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Abstract. We discuss supersymmetric scattering theory and employ Krein's
theory of spectral shift functions to investigate supersymmetric scattering
systems. This is the basis for the derivation of relative index theorems on some
classes of open manifolds. As an example we discuss the de Rham complex for
obstacles in RN and asymptotically flat manifolds. It is shown that the absolute
or relative Euler characteristic of an obstacle in IR^ may be obtained from
scattering data for the Laplace operator on forms with absolute or relative
boundary conditions respectively. In the case of asymptotically flat manifolds
we obtain the Chern-Gauss-Bonnet theorem for the L2-Euler characteristic.

1. Introduction

Supersymmetry is a recent concept of quantum field theory which has also
interesting applications in mathematics. Recall that a supersymmetry theory
consists of a Hubert space Jf together with a unitary involution τ in Jf [in physics
τ is usually denoted by (— 1)F] and selfadjoint operators Qb ί = 1,..., N, acting in 2tf
and satisfying

Moreover, the Hamiltonian H of the theory satisfies

for each i. Qt is called supercharge and H a Hamiltonian with supersymmetry.
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In this paper we shall investigate supersymmetric scattering systems consisting
of two supersymmetric Hamiltonians H = Q2, H0 = Ql acting in a given Hubert
space 3Ίf (the involution τ is assumed to be the same for Q and Qo) so that the
MΘller operators W±(H9H0) exist, are complete and intertwine the super-
charges Q and Qo. This implies that the supercharge Qo commutes with the as-
sociated scattering operator S. This fact is of particular interest for the applica-
tions we have in mind.

Supersymmetric scattering systems arise both in mathematics and physics. For
example, in mathematics supersymmetric scattering theory is closely related to
index problems for elliptic operators on noncompact manifolds. Recall that an
elliptic differential operator D: CCO(X,E+)^CCO(X,E~) on a closed Riemannian

/D*D 0 \
manifold X gives rise to a supersymmetric Hamiltonian H = I n n* acting

0 DD*/

Ί 0
in the Hubert space L2(X,E + )®L2(X,E ) with involution τ= .

Moreover, the index of D is given by

IndD = Tr(τe-ίH) (1.1)

(cf. [1]). In fact, due to supersymmetry the positive spectrum cancels out on the
right-hand side. If we are dealing with elliptic differential operators on noncom-
pact manifolds then, in general, the corresponding Hamiltonian H will have a
nonempty continuous spectrum. In particular, exp( — tH) is not of trace class.
However, many index problems on noncompact manifolds give rise to pairs
(H, Ho) of supersymmetric Hamiltonians where Ho can be considered as the free
Hamiltonian describing the continuous spectrum of H. In these cases exp( — tH)
— Qxp( — tH0) is of trace class and in place of (1.1) we have to investigate the
following supertrace:

Tr(τ(έΓ ίH-έΓ ίHo)). (1.2)

Again, due to supersymmetry one may expect that the positive spectrum cancels
out in (1.2). In this case we get a relative index theorem. The essential problem is to
investigate the contribution of the continuous spectrum to (1.2). This is where
supersymmetric scattering theory comes into play. Basic is the commutation
relation mentioned above for the scattering operator S and the free supercharge
<20. In a hidden form this occurs already in the work of Barbasch and Moscovici
[8] on the L2-index of elliptic operators on locally symmetric spaces of real rank
one. They use a sort of commutation relations for the constant terms of the
Eisenstein series to treat the contribution of the continuous spectrum to the
L2-index. The constant terms of the Eisenstein series are closely related to the
scattering matrix with respect to some particular free Hamiltonian. The relations
they are using are not exactly commutation relations. This is due to the fact that
their free Hamiltonian is not supersymmetric (cf. [41]).

In physics supersymmetric scattering theory is closely connected with
supersymmetric quantum mechanics. For a special case supersymmetric scattering
theory was originally discussed in [3] (for alternative discussions of scattering
theory in supersymmetric quantum mechanics, see e.g. [11, 13, 23, 29] and the
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references quoted there). In particular, there is a close relationship to the
phenomenon of fractionally charged states and the fractional Witten index [2,11,
13]. In [52] Witten introduced a quantity which counts the difference of the
number of bosonic and fermionic zero-energy modes of the Hamiltonian of the
theory. In the case the Hamiltonian has a non-empty continuous spectrum a
regularized Witten index has been introduced by several authors (cf. [13]). In this
context many supersymmetric quantum mechanical models have been discussed
in the literature [2,11,13]. A model which has been reconsidered by many authors
is

lim Φ(x) = Φ±,
x-* ± oo

H 0 \ ( 1 3 )

1 I " - ^^/Jv2,(f)2_H=\0 F )' HJ=-d2/dx2 + 02 + (-W, 7 = 0,1.

The discussion of all these models fits completely in our framework and our
approach puts the regularized Witten index in the context of relative index
theorems.

In the first section we study abstract supersymmetric scattering systems. The
main implication of supersymmetry is that the superdeterminant of the on-shell
S-matrix is equal to 1. Moreover, if the resulting phase shift functions (which are
functions of the energy) in the bosonic and fermionic sectors exist and are
continuous, then modulo the factor π their difference is shown to be an integer,
called the supersymmetric scattering index. We continue by considering pairs of
supersymmetric Hamiltonians H = Q2, H0 = Q2

), so that

e~tH e~tH° and Oe~tH O e~tHo

° (1.4)
are of the trace class for each t > 0.

This assumption implies that (H,H0) is a supersymmetric scattering system.
Condition (1.4) enables us to employ Krein's theory of spectral shift functions (see
e.g. [9]). If ξ(E; H, ίf0) denotes the spectral shift function and S(E; H, Ho) the on-
shell scattering matrix associated to H and Ho, then the basic fact we shall employ
is the following equation:

detS(£; H, Ho) = e

2πiξ{E>H>HQ), E e σJH).

This fact, dating back to the observation of Beth and Uhlenbeck [10] that the
second virial coefficient is related to the phase shift function, has been considered
by Birman, Buslaev, Faddejev, Krein and is the basis of several trace formulas. Let
ξ + (E;H,H0) and ξ_(E;H,H0) be the bosonic and fermionic part of the spectral
shift function respectively. Under the assumption that ξ+(E;H, Ho) — ξ_(E;H, Ho)
is continuous in £ > 0 and the zero eigenvalue of H and Ho is of finite multiplicity,
we obtain our main result

Trace (τ(e -tH-e~ tH°)) = npoin\H) - npoint(H0) + nc(H, Ho). (1.5)

Here npoin\H) = n + {H)-n^{H\ where n + (H) [respectively n_{H)~\ counts the
number of bosonic (respectively fermionic) zero-energy states. np (Ho) is defined
similarly and nc(H, Ho) is an integer determined by the continuous spectrum. If H
and Ho are Hamiltonians associated to differential operators D and Do, then we
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can replace the left-hand side by integrals involving the pointwise trace of the
corresponding heat kernels. Moreover, in this case one has npoint(H) = L2 — IndD
and ttpoint(#0HL2-IndI)0. Here

L 2 -IndD = dim(kerDnL2)-dim(kerD*nL2),

and similar for Do. Based on these observations one can derive index theorems for
elliptic operators on noncompact manifolds by investigating the asymptotic
behaviour as ί->0 of the left-hand side of (1.5). For example, this approach can be
used to prove an L2-index theorem for generalized Dirac operators on Q-rank one
locally symmetric spaces [41] (cf. also [8, 12, 18, 31, 41, 48, 49, 54] for related
results concerning index problems on noncompact manifolds). In general, it is
difficult to determine the number nc(H, Ho) occurring in (1.5). It is related to zero-
energy resonances.

If we apply (1.5) to the models arising in supersymmetric quantum mechanics,
we get index formulas which can be used to discuss the regularized Witten index.
We elaborate on this by discussing (1.4) explicitly.

In the rest of the paper we discuss several examples of supersymmetric
scattering systems. In Sect. 3 we consider scattering by an obstacle in RN (see e.g.
[16, 17, 33, 40]). This means that the Hamiltonian H is the Laplacian acting on
differential forms in the complement of the obstacle with absolute or relative
boundary conditions. The supersymmetric scattering index turns out to be minus
the absolute or relative Euler characteristic of the obstacle respectively. Thus the
Euler characteristic of the obstacle can be extracted out of the scattering data. We
observe that scattering on 1-forms is related to scattering of electromagnetic waves
by obstacles (see e.g. [39, 51]).

In Sect. 4 we consider manifolds which are euclidean at infinity. One may
regard this example as the scattering of plane waves by changing the topology of
IRΛ Again we discuss the Laplace operator acting on differential forms. In this case
the supersymmetric scattering index turns out to be the L2-index of the Gauss-
Bonnet operator which is the alternating sum of the dimensions of the spaces of
square integrable harmonic p-forms. This is proved by converting the L2-problem
into a non-local boundary value problem similar to [7]. The same result could
be obtained by analysing the threshold behaviour of the spectral shift function.

By a simple stability argument we extend this result to asymptotically
euclidean manifolds. This gives a new proof of the Chern-Gauss-Bonnet theorem
for these manifolds which is due to Stern [48]. Our result is slightly more general,
including in particular the two-dimensional case.

Throughout this paper we employ the following notation. Ω(M) denotes the
space of smooth complex forms on a smooth manifold M. The subspace of smooth
p-forms is denoted by ΩP{M\ whereas the space of even and odd smooth forms is
denoted by Ω+(M) and Ω_(M\ respectively. Finally ΩC(M) is the subspace of
smooth forms with compact support.

2. Abstract Supersymmetric Scattering Theory

We will consider the following general set-up. Assume there is a Hubert space J"f
with a selfadjoint (s.a.) and hence unitary involution τ. The eigenspaces Jf± for the
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eigenvalues τ = +1 and τ = — 1 are called the bosonic and fermionic subspaces
respectively. Trivially we have Jf = J

Definition 2.1. A selfadjoint operator β in Jf is called a supercharge with respect to
τ if τ leaves the domain @(Q) of β invariant and if τ anticommutes with β on @(Q).
The selfadjoint operator H = Q2^0 is called the associated Hamiltonian. Any
operator H of this form for some β and τ is called a Hamiltonian with
supersymmetry.

By the anticommuting properties of β and τ, if φ e @(Q) is bosonic, then Qφ is
fermionic and vice versa. This is the motivation for calling β a supercharge.

The following example will be our starting point, when we construct examples
for a supersymmetric scattering theory.

Example 2.2. On a compact, oriented closed Riemannian manifold M, let β = d + δ,
where d is the exterior derivative on forms and δ is the coderivative. ffl is the space
of square integrable forms. Then H = β 2 is the Laplace operator on Jf. Let P be the
linear operator which is p on p-forms. As a first choice for τ we take (— l)p. JfV is
the subspace of even forms and Jf_ is the subspace of odd forms. This form of τ is
relevant in the context of the Rham complexes. As a second example for τ we will
take τ = * o f(P-^) + N/2 j n c a s e ^ manifold h a s e v e n dimension N. Here * is the

Hodge duality operator. This choice will lead us to the signature operator (see the
discussion after Example 2.3).

Example 2.3. Let L be a closed linear map with dense domain from one Hubert
space 3Ί?+ to another Hubert space Jf_. Let L*: Jf_ -• Jf+ be the adjoint. Since L is
closed, L* is densely defined ([37], p. 168) and closed. We form the space
jήf = jf+ 0 j>f_. Let τ be the linear operator in Jf which is +1 on J»f+ and — 1 on

/θ L*
Jf_. Now let the selfadjoint operator Q in Jf be given in matrix form as

0
I*L 0

Then H = Q2 takes the form ̂

The following decomposition of Q shows that Example 2.3 covers the general
situation. If Q is a supercharge with respect to τ, then

f _), and there is the unique decomposition

P+ = 1/2(1 +τ) being the orthogonal projections onto Jf+ and Jf_ respectively.
We have Q2

+=Q2_=09 Q%=Q_, and i/ = β + β _ + β _ β + . Thus in Example 2.1
with τ = (— l) p, β + is (d + δ) on even forms and zero otherwise, while β _ is(d + δ)
on odd forms and zero otherwise. If τ is of the second form in Example 2.1, then β +

is the signature operator. In Example 2.3 we have Q+=[ I and

Note that the s.a. operator

Q' = ί(P_QP+-P + QP_) = iQτ=-iτQ (2.1)
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is also a supercharge with respect to τ such that

Q2 = Q'\ QQ' + Q'Q = 0 on®{H). (2.2)

Thus supercharges always occur in pairs. Conversely given two s.a. operators Q
and Q satisfying (2.2), then by a little algebra it is easy to construct complementary
subspaces Jf+ and J^_ with a resulting unitary involution τ such that Q and Q' are
supercharges with respect to this τ and are related by (2.1).

The following consideration was one of our motivations to look at supersym-
metric scattering theory. Assume there is a supercharge Q with respect to τ. Let
3/f (0) be the closed subspace of 2tf consisting of all φ e @(H = Q2) with Hφ = 0, i.e.
Jf7(0) is the eigenspace for the eigenvalue 0, whenever 0 is an eigenvalue. Obviously

We recall the following lemma for the so-called Witten index [52].

Lemma 2.4. Assume Qxp-tH is of trace class for allt>0 (such that Jt(0) has finite
dimension). Then for allt>0 the super symmetric trace of the semigroup satisfies the
relation

Traceτ(exp-ίtf) = dim JT+(O) - dim JT_(0) . (2.3)

Proof The proof is well known and a natural extension of arguments familiar from
heat equation methods. Let 0 φ φ e Jf+ be an eigenvector of H with eigenvalue
ε > 0. Then Qφ is also an eigenvector of H with eigenvalue ε > 0. But now Qφ e Jf _.
Also since Q(Qφ) = Q2φ = Hφ = sφ, we have that βφφO and that the linear
correspondence φ^Qφ is one-to-one on the set of eigenvector with eigenvalue
ε>0. Hence on the left-hand side of (2.3) all contributions from nonvanishing
eigenvalues cancel and Lemma 2.4 is proved.

Now Lemma 2.4 says in particular that under the given assumptions the
supersymmetric trace is an integer. Applying this to Example 2.3 gives the starting
point for the heat kernel proof [6] of the Atiyah-Singer index theorem (see e.g.
[30]). This index theorem is applicable to operators on compact manifolds only. In
the situation of noncompact manifold the corresponding heat kernels exp — tQ2

will in general not be of trace class.
However, we will present cases where Q is a perturbation of another

supercharge β0, which we will call a free supercharge with free Hamiltonian Ho,
and such that exp-tH — oxp-tHo is of trace class. The natural question is then what
the value of the corresponding supertrace is. It turns out that scattering theory
often can predict this value to be an integer independent of t. We now outline the
arguments leading to such a result and start with a definition of a supersymmetric
scattering theory.

Definition 2.5. A supersymmetric scattering theory in a Hubert space J»f with a
unitary involution τ is given by a pair (β, β0) with the following properties:

(a) Q and Qo are supercharges with respect to τ.
(b) For the associated Hamiltonians H = Q2 and Ho = Ql the Moller operators

W±(H,Ho) = s-limeitHe-itHoPac(Ho) exist, and are complete.
ί-» ± OO
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(c) W±(H,H0) are intertwining operators for β and β 0 :

QW±{H9HO)=W±(H9HO)QO on

Pac(H0) is the orthogonal projection onto the absolutely continuous subspace
J>f0 a c of Ho. Completeness means that the relation RanW+(H,H0)
= RcinW-(H,H0) holds such that both W+(H,H0) and W~(H,HQ) are unitary
operators from J^0,ac

 t o ^Cc = P^H)^, the absolutely continuous subspace of H.
Condition (c) is the new supersymmetric ingredient for scattering theory, which

was first introduced in [3]. This definition has an immediate extension to the two
Hubert space scattering theory [36]. Namely consider the situation where β is a
supercharge with respect to τ in Jf and β 0 a supercharge with respect to τ 0 in Jt0.
Let J J-fo^Jf be an intertwining operator for τ and τ0, i.e. Jτo = τJ. For a
supersymmetric scattering theory we now require the Moller operators

W±(if, HΌ;J)= s-lim eίtHJe'ίtHoPac(H0)
t~+ ± 00

to exist and to be complete. By construction these operators are intertwining
operators for H and Ho as well as for τ and τ0. In addition we require the Moller
operators to be intertwining operators for β and β 0 on ^(β o ) n ^o,ac

Note that the conditions of Definition 2.5 are met, if the Moller operators
W±(Q, Qo) for Q and Qo exist and are complete. Hence the following lemma, which
will be applied in the theory of obstacles and in Sect. 4, will provide us with a
sufficient condition for the existence of a supersymmetric scattering theory.

Lemma 2.6. Assume Q and Qo are supercharges in J4? with respect to τ such that
βexp-ίβ 2 —Qoexp-ίβo ι s °f trace class for all ί>0. Then Q and Qo define a
supersymmetric scattering theory.

Proof By the Kato-Rosenblum theory (see e.g. [37]) for any t>0 the Moller
operators W±(Q exp-ίβ2, Qo exp-ί(2o) exist and are complete. By the Birman-Kato
invariance principle of the wave operators (see [35]) W±(Q, Qo) exist and are
complete. By the same invariance principle, W±(H, Ho) exist such that if P(Q0 ^0)
is the orthogonal projection onto the absolute continuous subspace on which
β o ^0, then W+(H, Ho)u=W+(Q,Qo)u whenever P(Q0^ 0)κ = wand W+(H,H0)u
= W~(Q,Q0)u whenever P(Qo^0)u = 0. From this the required intertwining
properties c) of W±(H, Ho) for Q and Qo follow from the intertwining properties of

We turn to a discussion of the resulting S-Matrix, defined as

H,H0), (2.4)

which by the above completeness assumption is a unitary operator on J*f0>ac with
the properties

S(HH) S(HH0)τ, (2.5)

Q0S(H,H0) = S(H,H0)Q0 on 9{Q0)n^ac. (2.6)

By (2.5) we may write

9H0) = S+(H,H0)®S-(H,H0) (2.7)



482 N. V. Borisov, W. Mύller, and R. Schrader

with respect to the decomposition ^ o , a c = ^ o , a c + θ ^ o , a c - i n t o bosonic and
fermionic parts. Qo is of course again a map from ^f0?ac+ into J^0,ac- a n d vice
versa.

We now elaborate on these relations. Since S(H, Ho) commutes with Ho and
<20, the spectral decomposition of Ho a c (the absolutely continuous part of Ho) on

°'ac? H = J £ J P ( £ ) , (2.8)

defines a corresponding spectral decomposition of S and Qo in the form

S(H9 H 0) = J S(£; tf, H0)dPJE), Qo ^ a c = J Q0(E)dPac(E). (2.9)

Here the so-called on-shell S-matrix S(E;H,H0) is a unitary operator on the

Hubert space J f (£) corresponding to the energy value E ̂  0 I formally

dP (E) \
ψ J f ). Here and in what follows, we will always assume E to be indE J

σac(H0\ the absolutely continuous spectrum of Ho. Since Ql = H0, we have

(2.10)

such that the s.a. operator Q0(E) on J f (E) is bounded with bounded inverse if E > 0,
i.e. as long as we stay away from the threshold E = 0.

Since τ commutes with Ho we have a further decomposition J^(£)
= Jf+(E)@3Ίf-(E) into bosonic and fermionic parts. With respect to this decompo-
sition we may write Q0(E) in matrix form

9 £ ) )
Here g+(£) is an operator from 34?+(E) to Jf_(£) and <?_(£) is an operator from
Jf-(E) to ^f+(£). Relation (2.10) now takes the form

q4E)q+(E) = EtJr + {E), q + (E)q_(E) = Ei^_(E). (2.12)

From the boundedness of Q0(E) it follows that q+(E) and q-(E) are bounded.
They have bounded inverses for £ > 0 , since from (2.10) we conclude

q + iEΓ^E-'q.iE), q _{E)~' = E~'q + (E). (2.13)

Note that due to (2.13) and the selfadjointness of Q0(E) the operator
P+(E):=E~1/2q + (E) is a unitary operator from JP+(E) to Jf_(£). Since τ also
commutes with S(H,H0\ we have the following on-shell decomposition:

S(E; H, H0) = S+(E; H, H0)®S-(E; H, Ho), (2.14)

i.e. the on-shell S-matrix decomposes into a bosonic and a fermionic part. Next the

r d a t l O n Qo(E)S(E; H, Ho) = S(E; H, H0)Q0(E) (2.15)

is a consequence of condition (c) in Definition 2.5. By (2.11) we rewrite this as

for E > 0. This proves the
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Proposition 2.7. Above threshold, for any E in the absolutely continuous spectrum of
Ho, the bosonic and fermionίc on-shell S-matrices are unitarily equivalent.

We turn to a discussion of the total phase shifts in the bosonic and fermionic
sectors at energy E ̂  0. If they exist, they satisfy

exp2iδ±(E;H,H0) = detS±(E;H9H0). (2.17)

These phase shifts are only defined modulo πZ. In applications we have in mind,
however, a unique choice can be made using the theory of the spectral shift func-
tion (see below). In particular we will make the convention that δ+(E, Ho, Ho) = 0.
We therefore have the result

Proposition 2.8. The bosonic phase shift above threshold exists if and only if the
fermionic phase shift exists such that

-(δ+(E;H,H0)-δ_(E,H,H0)) = n(E;H,H0)eΈ. (2.18)
π

Also if they exist the supersymmetric determinant of the total on-shell S-matrix is
equal to 1:

Relation (2.18) has interesting consequences. A first simple result is

Proposition 2.9. Assume the absolutely continuous spectrum of Ho (and hence of H
also) is a connected subset o / R + such that δ±(E; H, Ho) exist and their difference is
continuous in E on this set. Then there is an integer, called the supersymmetric
scattering index of H and Ho and denoted by n(H, Ho), such that

-(δ+(E;H,H0)-δ_(E;H,H0)) = n(H,H0) (2.20)
π

for all E in the absolutely continuous spectrum of Ho.

The very definition of n(H, Ho) leads to two ways of determining this quantity
from phase shift data in case the absolute continuous spectrum of Ho is all of R + ,
the set of all nonnegative reals. One way is to look at the threshold behaviour E-+0
of δ+(E;H,H0) and δ_(E;H,H0). The other one is to look at the high energy
behaviour E->oo, where partial results are known [33, 32, 40].

The next result is a stability statement

Proposition 2.10. Let H(λ) be a one-parameter family of Hamiltonians (λ e 7, I an
interval) with supersymmetry relative to a fixed τ. Assume that for each λel the
assumptions of Proposition 2.9 are fullfilled for H = H(λ) and that in addition
δ+(E; H(λ\ H0)-δ_(£,H(λ), Ho) is continuous in λ for fixed E. Then n{H{λ), Ho) is
a constant on I. In particular, if there is λ0 e I such that H(λ0) = Ho, then n(H(λ), Ho)
is identically zero on I.
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We now consider situations which guarantee the existence of δ ± (E H, Ho\ and
a supersymmetric scattering theory, namely we assume that (compare Lemma 2.6)

exp-ίtf-expίH0 ) (2.21a)
1 are of trace class for all ί > 0 . . _ Λ \(2.21b)

Note that in general none of the conditions (2.21) is a consequence of the other.
Then by the Krein theory of spectral shift functions (see e.g. [9]) there is a unique
locally integrable function ξ(E;H, Ho) in E such that ξ(E; H, H0)e~tE is integrable
in [0, oo) with

00

τmcφxp-tH-Qxp-tH0)=-t J ξ(E;H,H0)e'tEdE. (2.22)
o

Indeed, the function

ξίμ) = π " 1 lim 2Lτgάei{t + {e-tH-e-tHo){e-tHo-λ-i&)-1) (2.23)

is an integrable function with support in [0,1] such that

Trace(exp-ίtf-exp-ί#0) = J ξt(λ)dλ. (2.24)
o

Note that the right-hand side of (2.23) is uniquely defined by the condition that it
should tend to zero for Im/l-> + oo.

It is easy to show (compare e.g. [33, Lemma 3.1]) that the function — ξt(e~tE) in
£ > 0 is independent of ί>0. We denote this function by ξ(E;H,H0) and obtain
(2.22). Furthermore the phase-shift function δ(E;H,H0) then also exists almost
everywhere on the absolute continuous spectrum of Ho and may be identified with
— πξ(E;H,H0) there (see e.g. [9]). This leads to a unique choice of phase shifts
referred to above such that in particular δ(E;Ho,Ho) = 0. In the applications we
have in mind, the absolute continuous spectrum σac(H0) oϊH0 will be all of 1R+ so
that in these cases we have

Trace(exp-ί//-exp-ί//0)= - I δ(E; H,H0)e~tEdE. (2.25)
π o

Furthermore Qxp-tH — exp-ίi/0 restricted to Jf+ and to Jf_ respectively is also of
trace class resulting in corresponding quantities ξ+ and (5+ with similar relations.
But then we have, using

Traceτ(exp-ί#-exp-ίtfo)= - J (δ+(E;H,H0)-δ4E;H,H0))e-tEdE
π o

= t]n(E;H, H0)e ~ tEdE = n(H, Ho) (2.26)
o

whenever n(E,H,H0) = δ+(E,H,H0) — δ_(E,H,H0) is continuous in E>0. In
general the spectral shift function will have integer valued discontinuities
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whenever H or Ho have a point spectrum, making δ+ and <5_ discontinuous. In
certain cases it is possible to control these discontinuities. More precisely, let
P p o i n t ( # 0 ) and P p o i n t (H 0 ) be the projections onto the subspaces for the point
spectrum of H and Ho respectively, such that

t - Pp o i n t(tf) = PC(H) and t - P p o i n t ( # 0 ) = PC(HO)

are the projections onto the continuous subspaces of H and Ho respectively. We
now introduce the additional conditions

( 2 2 1 a )
(2.27b)

Then conditions (2.21a) and (2.27) guarantee the existence of the spectral shift
functions ξc(E; H,H0) and n(E; H) and n(E,H0) such that

Ίmce(Pc(H)exp-tH-Pc(H0)exp-tH0) = t J ξc(E; H,H0)e-tEdE, (2.28)
o

CO

TracePp o i n t(H)exp-ίH = ί J n(£;H)e~ tEdE, (2.29)
o

Trace P p o i n t (# 0 )exp-ίH 0 = ί f n(E;H0)e-tEdE, (2.30)
o

and such that for almost all E>0,

ξ(E; H, Ho) = ξc(E; H, Ho) + n(E; H) - n(E, Ho). (2.31)

A routine calculation shows that n(E; H) is the number of point eigenvalues of H
less or equal to E. An analogous statement holds for n(E; Ho).

The same discussion pertains to the bosonic and fermionic sector separately,
where we denote the corresponding quantities by ξc

±(E;H,H0), n+(E;H), and
n±(E;H0). Note that ξ±=ξc

±,iϊ the point spectrum for H and Ho is empty.
By the same arguments, which led us to Lemma 2.4, we have

Lemma 2.11. // the conditions (2.27) are satisfied, then there are integers npoint(H)
and npoin\H0) such that for all £ > 0 ,

n+(E;H)-n_(E;H) = npoint(H), n4E;H0)-n4E;H0) = npoint(H0). (2.32)

Note that if H has purely discrete spectrum, such that exp-tH is of trace class,
then nvoιn\H) equals the quantity in (2.3). In the presence of discrete eigenvalues we
make a modified choice of the phase shift. Namely we let δc(E;H,H0)
= — πξc(E; H, Ho). Note that π ~ 1(δ — δc) is always an integer, so both δ and δc are
possible choices for a definition of the phase shift.

Now we are led to the following extension of Proposition 2.9.

Theorem 2.12. Let σa c(H0) = ]R + . Also assume the conditions (2.21) and (2.27) hold
such that δc

+(E; H, Ho) — δc_(E, H, Ho) is continuous in E>0. Then there is an integer
nc{H,H0) such that for all £ > 0 ,

-(δc

+(E;H,Ho)-δc4E;H,Ho)) = nc(H,Ho). (2.33)
π
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Also
Trace τ(exp-ί# - exp-ίtf 0) = nc(H, Ho) + rcpoint(#) - npoint(H0). (2.34)

Here the last relation follows from the bosonic and fermionic version of
(2.28H2.30) and Lemma 2.11 combined with (2.26). The condition σac(H0) = R + is
essential to obtain the f-independence of the left-hand side of (2.34) and (2.26)
(see Theorem 2.14 below).

Remarks 2.13, (i) Note that the splitting off of discrete eigenvalues was only done in
order to eliminate the discontinuities due to embedded eigenvalues in the
continuum. Although we know of examples where δc still has discontinuities due to
the appearance of resonances above threshold, we expect that in many applic-
ations δc

±(E) will actually become continuous. Now all that is needed in the above
arguments is the continuity of δ\ — δc_ or equivalent of δ + — δ _ in E. Hence if in
fact the discontinuities oϊδc+ are due to resonances above threshold, then we expect
them to cancel in δc+ — δc- by supersymmetry in the same way as is the case for
discrete eigenvalues. Therefore it would be interesting to find a general criterion
which will ensure the continuity of δc

± or their difference. When E = 0 is the only
element in the point spectrum, the above procedure is not necessary. In fact, this
will be the case for the Laplace operator acting on differential forms on a
Riemannian manifold without boundary, which is euclidean at infinity and
which will be discussed in Sect. 4.

(ii) Nevertheless, the decomposition given by (2.34) is of general interest for the
following reason. Although scattering theory gives sufficient conditions for
n(H, Ho) and nc(H, Ho) to exist and to be integers, in the cases we will discuss below,
their explicit evaluation is either based on stability arguments (Proposition 2.10)
or by methods not involving scattering states. However, we conjecture that
nc(H, Ho) is calculable in terms of what physicists call zero energy resonances. In
fact, in the cases where we have been able to check this, this conjecture held true. In
this context it is worthwhile to point out the following obvious fact. Assume H(λ) is
a one parameter family of supersymmetric Hamiltonians such that n(H(λ), Ho),
nc(H(λ), Ho), and npoint(H(λ)) are all well defined. Then if two of these quantities are
constant in λ, then so is the third.

(iii) In several publications on supersymmetric theories a so-called fractional
Witten index has been studied (cf. [13] and references quoted there). This is
connected with supersymmetric Hamiltonians whose energy spectrum has a
continuous part. The regularized Witten index is then defined by giving a meaning
to Trace (τe~tH) and then taking the limit ί->oo. In most of the papers on fractional
indices it is implicitly assumed that the Hubert spaces of the bosonic and fermionic
are identical. This in particular is the case for supersymmetric quantum mechanic
models. All these models can be treated by our method.

(iv) Extended solutions in the sense of [7] may be considered as a special case
of zero energy resonances. Now the dimension of extended solutions appear with a
factor 1/2 in certain index theorems [7]. It is a remarkable observation that such a
factor 1/2 also shows up in counting the contributions of resonances to the
fractional Witten index.

We now elaborate on (iii) and (iv) of the preceding remark by giving a
discussion of one model which has been considered by many authors. Let
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ΦG C°°(R) with lim Φ(x) = Φ± and set L = d/dx + Φ considered as an operator
JC~> ± 00

in L2(R) with domain CC°°(R). Let Q be the unique selfadjoint extension of

'0 ,
0

acting in 3tf = L 2(R)0L 2(R). We set

0
τ = \o -1

and H± (the restriction of H = Q2 to the bosonic and fermionic section
respectively) are the unique selfadjoint extensions of

d2

 2 _

dx

acting on CC°°(R). For simplicity assume that Φ is constant outside a compact set.
Now we define the free supercharge Qo as follows: Let R 1 denote the positive and
negative half-line respectively. Let Lj be the closure oϊd/dx + Φ ± acting on L 2 (R + )
with Dirichlet boundary conditions. Further, put

n + (0 (L±)
βo" = U o ,

Qξ is a selfadjoint operator in the Hubert space L 2 ( R + ) © L 2 ( R + ) . Now write

J T - ( L 2 ( R ~ ) 0 L 2 ( R - ) ) 0 ( L 2 ( R + ) © L 2 ( R + ) .

With respect to this decomposition we may consider β 0

 = Go + Qo a s a selfadjoint
operator in Jf\ Qo is the free supercharge and Ho = Ql the free Hamiltonian. Now
it is easy to see that Qxp-tH — Qxp-tH0 and Qexp-tH — Q0Qxp-tH0 are both trace
class operators for all ί > 0. Therefore, our results can be applied to this situation.
However, observe that the multiplicity of the continuous spectrum of H and Ho

jumps if Φ + Φ Φ " . Therefore, the individual spectral shift functions ξc

±(E;H,H0)
will not be continuous. But, using computations similar to those in [41], Chap. IX
one can show that ξc

+(E;H,Ho) — ξc_(E;H,Ho) is a continuous function o n R + .
Furthermore, one has npoini(H0) = 0. Now, by Theorem 2.12 we get

npoin\H) - Traceτ(exp-ί# - exp-ί#0)) - nc(H, Ho). (2.35)

By construction

npoint(H) = dimKQTH+ —dimKQrH~ . (2.36)

(This is just nl=0 — nf = 0 in the notation of [52].) Analyzing the spectral shift
function shows that nc(H, Ho) = 0 in all cases. Thus

npoin\H) = Trace τ(exp-ίi/ - exp-ftf 0 ) . (2.37)

This demonstrates the advantage of our method. The right-hand side of (2.37) is
independent of t and gives the right answer.
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Finally the kernel of Ho can be explicitly determined. We may write

H ° = \ 0 H0,_

where Ho + is given in L^R 1) as the selfadjoint extension of — d2/dx2 + Φ±2 with
Dirichlet boundary conditions and Ho _ is given on L^IR1) as the selfadjoint
extension of —d2/dx2 + Φ±2 with respect to the boundary conditions

d_

dx
+ Φ±)f = 0.

x = 0

The kernels of exp-ίi ί 0 + and exp-tH0 _ can be explicitly described (cf. [7] p. 52). In
particular exp-ίiίO j + — exp-tH0 _ is of trace class. Thus we may rewrite (2.37) as

T r a c e ( e x p - ί H + - e x p - ί / / _ ) = wpoint(/f) + Trace(exp-ί/ί 0 + -oxp-tHo _ ) .

(2.38)

It is easy to determine

zlo = lim Trace(exp-ί// 0 + — exp-tH 0 _ ) . (2.39)
ί->00

One has

1/2 if Φ + = 0

-1/2 if φ - = 0

0 if signΦ+=signΦ~ '

1 if sign Φ+ Φ sign Φ~

This coincides with the results obtained [13].
The next result relates our set-up more closely to standard index theorems. It

also explains the role of the condition σac(//0) = ]R+ in Theorem 2.12. The
conditions in the next theorem guarantee in particular that Q and Qo are Fredholm
operators such that the quantity

τ-Indexρ = dimKer(ρtJf+)-dimKer(βf^f_) (2.40)

is well defined. We have τ-Indexβ = npoint(i/), whenever both these quantities are
defined.

Theorem 2.14. Assume conditions (2.21) and (2.27) hold such that

σJH) = σac(H0) = [ε0, oo), (e0 > 0) (2.41)

and the singular continuous spectra of Ho and H are empty. In addition let
δc

+(E,H,H0) — δc_(E;H,H0) be continuous in E on [ε0, oo). Then for all t>0,

Traceτ(exp-ί# - exp-ίiί0) = τ-IndexQ - τ-Index Qo + nc(H, H0)e ~εot. (2.42)

In particular

lim Traceτ(cxp-tH — Gxp-tH0) = τ-Index Q — τ-Index Qo + nc(H, Ho), (2.43)

lim Traceτ(exp-ίiί — exp-fi/0) = τ-IndexQ — τ-IndexQ0. (2.44)
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The proof is an easy adaptation of the arguments leading to Theorem 2.12. In fact
note that ξc

±(E;H,H0) has support in [ε0, oo) due to the absence of a singular
1

continuous spectrum and may therefore be identified with δc

±(E;H,H0).
π

Again nc(H,H0) is defined by relation (2.33) now valid for Ee [ε0, oo). Thus

Traceτ(exp-ίiί - exp-ίiί0) = npoin\H) - npoint(H0) +1 J nc(H, H0)e " tEdE
εo

and (2.42) follows.
In view of Lemma 2.4, the quantity (2.34) may also be viewed as a relative index

in the sense of [31]. This will become clearer when we discuss scattering theory by
obstacles and give a topological interpretation of the resulting supersymmetric
scattering index. In this context, the following chain rule is of interest. Instead of
considering the pair (H,H0) in Theorem 2.12, we consider two supersymmetric
pairs ( # 2 > # i ) and (HUHO) (H—Qf, i = 0,1,2) with a fixed involution.
Proposition 2.15. Assume the conditions of Theorem 2.12 hold for the pair (H2, Hλ)
as well as for the pair (Hu Ho). Then the same conditions hold for the pair (H2, Ho)
such that

rf(H2, Ho) = n\E2, HJ + ne(Hu Ho). (2.45)

In particular rf(HuH^) is skew in Hγ and Ho:

nc(H1,H0)=-nc(H0,Hι).

Proof. That δc

±(E;H2,H0) is continuous in £ > 0 follows from the chain rule

which is a consequence of the uniqueness of the spectral shift function.
Alternatively this chain rule follows from the chain rule for Moller operators, see
e.g. [46]. Relation (2.45) is then a trivial consequence of (2.26). q.e.d.

Assume now that the condition (2.21a) is replaced by the stronger condition
that

{H + z±yό-{HQ + z±)-t (Rez>0) (2.21a')

is trace class for some t > 0. Then under otherwise unchanged conditions we may
give an alternative representation to (2.34). Indeed, by standard Laplace trans-
formation arguments (see e.g. rel. 3.33 below)

Tracer { _ ! ^ _ z \ \ =nc(H,H0) + n^\H)-n^\H0). (2.46)

This formula is closely related to expressions appearing in e.g. [18] and [48], where
the term containing Ho does not appear. In fact, in the cases we will discuss, the
local density of the term involving Ho on the left-hand side of (2.34) or (2.46) has
vanishing supertrace (see Remark 2.19 below).

We now give some concrete examples for a supersymmetric scattering theory,
where the supercharge Q is a smooth perturbation of Qo. No proofs will be given,
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since similar results will be derived in the next sections for more complicated
situations.

Example 2.16. Let 3tf0 be the Hubert space of complex square integrable forms on
R N (quantities with the subindex 0 pertain to the free theory). More precisely,
let * 0 be the Hodge duality operator on forms given by the flat metric. On
ΩC(RN) consider the positive definite quadratic form given as

(φ,φ% = j ψA * o φ\ (2.47)

N

Then J*f0 is obtained by completion. We write Jf0 = 0 Jtfg, where 2tfξ is the closed
p = O

subspace consisting of square integrable p-forms. We recall (see Example 2.2) that
P is the linear operator which is p on p-forms. * 0 extends to a unitary operator on
J4?o mapping ΏC(RN) into itself such that

* O 0 * O = ( - 1 Γ ( " - P ) . (2.48)

Let d0 be the closure in Jf0 of the exterior derivative on Ω^R^). Similarly let
<50 = d%, the adjoint of d0, be the closure of the coderivative on ΩC(RN) such that

<5o = * o ° 4 ° * o ° ( - l ) " + " P + 1 (2.49)

The operator g 0 = d0 + δ0 is selfadjoint and Ho = Ql is the Laplace operator Ao on
RN. We denote by H{) = AP

) its restriction to Jtίfg. For a form φ written as

φ = Σ Σ Φi!... iMW*1 Λ Λ dχίp' (2-50)
p = 0 h...ip

we have for the resulting selfadjoint contraction semigroup (f >0)

.. ip)(x). (2.51)

Obviously Ao has only absolutely continuous spectrum. We consider the following
perturbation Q of β 0 .

Let χ be a (for simplicity) real valued Schwartz function and consider the closed
operator [53],

d = eχdoe~χ, (2.52)

and let δ be the adjoint d*. Then Q = d + δ is selfadjoint and H = Q2 is a smooth
perturbation of H o , having also only absolute continuous spectrum. Let Hp denote
the restriction of H to Jfjf. It has been shown in [3] that this pair (g, g 0 ) defines a
supersymmetric scattering theory. Furthermore by techniques used e.g. in [33]
and [46] it may be shown that the phase shifts δp(E; H, Ho) = δ(E; Hp, ifg) for the
scattering theory in Jfo

p are Holder continuous of index v< 1/2 for E>0 and that

δ p (£;H,// 0 )(E + l)-< fGL 1(R+,dE) (2.53)

whenever «f>iV/2 + l. Obviously

δ + (E;H,H0)= X δp(E;H,H0),

(2.54)
δ.(E;H9H0)= Σ δp(E;H,H0).

podd
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Also the supersymmetric scattering index vanishes such that

Σ (-l)pδp(E;H,Ho) = 0 for £>0. (2.55)
p = 0

Example 2.17. Let g(x) = {gij(x)}ι^ij^N be a C00 function IR* with values in the
real positive definite N xN matrices such that gj/x) —<5ί>7 is in Schwartz space for
all ij. This defines a metric on 1R.N, making it into an oriented Riemannian space.
Let J f denote the resulting Hubert space of forms with the scalar product

(φ,φ') = ]ψA *φ\ (2.56)

where * is the Hodge operator obtained from g. Let now d be the closure in Jf of
the exterior derivative on ΩC(RN)CJ^. With δ being the adjoint, the supercharge
Q is now d + δ such that H = Q2 is the Laplace operator on this Riemannian
manifold.

The present set-up is suited for scattering theory in two spaces [36] via the
unitary intertwining operator J~1: J f -* J>f0 given as follows: There is a symmetric
matrix 1/2g(x) whose square is g(x) and such that 1/2g;/x) — δ{j is in Schwartz space
for all ij. Then

(J-ιφ)(x) = Σ Σ {J-1φ)iι...ip{x)dxil...dxi> (2.57)
P iί. .ip

with

Σ Π ll2g'' Hx)φh...jpix), (2.58)

where 1/2g I7(x) is the inverse of 1/2gjk(x). Then again the phase shifts δp(E; H, Ho, J)
= δp(E;J~ιHJ,H0) for p-forms are Holder continuous of index v<\. Relation
(2.53) holds and the supersymmetric scattering index vanishes giving (2.55) in this
case too.

Example 2J8. Consider the set-up of the preceding two examples but now with a
new involution. Assume N is even and let τ 0 be given as τ 0 = * 0 o iP{P~1) + ]V/2 (see
Example 2.2). This τ 0 anticommutes with Q and Qo as given in Example 2.16.
To cover Example 2.17 we note that Q defined there anticommutes with

τ = ̂ oίp^p~^+N^2 and that Jτo = τJ as required for a two Hubert space supersym-
metric scattering theory (see the remarks after Definition 2.5). Let now J^Ot + and
J^o> _ denote the closed complementary subspaces consisting of selfdual and
antiselfdual forms (with respect to τ0) in Jf0. We may apply the same analysis to the
resulting phase shifts δ±(E; H,H0). Let us look at this in more detail.

Note that τ 0 and τ induce unitary involutions in the spaces J^Q12 and jfN/1 of
middle dimension respectively. Let δNJ2(E\ H, Ho) denote the resulting phase shifts.
Then since * 0 maps p-forms into N — p forms

Trace* 0 r (

- T r a c e ^ / 2 * 0 o i\2J (exp-tfl-exp-ί#0) (2.59)

(where in the case of Example 2.17, H has to be replaced by J~ ιH J). This gives the
general relation (E>0)



492 N. V. Borisov, W. Mύller, and R. Schrader

by the uniqueness of the Laplace transform. Next we distinguish the cases JV/2 even
and JV/2 odd. If JV/2 is odd τ 0 = * 0 o i on ^ ' 2 and the right-hand side of (2.59) and
hence of (2.60) vanishes. In fact, let φj

+ (/ = 1,...) be a complete set of eigenforms of
Qxp-tH - exp-ί# 0 (respectively exp-ί J ~ιHJ — exp-ί/f 0 in the case of Example 2.17)
which are selfdual with respect to τ 0 = * 0 ° i. Then the complex conjugate form φ\
is also an eigenform with the same eigenvalue as φj

+. But φj

+ is antiselfdual and the
claim follows.

Therefore the only nontrivial case is when N is divisible by 4. Then the
vanishing of (2.59) and (2.60) for the examples at hand, giving a vanishing
supersymmetric scattering index, follows by a stability argument of the form of
Proposition 2.10. Not surprisingly, for Example 2.17 this is just the statement that
the relative signature index of the pair (JRN, g) and (RN, flat metric) vanishes.

Remark 2.19. Observe that in the examples considered so far, the pointwise
supertrace of the free heat kernel vanishes identically. In this sense, the free
Hamiltonian acts only as a spectator.

3. Obstacles

Let ΘecΊR.N be an exterior domain, in other words for, N > 1, Θe is an open connected
set such that Θί = ΊRN\Θe is compact and for N =1 wo require Θt to be a compact
interval. Θ{ will be called an obstacle. We assume Θe to have a smooth boundary,
i.e. the boundary dΘe is the set (9tn0e, supposed to be a smooth, compactly
embedded manifold of dimension JV-1. For JV>1, Gi and hence also dΘe need not
be connected. In J-f0, the space of square integrable forms on RN, let 2f?e and J ^
denote the closed subspaces consisting of forms with support in Θe and Θ{

respectively. Obviously Ωc(Θe) and Ω{(9^) are dense in f̂e and ^ respectively and
jf0 = j ^ e e ^ . We recall from Sect. 2 that d0 and <50 - * 0 o d ° *0( - I f + NP+1 are the
exterior derivative and coderivative on J^o respectively. Let d and δ denote the
closures in J-fe of d0 \Ωc(Θe) and <50 \Ωc(Θe) respectively. Also let dc and δc denote the
closures in J4fe of d0 \Ωc(Θe) and δ0 \Ωc(Θe) respectively. It is well known [28] that
these closures exist and that

d* = δc, δ* = dc, d* = δ, δf = d (3.1)

in the sense of adjoint operators on 2tfe. Also d maps S)(d\ its domain of definition,
into itself such that d2 = 0. A similar relation holds for the other operators, i.e.

d* = δ2 = dΐ = δϊ = O. (3.2)

Among the four possible choices (see e.g. [20]) of resulting (nonnegative) Laplace
operators with local boundary conditions, the following two selfadjoint operators
(see [20]) have turned out to be of importance,

Λ Abs = dδc + δcd = dd* + d*d, (3.3A b s)

(3.3Rel)

They correspond to the so-called absolute and relative boundary conditions, the
name being related to the fact that for compact Riemannian manifolds with
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boundary the corresponding spaces of harmonic forms are isomorphic to absolute
and relative cohomology respectively. We will return to this point below.
Obviously these two Laplace operators are dual to each other under * 0 . The other
two possible choices are the selfadjoint operator dcδ + δcd and the non-selfadjoint
operator dδc + δdc. First we show how the requirement of supersymmetry in a
natural way leads to the above two choices (3.3). In fact, we have the following

Theorem 3.1. The supersymmetric charges, which anticommute with (— l) p,

QAhs = d + δc = d + d* with @{QAJ = ®(d)n@(δc) (3.4Abs)

and

QRel = δ + dc = δ + δ* with ^(QRel) = ̂ (δ)n^(dc) (3.4Rel)

are selfadjoint and their squares equal ΔAbs and ΔRel respectively.

Remark. The same statements hold for

Q'Abs = i(d-δc) = i(d-d*), (3.5A b s)

Qk,i = Kδ-de) = i{δ-δ*) (3.5Rel)

as will become obvious from the proof.

Proof. We will prove the theorem for QAhs and ZlAbs. The proof for β R e ] and ARel is
similar or may be deduced from the duality under * 0 . We first claim that QAhs is
closed. To see this, assume there is a sequence φn in @(QAhs) such that φn and
QAhsφn are strongly convergent to vectors φ and ψ respectively. We have to show
that φe@(QAhs) and ψ = QAhsφ. Now by definition of ^(Q A b s ) QAhsψn = dφn + δcφn.
Since d is a closed operator, its kernel kerd is a closed subspace, which by (3.1) and
(3.2) is orthogonal to the image lmδc of δc. Hence kerd is also orthogonal to the
closure lmδc of Im<5c. This gives an orthogonal decomposition of J^e in the form
J*fe = kerd©Im(5c® Remainder. Now dφ^ekerd and δcφnelmδc. Since QAhsφn is
convergent by assumption, both dφn e kerd and δcφn e lmδc have to be convergent.
Call the limits ψ1 and ψ2 such that ψ1 + ψ2 = ψ. Since d and δc are closed, we have
φe@(d) and φe@(δc) with ψί=dφ and ψ2 = δcφ. This shows that Q A b s is closed.

Next we recall the definition of the Laplace operator ΛAhs. It is the sum of the
two operators δcd and dδc both of which are selfadjoint by von Neumanns theorem
(see e.g. [37]).

In particular @(AAhs)C@(QAbs) and ^(zlA b s) consists of those vectors φ in
£^(QAbs) such that dφ e @{δc) and δcφ e 2{d). Since also dφ e Θ(d) and δcφ e @{δc) we
have that ^AbsSδAbs Because z1A b s is selfadjoint and <2Abs is symmetric, we have
equality ^Abs^δAbs The theorem is therefore proved if we can show that Q A b s is
selfadjoint. This, however, is a trivial consequence of the elementary.

Lemma 3.2. Let A be a closed, symmetric operator such that A2 is selfadjoint. Then A
is selfadjoint.

Proof. It suffices to show that A has vanishing defect indices (which are equal since
A is symmetric). So assume there is ψ φ 0 such that for all

(ψ, Aφ) = i(ψ, φ).
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Then for all φe@(A2) we have

(ψ, Λ2φ) = i(ψ, Aφ)=- (ψ, φ).

Since A2 is selfadjoint, this implies ψe@(A2) and A2ψ = —ψ, contradicting the
property that A2 is nonnegative.

Next we prove the absence of point eigenvalues. We expect this result on
exterior domains to be known. However, we were unable to locate a reference.

Proposition 3.3. The operators AAhs and ARel have no point spectrum.

Proof. The proofs for AAhs and ARel are identical, so we consider only the case zlAbs.
Now assume there is an eigenvalue ε ̂  0 with eigenform φ. The case N = 1 is easy,
since zlA b s satisfies Neumann boundary conditions on the 0-forms and Dirichlet
boundary conditions on the 1-forms. In both cases it is well known, that there are
no discrete eigenvalues. Hence we may concentrate on the case N ^ 2.

Since zlA b s is elliptic, φ is a C00 form away from dΘe and each component

Ψh...ip(
χ) satisfies

Now consider a large open ball Bro = {\x\< r0} with Bro 2 &i On the complement of
Bro we introduce polar coordinates and we may view each φiίmmmip(x) there as an
element of

L2(Lr0, oo), rN~ tdήgϊIϊiS"- \ dΩ),

where dΩ is the canonical volume form on the (N — l)-sphere SN~X. In polar
coordinates we have

_£ * £ _ ί z i | . + 4. ,3.7)
_,•= l dxJ δr2 r dr rι

where A is the (positive) Laplacian of the sphere SN~x. Let {Y (̂Ω)} be a complete
orthonormal basis of eigenvectors (spherical functions) of A with eigenvalues
λn = ® Thus for fixed iγ ... ίp we have the following expansion outside Bro.

p (3.8)
n

where due to (3.6) and (3.7) each gn(r) satisfies the differential equation

) _ o . ,3.9)
dr2 r dr

We now set

r 2 gjtr) (3.10)

such that hn(r) e L2([r0, oo), dr) satisfies the Bessel differential equation

dr-^2+F ^ - ^ - i - β k O ^O. (3.11)
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Now consider first the case ε>0. Then from the explicit form of the two
fundamental solutions it follows that there is no square integrable solution hn(r).
Thus we conclude that <Pi1...ip(x) = 0 outside Bro. By the uniqueness theorem for
solutions of elliptic differential equations (see e.g. [4]) we have that φh ip(x) = 0 in
Θe, since Θe is connected by assumption.

We turn to the case ε = 0, which is more delicate. First introduce (n by

3) (3.12)

such that Eq. (4.11) for ε = 0 takes the form

d2 {It
fol • ,.2 Γ*n\ / — " (3.13)

The two fundamental solutions to this equation are r~£n and /n+1 whenever ίn > 0.
In that case hn(r) has to be of the form cnr~*n to ensure square integrability with the
additional restriction ίn > 1/2. In the other cases, that is for the situation where in is
not larger than 1/2 (such that λn and N are small), there is no square integrable
solution. Thus (3.8) takes the form

- i V - l

φti...ιPM=ιιΣ>1

c«r 2 7»(β) <3 1 4 )

with convergence in the L2-sense. We want to prove pointwise convergence. For
this purpose note that

2 == j φiι...ip(r09Ω)Yn{Ω)dΩ. (3.15)
Slf-ί P

By Schwarz' inequality this gives

Ό +
 '

 +

since φ ί t ip(r0, Ω) is a continuous and hence bounded function on the compact set
SN~X. This gives the a priori estimate for φ ί l # . # ί (x):

+ N-λ

Σ ^ (4.+DM Σ M s ) , (3.Π)

where fc>0 is arbitrary.
The second factor on the right-hand side equals the square root of (A + l)~k(Ω, Ω),
the kernel of the resolvent of A at 1 to the /c-th power evaluated on the diagonal at
Ω. But for k>N this is a continuous function on S^"1 by standard Sobolev
inequalities. Hence we have the a priori estimate

Σ O. ) (3-18)
n,ίn>i\r J
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Now the eigenvalues λn of A are of the form (L+ N — 2)L with a multiplicity given by

-3)\[_(N-2)lL\γί

(see e.g. [50, pp. 459 and 507]). Also for large λn we have £n ~ ]/ λn. Hence the right-
hand side of (3.18) is convergent for any r>r0 such that \φh Λ (x)\2 tends to zero
when r = \x\ tends to infinity. We use this result as follows. Let |φ|2(x) be the
pointwise norm of the harmonic form φ. Choose R > r0 so large that

|φ|2(x)<sup|φ|2(3/) (3.19)
yed&e

for all | x | ^ # . Next |φ|2(x) satisfies the inequality

J ^ ' (3-20)

by Leibnitz rule since AAhsφ = O by assumption. Also the function |φ|2(x) satisfies
Neumann boundary conditions on δ&e. To see this, let x0 e δΘe and introduce a
local coordinate system {x'|l ^i^N} at x0 such that xN is the outward normal
coordinate, i.e. locally δΘe = (xN)~ι({0}). With respect to this coordinate system,

any φiίmm.ip{x) satisfies either φil...ip(xo) = 0 or ~^φh ip(x0) = 0. Hence again by

Leibniz rule

-—^\φ\2(x0) = 0. (3.21)

But now we arrive at a contradiction, if we assume φ φ 0 to be a square integrable
form. Indeed, for any r^.R0, \φ\2 is a subharmonic function in the domain
D = BrnΘe and therefore attains its maximum on the boundary of D. Because of
estimate (3.19), the maximum value must be attained on δΘe and the normal
derivative has to be < 0 ([27], p. 55). But this contradicts (3.21) and the proof of
Proposition 3.3 is complete.

To abbreviate notation, in what follows let Ae stand for either ZlAbs or ZlRel.
Similarly let Qe denote either QAhs or gR e l. Also let Gt(x, y), (x, j/JeR^ x R N stand
for the kernel of exp-fZle0O on J»fe©J^ = Jfo. Following Ray and Singer [45], we
write this kernel as a double form. Thus

Gt(
χ>y) = Σ Σ Gt ιx i .jι j (x,y)dxl1 A ... AdxlpιdyJ1 A ... AdyJp,

P iι...ip

h jp

(3.22)

such that

((exp-ίJβΘO)φ)(x)= f Glx9y)Λ*Qφ{y)9 (3.23)

where the integration applies to the variable y e Θe. Here and in what follows, we
will use the convention that
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if N is an ^-dimensional submanifold and A is a form, whose component of
degree n is An. Next let GOt(x, y), (x, y) e R N x R N denote the kernel of GOt = exp-ίzl 0 ,
Δo being as before Laplace operator on IRΛ Also let Q0 = d0 + d$ be the as-
sociated supercharge such that A0 = Q2

).
Introducing 2

k(x9 y, t) = (4πtyN'2 e x p - ^ ^ - (3.24)

by (2.43) we have

GOt(x,y) = k(x,y,t)Σ-Ί Σ dxh Λ ... dx**; dyh Λ ... rf/-.
P P ϊ i i . . . i p

The construction of the kernel Gt(x, y) via a Neumann series may be taken over
from [45]. Only the situation where (x,y)eΘe x Θe is relevant and then

Gt(χ,y)= Σ (-2)mQm(χ,y,t).
m = 0

Here the Qm are defined recursively as

Q°(x,y,t) = GOt(x,y) (3.27)

and for m ̂  0 with absolute boundary conditions

Q™+\χ^t)= -)dt' J ({δ0Q
m(u,y,t-t')Λ *0G0,(x,u)

0 dΘe

+ Qm(u,y,t-t')Λ*odoGOt,(x,u)), (3.28Abs)

while for relative boundary conditions

+ <50G0ί,(x, ii) Λ * 0 Q W (M, j ; , t -1')). (3 29Rel)

Here all operations on the right are applied to the variable u and (x,y)eΘex Θe.
Let D(x) for x e Θe denote the distance from d&e. Then with the above choice for

r 0 we have

uniformly i n x e Θ e .
Also for any double form A(x9 y) we set

| |^4(^c3y)|| = s u p \^iι...ip.jι...jpi.x,y)\

The discussion in [45] gives the following:

Lemma 3.4. For a given obstacle there is a finite C>0 such that for allm^l, t>0
and all (x, y) e Θe x Θe the following estimates are valid.

d
S C\Γ{mβ))-H-nl2 exp ( - ^(D 2(x) + D2(j;))J k(x,y, t),

l .

(3.30)
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Let M(ε) be the multiplication operator on 3tf0 by expε|x|. Estimate (3.30) gives
the following result.

Corollary 3.5. For any t > 0 the operators in J^o

^ (3.31)

M 1 - 1 ((Qe)exp-tzle©0-(Qo)exp-ίzlO)MI-I (3.32)

are of trace class.
We will also need estimates on the kernels of powers (Ae + zt) ~ ̂ (Re z > 0, £ > 0)

of the resolvent of Ae. We start with the familiar relation

o

valid for any s.a. H^O, Rez>0, and £>0 in the strong topology. The next
estimates are derived from the above estimates on Gt(x, y) by splitting the integral
over t into two parts, where the first goes from 0 to 1.

Let

x))1/2 for (x,y)eΘexΘe

otherwise.

Lemma 3.6. For given obstacle and £ > 0 there is C(£) < oo such that

(3.35)

Corollary 3.7. For any 2£>N+\ the operator on 34?O

(Ae + t)~*®0-(Ao + ty* (3.36)

is trace class.

Although we actually will not need it, for completeness we also state the

Corollary 3.8. The operators AAhs and ARel have no singular continuous spectrum.

Proof. We follow the lines of arguments given in [24, 22, and 44]. It is sufficient to
prove that for ψ in a dense set of 34fe, the strong limit

s-\imeίtAoe-itAeψ (3.38)
f-*±OO

exists. Note that J^e is a subspace of Jt0. A sufficient condition is that

(3.39)

is compact and that the function h(R) given as

1 1 Λ ) | | (3.40)
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is integrable on R + , where F(\x\>R) is the characteristic function of the set
{|x| >R}. These two properties, however, are elementary consequences of estimate
(3.35).

We now have all the ingredients to discuss the resulting scattering theory. Note
first that estimates (3.31) and (3.32) are not quite conditions (2.21). This is due to the
fact that Qe is an operator on J"feCJ^0

 o n l y To remedy this, let Q = Qe®0 with
respect to the decomposition 3t?0 = jfβ ©«#;., such that by (3.32) Qe'*®2- Q0e~tQ2> is
of trace class. Then by Lemma 2.5 the MΘller operators W±(Q, Qo) exist. Since Q
and Qe are identical on their absolutely continuous subspace, which is J"fe, the

complete (two-space) Moller operators W±(Qe,Qo,J) = s-limeitQeJe~itQo exist as
r-> ± oo

maps from Jf0 to J^e, where J is the projection of jf0 onto J^e. By the invariance
principle therefore also the Moller operators W±(Ae,A0,J) exist, defining a
supersymmetric scattering theory. Now the arguments employed in [33] and [46]
combined with Proposition 3.3 and Corollaries 3.5 and 3.7 give

Theorem 3.9. The scattering shifts

δp(E,Ae,A0) (Ae = AAhsovARel)

for the scattering of p-forms exist, are real analytic and for any ί > N/2 + 1

δp(E;Ae9A0)(E+ί)^eLί(R.+

9dE). (3.41)

It remains to calculate the corresponding supersymmetric scattering index. Let
χ(X) denote the (absolute) Euler characteristic of a compact manifold X and
χ(X, A) the (relative) Euler characteristic of the pair X D A, where A is a compact
submanifold (see e.g. [47, p. 205]).

Theorem 3.10. The supersymmetric scattering indices for scattering on an obstacle
&i are given as

n(AAbs,A0)=-χ(&bdΘi), (3.42A b s)

n(ARebA0)=-χ(Θi). (3.42Rel)

Proof Fix R so that Θ{ Q BR/2. Let M be a closed, compact Riemannian manifold so
that B3R is isometrically imbedded in M and put Y= M\&t. Let Gj(x, y) be the heat
kernel for the Laplacian acting on Ω(Y) with absolute or relative boundary
conditions on dY=dGt. Following [7] on p. 54-55 we let ρ(a,b)(a,foeR,a<b)
denote any increasing real valued C00 function of the real variable u such that ρ = 0
for u^a and = 1 for u^b. Then define four C00 functions by Φ0 = ρ(R/2,R\
Ψo = ρ(R, 3/2R), Φγ = 1 - ρ(3/2R, 2R\ Ψί = 1 - Ψo. As a parametrix for the funda-
mental solution for the heat equation for the operator Ae we may choose

Ht(x, y) = Ψ0(d(x, xo))GOt(x, y)Φ0(d(y, x0)) + ^ ( φ c , xo))Gj(x, y)Φ1(d(y9 x0)).
(3.43)

Here x0 is the center of the ball B3R and d is the geodesic distance in IRΛ Starting
with the parametrix Ht we obtain the fundamental solution Gt for the heat
equation of Ae by the same construction as in [7, p. 55]. The fundamental solution
Gt differs from the parametrix Ht by an exponentially small term as i-»0. Since we
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know that the supersymmetric scattering index is an integer, we may compute the
supertrace by passing to the limit ί->0. Therefore we can replace the fundamental
solution Gt by the parametrix Ht, and we get

n(Ae, A 0) = \im f (trace i/ ί +(x, x) — traceHt_(x,x))dx, (3.44)

where Ht+ and Ht_ denote the restrictions of Ht to even and odd forms respec-
tively and trace is the pointwise trace. Now observe that trace Go > ί +(x, x)
= trace GOί_(x,x). Thus we are left with

n(Ae, Ao) = lim f (trace Gf+(x9 x) - trace Gf_(x, x))¥Ί(φ;, xo))dx. (3.45)
ί->0 Y

The kernel Gj is constructed in [45]. It can be written as

* y9t)9 (3.46)

where G is the restriction of the corresponding heat kernel on M to Y and Q is the
boundary correction term. Let 0ί{x) be the Chern-Gauss-Bonnet density on M. By
the local index theorem [6] we know that uniformly in x,

trace G+(x, x, t) - trace G _ (x, x, t) = St(x) + 0(ί). (3.47)

Now 0ί vanishes on B3RcM by construction. Hence the expression on the right-
hand side of (3.45) is equal to

lim J (trace β + (x, x, ή- trace Q_(x, x, ί ) ) ^ i ( Φ ? ^ o ) ) ^ (3.48)
f->0 y

In view of formula (5.13) in [45] the asymptotic behaviour of Q(x,x, t) as ί->0
depends only on x in an arbitrarily small neighborhood of the boundary dY.
Therefore we can delete the function Ψx in (3.48). Using the local index theorem in
[6] we see that (3.48) equals

J (3 .49 A b s )
Y

for absolute boundary conditions and

(3.49Rel)

for relative boundary conditions. Since St(x) = 0 on B3R we can replace the integral
over Y by the integral over M. Employing the Chern-Gauss-Bonnet theorem for M
we obtain for (3.49Abs) and (3.49Rel) the expressions

χ(Y)-χ(M) (3.50A b s)

and

χ(Y,δY)-χ(M) (3.50Rel)

respectively. Now observe that M = Y\j&{. Therefore we may employ the formula
(see e.g. [47, p. 205])

. (3.51)
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Thus (3.49) finally equals

(3.52Abs)

and

-Jrttfi) (3-52R e l)

respectively, concluding the proof of Theorem 3.10.
Using the Alexander duality (see e.g. [47, p. 298]) in the form χ(Oi9dG^

= (—\)Nχ((9i\ we can give Theorem 3.10 an alternative formulation

Corollary 3.11. The supersymmetric scattering indexes for scattering theory by an
obstacle (9i are given as

\ 1 / 2 χ m N ° d d ί3 53 )
(3.53A b s)

-i/2x(d&i) N odd ,

- m Neven. < 1 5 3 ™>

There is yet another form in which we can state Theorem 3.10.
Let A i be the Laplace operator on Gt with absolute or relative boundary

conditions. Then again by the Hodge-de-Rham theorem for Θt [45], we have

Corollary 3.12. The following supertrace relation holds

p (3.54)

where the plus sign holds for absolute boundary conditions and the minus sign for
relative boundary conditions.

4. Manifolds Euclidean at Infinity

As another example of a supersymmetric scattering theory, in this section we will
discuss the Gauss-Bonnet operator on manifolds which are euclidean at infinity.
The extension to the asymptotically euclidean manifolds will be obtained in the
next section by stability arguments.

Definition 4.1. A Riemannian manifold (MN,g) is euclidean at infinity if there is a
compact submanifold Mf such that MN\Mf is a finite union of disjoint connected
open sets Oj(j=l ... k\ each of which is diffeomorphic under a map ψj to some
CBR . On each Oj the metric is the pullback by ψj of the euclidean metric on CBR..

Obviously manifolds which are euclidean at infinity are complete. In order not
to burden our notation, we will assume that fc=l, i.e. MN\M? has only one
connected component which is isometrically isomorphic to some CBRo. Hence-
forth we will simply identify this set with CBRo. All our proofs, however, are
easily extendable to general k. Therefore all results are formulated as to pertain to
arbitrary k. By increasing # 0 and hence Mf slightly, if necessary, we may assume
MN to be flat in a neighborhood of CBRo. Let A=(d + δ)2 be the selfadjoint Laplace
operator acting in the Hubert space J ^ of square integrable forms on (MN, g).
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Standard arguments show that d and δ defined on ΩC(MN) are closable operators
with closure also denoted by d and δ such that d2 = δ2 = 0 and <3){d + δ) = Q){d)
n3f(δ). As a first result we have

Theorem 4.2. // (MN, g) is a Riemannίan manifold without boundary which is
euclidean at infinity, A has no point spectrum except possibly at the origin.

Indeed, our proof of the absence of positive eigenvalues in the case of obstacles
may directly be carried over to our present situation.

To compare A with Ao, the Laplace operator on the euclidean space RN,
we introduce the Hubert space

#=Mr®jp<Ro, (4.1)

where we recall that 3#><R° is the Hubert space of square integrable forms on
BRQCΈJ*. Alternatively we may write

# = ̂ o θ ^ , (4.2)

where J^o is the Hubert space of square integrable forms on 1R.N and J ^ is the
Hubert space of square integrable forms on Mf. In Jf7 and for all ί > 0 introduce
the operators G^exp-ίzlΘO with respect to the decomposition (4.1) and let

0. Similarly let

l o θ 0 and G'Oί = ((do + <So)exp-ίzlo)Θ0

with respect to the decomposition (4.2). Let M(ε) be the multiplication operator
expε|x| on J^o and let M(ε) be the operator on # given as M(ε)0O with respect to
the decomposition (4.2). The next result again guarantees the existence of a
supersymmetric scattering theory.

Theorem 4.3. The operators

A ? ( ^ ) ( G ( - G 0 ( ) M ( i ) (4.3)

and

M ( ^ ) ( G ; - G ' O ( ) M ( 1 ) (4.4)

are of trace class for all t > 0.

Proof The proof uses the same techniques already employed in the preceding
section. Namely we introduce both on MN and on R N absolute (say) boundary
conditions on dBRo. Thus we obtain operators AAhs in Jf7 and ^0,Abs i n ^ o Now

i 0 (4.5)

with respect to the decomposition

(4.6)

where J f >Ro is the Hubert space of square integrable forms on CBRo. Similarly we
have

^ t ^ t (4.7)
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with respect to the decomposition

j^o=je<Ro@je>Ro. (4.8)

Now let M'(ε) be the multiplication operator on Jίf given by expε|x| -F(\x\>R0).
Here F( |x |>R 0 ) is the characteristic function on MN of the set CBRo. Let
dAhs = di + d>Ro, where dι is the closure in JfJ of the exterior derivative on Ω(Mf)
and d>Ro is the closure in J^ >Ro of the exterior derivative on Ωc(CBRo), such that
^Abs = (̂ Abs + ̂ Abs)2 ^o,AbS is defined in a similar fashion such that AOtAhs = (dOtAhs

+ d*,Abs)2 By (4.5) and (4.7) it is sufficient to show that

S\ (exp-ίΛ -exp-ί AAJM' (~), (4.9)

(4.10)
\<U/ \Oi/

and

(4.11)

1\ /I .
— ({d0 + <50)exp-ίzlo-(do,Abs + ̂ o,Abs)exp-ί^o,Abs)^ ^ (4.12)
UJ \

are of trace class for all t > 0. These properties, however, may again be derived from
the Ray-Singer contruction as in Corollary 3.5.

Corollary 4.4. The operator A on 3tf has no singular continuous spectrum.

This result is again obtained by an easy adaptation of the arguments used in the
proof of Corollary 3.8.

Let now Ap be the restriction of A to p-forms. Then by Theorem 4.2 and by
our by now standard arguments the spectral shift functions ξp(E;A,A0)
: = ξ(E; AP,AP

O) exist with the properties given by

Corollary 4.5. The spectral shift functions ξp(E; A,A0) are real analytic inE>0 and
satisfy

foranyί>Nβ+\.

The last statement on the integrability is a consequence of explicit estimates on
the kernels (4.9)-(4.12) which may be obtained analogously to the corresponding
discussion in Sect. 3.

Again we identify the scattering phase shift functions δp(E;A,A0) with
-πξp(E;A, Ao) such that for all ί > 0 and £ > 0 ,

Ίτace(-l)p(Gt-GOt)= f (-l)p-δp(E,A,A0) = n(A,A0)eZ. (4.13)
p = 0 71

It remains to calculate n(A,A0). Now unlike in the preceding section, 0 will in
general be in the point spectrum of A and by Theorem 2.12 it is of interest to
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calculate the contribution to (4.13) arising from the corresponding eigenforms, the
so-called harmonic L2-forms. More precisely, let Hf2) be the closed subspace of ffl
consisting of p-forms on (MN,g) which are in the kernel of the selfadjoint
supercharge operator d + δ. Then each element oϊHf2) is in particular in the kernel
of A. Conversely, if φe J f is in the kernel of A, then 0 = (Aφ,φ) = \\(d + δ)φ\\2 and

N

hence φ e 0 Hf2).
p = 0

Let 0l(x) be the Chern-Gauss-Bonnet form on (MN, g).

Theorem 4.6. // (MN, g) is a Rίemannίan manifold without boundary, which is
euclidean at infinity then the super symmetric scattering index is given as

n(A,A0) = f Mix). (4.14)

Furthermore, the space of harmonic L2-forms is finite dimensional and

n(A,A0)= Σ (-ίγdimHfa. (4.15)
p = 0

In terms of the notation employed in Theorem 2.12, this result just says that
nc(A,A0) vanishes. In other words, the index n(A,A0) has only contributions from
the harmonic L2-forms.

Denote the right-hand side of (4.15) by χ(2)(M), the L2-Euler characteristic.
Then our result is the noncompact version of the Chern-Gauss-Bonnet theorem
saying that the L2-Euler characteristic is the integral over the Chern-Gauss-
Bonnet form.

Proof of the First Part of Theorem 4.6. First we construct an approximate
fundamental solution Ht to the heat equation for the Laplacian A. Ht can be
obtained from the heat kernel GOt on IR^ and the heat kernel Kt for the Laplacian
acting on the space of differential forms on a closed Riemannian manifold X
containing Mf as an isometrically embedded submanifold.

Using again the construction of [7, p. 55] we glue GOt to Kt in a neighborhood
oϊdMf. Then Gt — Ht is exponentially small. Hence in view of (4.13) we can replace
Gt by Ht. Employing the fact that

trace ( - 1 )pGOt(x, x) = 0, (4.16)

we obtain

n(A,A0) = \im f trace(—l)pJϊ f(x,x)dx.
ί->0 MN

Now observe that by the local index theorem [6] one has
trace(— l)pKt(x, x) = 0t(x) + 0(ί) uniformly in x e X. Combined with (4.16) this gives
the first part of Theorem 4.6.

To prove the second part of Theorem 4.6, we need some preparations. First we
note that once the finite dimensionality of the space of harmonic L2-forms is
established, it suffices to consider the case when N is even. In fact, if N is odd, then
by (4.14) n(A, Ao) is zero. But now if φ is an even harmonic L2-form, then *φ Φθ is
an odd harmonic L2-form, so the right-hand side of (4.15) is also zero.
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Now observe that the right-hand side of (4.15) is just the L2-index of the Gauss-
Bonnet operator, namely let DGB: Ώ+(M)->Ώ_(M) be the restriction of d + δ to the
space of even forms. Then the right-hand side of (4.15) is equal to dim KerDG βn jtf
— dim KerD^nJf . For the proof of relation (4.15) we shall transform this
L2-index problem into a nonlocal boundary value problem on Mf in the sense of
Atiyah, Patodi, and Singer and then apply Theorem 3.10 in [7]. We start by noting
that MN can be written as Mfu(dBRo x [jR0, oo)). In other words, MN is obtained
from Mf by attaching an infinite cylinder along the boundary. To study d + δ on
the cylinder, i.e. as an operator on jtf > R° C J^9 it is convenient to write d + δ in polar
coordinates as done for example in [14]. For the convenience of the reader and to
establish notation, we present a quick derivation. Let φ be a smooth form with
compact support in CWRo. Then we may write

φ = φ1+dr Λ φ2, (4.17)

where we view ψj (j = 1,2) as smooth maps from [# 0 , oo) into the space Ω(SN~ί).
Let 3 and 3 denote the exterior derivative and the coderivative on SN~1. Then
obviously

^ (4.18)

An easy argument shows that the norm of φ in MP>R° is given by

2 oo

Ilφll2= Σ ί Wr-'ψjWfry-'dr, (4.19)
.7=1 Ro

where || || is the canonical Hubert space norm for forms on SN~ K It is therefore
appropriate to introduce the quantities

Ψj(r) = r 2 φfi ). (4.20)

Now for any R0 — ε^R<R' the map φ i—• (ιpl9ψ2) defines an isomorphism

I(R, R'): ΩC(CBR\CBR.)-+C?HR9 R'l Ω(SN

In particular for I = I(R0, oo) and I{φ) = {ψuψ2)
 w e have

Moreover one has

= Σ l\\V>j\\2~(r)dr. (4.21)
7 = 1 Ro

(4.22)

Iδl x is then simply the adjoint matrix. Thus we obtain the following matrix
representation for d + δ acting on forms on dBRo x [JR0, oo)cMN,

(4.23)
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with

/0 - 1
σ = U o

and

Since we are interested in the situation where d + δ acts on even forms, \pγ above is
even and ψ2 is odd. Note also that in this representation σ defines on isomorphism
from the even to the odd forms in Jf >Ro with inverse ( — σ). This leads us to the
following consideration. Let jft denote the Hubert space of square integrable
forms on SN~ί. Decompose ψeJ^fa.sψί —ψ2, where ψ^ is even and ψ2 is odd. With
respect to this two-component presentation (ty?i,ty?2) for ψ, A corresponds to a
selfadjoint operator A on Sf given as

(4.26)

where

(4.27)

With these preparations we may now formulate the nonlocal boundary value
problem appropriate for the situation at hand. Let P be the spectral projection of A
corresponding to eigenvalues < 0 and let Mε C Mf be the ε-tubular neighborhood
of dMf. Given φ in Ω+(Mf) let ψί and ψ2 be the forms associated to φ restricted to
Mε via I(R0-ε,R0). Let Ω+(Mf ;P)cΩ+(M?) be the set of forms satisfying the
following boundary condition

= 0. (4.28+)

Then

D: Ω+(Mf, P)-+Ω4M?) (4.29)

is defined to be d + δ restricted to Ω+(M?,P).
D*, the formal adjoint of D, is now an operator

D* :Ω4M?, 1 -P)-+Ω+(M?), (4.30)

where Ω_(M?,1-P) is defined similar to Ω+(M?,P): If the odd form φ
corresponds to (ψ1,ψ2)

 y i a ^ o ~ ε

? ^ o ) then φeΩ_(Mf, 1 — P) iff

= 0. (4.28_)

Note that near the boundary dMf = dBR, D* takes the form

σ ) ( 4 3 i )

in the two-component representation (ψι,ψ2) of ψ.
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We now have the following

Proposition 4.7. For N^
(i) KerD is linearly ίsomorphίc to the space of even harmonic L2-forms on MN,

(ii) KerD* is linearly isomorphίc to the space of odd harmonic L2-forms on MN.

Before we give a proof of this proposition we turn to a

Proof of the Second Part of Theorem 4.6. Proposition 4.7 states in particular that
the spaces Hf2) are all finite dimensional, hence by a remark made above, it suffices
to consider the case when N is even. But again by Proposition 4.7,

N

IndexD = dim KerD -dim KerD*- £ (-l)Mimiίf2), (4.32)
p = 0

thus it suffices to calculate the index of D. Now IndexD may be written as a sum of
three contributions (see e.g. [30] or [7, Theorem 3.10]). The first term is the
integrated Chern-Gauss-Bonnet form of Mf. The second term is the ^-invariant of
A and the third term is an integral over dBRo involving the second fundamental
form on dBRo. We claim that the sum of the last two terms vanishes. Indeed, let D o

and D*. be the operators obtained by replacing Mf by BRo in the definition of D and
D*. Then by the corresponding result (4.32) for D o , IndexDo = 0, since JRN has
no harmonic L2-forms. But now the Chern-Gauss-Bonnet form vanishes,
leaving us with the last two terms which are the same terms as for D. Hence the
left-hand side of (4.32) is indeed equal to the integrated Chern-Gauss-Bonnet
form. In view of the already established relation (4.14), this proves Eq. (4.15)
concluding the proof of Theorem 4.6.

It remains to give a

Proof of Proposition 4.7. Let φ eΩ + (Mf, P) satisfy Dφ = 0. For the corresponding
Ψι—ψ2

 w e have an expansion near dMf of the form

(Vi-V 2 )W= Σ fμ(r)Φμ, (4.33+ )
μ>0

where φμ are normalized eigenforms of A. Since the fμ(r) satisfy the equation

(|;^)»=o, (4-34)

they are of the form

W = Cμr-». (4.35)

Hence for φ to be extendable to an even harmonic L2-form on MN it suffices that
the positive eigenvalues of A all be >\. Conversely, an even harmonic L2-form φ
on MN has an expansion of the form (4.33+) on dBRo x [.Ro, oo) because terms
involving fμ(r) with μ ^ 0 cannot be square integrable. Hence its restriction to Mf
lies in KerD. Similarly let φ be an element of KerD*. Then for the corresponding
(ψι,ψ2)

 w e have

= Σ f-μ(r) φμ (4.33_)
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near dBRo. Hence for φ to be extendable to an odd harmonic L2-form on MN it
suffices that all nonpositive eigenvalues of A be < —1/2. Conversely the restriction
of an odd harmonic L2-form on MN to Mf is an element of KerD*. Proposition 4.7
for N ̂  3 is now a consequence of

Lemma 4.8. For NTϊ.3 there are no eigenvalues of A in the closed interval
[-1/2,+1/2].

Proof of Lemma 4.8. By the discussion in [14], the possible eigenvalues of A are of
the form

where the λPJ{j ^ 0) are the different eigenvalues of the Laplace operator A on
Ωp(SN~ι) with nontrivial coclosed eigenforms. Also the multiplicities of the
eigenvalues of A are computable in terms of the multiplicities of the λpj. Now all the
eigenvalues of A on ΩP(SN~r) are of the form [43],

-2) for p = 0 or N-ίJ^O;
(4.37)

-ί) o r (j + p)(j-P + N - 2 ) f o r ί ^ ^ N l J ^ l

Inserting this into (4.36) immediately shows that A has no eigenvalues in
[-1/2,1/2] whenever N>4.

For N = 4, (4.36) and (4.37) show that μ = ± l / 2 are the only possible
eigenvalues in [—1/2,1/2]. An explicit calculation excludes these cases.

For N = 3, again by (4.36) and (4.37) the only possible eigenvalues in
[ — 1/2,+1/2] is zero. Again an explicit calculation excludes this possibility,
completing the proof of Lemma 4.8.

Returning to the proof of Proposition 4.7, it remains to discuss the case N = 2.
Let z be the complex coordinate z = x + iy for (x,y)eΊR.2.

Lemma 4.9. For N = 2, A has μ = ± 1/2 as the only eigenvalues in [ -1/2, +1/2]. A
basis for the eigenforms with eigenvalue μ=—1/2 are the two forms 1+idθ
(0 = angle variable on S1). For the eigenvalue μ= 1/2 a basis is given by the form
eιθ + deιθ and its complex conjugate. On CBRo_ε for μ= —1/2 these eigenforms give

rise to the harmonic 1-forms — and — while for μ= +1/2 they lead to the even

harmonic form z~x(l — \j2dz A dz) and its complex conjugate.

The proof is an easy exercise in linear algebra. As follows from our previous
discussion, these harmonic forms on CBRo are not in L2, in fact their L2-norm is
logarithmically divergent.

Now as for the case N^3, the space of even and the space of odd harmonic
forms on M2 is linearly isomorphic to a subspace of KerD and KerD* respectively.
Conversely let φeKer/λ Then near dBRo, φ leads to an expansion of the form
(4.33+). Since μ = 0 is not an eigenvalue, we may extend φ to CBRo to a harmonic
form, which tends to zero at infinity. Hence the zero-form component φ° of φ is a
harmonic function on M2, which tends to zero at infinity. But this is only possible if
φ° = 0 [19]. Analogously the 2-form component φ2 = φ — φ° vanishes. Next let φ
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be an element of KerD*. We claim that φ may be extended to a harmonic
L2-form on M2. Indeed since (d + δ)φ = 0 in the interior of Mf dφ = δφ = 0. But
then by Stokes theorem

ί Ψ= ί *Ψ = 0 (4.38)

for all small δ > 0 and this continues to hold in the limit δ ->0. But this means that in
the expansion (4.33_) the eigenvalue μ=—1/2 does not give a contribution.
Therefore φ is extendable to a harmonic L2 form on M concluding the proof of
Proposition 4.7.

As a consequence of Theorem 4.6 and the preceding discussion we have the
following additional result for N = 2. Let g be the genus of the /c-point
compactification M2 of M2 such that χ(M2) = 2 — 2g.

Corollary 4.10. For N = 2

2 2. (4.39)

Remark 4.ίί. (i) We remark that our method is not restricted to the Gauss-Bonnet
operator. For example it applies equally well to the Dirac operator coupled to a
vector potential, (ii) Relation (4.15) states that only the second term on the right-
hand side of (2.34) is nonvanishing, that is to say we have nc(H, Ho) = npoιnt(H0) = 0
for the case at hand. Our proof of this result was based on the work of Atiyah,
Patodi, and Singer, but it can also be obtained by investigating the threshold
behaviour of the phase shift. In view of the correspondence of the L2-index problem
and the nonlocal boundary value problem (which is also true for the Dirac
operator coupled to a vector potential), we may recover in this way the results of
Atiyah, Patodi, and Singer.

5. The Chern-Gauss-Bonnet Formula for Asymptotically Euclidean Manifolds

In this section we shall extend the Chern-Gauss-Bonnet formula, which we
obtained for manifolds euclidean at infinity as a consequence of Theorem 4.6, to
asymptotically euclidean manifolds. We define them as follows.

Definition 5.1. A Riemannian manifold (MN, g) is called asymptotically euclidean if
there is a compact submanifold Mf such that MN\Mf is a finite union of disjoint,
connected open sets Oj (j = 1,..., k) each of which is diffeomorphic under a map ψj
to some CBRy On each CBR. the pull forward g7- = {φj)^ g of the metric satisfies

(5.1a)

~δ-W (5.1b)

for all x e CBR., some C > 0, some 0 < δ < 1 and all 0 < lαl < 2.
In condition (5.1b) the requirement 0 ̂  |α| ̂  2 may be replaced by the seemingly

weaker condition 1 ̂ | α | ^ 2 . In fact, by condition (5.1b) for |α| = l and by (5.1a)
there exists a positive definite matrix g/oo) such that \gj,μv{x) — gj,μv(oo)\
Sconst(1 + \x\)~δ. Now replace φj by A} ° φp where Aj is a linear isomorphism of
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R N such that ^g/oo)^- = 1. Modifying Mf, Op and R} if necessary, the conditions
of Definition 5.1 will be satisfied. N

Such manifolds are obviously complete. Let H,2) = 0 Hf2) be the linear space
p = O

of harmonic L2-forms on (MN,g) and let 0l(x) denote the Chern-Gauss-Bonnet
form on (MN, g). Due to the assumptions (5.1) this form is integrable on (MN, g). The
main result of this section is the following theorem, which for N 7> 4 was first
obtained by Stern [48] under somewhat stronger assumptions (for another
alternative proof, see also [15]).

Theorem 5.2. Let (MN, g) be a Rίemannian manifold without boundary which is
asymptotically euclίdean. Then all Hp

2) are finite dimensional and

Σ (-l)pdimHf2)= j <X(χ). (5.2)
p = 0 MN

Proof Let 0 ^ χ ( x ) ^ l be a C00 function on R N with support in | x | ^ 2 such that

χ(x) = 1 on |x| ^ 1. For R ̂ max Rj let MN

>R = [j φj \CBR). Now define gR to be the
j j

smooth metric on MN given as g on the complement of M > Λ and by the pull-back
via ψj to Oj of

],μ K (j) ^»-^v} (5.3)

for
jj R j

Then the Riemannian manifold (MN,gR) is euclidean at infinity. Let 0lR(x)
denote the resulting Chern-Gauss-Bonnet form. Obviously we have

MN

^ const R~δ. (5.4)

N

Let H{2) R = 0 Hf2) R be the space of harmonic L2-forms on {MN, gR). Then by
p = 0

Theorem (4.6) we have

Σ (-l)pdimHf2hR= j ΛR{x) (5.5)
p = 0 M^

for all msLxRj^R< oo. Hence Theorem 5.2 will be proved, once we have shown

that the left-hand side of (5.5) is independent of R ̂  m a x ^ and equals the left-hand
side of (5.2). To prove this, we shall employ L2-deRham cohomology. To
abbreviate notation, let g ^ ^ g and denote by J^R ΛnaxKy^K^ co\ the Hubert

V J J
space of square integrable forms on (MN, gR) with scalar product (, ) R . Let dR and δR

denote the closures in 3fR of the exterior derivative and coderivative on ΩC{MN).
Let

R = Range c/fl = closure in JtR of dΩc(MN),

% = Range δR = closure in J^R of δRΩc(MN)

= closure in j«TR of *RdΩc(MN).
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Here * R is the Hodge star operator on (MN, gR). Since (MN, gR) is complete, the
space of L2-harmonic forms H{2) R coincides with the space of all forms φ in J4?R

satisfying dφ = 0 and δRφ = 0 in the sense of distributions. Hence by a well known
theorem of Kodaira [38], one has the following orthogonal direct sum
decomposition

JtrR = ER®Et®Hi2)tR. (5.6)

_ N _
Now let J>f/ be the closed subspace of p-forms in J^R. Define H{2) R = 0 Hf2) R

p = 0

with

Hf2)tR = keτdRnJrf/ERnJίr£ (5.7)

to be the reduced L2-de Rham cohomology group. Employing (5.6) we obtain

f o r a ^ p ^ , ^
j

Now the crucial observation is that the norms on ΩC(MN) given by the scalar
products (, )R are all equivalent. In particular the Banach spaces Q)(άR) with the
norm

) ί / 2

II ψ\\dR = ((<P> Ψ)R + (dRφ, dRφ)R)

are naturally isomorphic as topological vector spaces. Hence the spaces R\2),R a r e

all isomorphic and coincide with Hf2) = Hf2)oo. This concludes the proof of
Theorem 5.2.

Remark 5.3. Note that we actually proved a stronger result than given by
Theorem 5.2. In fact the conclusion of Theorem 5.2 holds for any metric where the
condition (5.1b) is replaced by the requirements that (i) ${x) is integrable and (ii)
the left-hand side of (5.4) tends to zero as R-±co.

So far we have not yet discussed the scattering theory with spaces which are
asymptotically euclidean. However, based on the known results for scattering in
the space of 0-forms (like absence of a singular continuous spectrum, absence of
discrete eigenvalues above threshold and unitarity of the Moller operators, see
[21]), we expect all results valid in the context of spaces which are euclidean at
infinity to carry over to this more general situation.
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