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Abstract. This paper is the second part of our attempt of an extension of the
Pirogov-Sinai theory of phase transitions at low temperatures, applicable to the
lattice spin systems with finite range interactions, to the systems with infinite
range interactions. Employing the cluster expansion method developed in Part I
and modifying the notion of the truncated contour model introduced by
Zahradnik, we extend the Pirogov-Sinai result on the structure of phase
diagrams to our situations. As an application, we apply our result to Potts
models with infinite range interactions.

1. Introduction: Main Result

We continue our attempt to extend the Pirogov—Sinai (PS) theory of phase
transitions to classical (discrete and bounded) lattice spin system with infinite range
interactions. In Part I [3], we have developed a cluster expansion method, and
shown that under appropriate assumptions on the interactions the cluster expansion
converges for each stable ground state. Thus for each stable ground state we can
construct via the cluster expansion method an infinite volume limit pure Gibbs state
[3]. In this paper we use the cluster expansion method and some modifications of
Zahradnik’s version of the PS theory [6] to investigate the structure of the phase
diagram for a given system. In order to show how our result can be applied, we study
the phase diagrams of Potts models with infinite range interactions.

The PS theory applies to general bounded and discrete lattice spin systems of the
following types: The particles (spins) interact with arbitrary finite range periodic
potentials. The Hamiltonian of the system, H, has n ground states which satisfy the
Peierls condition [4,5]. Consider the structure of the phase diagram of the
Hamiltonian

n—1

H;~=H0+ z ;'iHi
i=1

in the n — 1 dimensional parameter space. The H; are perturbations which lift the
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degeneracy of H, and produce, in A-space, the following topological structure of the
ground states of H,: There are n lines starting from the origin on which H;, hasn — 1
periodic ground states, two dimensional surfaces bounded by these lines on which
there are n — 2 ground states, etc. The main result of the PS theory is that for
sufficiently low temperatures the phase diagram perfectly mimics the above
structure [4, 5].

We wish to extend the PS result to the systems with infinite range interactions.
The PS theory is based on a contour model and a contour model with parameters.
For infinite range interactions, we are unable to relate the models to any type of
interacting contour models with parameters. On the other hand, the notion of the
truncated contour model introduced by Zahradnik [6] can be extended to the
systems, and the cluster expansion method for the truncated model can be developed
as in PartI. Thus we combine the cluster expansion method and suitable
modifications of Zahradnik’s approach of the PS theory [6] to extend the PS result
to our case. Following the main idea of Zahradnik [6] together with the method
used in this paper, it can be possible to extend the result on the completeness of the
phase diagram to our situation, but we do not check this. As we said in Part I, we
believe that our result can also be extended to continuous lattice spin systems [2]
and to Widom-Rowlinson models [1].

Let us briefly describe our result. Throughout this paper we will adapt the
notations and the definitions used in Part I [3]. Let Z*, v = 2, be the v-dimensional
lattice space and let £2 be the finite set of spin values. For any A = Z*, denote by 24
the set of all configurations on A. For any weR”, denote by w 4 the restriction of w
on A. We write the constant configuration w(x) = g, xeZ", as w,, and the constant
configuration on A as w4 ,. As in I, we use the norm || x || = max |x;|, xeZ". For a

11y
fixed real number s > 1, let some family {@ )} of finite range interactions be given,
invariant with respect to shifts in Z* and with the finite interaction radius s(®, = 0 if
diam (4) > s). For any x, yeZ", let J, _ y2x0->Rbea symmetric function. For a
finite A = Z* and a configuration a)e.Q the Hamiltonian is given by

H(wslop) = Y Puo)+ Y Joy(o). o). (1.1)
e foivies

A decay property on the two-body potential J, _ , has been imposed in Assumption
232 of Part L.
For a given (fixed) subset Q = 2 and s = 1, the g-contours "% geQ, and the

external g-contour systems 0 = {I'%,..., '} have been defined in Sect. 2.1 of the
Part I. For any g-contour I = (M, w,), let
AnM]|
o= Y 0000 - 040,.)
s Al
diam(4)<s
l{x,y} M|
vy IOML w00 - a0} (12)
{xy}nM#¢

Ix=yl=s

We now restate the basic assumptions in Assumption 2.3.1 and Assumption 2.3.2 in
Part I
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Assumption 1.1. [Peierls condition] For any g-contour I = (M, w,,), g€Q, there
exists a sufficiently large t > 0 such that @(I") = t|I"| holds.

Assumption 1.2. [Regularity condition] The two-body potential satisfies

sup [~ (o(x), o) L e VI (|| x — yl)), (1.3)

where 0 is a metric on Z" such that
sup Y e V<M <o (1.4)

x yez¥

for some constant M >0, and J:R— R, is a non-negative function satisfying

2% S JQs+r+ |yl S/48 (1.5)

r=0 ez’

for the positive real number s introduced in the definition of contours.

Remarks. (a) Since we have absorbed § = 1/T into the Hamiltonian, the parameter
7 is proportional to f.

(b) If we are only interested in the maximum number of pure states, a weaker
condition (d(x, y)— o0 as || x — y|| = oc) than condition (1.4) on the metric § will be
sufficient. See the remark below Assumption 2.3.2 of Part L.

(c) Inapplications, one may first choose the parameter s(= 1) such that (1.5) and
the Peierls condition are satisfied, and then choose f sufficiently large so that t
becomes large (See Sect. 5).

We now state the main theorem in this paper. For a given Hamiltonian H of the
form (1.1) and for any qeQ, we write the specific energy by

1
e(H)= ) — @ (@4, +3 ) J(4.9) (1.6)

OeA | A { xeZ'
Then we have the following result:

Theorem 1.3. Let H, be some translational invariant Hamiltonian of the form (1.1) and
let Hy,...,H,_, be another Hamiltonian of the same type. Consider the family

n—1
{Hi:HOJ’_ Z iiHiZi=(/1v1,...,/1n_1)€021},
i=1

where U is some neighborhood of zero in R"~1. Suppose that there is a fixed family
{w,9€0Q}, 0, |Q|=n, of constant configurations such that the following
conditions are satisfied.

() All e,(Hy), geQ, are the same.

(i) Letq,,...,q,besomeordering of Q. Thenthe vectors e; = (e, (H,),..., e, (H;))
are independent and their linear span L does not contain the vector (1,1,...,1)
(degeneracy removing assumption).

(iii) The Peierls condition in Assumption 1.1 is satisfied for all geQ and all H,,
AEU.

Furthermore assume that the regularity condition in Assumption 1.2 is satisfied for all
H,, ic%.



222 Y. M. Park
Then there is a neighborhood of zero ¥" < (R")° = {h®:h® = (hJ,...,hY), min
1<isn
hd =0} and a homeomorphism AeU —h°()e¥” with the following property: Every
q,eQ such that ho(i)q =0 is stable. Thus for every A€W and qu(/t)
{qeQ(A) = {qeQ:h°(4), =0}, one can construct a pure Gibbs state p% on Q" by the
cluster expansion method
The above is the extension of the PS theory to infinite range interactions. This paper
is devoted to the proof of the above theorem.
Let us describe briefly the general strategy of the proof and also outline the
contents of the rest of this paper. Recall from Part I that an external g-contour I is
stable if

q1>°

e YN ={Z (N)/Z,(IntIN)}<e W7 (1.7)

A given ground state gqeQ is said to be stable if every g-contour is stable
(Definition 2.3.3 of I). We have shown for every stable geQ that the infinite volume
limit contour correlation functions exist and satisfy the cluster property
(Theorem 2.3.4 of Part I). Using the result together with a simple argument one may
construct a pure Gibbs state on £2° for every stable geQ. Thus the problem reduces
to a study of the structure of stable ground states for Ae%. Using the Peierls
condition we will relate the stability condition (1.7) to the bounds on Z (B)/Z ,.(B), B
', q, ¢€Q (Proposition 4.2). In Sect. 2, we introduce truncated partition
functions and truncated contour correlation functions which are modifications of
Zahradnik’s notion [6]. We then use the cluster expansion method developed in
Part I to establish a continuity property of free energy of the truncated model
(Proposition 3.2). In Sect.4 we use Zahradnik’s method [6] and the cluster
expansion method to obtain upper and lower bounds on the partition function
Z,B), Bc 7 and qeQ (Theorem 4.1). Then the proof of Theorem 1.3 will follow
from the method used in Zahradnik [6].

In order to give a general idea how our result can be applied to a specific model,
we investigate the phase diagram for Potts models with infinite range interactions in
Sect. 5. Appendix is devoted to a proof of Proposition 4.2.

2. Truncated Partition Functions and Truncated Contour Correlation Functions

In this section we introduce a truncated model which is a modification of
Zahradnik’s notion [6], and then we establish basic properties of the model. Recall
notations and definitions from Part I: For any finite A = Z¥ and a fixed ¢eQ, let
%,(A) and & ,(A) be the set of finite g-contours and the family of external g-contour
systems respectively. For a I'e%,(A), denote by £(I") the set of all configurations
Wy mon V(I7) = Supp I ulnt I", which satisfying the condition that being extended
by g to whole Z”, they have I' as its external g-contour. Then the partition function
and contour correlation functions have been defined by

Zq(A) = ) ;(Mgdwd""a;‘”), 2.1
and !
1
P 0)=5—~ dawe 1, 2.2
A Zq(A) &ed (A\V(3) aja’ ( )
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where for any d={Iy,...,I,}eé(A), [do= ) - ) , and the contour
é we Q(I1) we Q(I;)
Hamiltonian H(J; w) is of the form:

H@ o)=Y O,(F0)+ Y, 0, ;). (2.3)

Ieo Ir,r'es
For the details, see Chapter 2 of Part1. For a I'e%,(A), the crystal partition
function has been given by

Z,I)=[dwe ") (2.4)
r

We define the refined contour correlation functions by

Z dw/e~H(ﬁu€”';wuw’) (25)
Z q(A ) &e8 (A\V(9) cj

for any 0eé(A) and we(d)= () (I"). It then follows from (2.2) and (2.5) that

I'ed

P ad0) = [dop o (05 0). (2.6)

Let us discuss the refined contour correlation functions in more detail. Let (J; w) be
given where de& and weQ(d). Then (0; w) corresponds to a (not necessarily external)
contour system &' = {Iy,..., I',} such that d( < ¢') is the set of all external contours
in &'. Thus the refined contour correlation functions in this paper correspond to the
original contour correlation functions in the PS theory.

From now on we fix a ground state geQ and delete g from the notation if there is
no confusion involved. For any @, 0'e& with du d'eé&, let A(0',(0; w)) be defined as in
(3.2.11) of Part I [3]. Since

pad = Y [dwA@.0:0)g4000) @7)

deE(A\V(0) 0

P a0 ) =

by (3.2.14), it is easy to show that for any de&(A) and weQ(0),
pa@)= Y A0, (%0))gA(00). (2.8)

&'el(A\V(0)

We then have the following results:

Proposition 2.1. Let the conditions in Assumption 1.1 and Assumption 1.2 be satisfied
and let qeQ be stable. Then for sufficiently large T the infinite volume limit

Pq(0; @) = lim p 4 ,(0; @)

A7
exists for any deé, and wef2(0). Furthermore the bound
P 4(0; @) < &K (0; )
holds uniformly in A for each 0eé.

Proof. Employing the method used in the proof of Proposition 4.2.5(b) in Part I,
one may show that the bound

Y A@.(6:)]e™7 < const. e K (8 )

&es(V\V(0)
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holds uniformly in A. Thus as in the proof of Theorem 4.1.1(a) of Part I, one can
prove that (2.8) is summable absolutely and uniformly in A. The proposition follows
as a consequence of (2.8) and Theorem 4.1.4 (and Lemma 4.2.3) of Part L.

Let us give a comment on the construction of pure Gibbs states for stable ground
states. As mentioned before, the refined correlation functions p(0; w) correspond to
the contour correlation functions in the PS theory. Thus, the construction of pure
states can be done by using Proposition 2.1, Theorem 4.1.1-Theorem 4.1.2 of
Part I, and the argument used in [S5].

We now introduce a truncated model for infinite range interactions by modifying
Zahradnik’s notion in [6], and then obtain basic properties of the model. As in [6]
we define the level of any contour I as follows: Define the level of any (not necessary
external) contour I as a maximal number n such that there is some sequence of
contours I'y =1, I ,,..., I, such that supp I';,; < Int(I;). Define the level of A
« 7" as a maximal level of any contour I” such that V(I")  A. For given I €% and
A =7, denote by /(") and /(A) the levels of I and A respectively.

For any external g-contour I, let ¥(I") be the contour functional defined as in
(1.6):

Z,N)Z,(IntT)=e" *D (2.9
We define a truncated contour functional ¥'(I') as
YU =max (Y(I),t|I|/3). (2.10)

Thus an external g-contour is stable is W*(I") = W(I'). For any I €%, wef2(I") and
for any real number u = 1, denote

O\ (I u;0)=0 (o) +u¥P'(I)— Y), (2.11)
and for any de% and we(d), denote
H'(@Quw)=Y oI uw)+ Y O, w). (2.12)
I'ed rr'es

Notice that from (2.4), (2.9) and (2.11) it follows that
Jdoe M) Z(Int ) = e~ ¥ (2.13)
r

for any I'e%.

We now define truncated partition functions and truncated contour correlation
functions inductively. Let A have zero level (no contour can be in A). In this case the
truncated partition function Zj(A,u) is defined to be one:

ZAw=Z,(A)=1 if £(A)=0.
Let A have n-level (/(A) = n). Then truncated partition function is defined by
ZAw= ) jdwe"’"“‘“‘”’ [1{Z,(nt ", u)/Z (Int I')}, (2.14)

0ey(A) ¢ reo

where the term corresponding to ¢ = ¢ equals to 1. Notice that, if /(A) =n, then
/(IntI')<n—1 for any I'e%,(A). We define the truncated contour correlation
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functions by

Z(Int I, u)
I dwe” H'@eud uo) Fe\ 7 0 (215)
Zt(A u)cer‘ (;\Hc))(\!‘z FEI:\[.)F/ Zq(Int r)

for any 0eé&,(A) and u = 1. Since H(0; w) < H'(0,u; w) for any u > 1, it follows from
(2.1) and (2.14) that

pA q(a u)

Zy(A,u) £ Z,(A). (2.16)
For any I'e%,(A) we also define the truncated crystal partition function by
Zyru={ dwe™ "I Z (Int T, u)/Z (Int )], (2.17)
Ir

For a notational simplification we write
ZyM)=Z(Au=1),
Z(MN=Z(I'u=1), (2.18)
P'2g(0) = p'4 (0, u=1).

It is easy to check that, if there are no infinite range interactions, i.c., @,(I", I";

w) =0, then the above definitions reduce to those in Zahradnik [6].

We next derive a cluster expansion for the truncated model. For 9, d'eé, let
K0 0) = "= T] Z(Int I'),

I'ec

Ki(0,0"; 0) =K (0; w ﬂ g0, I'; w), (2.19)

red
where g(0, I'; w) has been given in (3.1.9) of I. Let K (d;,.. ., d,; @) and Ki(0,,.. ., 0,)
be defined by replacmg K(0; w) by Ki(0; w) (and K(@ 8' ) by Ku(a 0'; w)) in the
definitions of K(é4,...,0,;w) and K(0,...,0,) in (3.2.7) of Part I [3] respectively.

Denote also that

Z{A\V(O),0) [] Z'(Int I, u)

0rul0) = 2 . (220)

Then, using the method employed in Sect. 3.2 and Sect. 3.3 of Part [ we obtain a
cluster expansion for the truncated model:

(a M) ( )gAu a)+ Z Z Ktu(a al’ an)gt/\,u<au<g ai>>,

{015 Cn}
pa =1+ 2 A K2 49 400 (2.21)

where the operator K|, is defined by replacing K(d; ) by K;(J; ») (and K(9,0;w) by
K!(0,0";w)) in the definition of K in Sect. 3.3 of Part 1.
The following are the results analogous to those in Theorem 4.1.1—
Theorem 4.1.4 in Part I, and Proposition 2.2.

Theorem 2.2. Let the conditions in Assumption 1.2 be satisfied. Then for sufficiently
large 1 the following results hold for any qeQ and u= 1:
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(@) The cluster expansion in (2.21) is summable absolutely, uniformly in A.
Furthermore the bound

PO, u) < el

holds for any 0€é ,, uniformly in A.
(b) The infinite volume limit
(0,1 = lim p'y(0, )

VA

exists for each 0e&,. Furthermore the bound

|9'4(@,u) — p'(0,w)| < exp ( —363|a| - 5(&AC))

holds for any 0eé, and A < 7.
(c) The cluster property for p'(0,u) holds.

Theorem 2.3. Under the assumptions as in Theorem 2.3, the following results hold for
any qeQ and u=1:
(@) The infinite volume limit
gu(0) = lim g4 ()
A-Z7"

t
u

exists for each 0eé&, and satisfies the integral equation g, =1+ K
space F ., & = e""l®,
(b) The bound

g., on the Banach

19'4,4(0) — gu(0)] = exp (3‘81 |0] —0(0, AC))

holds for any A < Z¥ and 0€é,.

Proofs of Theorem 2.2 and Theorem 2.3. Using (2.19), (2.12), the bound (4.2.1) of
Part I and (2.13) (in that order) we obtain
Ki(0) = [dwK(0;0) < { ] [ dwe™ ") Z(Int ')}

Ieo I'

=[]exp(—uP'(I")+t|I"|/48) < exp(— 11ut|d|/48) (2.22)
r'ed
for any u > 1, The above is the bound analogous to that in (4.2.13) of Part I. Thus
replacing K(0; w) in Sect. 4.2—4.4 of Part I by K},(0; w) and using (2.22) in the places
where (4.2.13) of I has been used, we prove Theorem 2.2 and Theorem 2.3 by
methods the same as those in the proofs of Theorem 4.1.1-Proposition 4.1.4 of
Part I. We leave the details to the reader. W

3. Free Energy and Surface Tension for the Truncated Model

We establish various properties of the free energy (the pressure) and the surface
tension for the truncated model such as the existence and continuity property of the
free energy. For any finite A = Z* and geQ, the finite volume free energy for the
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truncated model is defined by
Saq=1A1""log Zi(A), (3.1)

where Zi(A) is the truncated partition function Z4(A,u=1). We then have the
following result:

Proposition 3.1. Let the regularity condition in Assumption 1.2 be satisfied. For
sufficiently large t and for each qeQ, the limit
s, = lims,,
A7
exists in the sense of van-Hove, and s,—0 as ©— co. Furthermore there is a constant
¢ = ¢(1) such that ¢ -0 as 1— oo and for each finite A < 7" the bound

Hog Z(A) — s, | A[] = ¢(7)|bd (A)]

holds.
We postpone the proof of the above result to later. We will use the following norm of
the Hamiltonians of the type (1.1):

1
IHI =% 1@l +sup 3 31U, y(0(x), o). (3.2)

0eAd IA l X0 yez"
diam(4)<s

We then have the following result:

Proposition 3.2. Let {H,=H, + AH:2c%(0)= R, ||H| =1} be a family of Hamil-
tonians of the type (1.1) satisfying the Peierls condition and the regularity condition.
Denote s,(2) the free energy of the truncated model corresponding to the Hamiltonian
H,;,u=1and a geQ. Then one-side derivative (d/dA)( +)s,(4) exists and satisfies the
bound

d

'm Sq(}')‘ <e(1),

where ¢(t)— 0 as T— 0.
In the rest of this section we will prove Proposition 3.1 and Proposition 3.2.
In order to show the above results we need a technical lemma.

Lemma 3.3. Under the assumptions as in Proposition 3.1, the bound

[P +< iZ;(Intl",u)
du

/ Zi(Int T, u)) <tv(n)P

holds for each qeQ and I'€%,.

Proof. We will show the bound by using an induction argument on the level of
Int I'. By the definition of ¥*(I") in (2.10) and (2.9) it is easy to show that the bound

PO = max 2{H VD)L, @3V} < et V(D) (3.3)

holds for some constant ¢ independent of  and I". Recall that 7 is proportional to f.
Since Zy(A,u)=1if /(A) =0, the bound in the lemma holds for /(Int I") =0, and
sufficiently large 7.
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Notice that by the definition of Z'(Int I, u) in (2.14),

c—id;Z‘(Intl",u)= oy jdw[~ wyI)

oes(ItIN) et 8

+<{~d~Z'(IntF’,u)}/Z’(Int F’,u))jl
du

o Hulz0) [1Z'(nt ",u)/Z(Int I'")

Ir'"eo
d
= ) [— lP’(I”)—k({d—Z‘(Int F’,u)}/Z’(IntF',u})]
I'e€(IntI) u
P F(CwZ (Int Iy u). (3.4
Here we have summed over d — I to get the second equality. Thus we get the bound
d
H——Z‘(IntF,u)}/Z‘(IntF,u) =Y {!‘I"(T’H
du r'e%(intI)
d t / t ’ t ’
+ @Z (Int I'',u) » | ZHInt I u)| p pine (L, 1),
(3.5)
We use (3.3), the bound in Theorem 2.2(a), i.e.,
Pl () S €1
uniformly in u = 1, and the fact that by Lemma 4.2.1 of I
¢ Y yI)Pe < | Int I (3.6)
['e%(IntT)
for sufficiently large t to obtain from (3.5) that
d
—Z'(Int I,u) p | Z'(Int I, u)
du
d t ’ 1 , 'y
<|Intl'j+ ) —Z(Int I u) p | ZH(Int I u)le . (3.7
I'e6(Int 1) du

Let Z(IntI")=n, then Z(IntI"")<n—1 for any I'"'e¥(IntI"). Now the lemma
follows from (3.7) and the induction on the level of I'". Also one may show the lemma
by the following argument: Iterating (3.7) n-times and using (3.6) it is easy to show
that (3.7) is bounded by n|Int I"| <|V(I")|*. This completes the proof of the lemma.

|

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. For a notational simplification, write that

QY u)=— (I + <{%z;(1m r, u)} / Zi(Int T, u)>. (3.8)
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Then from (3.1), (2.18) and (3.4) it follows that

Sag=—lA7 Tdu{%Z;(A,u)}Z;(A,u)_‘ = —|A]| Tdu Y QLI u)p'A(T, w).

1 T'e%(A)
(3.9)
Thus it is not hard to recognize that
x 1
so= — [du— Y QuIu)p'(I",u). (3.10)
1 || 7
0eSuppI”
By Theorem 2.2(a) and Lemma 3.3, s, — 0 as 7— cc.
In order to show the bound in the proposition, define
Sag=—1AIT [du Y, QyI,u)p'(I",u). (3.11)
1 Te%(A)

Then
[log Z'(A) — s, | Al =[5 44| Al — 5, Al

Ssaq— Sagll AL+ 154 — sl Al (3.12)
Using (3.9), (3.11), (3.8), Lemma 3.3, Theorem 2.2(b) and Assumption 1.1 we obtain

ISaq—SaqlAl= > Q)| p'a(I u) = p' (T, u)|

0
[ du
1 I'e6(A)
)
éj‘du Z TlV(I—')IZefuﬂﬂ/’ée——é(l‘,/\f)
1

I'e%(A)

_3_ Z 6T| V(]—)IZefﬂﬂﬁe—&(I‘. A®)

Ted(A)

<e(n) Y e <ey (1) bd (A)] (3.13)
xe A
where ¢;(1)—>0 as 7— c0. Here we have used Lemma 4.2.1 of I to get the third
inequality.
For any B< 7", let [B]={I"e%:dist(I',B)<1}. Then from (3.10), (3.11),
Lemma 3.3 and Theorem 2.2(a) it follows that

=S lIAIS Y [ dul QY )l oI u)

Tefbd(A)] 1

67| V(I)|2e "D < g,(7)|bd (A)), (3.14)

I'e[bd (A)]

I\

where ¢,(7)— 0 as t— o0. The bound in the proposition follows from (3.13) and
(3.14). m

We next prove Proposition 3.2.

Proof of Proposition 3.2. Denote the contour Hamiltonian corresponding to the
Hamiltonian H, = H, + AH by

H,(0,w) = Z ¢1,1(F:w)+ Z (1)2,2(F,F’;u)),

I'ed r.riee
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D, (I 0) = O(I;0) + DT, ),
@, (I T 0) = @I, T 0) + 4D, (I, T3 ), (3.15)
where <~P5~1 and @, are the one body and two body contour interactions correspond-
ing to H. Let Z, ;,(A), Z, ,(I') and ¥,(I") be the partition function, the crystal

partition function and the contour functional corresponding to H, respectively. We
also denote the corresponding truncated contour functional, partition function and

correlation functions by ¥ (I'), Z; ;(4) and p's 4 ;(0) respectively. Then the refined
truncated contour correlation functlons for H, are defined by
1 N
,0 (('; CU) o d(Ue_ H;(0ué,w)
A Zt AA) F'E(‘"[AZ\ V(E)):"[
|1 [Z,,(IntI)/Z, ,(Int )], (3.16)
redud

and then it follows that
Pagil0) = [dp's 410,00, (3.17)
As a consequence of Proposition 2.1, the infinite volume limit pj ,(; w) of p'y , ,(7; )

exists for each de&(Z2*) and we2(0).
Next, we denote

Saqli)=|A]  og Z4 ,(A). (3.18)

For typological convenience we simply write the one-side derivative (d/dA(+))f(4)
by (d/dA) f ( 1) in the following proof. A direct calculation yields

{Z (A)/Z1(A)}

| ) et ={{Gam) [2an]

AZe (N Zy 4 (A) ). (3.19)
Using (2.14), (3.16) and (3.19) it can be shown that

d -4 ’
(37 ;,A(A)>/me(/1)= -y [ do®,(I', I 0)p'y (T O 0)
: rrlesA) ror’
+ Y [doB, (Mo, (o) (320)
re¢(A) T
where
d d_,
By l0)= =5 @ (o) + 9| 22t 1) ) [ Z, ,(Int I
< sdnt I >/Zq,,1(lnt 1“)}, (3.21)
and

Dy (T w)= @y (I w)+ P51 = W), (3.22)
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Since the cluster expansion converges absolutely, and uniformly in A, it is easy to
show that by (3.20),

d 1 d t
=i 1Az ) [z

1
-~y — Y [ dod, (I, o). (FuT;)
I |r|1’sé(1 vy ror
0eSuppI”
+ ¥ “_'jde A w)pl (T ). (3.23)
OESIu;pF

Using the definition of Z, ;(A) and Lemma 4.2.1 of Part I, one may check that

<;7Z“(Int1")> / Z,,(ntT)
|0,(I, T o) S eyt VD), |0,(M0)| Sext|V(D)] - (3.24)

T'e€(A\V(I))

e V)l

for some universal constant ¢,, ¢, and c;. Using the facts that

d d
ElogZM(I") 7 —logZ, (IntT)
and (3.22), and the third inequality in (3.24), it can be shown that

d
d

for some constant ¢ uniformly in weQ(I"). Thus, by (3.20), (3.21), (3.24) and (3.25) we
get the bound

d t
’(d/l (A)>/ZM(/1)’

<y [amr)u

I'e%(A)

= ¢ V() = e[V,

D (I w)| S et V()] (3.25)

(% 7. ,(Int r)> / Z: ,(Int F)H paailD).

We now use the induction procedure on the level of A similar to that used in the
proof of Lemma 3.3 to conclude that

dd} L(Int)/Z4 ,(Int )| < 7|Tnt I' |2, (3.26)
and so by (3.25), (3.26) and (3.24),
| B (I )| < ct| V(D)2 (3.27)

Now the bound in the proposition follows from (3.23), (3.24), (3.27) and Lemma 4.2.1
of Part I together with the fact that p}, ;(0) < exp (— 7|2|/6). This completes the proof
of the proposition. W
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4. Bounds on Partition Functions and Proof of the Main Theorem

In this section we establish upper and lower bounds on the partition function and
also obtain a sufficient condition on ground states w,, geQ, to be stable. Then the
proof of the main theorem will be followed from the bounds, the Lipschitz continuity
for s,(Proposition 3.2) and the method used in Zahradnik [6].

Let e, be the specific energy defined in (1.6) and let s, be the free energy for the
truncated model. Write that for any gqeQ,

hy=e,—s, ho=min{h}, a,=h,—h,, a=min{a,;a,#0}. 4.1
The following is the result analogous to Theorem 1.7 of Zahradnik [6].
Theorem 4.1. Nonstable contours satisfy the inequality
a,|Int ') = 7| I"9|/4. 4.2)

Thus, if a,= 0, then qeQ is stable. That is, all contours I" €%, are stable and ¥'(I")
= YW(I') for all I" €& ,. Furthermore there is a universal constant c(t) such that for each
finite A < Z° the following estimates hold:

exp (—e,[AN)Z,(A) Z exp [ hy|A[ —c[bd(A)]], (4.3)
exp (—e,[A[)Z,(A) = exp [ — ho|A| + c[bd (A)]]. (4.4)

The constant ¢ = c(t) can be chosen such that c¢(t)—0 as T — oco.

We postpone the proof of the above result to the end of this section.
We use Theorem 4.1 and Proposition 3.2 to prove Theorem 1.3.

Proofof Theorem 1.3. We remark that contrary to our case, the factor exp (—e,|A|)
was included in Zahradnik’s definition of the partition function [6]. Using the
Lipschitz continuity of the free energy (Proposition 3.2), Theorem 4.1 and the
method same as that used in Sect. 1.10 of [6] one can construct the homeomorphism
in Theorem 1.3. The stability of ¢ with h°(%), = 0, where h°(1), = a,(4), follows from
the bound in (4.2). Thus for each geQ(4) the infinite volume limit of the refined
contour correlation function p,(0; w) exists for any deé, and a)e!)(a). Using the
correlation functions one can construct a Gibbs measure p, on 07 (e.g.see[5]). Asa
consequence of the cluster property it follows that the Gibbs state p, is pure. W

In order to show Theorem 4.1, we need the following result:

Proposition 4.2. Let the conditions in Assumption 1.1 and Assumption 1.2 be satisfied.

For a given external g-contour I' = (M, wy), let Int I = | ) Int,, I". Then the bound
q'sQ

(zI)/z,(Int 1)} < {[] [Z,(Int, I')/Z (Int, )]}
q'€Q
.exp{ -gzlfi =Y (eg— eq)llntq,ﬂ}
3 q’eQ

holds for any I €%,,.

Since the proof of the proposition is somewhat lengthy, we will produce the proofin
the appendix.
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In the rest of this section we prove Theorem 4.1 by employing Zahradnik’s idea
in Sect. 1.8 of [6] together with our previous results.

Proof of Theorem 4.1. As in [6], we will proceed by induction over the levels of A
and I
(a) Proof of (4.3). Because Z,(A)= Z(A) by (2.16) and

Zy(A) z exp (s,[A| — c[bd (A)])

by Proposition 4.2, we get the desired relation in (4.3).
(b) Proof of (4.2). We use the induction argument for (4.4). Both (4.2) and (4.4)
are trivial if both I" and A have zero levels. Nonstability of I means, by (1.7),

Z,I)/Z,(IntI") Z exp(—t|I"|/3). 4.5)
Since #(Int I") < #(I"), we use the induction assumption for (4.4) to obtain
exp(—e,|Int, I'))Z, (Int, I') S exp(— ho|Int, I'| + c[bd (Int, I7)]).
From Proposition 4.2, (4.3) and the above bound it follows that

Z,I)Z,(IntI'") S exp(—t|I"|/3)exp(— ho|Int I"| + h,|Int I"| + 2¢|bd (Int I)]).
(4.6)
Combining the inequalities in (4.5) and (4.6) we get
0= — (| I'/3) + a,[Int I'| + 2¢|bd (Int I").

This proves (4.3) for sufficiently large .

(¢) Proof of (4.4). Notice that, if all g-contours are stable, then Z,(A) = Z(A),
and so (4.4) follows from Proposition 3.1. Thus we need some method of handling
the unstable contours.

We use the method of Zahradnik [6]. We say that a contour I is small if it is
stable and there is no unstable contour I such that supp "¢ < Int 179, Say that I"%is
large if it is not small.

Given any configuration w(x) =g for all xe(A,)°, one may write the external
boundary of o by ext(dw) = 0w d,, where d,={I",,,...,I,,} is the collection of all
external large contours of w and any I" €0 is a small external g-contour of w. Denote
L& ,(A) (respectively S&,(A)) the family of external g-contour systems consisting of
large (small g-contours). Then we get the relation

ZMN=Y Y | doe "0, 4.7)
GeLE(A) &' eSE(ANV(Q) dud
Note that by the definition of small contours, any I e%(Int '), 0'eS&E(A), is small
contour. Write
Z A= Y [doe ", (4.8)
0eSE(A) ¢
and let §, be the free energy corresponding to Zq(A). Since Z;(Int I") = Z (Int I') for
any small I", Z,(A) is equivalent to the truncated partition function Z(A) with a
contour functional

P()y=P(I') if I' is small,
P = o if I is large.
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Obviously, §, < s,. Using Proposition 3.1 (and a suitable modification of the method
used in the proof of Proposition 3.1) we get the bound
exp(— e, | A|)Z,(A) S exp(—h,|A] + c|bd (A)]), (4.9)
where Tzq = e, — §,. By the induction assumption for (4.4) it follows that for any I" €0,
de L&(A), the bound
exp(—e,|Int, I')Z (Int, I") S exp(— ho|Int, I'| + c|bd (Int, I')]) (4.10)
holds.
Next, writing H(0uUd;w)= H(0;w)+ H(0;w) + @,(0,0;w) and H(J;w)=
Y @(I';w)+ Y @,(I',I'";w), and using Proposition 4.2.2(a) of I, it follows
Ied Ir'es
from (4.7) that
YAVYESDY jdcuZ (A\V(d)exp(— Y @,(I';w))exp(—t]d|/24).

deL&(A) ¢ I'ec

(4.11)
Using (A 34) in the appendix into (4.11) we obtain the bound

<y Z A\V(a){ﬂ[ﬂz (Int, T')exp(— (e, —e,)Int, I'[)]

beLé (A) reé q'€Q
exp(— @) + 7| I|/8)}. (4.12)
Denote ad, = Eq — hy, and use (4.9), (4.10), and (4.12) to obtain the bound
exp(—e,|ANZ,(A) Sexp(—holAl) Y exp(—d,|A\V(d)])

seL&(A)

A exp[— () + (ho — e)| I [Texp (x| I7]/8)}

rec

{exple2 ¥ [bd (Int )| + c|bd (A\ V(@))[1}.
I'ec
The above is the bound the same as that of (1.39) in [6] except for the factor
exp(t|I|/8) which can be controlled by exp(— @(I")) and the Peierls condition.
Note that d, = a,and a, = aif there is a unstable contour I"?. Thus using the method
by Zahradnik (page 567 of [6]) we proved the bound (4.4) completely. W

5. An Application. Potts Model with Infinite Range Interactions

In order to give an example of how our results can be applied, let us consider Potts
models with infinite range interactions. Let 2= {1,2,...,r}. The unperturbed
Hamiltonian H, is given by

Ho=—f % Klx= o), o) (5.1)

where 8(p,q) =1 if p=q and 8(p,q) =0 if p # . Here we have used the symbol 5
instead of J to avoid confusion with the metric  in Assumption 1.1. We impose the
following condition on K(x — y).

Assumption 5.1. [Regularity condition] The function K:Z"— R is symmetric with



Extension of Pirogov-Sinai Theory. II 235

respect to x — — x and satisfies the bound
2IK(x =y Sclx—y|~*2

for some constants A >2v+ 1, e>v and ¢>0.
For the Hamiltonian (5.1) it is easy to check that any g, ge£2, is a ground state,
and so we choose Q = . The specific energy is given by

e,(Ho) = —3p Y, K(x) (52)
xeZ”
for any geQ. In order to split the degeneracy of the ground states we introduce the
external fields

H, ﬁZé (x),q), qe0Q. (5.3)

)&EL

It is easy to see that the perturbation
r—1
H,=H,+ ) ALH, (5.4)
i=1

splits the degeneracy of the ground states.
We recall the definition of @(I") in (1.2). For the Hamiltonian H, in (5.4) the
contour functional @(I") is given by

D(I) = @o(I") + D,(I), (5.5)
where for any g-contour I = (M, w,),

Do(IN) = —p }Z 1{x y A MI{K (x = p)d((x), o) — K(x =)},
\)mM#¢

~ ol - -
O,(IN)=p Zl };4141{5@(/*),61’)—5((1»61')} (5.6)

Notice that 5(cu(x),cu(y)) =11if xeM, yeM® and [|[x — y|| <s. Thus @y(I') can be
written as

(') = %{—g Z [K(x — y)d(e (X),w(y))—K(x—y)]} (5.7)

In order to satisfy the Peierls condition one needs to impose additional restrictions
on the function K(x — y).

Let us first consider the case for ferromagnetic interactions, i.e., K(x — y) = 0 for
any x, yeZ'. For any xe2”, let

v 1/2
|x] =<‘;|x,~|2> ; (5.8)

and let
Ko =min {K(x):|x|=1}. (5.9)

We then have the following result:
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Theorem 5.2. Let K(x—y) satisfy the bound in Assumption 5.1. Assume that
K(x—y)z0 for all x, yeZ® and K, > 0. Then one can choose the parameter s such
that the results in Theorem 1.3 hold for sufficiently large f.

Proof. By the definition of contours one may check that for any contour
I = (M, wy,) there are at least (2s 4+ 1)~ *|I"| number of distinct neighboring pairs
{x,y> in support I" such that w(x) # w(y). Thus by (5.7)

Do) = (25 + 1) *BK,|T]. (5.10)
n—1

On the other hand it follows from (5.6) that for || = Z [ 44,15

i=1

| @) S|AIBIT| (5.11)
Thus from (5.10) and (5.11) we get that
O(I)z(2s+ 1) 7YKy—[A)BIT). (5.12)
Let |1] £ Ky/2(2s 4+ 1)" and let
1= Kof/2(2s + 1) (5.13)

Then the Peierls condition holds for sufficiently large . In order to show the
regularity condition in Assumption 1.2, we choose

o, y)=elog(l+lIx—=yl), J(lIx—=yl)=Belix—yl~* (5.14)
Then the conditions in (1.3) and (1.4) hold. By Assumption 5.1 we also obtain

2Y Y I@s+r+ly<2ep Y Y @s+r+fyl)”
r=0 yez¥ r=0yez¥
< const. fs~V+1/2), (5.15)

Thus we first choose s so large that (1.5) in Assumption 1.2 holds and then choose f§
sufficiently large. Then the Peierls condition holds. Thus Theorem 5.2 follows from
Theorem 1.3. W

We next consider more general interactions. We write that

KlECi Y @+r+ixTr+ Y KX, (5.16)

r=0xez" lxfi=1
Ix[#1

where c is the constant in Assumption 5.1.

Theorem 5.3. Let K(x — y) satisfy the bound in Assumption 5.1. Assume that K, >0
and K; £ K,/196(3)". Then the results in Theorem 1.3 hold for sufficiently large p.

Proof. Choose s = 1. Then by (5.7) it is easy to show that
Do(I") 2 (37K — Ky)BIT],
so by (5.11) we have
(I zB""Kg— Ky —[A)BIT].
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Thus the Peierls condition is satisfied for sufficiently small [1](< K,/2(3")). Notice
that

23 S U@ 4+ x])<26K,.

r=0yez"

By choosing t = (K,37"/3)f3, we see that the regularity condition also holds. W

Remark. The conditions in Theorem 5.2 and Theorem 5.3 are obviously not
optimal. We only tried to give general ideas how one can apply our results to specific
models.

Appendix: Proof of Proposition 4.2

We produce the proof of Proposition 4.2 in this appendix. We first describe general
ideas of the proof. For any g-contour I" = (M, w,,) let @,(I";w) be the one-body
contour interaction defined in (2.2.6) of Part I:

DI 0)= Z [Py(wy) — cDA(CUA.q)]

Ac V()

+ Y ey VD), 0, VD) = T ya,9)) (A1)

oV #¢

where for any B< 7" and we2®,

_Jolx) if xeB
u)q(x,B)—{q it xéB (A.2)

We will decompose @,(I;w) by
O, (I0)=0I)+ ) (e, —e )lInt, I'|+ Y H(Int, I';w) + Remainder,
q'eQ q'€Q
(A.3)

where for any configuration o on Int, I" with 0=ext(dw)eé (Int, I),
H(Int, I'; w) = H(0; w). We will show that

|[Remainder| < 7| I7/6. (A4)
Then from (2.4), (A.3) and (A.4) we obtain
Z,I)<{[] z,(Int, I')}exp(z|T|/6)
q'eQ

exp{— @) — ZQ (e, —e,)|Int, I'|}. (A.5)
q’e
Next, for any deé&,(IntI'), let = | ) 9, 8, €é€,(Int, I'). Writing
q'€Q
w)=Y H@ o)+ Y @y(0,,0,;0) (A.6)
) q',q°€Q

q9'Fq”
and using Proposition 4.2.2(a) of Part I to obtain
Y 1®5(0,.0,50) < ), t[bd(Int, I')/48 < 7|1°|/48, (AT)

q',q9"€Q q'eQ
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we conclude that
Z,(IntI)yz{[] Z,(ant, I')} exp(—t|I"|/48). (A.8)
q'eQ
Thus the proposition will follow from (A.5), (A.8) and the Peierls condition
(Assumption 1.1).

In the rest of the appendix we establish (A.3) and (A.4), and so complete the
proof of the proposition. Using the expression (A.1) and the fact that
Dy (wy)— Pylwy,)=0 if AnV(I')#¢, we can write that for any
g-contour I = (M, wy,),

Q,([0)=0()+ O,(Int I'; )+ O5(1; w), (A.9)
where @(I") be the contour functional defined in (1.2), and
AnIntI”
o,(nt o)=Yy A0l
AnIntI # ¢ |A[

. [{x,y}nInt |

{x,y}nIntI" #¢ 2
hx-yl=s

[D4(wy) — (DA(wA,q)]

[Jx _y(CO(X), Cl)(y)) - Jx-—y(q5 q)]:

(A.10)
Oy(Iw)= Y [y, V(D)) 0,(v; VIN)) = I o-,(g. 9)]-

{x,y}n V(I #
fx—yil>s

(A.11)

For typological simplification of notation, we use the following abbreviated
notations: For any g-contour I" = (M, w,,) denote

I,=1Int, I, IntI" = UQIq”
q’s
) (A.12)
Y o= X . X o= X
{x,y}an,;éQ) {\,y}mlq/#d) {x—y}mlq#d) {x,y}r\lq#tt
X -yiss Ix—yli>s
Then from (A.9) it follows that
@, (Int ;) = @,(Int ;) + E,(Int I), (A.13)
where
[ANnI

bntCo)=Y Y L [0 ()~ B 4(044)]

q'eQ Anly #¢ ‘A|
l{x’y}mlz”

ry oy Ry

40 (xy)Aly #9

[ ylox), o) = Ji-y(d 9],

(A.14)

E,IntIN=Y Y 'Am“'l[@A(wA,qf)—@(wA,q)]

9'€Q Anl, #¢ IAI

1.
vy oy IO gl @
9'€Q {x,y}nly #¢
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We next consider @;(/;w) given in (A.11). We decompose @4(I"; w) by
D[ w) = Oi(Int I, w) + DT w), (A.16)
where

Q%(Intf;w)={ Y o VD)), 0, VD)~ Jey(9,9)]
Qe

=Y Y o VD), o5 V) g —a)]

'eQ {xy}nl, #¢

2 , S A o), o) — J(g, 9], (A17)
q:q?*j” ;EEII;’

Qo)=Y [ @0 VD)) oy VD) =T (g9 (A.18)
iy
[x=vyl>s

Combining (A.9), (A.13) and (A.16) we arrive at

D (I';0)=d(IN) + @Z(IntF;w)+Ez(IntF)+ &i(Int I'; w) + O3(I; ).
(A.19)

Finally we decompose @4(Int I”; w) in the following way: By (A.17) it can be written
@Y(Int I"; w) Z @} (Int I; ), (A.20)

where

@%,1(Int F7 C()) = Z Z” [‘]x—y(wq’(x; Iq’)’ ('Uq’(y; Iq’)) - Jx—y(ql’ q/)]’

4'€Q (x,y}nly #¢

(A.21)
O3 (Intlsw)= 3 3" (I 0,05 V() 0,y VI))
4'€Q (xy}nly#¢
= eyl (5 1) 0 (v 1))} (A.22)
(DS 3(Int F (,O Z Z” [J;x ~y(q,’ q/) - Jx—y(qa q)]> (A23)
q'€Q {xy}nly #¢
JantMo)=—3 3 Y [ ,(d.d) — - y(a.9)] (A.24)
Y e
Recall I, =1Int, I'. For any we'v with d = ext (0w)eé (1) denote
H(Int, I';0) = H(qu,lwI;,,q') —H(w,q,#r[ U’;;,,q’) = H(d; w). (A.25)

Notice that for any weQ(I'), @ 4(w ) — @ 4(w 4 ) = 0if diam (4) < sand AN T # ¢.
Thus from (A.14), (A.19) and (A.25) it follows that

@,(Int ;) + @L (Int I 0) = Y H(Int, I'; ). (A.26)
q'eQ

Consider @} ;(Int I'; ) in (A.23). We write
@} ;(Int I'; w)= EX(Int I') + E2(Int I), (A.27)
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where
. Xy M| L
)=y y IOMG ey @
9'€Q (xy}nly #¢
Ej(IntI") =ZQ Y e ld d) =T y(q. )} (A.29)
q'e relq,
yslf),
Ix=Jyi>s

Using the definition of the specific energy e, in (1.6) one can check that for any finite
AcZ®

|AmA|
T Paeadt X

{xgfnA#d

yiaA
0 e s

e,|Al = Z

AnA#¢

Thus from (A.15), (A.28) and (A.30) it follows that
E,(IntI)+ E(Int M) =Y (e, —e,)|Int, I'|. (A3
q'cQ

Using the regularity condition (Assumption 1.2) one obtains

|[E3Int 1)< Y, Y J@2s+ |x—yl)
qu‘(EI
)elc

< Z tlbd (I,)|/48 < | I7]/48. (A.32)
q'eQ

Again, we use the regularity condition, the method similar to that used above, and
the fact that

Jx—y(wq(x; V(r))> (Dq(y, V(r)))—"]x-—y(wq’(x; Iq')a wq/(y; Iq’))) :0 lf {X, y} CIq'
to obtain the following bounds:
|03 )| < T|T7|/48,

@4 ,(Int T 0)| < Y <[bd(1,)]/48 < 7| T1/48,
q'eQ
| @} 4(Int I'; )| < €| T71/48. (A.33)
We now combine (A.19), (A.20), (A.26), (A.27), (A.31), (A.32) and (1.32) to conclude
that

@ (w2 @)+ Y H(nt, I';w)
q’eQ

+ Y (ey —e,)Int, I'| — 7| T"}/12. (A.34)
q'eQ

This proved (A.3) and (A.4) and so we complete the proof of the proposition.
|
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