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Abstract. This paper is the second part of our attempt of an extension of the
Pirogov-Sinai theory of phase transitions at low temperatures, applicable to the
lattice spin systems with finite range interactions, to the systems with infinite
range interactions. Employing the cluster expansion method developed in Part I
and modifying the notion of the truncated contour model introduced by
Zahradnik, we extend the Pirogov-Sinai result on the structure of phase
diagrams to our situations. As an application, we apply our result to Potts
models with infinite range interactions.

1. Introduction: Main Result

We continue our attempt to extend the Pirogov-Sinai (PS) theory of phase
transitions to classical (discrete and bounded) lattice spin system with infinite range
interactions. In Part I [3], we have developed a cluster expansion method, and
shown that under appropriate assumptions on the interactions the cluster expansion
converges for each stable ground state. Thus for each stable ground state we can
construct via the cluster expansion method an infinite volume limit pure Gibbs state
[3]. In this paper we use the cluster expansion method and some modifications of
Zahradnik's version of the PS theory [6] to investigate the structure of the phase
diagram for a given system. In order to show how our result can be applied, we study
the phase diagrams of Potts models with infinite range interactions.

The PS theory applies to general bounded and discrete lattice spin systems of the
following types: The particles (spins) interact with arbitrary finite range periodic
potentials. The Hamiltonian of the system, //0, has n ground states which satisfy the
Peierls condition [4,5]. Consider the structure of the phase diagram of the
Hamiltonian

in the n — 1 dimensional parameter space. The Ht are perturbations which lift the
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degeneracy of H0 and produce, in A-space, the following topological structure of the
ground states of Hλ: There are n lines starting from the origin on which Hλ has n—ί
periodic ground states, two dimensional surfaces bounded by these lines on which
there are n — 2 ground states, etc. The main result of the PS theory is that for
sufficiently low temperatures the phase diagram perfectly mimics the above
structure [4, 5].

We wish to extend the PS result to the systems with infinite range interactions.
The PS theory is based on a contour model and a contour model with parameters.
For infinite range interactions, we are unable to relate the models to any type of
interacting contour models with parameters. On the other hand, the notion of the
truncated contour model introduced by Zahradnik [6] can be extended to the
systems, and the cluster expansion method for the truncated model can be developed
as in Part I. Thus we combine the cluster expansion method and suitable
modifications of Zahradnik's approach of the PS theory [6] to extend the PS result
to our case. Following the main idea of Zahradnik [6] together with the method
used in this paper, it can be possible to extend the result on the completeness of the
phase diagram to our situation, but we do not check this. As we said in Part I, we
believe that our result can also be extended to continuous lattice spin systems [2]
and to Widom-Rowlinson models [1].

Let us briefly describe our result. Throughout this paper we will adapt the
notations and the definitions used in Part I [3]. Let Zv, v ̂  2, be the v-dimensional
lattice space and let Ω be the finite set of spin values. For any A c Zv, denote by ΩΛ

the set of all configurations on A. For any ωeΩ1 , denote by ωΛ the restriction of ω
on A. We write the constant configuration ω(x) = q, xeZv, as ωq, and the constant
configuration on A as coΛ>q. As in /, we use the norm \\x\\ = max |x f | , xeZ v. For a

l^i^v
fixed real number s ̂  1, let some family {ΦA} of finite range interactions be given,
invariant with respect to shifts in Zv and with the finite interaction radius s(ΦA = 0 if
diam(A)> s). For any x, yeZv, let Jx-y: Ω x ί2->IR be a symmetric function. For a
finite A c Zv and a configuration coe/2z , the Hamiltonian is given by

Jx-y(ω(x\ω(y)). (1.1)

A decay property on the two-body potential Jx_y has been imposed in Assumption
2.3.2 of Part I.

For a given (fixed) subset Q c/2 and s^ 1, the g-contours Γq, qeQ, and the
external ^-contour systems d = {/"?,. . . , Γl] have been defined in Sect. 2.1 of the
Part I. For any ^-contour Γ = (M, ωM), let

φ(D= Σ
/

+ Σ l{X'J>}

?

ΠM|{J,-y(ω(x).ω(y))-J3c-y(g>g)}. (1.2)
{x,y}nM^φ ^

\\x-y\\ £s

We now restate the basic assumptions in Assumption 2.3.1 and Assumption 2.3.2 in
Part I:
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Assumption 1.1. [Peierls condition] For any ^-contour Γ = (M, ωM\ geβ, there
exists a sufficiently large τ > 0 such that Φ(Γ] ~^τ\Γ\ holds.

Assumption 1.2. [Regularity condition] The two-body potential satisfies

-y\\)9 (1.3)

where δ is a metric on Zv such that

sup X e~δ(x'y)^M<ao (1.4)
x yeZv

for some constant M>0, and J:IR->[R+ is a non-negative function satisfying

τ/48 (1.5)

for the positive real number s introduced in the definition of contours.

Remarks, (a) Since we have absorbed β = 1/Tinto the Hamiltonian, the parameter
τ is proportional to β.

(b) ΐf we are only interested in the maximum number of pure states, a weaker
condition (δ(x, y) -> oo as || x — y \\ -> oc) than condition (1.4) on the metric δ will be
sufficient. See the remark below Assumption 2.3.2 of Part I.

(c) In applications, one may first choose the parameter s( ̂  1) such that (1.5) and
the Peierls condition are satisfied, and then choose β sufficiently large so that τ
becomes large (See Sect. 5).

We now state the main theorem in this paper. For a given Hamiltonian H of the
form (1.1) and for any qeQ, we write the specific energy by

*«(#) = Σ A] ΦA(°>AΛ) + i Σ J*(q, & (1-6)
OεA\A\ χe/v

Then we have the following result:

Theorem 1.3. Let H0 be some translational invariant Hamiltonian of the form (1.1} and
let Hl9...9Hn-ί be another Hamiltonian of the same type. Consider the family

where fyt is some neighborhood of zero in (R" 1. Suppose that there is a fixed family
{ωq:qeQ}, Q^Ω, |Q| = n, of constant configurations such that the following
conditions are satisfied.

(i) All eq(HQ\ geg, are the same.
(ii) Let ql9...,qnbe some ordering ofQ. Then the vectors et = ( e q i ( H t ) , . . . , eqn(Hi))

are independent and their linear span L does not contain the vector (1,!,...,!)
(degeneracy removing assumption).

(iii) The Peierls condition in Assumption 1.1 is satisfied for all geQ and all Hλ,

Furthermore assume that the regularity condition in Assumption 1.2 is satisfied for all
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Then there is a neighborhood of zero Y c (Rn)° = {h°:hQ - (/£,..., /ι°n), min
1 <; i ̂  n

hq. = Q} and a homeomorphism λξty -+h°(λ)ei^ with the following property: Every
QteQ such that h°(λ)qι = 0 is stable. Thus for every λetyt ana qeQ(λ) =
{qeQ(λ) = {qeQ\h°(λ)q = 0}, one can construct a pure Gibbs state pq

λ on Ωr by the
cluster expansion method.
The above is the extension of the PS theory to infinite range interactions. This paper
is devoted to the proof of the above theorem.

Let us describe briefly the general strategy of the proof and also outline the
contents of the rest of this paper. Recall from Part I that an external ^-contour Γ is
stable if

e~ ψw = {Zq(Γ)/Zq(lntn} ^ e^\ (1.7)

A given ground state qeQ is said to be stable if every ^-contour is stable
(Definition 2.3.3 of I). We have shown for every stable qeQ that the infinite volume
limit contour correlation functions exist and satisfy the cluster property
(Theorem 2.3.4 of Part I). Using the result together with a simple argument one may
construct a pure Gibbs state on Ω1 for every stable qeQ. Thus the problem reduces
to a study of the structure of stable ground states for λetfl. Using the Peierls
condition we will relate the stability condition (1.7) to the bounds on Zq(B)/Zq.(B\ B
c=Zv, q, qΈQ (Proposition 4.2). In Sect. 2, we introduce truncated partition
functions and truncated contour correlation functions which are modifications of
Zahradnik's notion [6]. We then use the cluster expansion method developed in
Part I to establish a continuity property of free energy of the truncated model
(Proposition 3.2). In Sect. 4 we use Zahradnik's method [6] and the cluster
expansion method to obtain upper and lower bounds on the partition function
Zq(B\ B c Zv and geg (Theorem 4.1). Then the proof of Theorem 1.3 will follow
from the method used in Zahradnik [6].

In order to give a general idea how our result can be applied to a specific model,
we investigate the phase diagram for Potts models with infinite range interactions in
Sect. 5. Appendix is devoted to a proof of Proposition 4.2.

2. Truncated Partition Functions and Truncated Contour Correlation Functions

In this section we introduce a truncated model which is a modification of
Zahradnik's notion [6], and then we establish basic properties of the model. Recall
notations and definitions from Part I: For any finite A c Zv and a fixed qεQ, let
Ήq(Λ) and $q(Λ) be the set of finite g-contours and the family of external g-contour
systems respectively. For a Γe^q(Λ\ denote by Ω(Γ) the set of all configurations
o}V(n on V(Γ) = Supp Γ u Int Γ, which satisfying the condition that being extended
by q to whole Zv, they have Γ as its external ^-contour. Then the partition function
and contour correlation functions have been defined by

Zβ(Λ)= Σ ίdωd-"™, (2.1)
δe^(ΛJ d

and

- * (2.2)
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where for any d = {Γί9...,Γn}e<gq(Λ), \dω= Σ ••• Σ > anc* the contour
d ωeβ(Γι) ωeί2(Γn)

Hamiltonian H(d\ ω) is of the form:

H(d;oή=γΦl(Γ;ω}+ £ Φ2(Γ;ω). (2.3)
Fed Γ,Γ'ec

For the details, see Chapter 2 of Parti. For a Γe^q(A\ the crystal partition
function has been given by

Zq(Γ} = $dωe-φι(Γ>ω\ (2.4)
r

We define the refined contour correlation functions by

PΛ,ί,(d;ω) = -1— Σ Jdω'e-^^"' (2.5)
ΛqVl) d'e£q(Λ\V(d))d'

for any deδ(Λ) and ωe/2(δ) - |J Ω(Γ\ It then follows from (2.2) and (2.5) that
Γed

d;ω). (2.6)
8

Let us discuss the refined contour correlation functions in more detail. Let (d; ω) be
given where dε$ and ωeί2(δ). Then (δ; ω) corresponds to a (not necessarily external)
contour system d' = {Γl9. . . , Γn} such that δ(c δ') is the set of all external contours
in d'. Thus the refined contour correlation functions in this paper correspond to the
original contour correlation functions in the PS theory.

From now on we fix a ground state qεQ and delete q from the notation if there is
no confusion involved. For any δ, d'εS with d u <7E<f , let A(df, (d; ω)) be defined as in
(3.2. 11) of Parti [3]. Since

P A® = Σ ί d°>A(B'> (^ ω))# Λ(B u 3') (2.7)
δ'e^(/l\F(δ))5

by (3.2.14), it is easy to show that for any dε$(Λ) and ωeί3(δ),

P Λ(3; ω) - Σ Λ(d', (3; ω))^ Λ(d u 5'). (2.8)
δ'e<f(Λ\F(δ))

We then have the following results:

Proposition 2.1. Lei f/ie conditions in Assumption 1.1 and Assumption 1.2 be satisfied
and let qeQ be stable. Then for sufficiently large τ the infinite volume limit

pq(d;ω)= lim^pΛtq(d;ω)

exists for any de$q and ωeΩ(d). Furthermore the bound

holds uniformly in A for each

Proof. Employing the method used in the proof of Proposition 4.2.5(b) in Part I,
one may show that the bound

Σ I A(ff, (<3; ω)) I eτ|(W|/8 ̂  const. eτmK(d'9 ω)
oeg(V\V(c}}
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holds uniformly in Λ. Thus as in the proof of Theorem 4. 1.1 (a) of Part I, one can
prove that (2.8) is summable absolutely and uniformly in Λ. The proposition follows
as a consequence of (2.8) and Theorem 4.1.4 (and Lemma 4.2.3) of Part I.

Let us give a comment on the construction of pure Gibbs states for stable ground
states. As mentioned before, the refined correlation functions p(d; ω) correspond to
the contour correlation functions in the PS theory. Thus, the construction of pure
states can be done by using Proposition 2.1, Theorem 4. 1.1 -Theorem 4.1.2 of
Part I, and the argument used in [5].

We now introduce a truncated model for infinite range interactions by modifying
Zahradnik's notion in [6], and then obtain basic properties of the model. As in [6]
we define the level of any contour Γ as follows: Define the level of any (not necessary
external) contour Γ as a maximal number n such that there is some sequence of
contours Γ^ = Γ, Γ2,...,Γn such that supp Γi+ 1 a Int (rt). Define the level of Λ
c Zv as a maximal level of any contour 7" such that V(Γ) c Λ. For given Γ^ and
Λ c /v, denote by ^(Γ) and /(/I) the levels of Γ and Λ respectively.

For any external q-contour Γ, let Ψ(Γ) be the contour functional defined as in
(1.6):

(2.9)

We define a truncated contour functional Ψ l ( Γ ) as

Ψ\Γ} = max ( Ψ(Γ\ τ \ Γ |/3). (2. 1 0)

Thus an external g-contour is stable is Ψ\Γ) = Ψ(Γ\ For any ΓεΉ, ωeΩ(Γ) and
for any real number u ̂  1, denote

Φ\(Γ,u;ω) = Φl(Γ;ω) + uΨt(Γ)- Ψ(Γ\ (2.11)

and for any de^ and ωeΩ(d\ denote

ίr(0,«;ω)=ΣΦ'(Γ,w;ω) + £ Φ2(Γ,Γ;ω). (2.12)
Γeo Γ,Γ'eδ

Notice that from (2.4), (2.9) and (2.11) it follows that

J dω^φίl(Γ'u;ω)/Z(Int Γ) = e~uψt^ (2.13)

for any ΓεΉ.
We now define truncated partition functions and truncated contour correlation

functions inductively. Let A have zero level (no contour can be in Λ). In this case the
truncated partition function Zl

q(Λ,u) is defined to be one:

Zt(Λ,u) = Z(Λ)=l if

Let Λ have n-level (£(Λ) = n). Then truncated partition function is defined by

Z\(Λ,u)= Σ fdωe-^ ^ΠίZ^ntΓ.uVZ^IntΓ)}, (2.14)
de£q(Λ) d Γeδ

where the term corresponding to d — φ equals to 1. Notice that, if /(Λ) = n, then
/(Int Γ) ^ n — 1 for any Γe^q(Λ). We define the truncated contour correlation
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functions by

for any de$q(Λ) and w ^ 1. Since H(d; ω) ^ ίf(δ, M; ω) for any u ̂  1, it follows from
(2.1) and (2. 14) that

Z*q(Λ9u)^Zq(Λ). (2.16)

For any Γe^q(Λ) we also define the truncated crystal partition function by

Z< (Γ, u) = μωe-φι(Γ<u;ω)[Z< (Int Γ, ι<)/Zβ(Int Γ)]. (2.1 7)

For a notational simplification we write

Zt

q(Λ) = Zt

q(Λ,u=l),

Zt

q(Γ)ΞEZt

q(Γ,u=\\ (2.18)

PtΛ,q(S)^Pt

Λ,q(d,u=l).

It is easy to check that, if there are no infinite range interactions, i.e., Φ2(Γ,Γ'-,
ω) = 0, then the above definitions reduce to those in Zahradnik [6].

We next derive a cluster expansion for the truncated model. For d, d'eSq, let

KL(S,S';ω) = Ki(3;α>) Π 0(3, Γ ω), (2.19)
Γeo'

where gf(δ, 7"; ω) has been given in (3.1.9) of I. Let K^d^. . . , dn\ ω) and Kt

u(dl,. . . , d n )
be defined by replacing X(δ ω) by K^(3;ω) (and K(d,d'\ώ) by K^d' ω)) in the
definitions of K(d±,. ..,dn; ω) and K(dl9. . . , δj in (3.2.7) of Part I [3] respectively.
Denote also that

Zt(Λ\V(d),u)Y[Zt(IntΓ,u)

-- (2.20)

Then, using the method employed in Sect. 3.2 and Sect. 3.3 of Part I we obtain a
cluster expansion for the truncated model:

. X Σ' K<u(δ,δl,...,d,,)g'Λ,u(du( ( J δ , ) ) ,
"=l{dl,...,Sa] \ \ί=l

where the operator KJ, is defined by replacing K(d; ω) by K^d; ω) (and K(d, d'; ω) by
Xi(δ,δ';ω)) in the definition of K in Sect. 3.3 of Part I.

The following are the results analogous to those in Theorem 4.1.1-
Theorem 4.1.4 in Part I, and Proposition 2.2.

Theorem 2.2. Let the conditions in Assumption 1.2 be satisfied. Then for sufficiently
large τ the following results hold for any qεQ and u^l:
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(a) The cluster expansion in (2.21) is summable absolutely, uniformly in A.
Furthermore the bound

rί ίr\ ιι\ < />-uτ\d\/6

holds for any dε$q, uniformly in A.
(b) The infinite volume limit

p\d, u) = lim p*A(d, u)
Λ^Z V

exists for each dε$q. Furthermore the bound

holds for any dε$q and A c Zv.
(c) The cluster property for ρ\d,u} holds.

Theorem 2.3. Under the assumptions as in Theorem 2.3, the following results hold for
any qeQ and u ̂  1:

(a) The infinite volume limit

exists for each de$q and satisfies the integral equation gl

u = 1 + KJ,^ on the Banach
space &ξ, ξ = euτ/8.

(b) The bound

holds for any A <= Zv and

Proofs of Theorem 2.2 and Theorem 2.3. Using (2.19), (2.12), the bound (4.2.1) of
Part I and (2.13) (in that order) we obtain

^d ω) ̂ Γeδ Γ

UΪFί(Γ) + τ lΓ l/ 4 8)^ e χp(~ l l w τ l δ l/ 4 8) (2 22)
Γec

for any M ̂  1, The above is the bound analogous to that in (4.2.13) of Part I. Thus
replacing K(d; ω) in Sect. 4.2-4.4 of Part I by K^d; ώ) and using (2.22) in the places
where (4.2.13) of I has been used, we prove Theorem 2.2 and Theorem 2.3 by
methods the same as those in the proofs of Theorem 4. 1.1 -Proposition 4.1.4 of
Part I. We leave the details to the reader.

3. Free Energy and Surface Tension for the Truncated Model

We establish various properties of the free energy (the pressure) and the surface
tension for the truncated model such as the existence and continuity property of the
free energy. For any finite A c Zv and geβ, the finite volume free energy for the
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truncated model is defined by

SΛ,q = I^Γ 1 l°gZg(Λ), (3-1)

where Zl

q(Λ) is the truncated partition function Z*Λ(Λ,u = 1). We then have the
following result:

Proposition 3.1. Let the regularity condition in Assumption 1.2 be satisfied. For
sufficiently large τ and for each geβ, the limit

sq = lim sΛfq

exists in the sense of van-Hove, and sq-+Q as τ-» oo. Furthermore there is a constant
c = c(τ) such that c->0 as τ-> oo and for each finite A c Zv the bound

\\QgZ?q(Λ)-sq\Λ\\^c(τ)\\>ά(Λ)\

holds.
We postpone the proof of the above result to later. We will use the following norm of
the Hamiltonians of the type (1.1):

We then have the following result:

Proposition 3.2. Let {Hλ = H0 + λH:λe<%(0) c R, || H\\ = 1} be a family of Hamil-
tonians of the type (LI} satisfying the Peierls condition and the regularity condition.
Denote sq(λ) the free energy of the truncated model corresponding to the Hamiltonian
Hλ, u — 1 and a qeQ. Then one-side derivative (d/dλ)(±)sq(λ) exists and satisfies the
bound

d£±)s*λ\
where ε(τ)—»0 as τ -> oo.
In the rest of this section we will prove Proposition 3.1 and Proposition 3.2.

In order to show the above results we need a technical lemma.

Lemma 3.3. Under the assumptions as in Proposition 3.1, the bound

'Zl(IntΓ,tt) Uτ V(Γ)\— Z^IntΓ.u)
N du

holds for each qeQ and

Proof. We will show the bound by using an induction argument on the level of
Int Γ. By the definition of Ψ*(Γ) in (2.10) and (2.9) it is easy to show that the bound

I W) I ^ max {21| Jf | | F(Γ)|, (τ/3)| V(Γ)\} ^ cτ\V(Γ)\ (3.3)

holds for some constant c independent of τ and Γ. Recall that τ is proportional to β.
Since Z\(Λ, u) = 1 if /(/I) = 0, the bound in the lemma holds for /(Int Γ) = 0, and
sufficiently large τ.
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Notice that by the definition of Z'(Int Γ,u) in (2.14),

d

du
Z'(IntΓ,u)=

<3e<f(IntΓ)Γ ed d

d

z'(lntΓ",u)/Z(lntΓ")

\u\ (3.4)

Here we have summed over d — Γ' to get the second equality. Thus we get the bound

d ,

du'

— Zf(Int Γ', M) W Zr(Int Γ', M)

(3.5)

We use (3.3), the bound in Theorem 2.2(a), i.e.,

t ipi M\ < g-τ|Γ'|/6

uniformly in u ̂  1, and the fact that by Lemma 4.2.1 of I

d £ τ|F(ΓO| 2e~ τ | Γ / l / 6^|IntΓ|
Γ'e^(IntΓ)

for sufficiently large τ to obtain from (3.5) that

(3.6)

—
du

Γ'e^(IntΓ)

—
du

Z^lntΓ'.u) (3.7)

Let /(IntΓ)-π, then *f(Int Γ') ̂  n - 1 for any Γ'e^(IntΓ). Now the lemma
follows from (3.7) and the induction on the level oίΓ'. Also one may show the lemma
by the following argument: Iterating (3.7) rc-times and using (3.6) it is easy to show
that (3.7) is bounded by n|Int Γ| ^ | V(Γ}\2. This completes the proof of the lemma.

•
We are now ready to prove Proposition 3.1.

Proof of Proposition 3.L For a notational simplification, write that

, u) = - Ψ'(Γ) + Z< (Int Γ, u) Z< (Int Γ, u) (3.8)
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Then from (3.1), (2.18) and (3.4) it follows that

*q(Λ9uΓί = -\Λ\]du £ Q'q(Γ 9u) p'A(Γ 9u).
1 ΓeV(Λ)

(3.9)

Thus it is not hard to recognize that

(3.10)
r

OeSuppΓ

By Theorem 2.2(a) and Lemma 3.3, s g — »0 as τ — » oo.
In order to show the bound in the proposition, define

s'A^-\A\^]du £ β'(Γ,M)p'(Γ,4 (3.11)
1 ΓeV(Λ)

Then

(3.12)

Using (3.9), (3.11), (3.8), Lemma 3.3, Theorem 2.2(b) and Assumption 1.1 we obtain

\Q'q(r,u)\\p'Λ(Γ,u)-p'(Γ,u)\

τ κ(r)|VτinV*r ΛC)

(3.13)
xeΛ

where g^^-^ O as τ->oo. Here we have used Lemma 4.2.1 of I to get the third
inequality.

For any £cZ v, let [5] - {Γe^:dist(Γ,£) g 1}. Then from (3.10), (3.11),
Lemma 3.3 and Theorem 2.2(a) it follows that

Γe[bd(Λ)] 1

^ Σ 6τ2 |7(Γ)|2^τ ( Γ ) / 6^ε2(τ)|bd(/i)|, (3.14)
Γe[bd(Λ)]

where ε2(τ)—>0 as ^—>°o- The bound in the proposition follows from (3.13) and
(3.14).

We next prove Proposition 3.2.

Proof of Proposition 3.2. Denote the contour Hamiltonian corresponding to the
Hamiltonian Hλ = H0 + λH by

fed Γ,Γ'ec
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Φια(Γ; ω) = Φi(Γ; ω) + λΦ^Γ, ω),

Φ2 s A(F, Γ'; ω) = Φ2(Γ, Γ'; ω) + λΦ2(Γ, Γ'; ω), (3.15)

where Φ1 and Φ2 are the one body and two body contour interactions correspond-
ing to H. Let Zqtλ(Λ\ Zqtλ(Γ) and Ψλ(Γ) be the partition function, the crystal
partition function and the contour functional corresponding to Hλ respectively. We
also denote the corresponding truncated contour functional, partition function and
correlation functions by Ψ\(Γ\ Zl

qtλ(λ) and p^^^S) respectively. Then the refined
truncated contour correlation functions for Hλ are defined by

P*Λ q λ(βl co) — — A J d-coe λ U G '
^q,λ(Λ) d'eS(Λ\V(d)) d'

• Πv[^.Λ(IntΓ)/Z ί>A(IntΓ)], (3.16)

and then it follows that

qλ(d,ω). (3.17)

As a consequence of Proposition 2.1, the infinite volume limit pl

q^(d\ ω) of p^)ijA(5; ω)
exists for each deS(1v] and ωeΩ(d).

Next, we denote

sΛ.,(λ) = |ΛΓ 1logZ^(Λ). (3.18)

For typological convenience we simply write the one-side derivative (d/dλ( + ))f(λ)
by (d/dλ)f(λ) in the following proof. A direct calculation yields

(3.19)

Using (2.14), (3.16) and (3.19) it can be shown that

Γ ω^ΛΓ ω), (3.20)
Γe^(Λ) Γ

where

(3.21)

and

Φί

1.A(Γ;ω) = Φ1>λ(Γ;ω)+ Ψ\(Γ)- Ψλ(Γ). (3.22)
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Since the cluster expansion converges absolutely, and uniformly in Λ, it is easy to
show that by (3.20),

ί dωΦ2(Γ,Γ ω)p'q,λ(ΓuΓ ω)
Γ: M l Γ'e6 (3r\V(Γ)}

OeSuppΓ

+ Σ
OeSuppΓ

(3.23)

Using the definition of Zqtλ(Λ) and Lemma 4.2.1 of Part I, one may check that

d

MZq'λ Z,,λ(IntΓ)

ΦΊ(Γ;ω)| g (3.24)

— logZ,,A(IntΓ)

for some universal constant c1? c2 and c3. Using the facts that

d

~dλ

and (3.22), and the third inequality in (3.24), it can be shown that

d

Tλ
(3.25)

for some constant c uniformly in ωeΩ(Γ}. Thus, by (3.20), (3.21), (3.24) and (3.25) we
get the bound

d .

We now use the induction procedure on the level of A similar to that used in the
proof of Lemma 3.3 to conclude that

d_ t

Tλ *•'
and so by (3.25), (3.26) and (3.24),

IntΓI 2, (3.26)

(3.27)

Now the bound in the proposition follows from (3.23), (3.24), (3.27) and Lemma 4.2.1
of Part I together with the fact that pqtλ(d) ^ exp (- τ | d |/6). This completes the proof
of the proposition.
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4. Bounds on Partition Functions and Proof of the Main Theorem

In this section we establish upper and lower bounds on the partition function and
also obtain a sufficient condition on ground states ωq, qeQ, to be stable. Then the
proof of the main theorem will be followed from the bounds, the Lipschitz continuity
for s^Proposition 3.2) and the method used in Zahradnik [6].

Let eq be the specific energy defined in (1.6) and let sq be the free energy for the
truncated model. Write that for any qeQ,

hq = eq-sq, h0 = mm{hq}, aq = hq-hQ, a = mm{aq:aq^Q}. (4.1)

The following is the result analogous to Theorem 1.7 of Zahradnik [6].

Theorem 4.1. Nonstable contours satisfy the inequality

4. (4.2)

Thus, if aq = 0, then qeQ is stable. That is, all contours Γe($q are stable and Ψ\Γ}
= Ψ(Γ) for all Γe<ίq. Furthermore there is a universal constant c(τ) such that for each

finite A c Zv the following estimates hold:

)> exp [- hq\Λ \ - c|bd(/l)|], (4.3)

) g e x p [ - Λ 0 | Λ | + c|bd(/l)|]. (4.4)

The constant c = c(τ) can be chosen such that c(τ)-»0 as τ-> oo.

We postpone the proof of the above result to the end of this section.
We use Theorem 4.1 and Proposition 3.2 to prove Theorem 1.3.

Proof of Theorem 1 .3. We remark that contrary to our case, the factor exp ( — eq \ A \ )
was included in Zahradnik's definition of the partition function [6]. Using the
Lipschitz continuity of the free energy (Proposition 3.2), Theorem 4.1 and the
method same as that used in Sect. 1 . 10 of [6] one can construct the homeomorphism
in Theorem 1.3. The stability of q with h°(λ)q — 0, where h°(λ)q = aq(λ), follows from
the bound in (4.2). Thus for each qeQ(λ) the infinite volume limit of the refined
contour correlation function pq(d\ώ) exists for any de$q and ωeΩ(d). Using the
correlation functions one can construct a Gibbs measure pq on Ωr (e.g. see [5] ). As a
consequence of the cluster property it follows that the Gibbs state pq is pure.

In order to show Theorem 4.1, we need the following result:

Proposition 4.2. Let the conditions in Assumption 1.1 and Assumption 1.2 be satisfied.

For a given external q-contour Γ = (M, ωM), let Int Γ = (J Int^ Γ. Then the bound
q'eQ

{Zq(Γ)/Zq(lntΓ)} £ { Π [Zβ,(InVΓ)/Zg(InVΓ)]}

^ <z'eδ

holds for any Γe^q.

Since the proof of the proposition is somewhat lengthy, we will produce the proof in
the appendix.
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In the rest of this section we prove Theorem 4.1 by employing Zahradnik's idea
in Sect. 1.8 of [6] together with our previous results.

Proof of Theorem 4.1. As in [6], we will proceed by induction over the levels of A
and Γ.

(a) Proof of (4.3). Because Zq(Λ)^Z?q(A) by (2.16) and

Zt

q(A)^Qxp(sq\A\-c\bά(A)\)

by Proposition 4.2, we get the desired relation in (4.3).
(b) Proof of (4. 2). We use the induction argument for (4.4). Both (4.2) and (4.4)

are trivial if both Γ and A have zero levels. Nonstability of Γ means, by (1.7),

Zq(Γ)/Zq(lnt Γ) ^ exp ( - τ I Γ |/3). (4.5)

Since /(Int Γ) < £(Γ\ we use the induction assumption for (4.4) to obtain

From Proposition 4.2, (4.3) and the above bound it follows that

Zq(Γ)/Zβ(Int Γ) ^ exp ( - τ I Γ |/3) exp ( - h0 \ Int Γ | + hq \ Int Γ | + 2c \ bd (Int Γ) | ).
(4.6)

Combining the inequalities in (4.5) and (4.6) we get

0^ -(τ|Γ|/3) + βJIntΓ|-f 2c|bd(IntΓ)|.

This proves (4.3) for sufficiently large τ.
(c) Proof of (4.4). Notice that, if all ^-contours are stable, then Zq(Λ) = Zq(Λ)9

and so (4.4) follows from Proposition 3.1. Thus we need some method of handling
the unstable contours.

We use the method of Zahradnik [6]. We say that a contour Γq is small if it is
stable and there is no unstable contour Γq such that supp Γq c Int Γq. Say that Γq is
large if it is not small.

Given any configuration ω(x) = q for all xe(/ls)
c, one may write the external

boundary of ω by ext (dω) = dvd^ where d£ = [Γfλ , . . . , Γ^n} is the collection of all
external large contours of ω and any Γ ed is a small external ^-contour of ω. Denote
L$q(Λ) (respectively S^q(Λ)) the family of external ^-contour systems consisting of
large (small g-contours). Then we get the relation

Zq(Λ)= Σ Σ ί dcoe-M<°\ (4.7)
) d'eSS(Λ\V(c)) rur '

Note that by the definition of small contours, any Γe^(Int d'\ d'ESS'(A), is small
contour. Write

Zq(Λ)= Σ ldωe-H(*'°\ (4.8)

and let sq be the free energy corresponding to Zq(Λ). Since Zq(Ini Γ) = Zq(Int Γ) for
any small Γ, Zq(A) is equivalent to the truncated partition function Zq(Λ) with a
contour functional

Ψ(Γ) = Ψ(Γ) if Γ is small,

Ψ(Γ) = oo if Γ is large.
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Obviously, sq ̂  sq. Using Proposition 3.1 (and a suitable modification of the method
used in the proof of Proposition 3.1) we get the bound

exp(-eq\Λ\)Zq(Λ)^exp(-hq\Λ\+c\bd(Λ)\), (4.9)

where hq = eq — sq. By the induction assumption for (4.4) it follows that for any Fed,
\ the bound

exp ( - <v I In V Γ I )Zq(lntq, Γ) ^ exp ( - h0 \ In V Γ + c \ bd (In V Γ) | ) (4.10)

holds.
Next, writing H(dud';ω) = H(d;ω) + H(d';ω) + Φ2(d,d'\ω) and H(d;ω) =

X Φi(Γ;ω)+ £ Φ2(Γ,Γ';ω), and using Proposition 4.2.2(a) of I, it follows
Γeδ Γ,r'e<7

from (4.7) that

ceL£(Λ) £ Γeo

(4.11)

Using (A.34) in the appendix into (4.11) we obtain the bound

oeLS(A) Fed Q'^Q

exp(-Φ(Γ) + τ|Γ|/8)}. (4.12)

Denote aq = hq — h0, and use (4.9), (4.10), and (4.12) to obtain the bound

X exp(-α,|/l\K(δ)|)

Γec

The above is the bound the same as that of (1.39) in [6] except for the factor
exp (τ |F |/8) which can be controlled by exp(— Φ(Γ)) and the Peierls condition.
Note that άq ̂  aq and aq ̂  a if there is a unstable contour Γq. Thus using the method
by Zahradnik (page 567 of [6]) we proved the bound (4.4) completely.

5. An Application. Potts Model with Infinite Range Interactions

In order to give an example of how our results can be applied, let us consider Potts
models with infinite range interactions. Let Ω= (1,2, . . . , r}. The unperturbed
Hamiltonian H0 is given by

HO = - β X K(x - y)δ(ω(x), cφ)), (5.1)
(*,y)

where δ(p, q)=l if p = q and δ(p, q) = 0 if p φ q. Here we have used the symbol δ
instead oίδ to avoid confusion with the metric δ in Assumption 1.1. We impose the
following condition on K(x — y).

Assumption 5.1. [Regularity condition] The function K:ZV-»[R is symmetric with
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respect to x -> — x and satisfies the bound

2\K(x-y)\^c\\x~y\\~(λ + ε)

for some constants λ>2v+l, ε>v and c> 0.
For the Hamiltonian (5.1) it is easy to check that any q, qeΩ, is a ground state,

and so we choose Q = Ω. The specific energy is given by

e (H ) = — \B y K(x) (5.2)

for any qeQ. In order to split the degeneracy of the ground states we introduce the
external fields

(5.3)

It is easy to see that the perturbation

r — 1
Ϊ-Γ ί-Γ _]_ V1 2 J-f i*\ Λ\

1Ί 2. — ̂ 0 ' / j ^i**i W V
ί=ί

splits the degeneracy of the ground states.
We recall the definition of Φ(Γ) in (1.2). For the Hamiltonian Hλ in (5.4) the

contour functional Φ(Γ] is given by

Φ(Γ)=Φ0(Γ)+Φλ(Γ), (5.5)

where for any g-contour Γ = (M,ωM),

Φ0(Γ)=-β Σ i\{x,y}nM\{K(x-y)δ(ω(xlω(y))-K(x-y)},

Φ*(Π = βΣ ΣλAδ(ω(xl<l')-δ(q,q')}. (5.6)
q' = 1 xeM

Notice that δ(ω(x), ω(y)) = 1 if xeM, yeMc and || x — y || g s. Thus Φ0(Γ) can be
written as

Φ0(Γ)= Y<— — V [K(x — y)δ(ω(x),ω(y)) — K(x — y)] >. (5.7)
xTM [ ^ '

In order to satisfy the Peierls condition one needs to impose additional restrictions
on the function K(x — y).

Let us first consider the case for ferromagnetic interactions, i.e., K(x — y) ̂  0 for
any x, yeZv. For any xe/v, let

/ v \ l / 2

'*ι=U
and let

We then have the following result:
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Theorem 5.2. Let K(x — y) satisfy the bound in Assumption 5.1. Assume that
K(x — y) ^ 0 for all x, yeZ v and K0 > 0. Then one can choose the parameter s such
that the results in Theorem 1.3 hold for sufficiently large β.

Proof. By the definition of contours one may check that for any contour
Γ = (M,ωM) there are at least (2s -h 1)~V |Γ | number of distinct neighboring pairs
<x,y> in support Γ such that ω(x) φ ω(y). Thus by (5.7)

(2s+lΓvβKo\Γ\. (5.10)

On the other hand it follows from (5.6) that for \λ\ = £ \λqι\,
z = l

(5.11)

Thus from (5.10) and (5.11) we get that

Φ(Γ)^((2s+lΓvK0-\λ\)β\Γ\. (5.12)

Let μ |^X 0 /2(2s+l) v andlet

τ = K0β/2(2s+l)\ (5.13)

Then the Peierls condition holds for sufficiently large β. In order to show the
regularity condition in Assumption 1.2, we choose

δ(x,y) = elog(ί+ \ \ x - y \ \ ) , J ( \ \ x - y \ \ ) = βc\\x-y\\ ~λ. (5.14)

Then the conditions in (1.3) and (1.4) hold. By Assumption 5.1 we also obtain

2 £ £ J(2s + r+\\y\\)^2cβΣ Σ (2s + r+ WIΓ*
r = Qyelv r = Qye!v

^ const. βs"(v + 1/2\ (5.15)

Thus we first choose s so large that (1.5) in Assumption 1.2 holds and then choose β
sufficiently large. Then the Peierls condition holds. Thus Theorem 5.2 follows from
Theorem 1.3.

We next consider more general interactions. We write that

Ki^Σ Σ (2 + r+ | |x | |Γ A -f Σ \Z(\\*\\)\> (5 16)
r = 0 x 6 / v | | x | l = l.

|χ |^ι

where c is the constant in Assumption 5.1.

Theorem 5.3. Let K(x — y) satisfy the bound in Assumption 5.1. Assume that K0 > 0
and K1 ^ K0/196(3)v. Then the results in Theorem 1.3 hold for sufficiently large β.

Proof. Choose s = 1. Then by (5.7) it is easy to show that

Φ0(Γ)^(3~*K0-

so by (5.11) we have
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Thus the Peierls condition is satisfied for sufficiently small \λ\(^ KQ/2(3 v)). Notice
that

By choosing τ = (K03~vβ)β, we see that the regularity condition also holds.

Remark. The conditions in Theorem 5.2 and Theorem 5.3 are obviously not
optimal. We only tried to give general ideas how one can apply our results to specific
models.

Appendix: Proof of Proposition 4.2

We produce the proof of Proposition 4.2 in this appendix. We first describe general
ideas of the proof. For any ^-contour Γ = (M,ωM) let Φ±(Γ\ω) be the one-body
contour interaction defined in (2.2.6) of Part I:

Φ1(Γ;ω)= £ [Φχ(ωJ-ΦΛωx.,)]
A c V(Γ}

+ £ Ux-y(o>q(x', V(Γ}\ ωq(y V(Γ)) - Jx-y(q,q)]9 (A.I)
{x,y}nV(Γ)ϊφ

where for any B c Zv and ωeΩB,

W ΐ "In' (A'2)

II X (£ JL)

We will decompose Φ^Γ ω) by

Φi(Γ ω)^ Φ(Γ)+ X (eβ, — eβ)|Int^Γ|+ ^ H(Int?, Γ ω) + Remainder,

(A.3)

where for any configuration ω on Int?^ with d = Qxt(dω)e£q,(Intq>Γ\
Γ; ω) = H(d; ω). We will show that

I Remainder I ̂ τ|Γ|/6. (A.4)

Then from (2.4), (A.3) and (A.4) we obtain

exp{-Φ(Γ)- X (eq,-eq)\Intq.Γ\}. (A.5)
«'eβ

Next, for any δe^(IntΓ), let (9- [J δ^, ^,e^(Int^Γ). Writing
4'eQ

ω)+ Σ Φ2(^5^;ω), (A.6)
q'eQ q',q"eQ

q' + q"

and using Proposition 4.2.2(a) of Part I to obtain

X \Φ2(dq,,dq»;ω)\^ Στ|bd(InVΓ)/48^τ|Γ|/48, (A.7)
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we conclude that

Zg(IntΓ)^{ Π Zg(InVΓ)}exp(-τ|Γ|/48). (A.8)
q'eQ

Thus the proposition will follow from (A. 5), (A.8) and the Peierls condition
(Assumption 1.1).

In the rest of the appendix we establish (A.3) and (A.4), and so complete the
proof of the proposition. Using the expression (A.I) and the fact that
®A(°*A) — ®A(ωA,q} = Q if ^ n V(Γ)C Φ φ, we can write that for any
^-contour 7" = (M, ωM),

Φi(Γ; ω) = Φ(Γ) + Φ2(Int Γ; ω) + Φ3(Γ; ω), (A.9)

where Φ(Γ) be the contour functional defined in (1.2), and

Φ2(Int Γ; ω) = £

(A.10)

Φ3(Γ;ω)= Σ Ux-y(ω9(x;V(Γ)),ωq(y,V(Γ)))-Jx.y(q,q)l
{x,y}πV(Γ)^φ

\l\ — y\\>s

(A. 11)

For typological simplification of notation, we use the following abbreviated
notations: For any ^-contour Γ = (M, ωM) denote

Σ' = Σ . Σ" = Σ (A'12)

Then from (A.9) it follows that

Φ2(Int Γ; ω) - Φ2(Int Γ; ω) -f £2(Int Γ), (A. 13)
where

Φ2(Int Γ; ω) = Σ Σ —,—r~ [^vi(ω^) ~~ Φ^O^u')]

(A. 14)

Σ Σ'
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We next consider Φ3(Γ;ω) given in (A.Π). We decompose Φ^(Γ ω) by

Φ3(Γ; ω) - Φ*(Int Γ; ω) + Φ^(F; ω), (A. 16)

where

Σ Σ" IΛ-,K(
4'eβ{χ,j;}n/ g,7έφ

- Σ ΣK^-,(ω(x),ω(y))-y(9,9)], (A.Π)

Φi(Γ;ω)= Σ [Λ-yKίJc ^Πλω^nnW-Λ-^,?)]. (A. 18)

[x,y}r\lntΓ
ί 'x- v | : > s

Combining (A.9), (A. 13) and (A. 16) we arrive at

Φt(Γ; ω) - Φ(Γ) + Φ2(Int Γ; ω) + E2(Int Γ) + Φi(Int Γ; ω) + Φ^(Γ; ω).

(A. 19)

Finally we decompose Φ^Int Γ; ω) in the following way: By (A.Π) it can be written

4

φ£(IntΓ;ω) = Σ ΦUlntΓ ω), (A.20)
i= 1

where

Φ3 > 1 (IntJ Γ ;ω)= Σ Σ" lJχ-y(ωq'(X>Iq')>ωq'(yΊlq'))~- Λ:-?(<?'> <?')]>
*eβ {x,y}nV^ (^2ι)

Φ£,2(Int Γ; ω) - Σ Σ" {^-yK(^ F(Γ)λ ̂ (̂  ̂ (Γ))

- Jx.y(ωq,(x; Iq,\ ωq\y; 7,0)}, (A.22)

Recall Iq, = Intq/ 7". For any ωeΩlq' with 5 = ext(5ω)e^(7βO denote

:β'Γ;ω) - 77(ω; ]ωIcι Λ -77(ω/ ,| co jC( .) - Tί(δ ω). (A.25)

Notice that for any ωeβ(Γ), Φ^(ω^) - Φ^(ωΛ>g/) = 0 if diam (A) ̂  5 and Ar\I\.Φ φ.
Thus from (A. 14), (A. 19) and (A.25) it follows that

Φ 2(IntΓ;ω)+Φ£ f l(IntΓ;ω)= Σ H(lr\tq>Γ ω). (A.26)
4'eβ

Consider Φj> 3(IntΓ;ω) in (A.23). We write

Φ^3(Int Γ; ω) - E\(lnt Γ) + £|(Int Γ), (A.27)
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where

ES(IntΓ)=Σ Σ" {X'y}r"Ml{Jx.y(q',q')-J^y(q,q)} (A.28)
q'eQ[x,y}πl<l,?tφ *•

E|(IntΓ)=Σ Σ K W4W)-Λc-,feί)} (A.29)

||λ-> t i >.s

Using the definition of the specific energy eq in (1.6) one can check that for any finite
AciT

e.M= Σ ~T<^H Σ ^^J,-M (A.30)
1^1 {\,y}πΛϊφ ^

Thus from (A. 15), (A.28) and (A.30) it follows that

E2(IntΓ) + £i(IntΓ) = Σ (eq -eq)\Intq,Γ\.
q'e<2

Using the regularity condition (Assumption 1.2) one obtains

^ X τ | bd(/,0 1/48 ^τ|Γ |/48. (A.32)
g'eQ

Again, we use the regularity condition, the method similar to that used above, and
the fact that

Jx.y(ωq(χ 9V(Γ))9ωq(y 9V(Γ)))- Jx-y(ωq,(x; Iq,),ωq,(y, Iq,))) = 0 if {x,y}c:Iq,

to obtain the following bounds:

;ω)\^ Σ τ|bd(/,.)|/48^τ|Γ|/48,
ί'eβ

;ω)|^τ|Γ|/48. (A.33)

We now combine (A. 19), (A.20), (A.26), (A.27), (A.31), (A.32) and (1.32) to conclude
that

H(lntq,Γ;ω)
Ί'eQ

+ Σ(eq.-e,)\ItΛq.Γ\-τ\Γ\/l2. (A.34)
ί'eQ

This proved (A.3) and (A.4) and so we complete the proof of the proposition.
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