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A Block Spin Construction of Ondelettes*
Part II: The QFT Connection

Guy Battle**
Mathematics Department, Cornell University, Ithaca, NY 14853, USA

Abstract. We apply the Lemarie basis of ondelettes to the Battle-Federbush
cluster expansion for the φ\ quantum field theory. Since there is no infrared
problem for this model, we also show how the large-scale ondelettes can be
thrown away and replaced by unit-scale functions. Finally, we apply the block
spin machine of Part I to the construction of exponentially localized ondelettes
orthogonal with respect to the free, massless action of the scalar field.

1. Introduction

Ondelettes [1-5] have an important application to phase cell cluster expansions in
quantum field theory [6-11]. They provide a very natural setting for the expansion
of any interacting vacuum expectation that can be regarded as a small perturbation
of a Gaussian expectation. The minimum-scale and finite-volume cutoffs are
simultaneously removed by such an expansion because elementary stability is the
only kind of stability needed. Moreover, such a decomposition of phase space has
renormalization group ideas built into it.

A cluster expansion was developed in [7] which was based on expansion
functions (a certain Bessel potential of certain ZΛondelettes) with respect to which
the free Euclidean boson field φ with mass m has a diagonal covariance. Thus the
expansion decouples only the interaction when applied to the φjn and Yd models.
The specific ondelettes that were used in [7], however, suffered from a serious lack of
regularity that affected the positivity of the φ% interaction with respect to the
random variables corresponding to such expansion functions. Consequently, the
diagonal-covariance expansion was applied to a hierarchical version [8] of the φ%
model. Williamson [9] controlled the φ% model by using the ίΛondelettes directly
as expansion functions and decoupling the resulting non-diagonal covariance as
well as the interaction. This choice solves the positivity problem for the Battle-
Federbush ondelettes.
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Very recently Lemarie [4] discovered a new basis of L2-ondelettes that happens
to eliminate the error in [7] and makes the Battle-Federbush expansion directly
applicable to the φ\ field theory. We presented a block-spin construction of the
Lemarie basis in [5]. In this paper we show how these functions affect the details in
[7]. The point is that the subsequent changes in [7] are almost trivial, so the Battle-
Federbush work [7,8] essentially anticipates the existence of Lemarie functions.

In this paper we also introduce a basis of ondelettes orthogonal with respect to
the massless Sobelev norm || Vφ \\ 2 and having the same regularity and long-distance
decay properties as Lemarie functions. This result is non-trivial because the IVp 1

potential of the Lemarie functions cannot have the same long-distance decay
properties. Our motivation for constructing such a basis is that it should be useful in
analyzing small field modes for the group-valued σ-model. The relevance of this
model to an understanding of Yang-Mills theory is discussed in [12,13]. We state
the small-field stability expected for our variables in Sect. 4.

We start with a preliminary description of how the ondelettes of Lemarie are
applied to the boson field φ of mass m. Since there is no infrared problem to consider
here, we impose a large-scale cutoff on the basis—say at the unit-scale level—and
complete the basis on that scale with modified functions that have the same
regularity and long-distance decay properties as the smaller scale functions, but do
not necessarily have vanishing moments. This general game has already been
discussed in [10], and the original basis used by Battle and Federbush is precisely of
this modified type [7]. In the next section we describe this modification for Lemarie
functions.

We expand the field in modes:

where
uk = (-Δ + tn2Γ1'2ψk (1-2)

and {φk} is the modified basis of ίΛondelettes. Equivalently, the phase cell variables
αfc are defined by

ak = (</>,(- Λ + m2)^2φk\ (1.3)
and so

(¥ί)o = ^ (1.4)

where <*)0 denotes the free (Gaussian) boson expectation. If A is a finite set of
modes, then the corresponding regularization φA of the field φ is given by

ΦA(*) = Σ ¥fc(^) (1.5)
keA

In Sect. 2 we take {ψk} to be the modified Lemarie basis and verify the following
inequalities.

Theorem 1.1. For ε, ε' > 0 there is a constant c> 0 independent of A such that

V r\ (1.6)
keA

where Lk = 2~rk is the scale ofφk.
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Theorem 1.2. There is a constant c > 0 independent of k such that

\uk\x)\ = Le U I)
and

v(
fc)ι \ - #

(1.8)

where x{k) is the center of the cube associated with k and N can be made arbitrarily large
by adjusting a construction parameter.

Remark. Theorem 1.1 appears as Theorem 6.1 in [7], and it is false for the
expansion functions used there. This is the positivity problem mentioned above. We
do not re-visit the stability result (Theorem 7.2 in [7]) because its proof is more
abstract and does not depend on the orthonormal basis used. (For further results in
that direction, see Lieb [14].) Theorem 1.2 is just a re-phrasing of Estimates 3.2 and
3.3 in [7], but the proof cannot be the same because the Lemarie functions are not
sharply localized.

Note. A couple of months after circulating the preprint version of this paper, the
author was informed that Ingrid Daubechies had just discovered an L2-
orthonormal basis of class Cr ondelettes with compact support! While this basis is
not vital for our purposes, it is interesting that the kind of basis that we originally
wanted in [7] really exists! We do not know whether this remarkable result can be
extended to massless Sobelev norms.

2. Application to φ%

Before we prove the theorems, we describe the modified Lemarie functions. For
Lk^ί we have

for some mode / for which Lι = 1. Φι is given by / for which L{ = 1. Φι is given by

Φ^p) = exp z2 £ mμpμ + i £ mμpμ )Φ&(pl (2.2)

where / = (s, m) and Φs is given by (4.7) in [5]. We now propose to complete the basis
at the Lk = 1 level. Recall that in [5] the first stage in the construction of the Φx was to
solve the | |φ ^-minimization problem for block spin assignments that look like

o o o o Λ— o o o o o o

in the preferred coordinate xsi like

0 0 0 0 + + 0 0 0 0 0 0

in the coordinates xμ for μ < s, and like

o o o o + o o o o o o o

in the coordinates xμ for μ> s. What we do now is use only the last type of block spin
assignment in all coordinates at the Lk = 1 level. By checking the argument in
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Sect. 6 of [5], one can easily convince oneself that the resulting basis is complete.
Our basis {φk} is given by

ψk = Φk, Lk<l9 (2.3)

φk(p) = exp(i £ mμPμ\φ{p\ Lk = 1, (2.4)

where k = m in the latter case and

d / _ \)(1/2)M (l/2)MPμ

with χ as the characteristic function of [0,1] and M the even integer adjusted to
obtain whatever degree of smoothness one desires for the basis functions. The only
price paid for this modification is that the unit scale functions do not have vanishing
moments.

We turn our attention to the proof of Theorem 1.1. The main part of the
argument is exactly as in [7] and reduces to

Lemma 2.1. For D = λ / — A + m2 we have

ifj < M.

The parallel statement in [7] is Estimate 3.5, which is false for the ondelettes used
there; the functions are discontinuous, so fractional derivatives cannot lie in L00. For
the ondelettes used here we have as much regularity as we want; we need only adjust
M (which also determines the size of N).

Proof of Lemma 2.1. The estimate is obvious for Lk = 1. Indeed we have exponential
decay, as can be seen from the real analyticity of D(p)JΦ(p). Now consider the case
Lk < 1. By (2.1-2.3) the desired estimate reduces to establishing the bound

\(D{Φs)(x)\^c(l + \x\y\ (2.7)
where

Dk = ^J+L2

krn\ (2.8)

so the key is to look at the behavior of

(2.9)

for multi-indices α. The point is that for large p the quantity is integrable for j < M
and for small p it is integrable for |α| < M + 1 + ; + d. The latter observation is a
consequence of the property

+ 1l (2.10)
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which is easily inferred from (4.7) of [5]. (We are also appealing to the fact that

(2.11)

uniformly in k.) •

Finally we consider Theorem 1.2 and see that there is no more work to be done.
The above argument with j = — 1 establishes the bounds (1.7) & (1.8).

We close this section with a remark on the importance of exponential
localization for the functions φk. Actually it is not the scale-commensurate
exponential decay of the φk that we care about in this context. The unit-scale
exponential decay of the functions uk—i.e., Estimate (1.7)—is what we really want,
and even that property is needed only to establish exponential decay of vacuum
correlations. One can easily check [7] to see that only the scale-commensurate
power law decay (1.8) is needed for convergence of the phase cell cluster expansion.

In [7] one never sees the issue of exponential localization because the φk

functions introduced there are sharply localized. Estimate (1.7) is even more trivial in
that case. Indeed, it was not even mentioned, because in [7] one is exclusively
interested in convergence of the multi-scale cluster expansion. If one wishes to verify
exponential decay of correlations, it is necessary to estimate quantities of the form

YlΦ(fi)flΦ(θj))= Σ Π K J ^ Π K ' ^ ^ Π ^ Π ^ λ (2 12)
i = l 7 = 1 / ki km i j i j

where / i , . . . , / m J 6r l 5 . . . ,6f n eC^ and (following Glimm and Jaffe [15]) we may
assume m, n odd, so that

< Π ^ )> = ° (2 13)
j

The name of the game is to obtain an exponential decay bound:

where A = (J supp/ ί 5 B = (J s u p p ^ . Now by (1.7) we have

c e - d i s t w *<k)>, (2.15)

|(M,,<7 j)Γ / 2^ce- ε d i s t ( ; > : < 1 ) β ). (2.16)

On the other hand,

ΣIK'ΛI 1 ' 2 = Σ l(«*>/ι)l1/4l((- Δ + m2ΓMuk,(-Δ + m2f/,.)|1/4

n k:xίk)esxxppfi+n

gc JΓ \\{-Δ+m2yMuk\\\f. (2.17)

By the obvious generalization of (1.8), (2.17) implies

Σ\(Uk,fi)\1/2^c Σ L Γ ^ I s u p p / J (2.18)
fc /c:x(fc)esupp/ί
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if M is chosen large enough. Taking these elementary estimates together, we see that
(2.14) would follow from

i < Π ^ Π ^ >l^^~ ε m i n |*" λ ( 0 ) | (2 1 9)
i j

This estimate can be proven by a re-examination of the phase cell cluster expansion,
where the convergence proof is modified by judicious use of (1.7) and the observation

> = °- (2.20)
J

The details are case-dependent, but straightforward.

3. Massless Sobelev Ondelettes

In this section we produce a basis of ondelettes (with no large-scale cutoff) that share
all of the properties of the Lemarie functions but are orthogonal with respect to the
norm || Vφ | |2. To put it another way, we construct expansion functions for the scalar
field φ with respect to which the free massless action J(V(/>)2 is diagonal. Since the
IVΓ 1 potential of the Lemarie functions are not exponentially localized, we must
return to our block spin machine to obtain such a basis. ^

The first stage in our block spin construction is to minimize || Wφ | | | with respect
to the constraints

d

Π ( ί % ) Π V; l) Φ(P)XΛP) = σ,{Γ), (3.1)
μ = l \M=1 /

where—as in [5]—we consider without loss the sth sub-level of the unit-scale level
and the 0 th translate of the standard block spin assignment at that level. Our
notation here is exactly the same as in [5]; so are the constraints, for that matter.
Only the quadratic form we seek to minimize is different.

By checking the corresponding derivation in [5], it is easy to see that the solution
φs is given by

μ
μ = l

Π ίx(Pμ)
M+1(^~e^")Ml (3.2)

μ = s+ 1

where χ is the characteristic function of [0,1] and

ί ί l ί(2p, + 2πnμ)\2M + 2 f[ \χ(pμ + 2πnμ)\2M + 2

a (p) = y ^ 1 ^
» (Pi + ^ i ) 2 + •'• + (Ps-i + π n ^ O 2 + (p s + 2πns)

2 + ••• + (p d + 2πnd)
2 '

(3.3)

Remark. The constraints (3.1) are not given directly by bounded linear functional,
but (3.2) is based on the bounded linear constraints implied. The "well-posed form"
of the problem reads almost the same as (2.8) in [5], except there is an additional
factor of 1 — eιPs in the integrand, and so FΛ f(—m s) —P Λ ί (l — mj is replaced by
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PM+ I ( ~ ms) — PM+ i θ — ms) Thus the linear functionals we use here are bounded
with respect to | | δ s φ | | 2 S II Vφ| | 2. However, this does not affect the power of
1 — e~iPs appearing in the expression for φs(p) above.

Actually, what we have done here can be regarded as a continuum version of
what Gawedzki and Kupiainen [16] originally did to the free part of the lattice (Vφ)4

model. Of course, the constraints are modified here to obtain solutions with the
desired degree of smoothness.

The second stage of our construction is to carry out the translation-invariant
orthogonalization on each of the orthogonal levels obtained from this constrained
minimization. Again, without loss we consider only the sih sub-level of the unit-scale
level—i.e., we consider the subspace generated by the (2m1,...,2m s,m s + 1 , . . . ,m d )-
translates of φs. The overlap matrix for our Sobelev inner product is

Π ϊ μ , ,
μ=l

where
/ d \

Φs,m(p) = exp i2 £ mμpμ + i £ mμpμ }φs(p). (3.5)
\ μ = l μ = s+l J

Taking the inverse square root of the overlap matrix, we obtain a basis for the
subspace that is orthogonal with respect to the Sobolev inner product. The functions
are

Φs,J,P) = K(pyll2φs,m(p), (3.6)
where

K(P) = Σ\ Σ(P, + πlf+ Σ (Pμ + 2πlμ
I \_μ= 1 μ = s+ 1

• I φs{pλ + πlu..., p s + πls9 p s + 1 + 2πls+u. ..,pd + 2 π l d ) \ 2 . (3.7)

Since M is chosen to be an even integer, it follows that

1)Mηs(pr1/29s(pr V 2 T ί (eiMp»χ(2pμ)
M+1)

μ=l

+ 1 ί ( p / + 1 Π VmMpΊί(pμ)
M+1), ( 3 8 )

μ = s+ 1

Σ Γ Σ μ + πlμ)
2+ Σ {pμ + 2πlμ

I \_μ=l μ = s+l

•gs(p1 + π l l 9 . . . , p s + π l s , p s + 1 + 2 π l s + ί , . . . , p d + 2πld)
/ s - 1

- 2

Π \ttPμ + 2πlβ)\2M+2\ (3-9)
\μ=S+\ J

Having constructed our basis, we have to convince ourselves that it has all of the
desired properties. Most of the arguments for Lemarie functions carry over with
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trivial changes. Indeed, only the proof of exponential localization is more subtle, and
we devote the remainder of the section to this issue.

The exponential fall-off of Φs follows from the real analyticity of Φs(p). More
precisely, we need:

Theorem 3.1. Φs{p) extends to an analytic function bounded in each zμ uniformly in (p)μ

by an integr able function ofpμ = Rezμ on the strip | Imz μ | < δ for some δ > 0, where

(P)μ = (Pl>- '>Pμ-uPμ+W ,Pd)

Proof. It is straightforward to see that the proof reduces to proving analyticity and
uniform boundedness of gs(p)~ ιp~2 and ηs(p)~1/2 in each variable on such a strip
(see the elementary estimates at the beginning of the proof of Theorem 5.1 in [5]).
Now it is clear from (3.3) that gs(p) is a strictly positive, periodic function that is
continuous except for second-order poles at (πnί9..., πns_ 1, 2πn s,..., 2πnd). On the
other hand, gs(p) extends to a meromorphic function of each variable. Thus the zeros
in each variable (with the other variables held fixed) lie off the real axis. Consider a
variable zμ and then appeal to:

Lemma 3.2. Let J((p) μ ,z μ ) be the meromorphic function defined by J({p)μ,pμ) = gs(p)-
There is some strip | I m z μ | < δ with δ>0 independent of(p)μ on which \J((p)μizμ)\ is
bounded below by some small positive constant.

Proof. Since J((p)μ,zμ) is real-periodic in all of the variables and continuous
everywhere except at the second-order poles, the (p)μ-dependent zμ-zeros are not
only off the real axis, but bounded away from it uniformly in (p)μ. To put it another
way, the (d — l)-dimensional manifolds of zeros in Md~1 x C are separated from Ud

by hyperplanes R d " 1 x (R+ ϊδ). Appealing to the real-periodicity again, we
conclude that J{(p)μ9zμ) is bounded away from zero between these hyperplanes.

D

Proof of Theorem 3.1. (continued) Since

WMvZ^clΣpf + zlΓ1 (3.10)
I f μ

for small values of Im zμ and of such a sum, we may extend the lemma to

Σ 2 μ U

and so the uniform boundedness and analyticity of the reciprocal holds on the strip
|Imz μ | < δ because the second-order poles of (3.11) become zeros. We now have the
desired conclusion for gs(p)~ιp~2.

Now in the expression (3.9) for ηs(p) it is important to bear in mind that
p~2gs{pY2 has zeros only at the points (πnί9..., πns+l92πns9..., 2nnd\ while (3.9) is
a sum over (π/ l 9 . . . , π/s, 2πls+u..., 2π/d)-translations. Hence ηs(p) is strictly positive
as well as periodic (as can be seen by inspecting the remainder of the expression). Let
X((p)μ,zμ) be defined as the analytic continuation of K((p)μ,pμ) = ηs(p). Since this
function is analytic on the strip \lmzμ\<δ, it follows from its real-periodicity that
Re K((p)μ, zμ) is bounded below by some positive constant on some strip | Im zμ | <δ'
with both constants independent of (p)μ. Thus K((p)μ,zμ)~1/2 is analytic and
bounded on this strip uniformly in (p) . •
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We conclude this section with the remark that if we modify this basis in the same
manner that we modified the Lemarie basis in Sect. 2, the unit-scale functions will not
have exponential decay. (Indeed, we cannot expect them to, for this is a complete set
of expansion functions with respect to which a massless action is diagonal, and a
large-scale cutoff will rule out arbitrarily slow exponential fall-off.) If we complete
the basis at the unit-scale level, our block spin assignments are the same as in Sect. 2,
and the unit-scale functions Φm are given by

' Σ rnjλφfr), (3.12)

d
L / 2 ~ / r ι \ - l r . - 2 T~T / i( 1/2) M p „ * / „ \ M + 1 \ /"} i τ \

g\P) p 1 1 v YAPμ) )•> \J.YJ)

μ=l

d

1 Π Iz(/V + 2 ^ ) | 2 M + 2, (3.14)
μ=l

d

2πl)~2 γ\ \χ{pμ + 2πlμ)\2M+2 = g{pYx. (3.15)
I μ=l

Thus
d

μ=l

which cannot be real analytic because p4g{p) vanishes to second order at p = 0. The
point is that the basis is tailored for an infrared problem, so this modification is
undesirable.

4. Group-Valued σ-Model

We would like to say a little more about how we intend to use the massless Sobelev
ondelettes. In a word, we want to develop a phase cell cluster expansion for the two-
dimensional group-valued σ-model that has the same spirit as the Federbush
approach [17] to Yang-Mills fields. Controlling the continuum limit of the
nonlinear σ-model is a difficult problem. Recently Kupiainen and Gawedzki [18]
solved it for a hierarchical kinetic term in the action. Their approach was based on
iteration of the block spin transformation.

We propose to solve the problem for the real kinetic term, but for the group-
valued case [12,13]. We use the lattice-continuum duality of Federbush, where
"small field configuration" means "configuration close to the identity." The
quadratic part of the action has the form [17]

r=ί r= 1

where λr is the running coupling constant for scale 2~r and Sr is the lattice action

(4.2)

(4.3)
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φΊ = 2-rdlφ{x)dx. (4.4)

I runs over sites on the 2~r-scale lattice, while b runs over the bonds. A\ is the 2~r-
scale cube centered at /, and the trace implies a representation of the Lie algebra
elements. Equation (4.4) induces the usual block spin transformation for the scalar
case [16], and in this context it applies only to the small field region. On the other
hand, our phase cell decomposition is

φ(x) = Σ"kUk. (4-5)
k

We prove in a subsequent paper a stability result analogous to what has been
established in the Yang-Mills case [19]. One expects

Λ0S0 + f λr(Sr-Sr^)^cΣλr{k)xl (4.6)
r = l k

where 2~r(k) is the scale of the mode fc, and this infinitesimal result extends to the
small field region.

The technical advantage of our ondelettes will become apparent farther down
the road, when the cluster expansion is actually developed. The combinatoric
problems will be simpler because the continuum covariance is never decoupled. It is
already diagonal with respect to our small field excitations.
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