yields a holomorphic determinant line
bundle over the Teichmuller space &~p, so one uses έFp as the complex parameter
space for the construction of this bundle: (£n-+?Γv. The direct images of the
bundles Ω®n over ΘCV characterize the determinant line bundle ££n in terms of the
cohomology along the fibres of 3Cp over 2Γp. More precisely, for a sheaf 3* defined
on 9£p the higher direct image Rιπ^3F is the sheaf associated to

H) (3.1.5)

on M. (R0^^ = π^ is simply called the direct image.)



String Theory and Algebraic Geometry 661

Using the functorial properties of Wπ^ [29], one can now define the deter-
minant line bundle <£n-*?Γv as

π^Ω®")-1 = (Λ m a xπH ίiΩ®T®( A maxR1ft^Si®n), (3.1.6)

which by virtue of (2.3.9a-b) reduces to

j ^ w = (Λm a xπ*β®' 1)* n>ί, ^^(APπ^Ωf^R1^. (3.1.7)

Recall that Teichmϋller space is a contractible space so that the line bundle S£n

is trivial. However, as J5fΠ carries a nontrivial action of Γp, the trivialization cannot
be a holomorphic function. Using the fact that the action of Γp extends to 9£, one
may define j£?Π as a holomorphic determinant line bundle over moduli space, by
factoring out Γp. Hence we have the induced projection

π X^Jf,

where X = %'P/Γp, the universal curve of moduli space. The corresponding line
bundle ££n-*J( is thus holomorphically non-trivial.

At this point it is useful to observe that the string partition function is in fact
described by a section of the line bundle G,

(3.1.8)

The bundle (JS?2) ~i t u r n s out to be the canonical bundle K of moduli space since

{^2Y
ι= A3p-3π^Ω2= Λ3p~3 (cotangent space of M) = KM. (3.1.9)

The problem of finding an integrable volume element on Jί has now become a
problem of constructing a Hermitian metric on G, such that G is holomorphically
flat. For this purpose, one can use the Quillen metric. To define the Quillen metric
on the holomorphic determinant bundle jS?n, we choose {φι} as a basis for
H°{M, Ω®n). Then a section of S£n is given by

l). (3.1.10a)

The Quillen metric || \\Q is defined as [39]

where s a section of i£n and Δn is the Laplacian associated with V* (computed using
the admissible metric described in the previous section). Because of (3.1.7) the
definition of the Quillen metric on J ^ is

^ r w , (3.1.10c)

where 1 is the constant section. The Quillen metric is related to the usual L 2 metric
according to [13]

| | . | β = | | | | £ 2 d e t ' 4 . (3.1.11)
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Unlike the L2-metric, the Quillen metric varies holomorphically on moduli space,
and has a unique holomorphic connection whose curvature is given by

^ ^ (3.1.12)

= f

M

de

W dφi/\d
i=l

det'zl!

3 M

0 i det(w ί ,w J )~ d / G

\ ~ m ( det'zJ2

which we will write as dδ"log||s||Q.
Using this metric one can rewrite the partition function

where

G Ξ

as

Z = j f ] ί/̂ )̂  Λ d0^ det(w ί ? w. ) ' | |5 2 | |n ll^i ||o ? (3.1.13)
^ i = 1

where sx e JS^ and s2e^£2, are sections given in (3.1.10a), for m = p, respectively
m = 3p — 3. (We used the fact that the quadratic differentials φ on Jί vary
holomorphically and may serve as coordinates on Jί.) We thus conclude that in
order to prove that the integrand (3.1.13) is really a function on moduli space, one
has to prove the existence of a holomorphic isomorphism between (^1)~df2 and
if2 f°r some value of d, which must be an isometry for the Quillen metrics defined
on if2 and if^

3.2. The Grothendieck-Riemann-Roch Theorem and the Mumford-Form
on Moduli Space

To find the holomorphic isomorphisms among the determinant line bundles over
moduli space requires a generalization of the Riemann-Roch theorem to families
of Riemann surfaces. This is the Grothendieck-Riemann-Roch theorem. (For a
readable description we refer to [29, Appendix A] and [31].) It relates the
cohomology of the bundles with the intersection theory of the manifold on which
the bundles are defined. After we have briefly described the theorem, we apply it to
the determinant line bundles J£?w, to obtain for d = 26 the isomorphic isometries
describing the integrand in (3.1.13).

To describe the G-R-R theorem requires the introduction of the Grothendieck
groups K(X) (and K(Jί)\ constructed out of the semi-group Vect(X) (respec-
tively Vect (./#)) of vector bundles, by dividing out an equivalence relation between
these vector bundles. This is called the Grothendieck construction. The Gro-
thendieck relations are those which to each short exact sequence

0^>B'-*B^B"-+09 B, B', B" e Vect(X) (3.2.1)

give the relation
(3.2.2)
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The group of isomorphism classes of vector bundles over X, modulo these
relations, is a free Abelian group, called the Grothendieck group K(X). The
relevant thing for us is that the projection π\X->Ji, gives rise to a map π, defined
as

π^Σi-lYWπ^, (3.2.3)

which is a map for the Grothendieck groups:

πx\K{X)^K(J(). (3.2.4)

The other ingredient in the G-R-R theorem involves a characterization of vector
bundles through their Chern classes. In the context of intersection theory a Chern
class cf of a vector bundle over X is a cycle of codimension i on X. This is a
generalization of an intersection number for two divisors, and is in general a linear
combination of varieties of codimension i. In this way each Chern class assigns an
element of the group of all cycles of codimension i, denoted by At(X\ to an element
in K(X). The equivalence relation for cycles, induced by the Grothendieck
relations for vector bundles, is called rational equivalence. For cycles of
codimension 1 it is the one induced by the linear equivalence for line bundles,
which we discussed earlier.

The Chern character Ch, is a map,

Ch:K{X)-+A(X), (3.2.5)

where A(X) is known as the Chow-ring, defined as: A = φA^X). This is the group
i

of all cycles on X modulo rational equivalence. The Chern character map is a ring
homomorphism, and can be expressed in terms of the Chern classes ct [29]:

.. (3.2.6)

(B is here a vector bundle; strictly speaking the argument of Ch should be [2?], i.e.
the element in K(X) determined by Be Vect(X).)

The projection w.X^Jί induces a map for the Chow-ring A(X\ also denoted by
π^\A{X)-^A(Jί). However, similar to other family index theorems, the maps π,
and Ch do not commute. The non-commutativity is precisely the content of the
G-R-R theorem. It states that there exists another ring homomorphism Td in A(X)
such that the following diagram becomes commutative:

^ ϋ - A(X)

Fig.l

More precisely: For the projection π: X^Ji, and a bundle B e Vect(X), the Chern
character of the projected bundle is given by

1)), (3.2.7)
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where Td(Ω~ι) is the Todd class of the relative tangent bundle Ω~1 of the universal
curve X. The Todd class can be expressed in terms of Chern classes:

Td:K(X)-+A(X), Td=\+\cx + -h{c\ + c2).

We now apply (3.2.7) to the case where B is a holomorphic line bundle over X.
Recalling that ά\mX = άimJί +1, we have upon expanding both sides of (3.2.7):

(3.2.9)

This formula generalizes the classical Riemann-Roch theorem on a Riemann
surface to a family of Riemann surfaces. It characterizes the projected bundle on
moduli space by its Chern classes which are elements of the Chow-ring A(Jί). In
the case of holomorphic line bundles, it thus follows that the projected bundles are
determined up to linear equivalence, implying that a possible isomorphism
between the bundles over Jt can be chosen holomorphically.

Let us now apply this to the determinant line bundles ifπ. One usually puts

c1(JS?1)-1Ξλ = ^π J l ϊ(c 1(Ω)) 2, (3.2.10)

where we used a property of Chern classes and (3.2.9) for the second equality. The
bundle ( i ^ ) " 1 is called the Hodge bundle; λ is the Hodge divisor class.
Generalizing to JSfw one finds Mumford's formula [37, pp. 101-102].

λ (3.2.11)

which implies that

^ + i - ( ^ i ) 6 " 2 + 6 n + 1 (3.2.12)

are holomorphically isomorphic.
An important property of the above isomorphisms is that on moduli space

they are unique up to scalar multiplication. This fact one can use to make contact
with the unique curvature forms of the Quillen metric which we defined on the
determinant line bundles ££n. It follows that the first Chern class (3.2.11), which is a
special element in the Chow-ring A(Jt\ can be represented by the curvature form
of the Quillen metric. This leads to a refinement of (3.2.7) to a formulation of the
G-R-R theorem in terms of curvature forms, given in [11]:

ci(^p II \\Q)= ~ ί Clφγ Td(Ω~ι). (3.2.13)
x

[The minus sign is due to the definition of <£n (cf. (3.1.6)).]
The left-hand side represents the Chern class expressed as the curvature form

of the Quillen metric on ifn, while on the right-hand side Ch and Td are computed
using Hermitian metrics defined on these bundles. Due to this extension of the
G-R-R theorem to the level of curvature forms, one concludes that the
holomorphic isomorphism is an isometry of the Quillen metrics on the jSfΠ's. In
particular, we have for n= 1 in (3.2.13) the following isometry:

( J ^ ) 1 3 ~ J ^ 2 . (3.2.14)
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Returning to the partition function (3.1.13) one recovers the Belavin Kniznik
theorem [7], since if d = 26, the integrand takes the form

^ f (3.2.15a)

or, equivalently:

φ1Λ<βίΛ ... Λφ3p_3\άQt(wί,Wj)\~13 IKWiΛ ... A W p ) ~ 1 3 ( 0 ! A ... Λ φ3p_ 3)\\Q 2 ,

(3.2.15b)

where μ in (3.2.15a) is the Mumford-isomorphism (3.2.14). So

is a global holomorphic section of J£2® &\~13 which thus is a modular form with
respect to Γp. This form is referred to as a Mumford-form [32].

3.3. An Algebraic Formulation of the Partition Function

We will now relate the Quillen norm on S£n with the Faltings metric discussed in
Sect. 2. This yields a formulation of (3.2.15b) in terms of Arakelov Green's
functions and Faltings' invariant. For this purpose we follow [35] in order to
describe a family analogue of Theorem 1.

The first step is to choose a section on the universal curve X, σ: Jί-*X, which
assigns to each point yeJia, given point P on a Riemann surface M represented by
π~1(y). In this way we can make a codimension one, horizontal divisor D = σ(X).
Using this divisor D, we construct a generalization of the function G(P, Q) defined
earlier. On each fibre of π, we have the closed (1,1) form induced by (2.3.11) on the
Riemann surface. This constitutes a so-called De Rahm current [Φ] on X. It is a

closed (1,1) form on X, with distribution coefficients so that J [Φ] is well defined,
x

although [Φ] itself is not continuous on X. One now has the following
generalization of the case on a Riemann surface (cf. [18]), namely for every closed
form α of degree dimX —2:

f α = jαΛ[Φ] = (7*α, (3.3.1)
D X

where σ* is the pull-back of σ. Subsequently one constructs a function
G{P, σ o π(P)) such that

dd log G2(P, σ o π(P)) = 2τri[Φ] + "smooth terms", (3.3.2)

where the variation on the left-hand side is along the base, i.e. horizontally. The
point π o σ(P) is precisely the point selected on the fibre above π(P), so that it does
not depend on P. The function G has a first order zero along D and is smooth on
X — D. We can now put a Green's metric on the unit section of the sheaf Θ{D\ by
letting

(3.3.3)

Note that the curvature of this metric thus defines a (1,1) form on moduli space.
(This is discussed in more detail in Appendix A.)
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Using the exact sequence

O-»L(-D)-»L->σ*L-+O, (3.3.4)

one deduces before the isomorphism for holomorphic determinant line bundles on
moduli space

det Rπ^L ~ d e t t f π ^ - D)®σ*L. (3.3.5)

To check that this isomorphism is in fact an isometry for the Quillen metrics put on
these bundles, we may use the G-R-R theorem in the form (3.2.13). This in fact is a
straightforward calculation. We have:

d e t R π ^ L - d e t K π ^ - D) = j Ch{Θ( - D)) (1 - Ch{L)) Td{Ω~ι). (3.3.6)
X

Expanding the right-hand side yields

Ω (3.3.7)ί
x

Since Θ(D) has the Green's metric, this reduces to, using (3.3.2),

σ+iicMm-τcάfy + ϊcάL)}. (3.3.8)

The first two terms in (3.3.8) cancel, since Ω( — D) is of degree p — 1, which therefore
has a flat metric. Hence (3.3.5) is really an isometric isomorphism.

We now take L to be Ω®n. Along similar lines as in the previous section, one
constructs the divisor D such that Ωn( — D) is of degree p — 1. Applying (3.3.5)
iteratively, one then finds, after putting metrics on both sides:

where s is a section of JSfΠ, and s' a section of the determinant line bundle associated
to Ω®n{-D). This is a direct generalization of (2.3.38).

Because Ω®n( — D) is of degree p — 1 by construction, the Quillen metric on the
associated determinant bundle is isometric to the usual flat metric on (C, and it
depends only on the isometry class of Ω®n{ — D). Hence, the Quillen metric on
dεtRπ^Ω® ( — D)) can be related to the metric on the unit section of the 0-divisor
lifted to the universal curve [20, 35]. We denote by \\lθψ(Pί, . . . 5 P r ) | | the norm of
the unit section of &( — θ) lifted to the universal curve. This is a direct generalization
of the earlier definition [cf. text above (2.3.36)]. By virtue of the G-R-R theorem
one has the isometric isomorphism:

detRn+(&{-D))~n+e(-e). (3.3.10)

This implies that the Quillen metric || s' || in (3.3.9) is proportional to the norm on lθ9

where the proportionality is given by the invariant δ lifted to moduli space. We will
now make this explicit. Choosing an odd theta characteristic, or spin bundle,
(which has degree p — 1) on the (spin covering of the) universal curve X, one obtains
using the G-R-R theorem, the isometry

( i f 1 / 2 ) - 2 ^ i f 1 ; (3.3.11)
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where JS?1/2 is the associated determinant line bundle of Ωί/2. Subsequently, one
may prove the following isometric isomorphism

(J^^J^Γ1®^)9. (3.3.12)

As a result we can express the Quillen norm on i£γ entirely in terms of exp<5. First
we conclude from (3.3.12) that the norm on s' in (3.3.9) is identified with

IIs I I Q —u
det'Aί

det (whWj) J

-1/2

(3.3.13)

where Λp is a constant only depending on the genus.
This together with the identity (2.3.37) generalized to the universal curve yields,

for the Quillen norm on if x:

d e t (WfcWf) j det (

-1/2

So

exp
-δ

(3.3.14b)
det(w,Wj.) j l/g "'-" r V 6

Furthermore we use (3.3.12) and the above result to obtain the Quillen norm on

\\2

Q-
det'zl2

= exp ( 3 3 1 4 c )

[where s = (φ1 A ... Λ φ3p-3)
 x and m = 3p — 3]. It is thus seen that the partition

function may be rewritten as

. (3.3.15)(9δ\ V
ιφίΛ-Λφ^2Λ"exΐ>{τ)iέtφip-)

This expression is independent of the points P f and of the coordinates φt on Jί.
The choice of the θ-divisor gives rise to an isomorphism J a c ^ P i c ^ ! on the

universal curve, where Jac denotes the Jacobian. Under this isomorphism the
0-divisor on Pic p _ 1 ? gives a (symmetric) divisor on the Jacobian. Since the
Jacobian is an Abelian variety this divisor is for a suitable choice of θ, the zero-set
of the Riemann theta-function. From this one can show that (3.3.15) can be
expressed in terms of these functions, so using the parameters of the Siegel upper
half plane, one can find explicit representations of the Mumford-isomorphism
describing (3.3.15).
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Using the basis (w j , . . . , wp) for H°(M, Ω) one defines a period map τ which maps
Teichmϋller space into the Siegel upper half plane IH ,̂:

τ ^-H,, τ={wj5 (3.3.16)

where

j w,- - δip {ab a) = (bi9 bj) = 0, {ai9 bt) = <50 .

The set {au ...,ap,bu...,bp} denotes the cycles on M; they form a symplectic basis
for the first homology group H^M, Z) specifying the so-called marking of M [27].
The map τ induces a surjective homomorphism, Ψ,

Ψ:Γp^Sp(p,Z). (3.3.17)

The group Sp(p, Έ) acts in an analogous way on H p as Γp does on £Γp. The Siegel
upper half plane Mp has complex dimension p(p +l)/2 and parametrizes the pairs
(A, (ab bj)) where A is a complex algebraic torus corresponding to a point ^ e H p ,
called an Abelian variety, and (abbj) a basis in H^A.Έ). The space

s/ = Mp/Sp(p9Z) (3.3.18)

is called the moduli space of Abelian varieties. In general a pair (A, (ab bj)) does not
correspond in a one to one way with a Riemann surface. This is only true up to
genus 3. For higher genus the points in it corresponding to points in si form a
closed subvariety of dimension 1 for p = 1 and 3p — 3 for p ̂  2. The parameters τ are
local coordinates on si. One may choose 3p — 3 among them to use as coordinates
on Jί however for p^4 they are no longer independent. In terms of these
coordinates the partition function can be written on as (p>l)

| (/> 1 Λ.. .Λφ 3 p _3|F(τ) |- 2 (detImτ)- 1 3 , (3.3.19)

where F(τ) is a modular form with respect to Γp, which can be expressed in terms of
θ-functions [32,43]. Up to genus 3 one can use relations in the Chow-ring Aγ(M\
obtained by the G-R-R theorem to determine the modular form in (3.3.19)
explicitly. We will do this in the next sub-section, after we have discussed the
asymptotic behaviour of the partition function.

3.4. The Partition Function on Compactified Moduli Space

We will discuss in this subsection the asymptotic behaviour of the isomorphism
(3.2.12). For this purpose it is useful to compactify moduli space. As we will see the
asymptotic behaviour of the partition function uniquely determines the modular
form in (3.3.19) up to a multiple constant. Subsequently we show that the
isomorphism (3.2.12) can be normalized simultaneously for all genera to the value
on the genus 1 moduli space.

One can do this by adding the class of Riemann surfaces on which a finite
number of simple loops has been contracted to points, called nodes. This is the
Deligne-Mumford compactification of Jί. The compact space M is called the
moduli space of stable curves [16, 37]. (There are several other compactification
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mechanisms, for example the Satake compactification; for our purposes however
the Deligne-Mumford compactification seems to be the most appropriate one.)
The boundary \_Δ~] = JΪ — Jί is the union of components \_A^=A0,Au...,A[p/2],
containing surfaces with modes of degree 0 ̂  ί ̂  [p/2]. For i Φ 0, the node separates
the Riemann surface, for i = 0 it is non-separating.

An immediate consequence of the compactification is that holomorphic
sections of a bundle defined on M will generate a pole of a certain order when it is
extended to compact moduli space Jί. The order of the pole is given by its divisor
class. It is not possible to extend the bundles S£n straightforwardly to Jί, since
if! ={dQt Rπ^Ωy1 is no longer a line bundle on Jί. To remedy this, one considers
the regular Abelian differentials ω instead of Ω, having the property that they
generate at most simple poles at the boundary, such that the residues at
neighbouring punctures cancel. Away from the nodes they are just holomorphic 1
differentials. More precisely, one denotes the singular set on the universal family X
by Sing[X], that is under π\X-*Jί, Sing[X] goes over in \_Δ~]. Choosing a local
complex coordinate t, we may define the 1-differential Ω near the singularity, by

Ω=f{t)dt9 (3.4.1)

where f(t) is a regular function, vanishing at ί = 0.
On the other hand following Mumford [37, pp. 101, 102] we have denoting

J s i n g as the ideal of Sing[X]

β = J 8 i n g . ω . (3.4.2)

That is we have the exact sequence on X

0-+Ω^ω^ω®Θsing-^0, (3.4.3)

where Θsing is the sheaf of regular functions over Sing[X] of which f(t) is just a
section.

A corollary of the G-R-R theorem, [37, p. 101], is that Ω considered over X,
has a non-vanishing second Chern class, expressing the fact that Ω is no longer a
line bundle on the whole of X. To determine the second Chern class we just use the
multiplication property of Chern classes in the above exact sequence:

+ 0 - [ S i n g £ T | ] ) , (3.4.4)

from which it follows, by equating terms of equal codimension:

cx(ω) = C l (Ω), c2(Ω) = [Sing[X]] . (3.4.5)

The determinant line bundles S£n are on compact moduli space given by JSfπ
= (dQtRn^0nyK Using the modifications (3.4.5) in the G-R-R theorem and
putting c1((JSf1)"1) = Λ we find:

(3.4.6)

One calls ^ [ S i n g [ X ] ] = 5, the compactification divisors class. The compactifi-
cation divisor is given by [28]

A=A0 + $Δ1+...+A{p,2y (3A7)
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Generalizing to S£n one recovers Mumford's formula [37]:

(3.4.8)
\ W /

from which it follows that

^ J + 1 ~ ( ^ ?

1 ) 6 " + 6 n + 1 ® Θ { A ) y 2 ) (3.4.9)

is a holomorphic isomorphism. (Θ(A) denotes the line bundle on Ji associated to
the compactification divisor on Jί — M^) As before, the Chern classes can be
represented in terms of the curvature forms of the Hermitian metrics on the 5£n

over compactified moduli space. This can be used to prove that also on ̂ #(3.4.9) is
an isometric isomorphism for the Quillen metrics on JSfn.

An important property of λ and δ is the factorization property [6] on the
components Aid^ocJi. This is a consequence from the exact sequences on each
fibre in [Sing[X]] over zl t Φ 0 :

0—>ωί-»ω->ωp_ί ->0, 0->ΩI -> Ω->Ωp_1->05 (3.4.10)

where i denotes the degree of the node. The first sequence implies that λ splits into a
direct sum on each component, and using the second, the same follows for δ. It then
follows that the isomorphisms in (3.4.9) can be normalized to their genus 1 value
for all genera simultaneously. This has an interesting consequence for the partition
function, when it is an extended compact moduli space. One has to be careful in
extending the isomorphism describing the partition function to M since the line
bundle {J£2)~ι *s n o t t n e canonical bundle of Jί\

ω 2)~ 1 . (3.4.11)

In fact a short calculation using deformation theory yields (cf. [28, p. 49]).

K^ = detRπs|c(ω(g)Ω), (3.4.12)

so

c1(KJi)=ί3λ-2δ9 (3.4.13)

while

(3.4.14)

The global section of JSfx~
 13(χ)J2f2(χ)$( — A), describing the partition function thus

generates a second order pole at the boundary. (We disagree with the results found
in [14, 25].) The partition function has therefore the following asymptotic
behaviour:

0 1 Λ . . . Λ ^ _ 3 ( d e t I m τ ) - 1 3 | F ( τ ) Γ 2 ^ ^ . (3.4.15)

Using the factorization property (3.4.10) we conclude that the string partition
function can be normalized for all genera, to its value on Jΐίί u the moduli space of
one punctured tori. In Appendix B we will discuss in general the asymptotic
behaviour of the Quillen norms.



String Theory and Algebraic Geometry 671

In the case of genus p= 1,2, we will derive explicit formulae for the modular
form in (3.2.20). For p = l, (3.4.6) reads Λ. = γ ^ 0 , so

(9(Δ)~{π*ω)®12. (3.4.16)

A section of this bundle is a modular form of weight 12 on H l 5 which is given by

00

(η(τ))24 = e2πίτ Π (1 - e2κint)2*. (3.4.17)

It is easily verified since (3.4.17) occurs as the discriminant of an elliptic curve that
(3.4.17) is nowhere vanishing except at Δo, where it vanishes to order 1. Together
with (3.4.13-14) it follows that

(3.4.18)

Therefore we obtain the well known expression for the integrand (3.3.19):

(Note that it thus follows that Qxpδ(M) = (η(τ))24' in agreement with [20].) For
genus 2, one can derive apart from (3.4.6), a second relation in A\Jί\ (cf. [37]):

(3.4.20)

from which it follows that the modular form (3.4.19) is actually a section of

(9{Δ)~{Λ2π^ω)®10. (3.4.21)

This section can be expressed analytically as

(3.4.22)

which vanishes to order 1 at Δo-\-Δ1.

Furthermore from the G-R-R theorem we deduce that

Λ 3 (π*ω® 2 )~(Λ 2 π*ω) Θ 3 , (3.4.23)

so one obtains an expression for (3.3.15)

A — ^ - ( d e t l m τ Γ 1 3 . (3.4.24)
IXiol

Hence we have given an algebraic derivation of some of the results in [8, 36]. In
principle one can derive for arbitrary genus relations like (3.4.6,3.4.20) mAγ(Jϊ\ to
determine explicitly the modular form in (3.3.15). However for genus p^3 the
Hodge divisor class will get contributions also from the interior of M, due to the
hyperelliptic locus, which makes the calculations more complicated.

This concludes our discussion on the analysis of the partition function as a
geometric object on the moduli space of stable curves over the complex number
field. In Appendix A we show that also the conformal anomaly, which we formally
still have in Z in [cf. (1.10)], has an algebraic geometrical interpretation, such that
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the holomorphic factorization of the partition function ensures the absence of this
anomaly.

4. The Arithmetic Structure of the String Partition Function

In this section we exhibit a relation between the volume form on moduli space
describing the string partition function and algebraic number theory. In partic-
ular, it is shown that this volume form can be expressed in terms of the modular or
geometric height of the rational points on moduli space defined over an arbitrary
algebraic number field.

We begin with explaining in Sect. 4.1 what is meant by an arithmetic surface.
After presenting some relevant properties of algebraic number fields, we give a
more arithmetical description of a Riemann surface, which can be used to describe
Riemann surfaces over an arbitrary algebraic number field. Subsequently in
Sect. 4.2 we introduce the so-called height of a point in a projective space, and we
give an outline of Faltings' construction of the modular height, which is a height
function on moduli space. Finally in Sect. 4.3 we establish a relation between the
string partition function and the modular height.

As a result it follows that the "usual" partition function is in fact given by the
contribution of the so-called infinite primes of K to the modular height. For genus
1 and 2 this will be shown by direct computation. Finally we conjecture a more
general string partition function which is a summation involving discrete objects
only.

4.1. Arithmetic Surfaces

A curve C in the projective plane P2(C) is given by an equation

(4.1.1)

where / is a homogeneous irreducible form. One can always interpret such a plane
curve as a linear projection of a curve living in some higher dimensional projective
space P". This is called a smooth model of C. A compact Riemann surface M((C) is
just the set of the (C-rational points of a plane curve C, embedded into this
projective space Ψn. Also the converse is true: any compact Riemann surface can be
described as a set of rational points satisfying the polynomial equation defining a
curve C, embedded into Ψn. This relation between Riemann surfaces and rational
points, remains true for curves defined over any algebraic number field.

However, unlike (C, Q is neither topologically or algebraically closed. To deal
with these problems we will need a more abstract definition of an arithmetic
surface. This is provided by a description of (arithmetic) surfaces in terms of
schemes [29]. A scheme can be thought of as a natural fibre space M with a base
formed by the prime ideals of a given ring which we take to be Q for the moment.
For Q this base is just the ring of integers of Q, denoted as Spec(ZΓ). The integral
ideals of Q are the finite fields F p , formed by all integers modulo a prime number p.
In this way one can specify a curve over Q by giving the corresponding section of
the generic fibre of π:M->Spec(Z) over each Ψp. One calls π:M->Spec(Z) the
minimal arithmetic surface which corresponds uniquely to the curve C defined
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over Q. However this surface is not complete, so we need a prescription how to
compactify it. We will discuss, by giving some properties of Q, how one constructs
a compact arithmetic surface.

The basic ingredient is the fact that on Q one can define different norms | \p,
indexed by a prime number p, called a p-adic norm. It is defined as

M P Ξ ^ . ^ Q , (4.1.2)

where ord^x is the highest power of p which divides x. It can be shown that | \p is a
norm on Q, moreover it is a theorem that every non-trivial norm Q on is equivalent
to I \p for some prime p or for p= oo cf. [30]. One denotes the usual norm | |
inherited from C, by | 1̂ . The set of all norms | | p on Q, p < oo, is denoted by M°.

The fact that (Q is not algebraically closed means that not all polynomial
equations with coefficients in Q have solutions in Q. To repair this one must
consider an infinite sequence of field extensions of Q: the union of these is then a
closed field. An extension K of Q is such that every element oceK, satisfies a
polynomial equation xo + xι(x + x2(χ2 + ... +xnocn = 0, where x^eQ. The degree of
the extension, denoted by IK: Q], is the degree of the defining polynomial above.
For example the set of numbers a + b ]fl with α, fo e Q defines an extension of Q (of
degree 2). If \K: Q] < oo, the extension is algebraic and correspondingly one calls
K an algebraic number field. Adding roots of all possible polynomials with
coefficients in Q yields an algebraic closure of Q, denoted by Q. Unfortunately the
closure of Q is the union of an infinite number of field extensions. This is very
different from 1R whose closure is <C, which is a finite extension of 1R of degree 2.

The p-adic norms defined on Q can be extended to norms on K. One can define
a p-adic norm || \\p on K as

p m (4.1.3)

where Nκ^ is called the absolute norm, defined as

A /̂Q = ( - i y V (4.1.4)

The {fli}"=0 are the coefficients in the polynomial defining K of which α is a root.
We assume that also the other roots αt of this polynomial lie in K. It is a theorem
(cf. [30]) that (4.1.3) is a norm on K which extends | \p on Q.

Having explored some properties of field extensions of Q, we define an
arithmetic surface associated to a curve C over K. Denote by R the ring of integers
of K and by Spec(i^) its set of all prime ideals. Then there always exists a smooth
scheme M together with a morphism π such that π:M->Spec(K) is a minimal
arithmetic surface over K, associated to a (non-exceptional) curve C over K. To
construct a compact arithmetic surface one may add points at infinity. These
points correspond to mappings from K into <C. One can do this in n different ways,
where n is the degree of the extension:

σt\K c> C i = l , . . . , w ; n = [ K : Q ] .

The set σi associated to K are called the infinite primes of K. What is important is
that to each fibre of π above an infinite prime σt there corresponds a compact
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surface associated to the curve Ci = Cκ® σ(C. The norm on these fibres above σt is
just the usual absolute value | 1 .̂ Hence we have n Archimedian norms associated
to n infinite primes σb forming a set denoted by M£.

4.2. The Height Function on Moduli Space

In Sect. 3 it was shown that an integrable volume form on moduli space can be
constructed using isomorphisms between the determinant line bundles S£n. Such
relations define corresponding relations between height functions, which can be
used to describe the volume form arithmetically.

It is outside the scope of this paper to give a self contained introduction to the
theory of height functions, for that we refer to [40] and the references therein. The
height HK(P) of a point P = (x l 5 x2,..., xn) in the projective space Ψn(K) is defined as

HK(P)= Π m a x { | | x o | | v , | | x 1 | | v , . . . , | | x j v } , (4.2.1)
veλlκ

where Mκ is the set of all absolute values.
This definition is independent of the coordinate system chosen to parametrize

P. If P is a point in P"(Q), then we define the absolute height H(P) as

(4.2.2)

and the logarithmic height h(P):

) = \ogH(P). (4.2.3)

These last two definitions have the advantage that they are independent of the field
definitions. The height function h(x), x e Ψn(K) satisfies an important property, (see
for example [21]), namely that for any constant c>0, the number of points
xeΨn(K) with h(x)^c is finite. To make this intuitively clear, consider the
following example [21]. Let α be a point in 1P2(Q). Such a point corresponds to a
line through the origin in three dimensional space. This line contains at least one
(and therefore an infinity) of points with integer coordinates. The logarithmic
height ft(α), corresponding to α e P2(Q) measures the logarithmic distance to the
origin of the closest non-zero integral lattice point on α:

h(oc) = log ]/(a2 + b2 + c*), (4.2.4)

where (a, b, c) is an integral point of the line corresponding to α, such that a, b, c
have no common factors. It is now clear that for any constant c>0 the number of
points αeP 2 (Q) with h(oc)^c is finite. One says that the height function h(oc)
measures the "arithmetic complexity" of the point α.

The definition of the height can be generalized to an arithmetic surface π: M
-^Spec(Λ) associated to a curve C over K. Spec(#) is projective, so it can be
embedded it into some projective space Ψn(K). Once we have fixed such an
embedding, any point on the curve (or on the arithmetic surface) corresponds
uniquely to a point in Ψn(K). That is, there exists for any point x e Ψn(K) a map

φ:Spec(R)^Ψn

R(K). (4.2.5)
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On Ψn

R(K) we have the constant bundle $(1) generated by the global sections
xu...,xn which are projective coordinates on IP". The pull-back φ*Θ(\) becomes a
line bundle over Spec(jR). One can now prove that for a point x e Ψ\K\ the height
h(x) can be expressed as

where deg denotes the degree of the line bundle. In fact we may generalize (4.2.6) to
the case of a (very ample) line bundle i f o n M such that (4.2.5) corresponds to S£
(i.e. the sections of i f serve as projective coordinates). Then φ\S£) is a line bundle
over Spec(i^). Correspondingly one has for each point x e M(K) the height function
associated to if:

^ f ) ( 4 1 7 )

The degree of a line bundle over Spec(J?) can be computed using a metric on this
bundle. Putting a metric on a line bundle over Spec(#) turns it into what is called a
metrized line bundle over Spec(i^), which can be described as follows. Suppose we
have a regular curve C over Spec(i^), and suppose we have for each infinite prime σt

a Hermitian metric on the Riemann surface associated to σt. A metrized line bundle
i f on the arithmetic surface M is a line bundle together with a Hermitian metric
|| || oo on the line bundle i ^ induced by i f on each Riemann surface associated with
the infinite prime σ{. Such a line bundle will be denoted by i f (χ)σι(C. This definition
is essentially coordinate free, therefore we may choose a metric which is suitable for
our purposes. We will choose the metrics on each 5£{ such that they are admissible
with respect to the metric on the Riemann surface associated to σt. One calls the
metrized line bundle admissible if each ^£{ is admissible.

Such an admissible line bundle JS? is isometric to a line bundle Θ{D\ where D is
the so-called Arakelov divisor of a section of L on the arithmetic surface. We refer
the reader to [15, pp. 293 ff.] and to [21] for an introduction to Arakelov's
intersection theory. Here we will simply quote the result explained there, namely
that under the pull back of the section σ: Spec(#)->M of π: M->Spec(.R) the line
bundle L=σ*J£ becomes a metrized line bundle over Spec(i^), (i.e. a projective
rank one iΐ-module) of which the degree is given by

deg(L) = log(orderL/£.5)- £ log| |s | | ί ? (4.2.8)
Mκ

where s is a section of L and || || t denotes the Hermitian metric corresponding with
the infinite prime σt. [Note that this definition is consistent with (2.1.4).] If Lis free,
then we can take a generating section seL such that L = Rs, so

d e g ( L ) = - Σ log | |s | | i 9 (4.2.9)

and in particular when R = Z we have (up to a sign)

deg(L)=-log |s | Q 0 . (4.2.10)
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Using (4.2.7-8), one can define a height function on moduli space. Consider a
fibration of (principally polarized) Abelian varieties defined over IR of genus p:

p:A^^m, (4.2.11)

where si is the moduli space of Abelian varieties of given genus over Q. Denote by
ΩA/^ the cotangent bundle of the fibration. Faltings used the bundle
L=(dQtRp^.ΩA/^)n on ^ ( Q ) to define an embedding of si into some projective
space IPr(Q) of dimension r. Next we put for each infinite prime σt an admissible
metric on the bundle Ω® σ.(C. By the results explained in the previous sections we
therefore have a unique Hermitian metric (up to scalar multiplication) on L(g)ffi<C,
of which the curvature is given by <9δ~log||s||2. Then one may define a height
function hL on ^/(Q), such that for a number field K there are only finitely many
points x e si(K) with hL(x) ^ c, for any constant c. A direct computation of hL(x) is
very complicated but it is possible to compute it in a way that does not depend on
the bundle L over si. For this purpose one considers the modular height h(Λ).

Let x be the K-rational point in si(K\ defined by a (semi-stable principally
polarized) Abelian variety A over K, and consider (the connected component of) its
Neron model A0 over R\

π:A°->Spec(R). (4.2.12)

The bundle ΩAjR has a Hermitian metric for each infinite prime. Let ωA/R

= dQtRn^A/R which thus is a metrized line bundle over Spec(i^), (i.e. a projective
rank one i^-module). One now defines the modular height (̂ 4):

which can be computed using (4.2.8). This definition is independent of the field
extension of K. The following theorem relates h(A) with hL(x):

Theorem 2 (Faltings [21]). There exists a constant c independent of the number
field K and independent of A, such that

\hL(x)-nh(A)\^c, xesi(K), (4.2.14)

where n is the power of detRn^A/^, defining L.

This modular height function on si, satisfies an important finiteness theorem:

Theorem 3 (Faltings [21]). Let K be a number field and fix a constant c>0. Then
up to isomorphism, there exist only finitely many K-ratίonal points on si(K) defined
by principally polarized Abelian varieties of given genus over K, such that h(A) ̂  c.

4.3. The Relation Between the Modular Height and the String Partition Function

With the results in Sect. 4.2 we can now explain the relation between h(A) and the
volume form on moduli space describing the string partition function. We will
compute h(A), for Abelian varieties over K of genus 1 respectively 2, using the
theory of modular forms. Recall that in case of genus 1 respectively 2, the K
rational points are in direct correspondence to curves over K of genus 1
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respectively 2. In fact the computation of h(A) in the genus 1 case is standard and
can be found in e.g. [40]. In Appendix C we have given the computations for both
cases. One finds for a genus 1 stable curve C/K over K:

- Σ fiilogflzKτOKImτ;)6)], (4.3.1)
M J

where Nκ^ is defined in (4.1.4), zl c / x the minimal discriminant of C/K, zt the
modular parameter associated with the infinite prime σt and /I(τf) the cusp form of
weight 12. (The parameter ε, = 1,2 depending on σt see [40].) For a genus 2 stable
curve C/K one finds

h(C/K)= 1 0 C^.Q ]pog(|iV^zl c / K | )- Σ^ίlogd^o^Kdetlmτ,.)5^, (4.3.2)

where χlo{τi) is the cusp form of weight 10, and τ{ the period matrix. From these
results one thus concludes that the integral of the string partition function for
genus 1 respectively 2 is given by the contribution of each infinite prime of K to the
modular height, [cf. (3.3.21)] that is, at each infinite prime, we have that

e-2hm(c/κ)dτ Λ fa for g e n u s j (4 3 3)

and
e~2hco{C!K)dτιι Λ ... Λdτ22 for genus 2

are volume forms on the moduli space of genus 1 respectively 2 stable curves for
each infinite prime σt . h^C/K) denotes the contribution of the infinite primes to
h(C/K). Fixing an infinite prime, one thus recovers the partition function, for genus
1,2.

For higher genus, p ̂  3, it is not possible to compute the height as is done is
Appendix C. However, the conclusion in (4.3.3) can be generalized to arbitrary
genus as follows. Recall, from Sect. 3 that the partition function has for arbitrary
genus ^ 2 the form [cf. (3.2.15a-b)]

^ (4-3.4)
\\S\\

where 5 is a section of ( i f j 1 3 , and μ is the isomorphism:

1 3 ^ (4.3.5)

To avoid unnecessary technical details we consider a Q rational point in the
moduli space. Furthermore we consider the bundle S£γ over Z, which makes it a
(projective) rank 1 Z-module of which s is a section. It can be shown that
the isomorphism (4.3.5) is also given over TL [19]. Now we take vectors
ί l 5 . . . , ί 3 p _ 3 together with their complex conjugates such that
S=(t1Λ ... Λ ί3p_ 3 )~ * is a section of the line bundle Λmax T(Jί) taken over Z, (so s
has a double zero at the boundary of Jt). Acting with (4.3.4) yields the height of the
Q-rational point x corresponding to a curve C:

=<•"«». (4.3-6)
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[The factor 26 is because we took a section of S£γ instead of (^i) 1 3 . ] If s is a
generating section, the contribution from the finite primes to the height vanishes
[cf. (4.2.10)] so the right-hand side of (4.3.6) reduces to a product over the
contributions of all infinite primes. [Fixing an infinite prime leads for the case of
genus 1,2 to the partition function (4.3.3).]

In respect of (4.3.6) it seems natural to define the string partition function as

Z = l i m Σ exp(26Λ(x)), (4.3.7)
K xest(K)

where the limit is over all algebraic number fields K and the summation is over the
K-rational points in j / . In this way the integral over moduli space of the usual
partition function is a special case of the formula above. Note that for bounded
height this is a finite summation. In (4.3.7) one should incorporate a weight for each
rational point. This requires knowledge on the density of the ^-rational points in
moduli space, which is not available at the moment. On the other hand it is known
that for genus larger than 23, moduli space is of general type [28]. The higher
dimensional Mordell conjecture (cf. [45]) would then imply that the number of
rational points in (4.3.7) is essentially finite, so (4.3.7) would have stronger
convergence properties than the orginal integral over Jί. Formula (4.3.2) and the
idea of taking something like (4.3.7) as a partition function are also independently
due to Ueno [42].

Another aspect of (4.3.7) is that it might be used as a regularization by fixing a
large enough number field and an upper bound for the height. For example in the
case of genus 1, one can use Tate's algorithm [41] to calculate the discriminant
Ac/K in (4.18) and numerical integration to compute the periods τf. Thus one can
determine the height numerically to any desired accuracy. In a subsequent paper
[19] we will discuss in more detail the computation of (4.3.6), in the case when
other lattices are used.

Appendix A. The Conformal Anomaly and the Central Charge
of the Virasoro Algebra as Geometrical Objects on Moduli Space

In this appendix we relate the conformal anomaly and the central charge of the
Yirasoro algebra with the Weil-Petersson geometry of moduli space.

Denote by g the constant curvature metric on a Riemann surface M, obtained
by a conformal transformation of the Arakelov metric g = eσg, where σ is the
conformal factor. Furthermore let \\s\\Qt(T be in the Quillen norm of a section s of
the bundle S£n over Jί, computed with g. Then the σ-dependence of the Quillen
metric is given by [2, 3]

^ ^ - = e x p - Ί f
Hell IATΓ2 J

\\S\\Q,A L Z 4 π Jπ-i(y)

where ||s||Q>^ is the Quillen metric computed with the Arakelov metric g and R the
curvature (1,1) form of g. Expression (A.I) is called the conformal anomaly. The
integral on the right-hand side is referred to as the Liouville action associated with
g. Observe that the Quillen metric of the bundle G = («5f1)~

 13(χ) JS?2 ^
s independent
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of σ, so that the string partition function is conformally invariant, in d = 26
dimensions.

The Weil-Petersson metric is defined by the Hermitian product [47]:

<V>,0>= J ? r , (A.2)
M A

where φ, ψ are holomorphic quadratic differentials, and λ is the line element of the
constant curvature metric g on the Riemann surface M. This metric defines a
complete, Kahler metric, the so-called Weil-Petersson metric, on compactified
moduli space Jt [47]. Its Kahler (1,1) form ώwp is an element of the Chow-ring
A(Jί) represented by the curvature of the metric (induced by g on M) on a positive
line bundle. In fact one has the equality on the level of forms [48]

ώ (2)' ( A 3)

Using this, one has the following expression for the first Chern class of the Quillen

metric || | |Q > σ on j£?Λ:

(A.4)

where δ = π^c2{Ω) [cf. (3.4.7)]. Taking n= 1, and combining with (3.3.15a) we find
the relation

|_ π
(A.5)^ώ +§ dd\ \$Re + dσΛdσ+

2π y |_ π iπ

where δ(M) is Faltings' invariant. For genus 1 this reduces to [cf. (3.4.16-19)]:

1 _ dτΛdτ (A.6)

This result has an interesting consequence for two dimensional conformal field
theories. Such theories can be labelled by the central charge in their Virasoro
algebra (see [24]), which is generated by the energy momentum tensor T, defined as

T = δgSlx,g], (A.7)

where S[x, g] is the action of the theory, varied with respect to the metric on the
Riemann surface. The conformal variations of g give rise to an expression of the
conformal anomaly in terms of the two point correlation function (T(z) T(w)> (cf.

[9]): c
lim J < 7 » T ( w ) > = - , (A.8)

where c is the central charge in the Virasoro algebra. On the other hand by virtue
of the Teichmϋller variations in (A.7), one can consider the energy momentum
tensor as a connection in some holomorphic line bundle <£Ύ over moduli space,
carrying a Hermitian metric || ||c induced by g on M (cf. [24])

= 31og||s||c
2. (A.9)



680 D.-J. Smit

Then the two point correlation (TT} yields an expression for the obstruction to
the holomorphic factorization on moduli space

By the above results this is just another expression for the conformal anomaly. In
order to relate (A.8) with (A. 10) it suffices, by virtue of the factorization property
(3.4.10) on degenerate surfaces, to integrate (A.6) over MXΛ, the moduli space of
once punctured tori. One finds

ί *i(^iHIQi,)= J ^ik (A11)

where we have used that (η(τ))24 is a modular form of weight 12. (This is a more
"physical" derivation of the result found in [46].)

Consequently, we have, if £gγ carries the Quillen metric || ||Qj(T, the isometry

This is in fact a generalization of the isomorphism (3.2.14), showing that the matter
content of a two dimensional conformal field theory can be expressed as a power of
the Hodge bundle. This power is given by the central charge of the Virasoro
algebra of the energy momentum tensor. In this respect, one can view the bosonic
string theory embedded in flat Euclidean space as a special case of (A. 12), where
c = 26 and <£Ύ~KM.

Furthermore, because of (A. 11), it follows that ifτ is a true (holomorphic) line
bundle, i.e. admitting (holomorphic) sections if and only if the central charge

satisfies — e Z . (We disagree at this point with the result found in [24].) This

condition is not met in bosonic string theory, which implies that in this theory 5£τ

is a projective bundle [27].

Appendix B: Asymptotic Expansions of Laplacians

In this appendix we will give asymptotic expansions for the determinants detJπ,
using the constant curvature metric (cf. Appendix A). We will do this for nodes of
degree ί > 0 on a Riemann surface. The relation between the Quillen norm and the
Faltings norm using the constant curvature metric on M is slightly modified with
respect to the result presented in Sect. 3:

|lβ " det(φbφj) l '

where G(P, Q) is the exponential of the Green's function of the constant curvature
metric satisfying

δd\ogG2(P,Q)= -πδ(P,Q) + ^-g(P), ί l/έlogG(i>,β) = 0, (B.2)
A MV
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and where A is the area: A= J j/g. The function GR(P) in (B.I) is defined as
M

Note that this function is just unity in the Arakelov metric. (We will not go into the
derivation of (B.I); the factor GR(P) arises naturally in chiral bosonization, cf.
[43].) The advantage of the constant curvature metrics is that one can use the
formulae of [33] to find the asymptotic behaviour of (B.I). For this purpose we
consider a surface with a node of degree z>0, and divide it in into three parts, two
parts away from the node having area 8π(ΐ — 1) and 8π(p — i +1) respectively and an
annulus At around the node with area 8π. Furthermore we take the points Pt in
(B.I) such that we have In— 1 of them on At. The asymptotic analysis of the
determinants can then be restricted to the annulus. The Poincare metric on the
annulus is given by

1 \w\2 cos2(αlog|w|)'

where t is the transversal coordinate, measuring the radius of the annulus and w is
a coordinate. The parameter a is given by the condition that J gf = 8π. In [33] it
was shown that there exists a constant C such that on At,

 Λt

^gf<gt<Cg* Vί. (B.5)

The Green's function g(P,Q) = \ogG(P, Q) on At is given by

z(β)l2 - J - ί <*2wl/(g,(w)) (log|z(P) - w\2 + log|z(β) - w2)

(B.6)

Furthermore the holomorphic n-differentials φγ behave near separating nodes
according to (cf. [33])

1 ' " - • • " ' ( B . 7 )

It is now straightforward to find the following asymptotic expansions of
determinants:

" 1 , 1 = 2,3,...,

| t | 1 / 6 , (B.8)

(These results agree with computations using the Selberg zeta function, see e.g.

[17].)
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The Weil-Petersson volume element on moduli space can be extended
smoothly to the boundary. Using the parametrization of the quadratic differen-
tials as in [33] one has

{ ' }

φ1Λ...Λφ3p_3

\det(φi9φj)\ ~ | i

Subsequently we make use of the results of [33] to obtain

det(w;, Wy)~ const

at nodes with degree />0. Putting all together one finds for the asymptotic
behaviour of the string partition function

Appendix C: The Height of Genus 1 and 2 Curves1

Let K be a number field (i.e. [K: Q] < oo), R its ring of integers, S: = Spec(i^). Let C

be a curve over K having stable reduction, let C —> S be its stable model. The

height of C is defined as: h(C) = deg(detπ:j;ωc/iS), where ωc/s is the invertible

$c-module of regular relative differentials. Recall that if if is a metrized invertible
$s-module we have:

= - Σ v i o g l N v = - Σ logNlv- Σ v i o g N l v , (C.i)Σ
veS

where s is an arbitrary nonzero meromorphic section of if. So in order to compute
h(C) we need a nonzero global differential form on C. We do not want the local
contributions to depend on an arbitrary choice of such a form. This can be
achieved by using modular forms.

The Genus 1 Case. Suppose that C is of genus 1, with a given point called "0" (i.e. C
is elliptic). A canonical nonzero element A of ί f°(C,ω c / x ) Θ 1 2 is constructed as
follows: Let 0φωe//°(C,ω c / κ), let t be a local coordinate at 0 such that
ω = (l + ...) dί, let x be the unique regular function on C— {0} such that at 0:x

= ~γ + ..., let R be the set of points on C, where dx has a zero, ( # R = 3). Then

define

A(C,ω):= Π (x(P)-x(Q))> (C2)

and A : = Δ(C,ω)ω12. The reader can check that A(C,λω) = A(C,ω)λ~12, and
conclude that A is independent of ω. Using this A one can compute d e g ^ π ^ ω ^ 1 2 )

1 This appendix was prepared in collaboration with B. Edixhoven
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= 12deg(π ! ί.ωc/s) as in [40]. The result reads:

I ) - Σ βvlog(M(τv)|(imτv)
6)y (C.3)

J

The standard modular form for g= 1, of weight 12 called the discriminant is 2~4ZJ.
This factor 2~4 is to make things work over Έ. There are also modular forms of
weight 4,6 and so on. The reason to choose A is that it vanishes nowhere on the
interior of the moduli space. This makes it possible to do the computation for all C
simultaneously.

The Genus 2 Case. Let C be of genus 2. We will construct a canonical nonzero
element A of (det#°(C,ω c / κ)) 1 0. Its construction: let ωί9ω2 be a basis of
H°(C,ωCιK), then ω1/ω2 is a rational function on C. This gives a morphism
C ^—• ΨK, let i? be the set of the 6 ramification points on C of this map, then:

Π ((ω 1 /ω 2 )P-(ω 1 /ω 2 )β)

where res(ωi/ω2) is the residue of (ω 1/ω 2)ω 1 at one of the two points where it has a
pole (of order one). This A is independant of the choice of ω 1 ? ω2. Using A one can
compute deg^detπ^ωc^)®10) as in the genus one case. The result i.e. formula (4.3.2)
can already be found in [42], it reads:

l ^c/*)D- Σ ε vlog(|χ1 0(τ v)|(detimτ v)
5)y (C.5)

Note that as in the genus 1 case, our A differs from the standard one by a factor
which is a power of 2.

For genus ^ 3 it is not possible to find a similar A which vanishes nowhere on
the interior of the moduli space. For example, if g = 3, one will have problems with
the hyperelliptic locus.

Note Added. After this work was completed I received the CERN preprint
TH 4660/87 Bosonization on higher genus Rίemann surfaces, by L. Alvarez-Gaume,
J. Bost, G. Moore, P.Nelson, and C. Vafa, in which aspects similar to those
presented in Sect. 2 have been discussed.
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Appendix B and showing me some explicit calculations [44]. I also thank M. Hazewinkel, B.
de Wit, and L. Alvarez-Gaume for helpful discussions and reading the manuscript. This work is
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