
Communications in
Commun. Math. Phys. 113, 625-648 (1988) MathθΠΓiatlCal

Physics
© Springer-Verlag 1988

Double Wells: Perturbation Series Summable to the
Eigenvalues and Directly Computable Approximations

Emanuela Caliceti, Vincenzo Grecchi and Marco Maioli*
Dipartimento di Matematica, Universita di Modena, 1-41100 Modena, Italy

Abstract. We give a rigorous proof of the analyticity of the eigenvalues of the
double-well Schrodinger operators and of the associated resonances. We
specialize the Rayleigh-Schrodinger perturbation theory to such problems,
obtaining an expression for the complex perturbation series uniquely related
to the eigenvalues through a summation method. By an approximation we
obtain new series expansions directly computable, still summable, which, in
the case of the Herbst-Simon model, can be given in an explicit form.

1. Introduction

In many problems of physical interest the Rayleigh-Schrodinger perturbation
theory provides divergent power series expansions for the eigenvalues. In several
cases not only are such expansions asymptotic to the perturbed eigenvalues, but
also the correspondence is one-to-one through summation methods such as the
Borel one ([14,9,2]). In other circumstances, like the Lo Surdo-Stark effect
([14,6]), it has been proved that the Borel sum of the series in complex directions
of the parameter defines the resonances of the problem.

As for the double-well Schrodinger operators, the situation is not completely
satisfactory, since the perturbation series is summable in complex directions of the
parameter to the "resonances" ([7,8]) and thus the question is how to obtain the
eigenvalues. This problem of perturbation theory could have connections in other
areas, such as constructive field theory.

We believe we provide here the conclusive answer to this kind of problem with
this type of techniques. In particular we define complex series expansions which
are summable in complex directions of the parameter; the sums can be analytically
continued to the real axis and are related to the eigenvalues in a simple way. Such
series expansions are directly computable by means of approximations as we shall
suggest. Better approximations can be obtained in the framework of this theory
also by means of semiclassical methods.

In order to examine in more detail these questions, we restrict ourselves to

Partially supported by Ministero della Pubblica Istruzione



626 E. Caliceti, V. Grecchi, and M. Maioli

discussing two crucial examples, which will be the object of this work: (I) the
first eigenvalue of the operator H^g) = p2 + x2(l — gx)2 + 2gx — 1 discussed by
Herbst-Simon [10]; (II) any eigenvalue of the operator H2(g) = p2 + x2(l - gx)2.

In case (I) we have stability, but all the perturbative coefficients are equal to
zero so that the only regular sum of the power series is zero itself, while the
eigenvalue is positive for g > 0.

In case (II) the eigenvalue is unstable and splits into two eigenvalues for positive
parameter. Nevertheless we overcome this problem by considering in the usual
expression which defines the eigenvalue a ^-dependent test vector with a definite
parity with respect to 1/20.

Before discussing the results we should say that usually Borel summability is
first proved for the numerator and the denominator separately and afterwards
extended to the eigenvalue by the algebraic properties of nonzero Borel sums
([11]). In this case, expecting a different kind of sum, we try to prove summability
of a power series expansion of numerator and denominator separately. Of course
such series depend on the test function that we use.

As a general result for the two problems, we have E(g) = N(g)/D(g\ where
N(g) = Re F^g, g), D(g) = Re F0(g, g\ and Ffa y), = 0, 1, is the Borel sum of the
series ΣnCj>n(g)yn for g, |y |,arg y small positive, and is uniquely continuable
in γ to y = g.

The coefficients Cjtn(g) are complex: Cjtn(g) = ajtn(g) + ibjίn(g)9 where ajtΛ(g) are
the usual perturbation coefficients for a ^-dependent test vector, and bjjtt(g) are
directly computable in the same way as one computes aj n(g) only in the limit as
g^0 + .

If we consider separetely the two series Σna^n(g)yn, Σnb^n(g)yn and call Φf (g, y),

Φj(g, y) their Borel sums for Im y > 0, we have that Φf (g, y) and Φ}(g, y) are their

sums for I m y < 0 and ReF/0,0) = (l/2)(Φ?(0,y) +

Φ}(d>y)}\y=g>Qι where the first term is the arithmetic mean of the two limiting
values on the cut of a Borel sum, so that it can be a distributional Borel sum (DBS,
see [3, 4]) as we actually prove for model (I), while the other one is the discontinuity
of a Borel sum.

More explicitly in case (I) we have:

E(g) = C,(g) Im </>(</2)/(Re φ(g2) + C2(g) Im φ(g2}\ g > 0, (1.1)

where C±(g\ C2(g) are analytic for #>0 and C^g) -> 2/π, C2(g) -> 0 and

is the Borel sum of

Σαn92n f°r arg(#) small positive. In this case we can prove that Re0(#2) is
n

the DBS of Σαn92" on the positive real axis and 2ilmφ(g2) the associated

"discontinuity" ([3,4]). Note that lmφ(g2)/RQφ(g2) = Ai((2g)~4l3)/Bi((2gΓ4/^
We thus obtain the following explicit approximation coinciding with the

asymptotic behavior

as g^O. (1.2)



Double Wells 627

We anticipate here that this method is based on a linear relationship between
the matrix elements of the resolvant on dilation analytic vectors and the matrix
elements of the resolvents of the "resonance" operators on the same vectors, suitably
dilated (see (4.4)). As for the techniques, we specialize for double-well problems
the stability arguments by Hunziker-Vock [15]. This way we rigorously prove
the analyticity of the double-well eigenvalues (Sect. 2) as well as various stability
properties of non-modal operators (Sect. 3) confirming, among other things, the
results of [7]. We cannot, however, prove by these techniques the analyticity on
the whole disc Re#~ 2 > c> 0, although it looks reasonable in case (II) (see [5])
and it is proved by direct inspection in case (I). In Sect. 4 we discuss the method
and we give the results of the applications to these two problems.

2. Double- Well Schrodinger Operators

Let #eC\{0}; H(g) will denote the operator in L2([R) defined by D(H(g)) =

D(p2)nD(x4),

H(g)u = H2(g)u = (p2 + x2(l - gx)2)u = (p2 + V(g))u, VueD(H(g)).

It is well-known (see [11]) that, for geR, H(g) is a self-adjoint operator with
compact resolvent and thus with discrete spectrum. Moreover the eigenvalues
{En}n = ι of the harmonic oscillator H(0) = p2 + x2,D(H(0)) = D(p2)nD(x2) are not
stable with respect to the family {H(g)}g>0.ln fact V n e N there exist two eigenvalues
£π

+ (g) and E~ (g) of H(g) which converge to En as g -> 0 + . As for the case of complex
g one can prove with standard techniques based on quadratic estimates as in [13]
that H(g) is an analytic family of type A in the open sector |arg(#)| < π/4, g ^0.
As a consequence H(g) has compact resolvent and discrete spectrum in the whole
analyticity region. Similarly one can prove that for fixed g, g φ 0, |arg(0)| < π/4,
the operator

(which corresponds to the scaling x-*μx) when defined on D(p2)nD(x4r) represents
an analytic family of type A in L2(ίR) in μ, for |arg(μ)| < π/4, μg > 0. In particular
for such values of μ, H(μ,g) has compact resolvent, discrete spectrum and its
eigenvalues are independent of μ, thus coinciding with those of H(g).

Now let g = peiθ, with p = \g\>Q and fixed θ: \θ\< π/4. By choosing μ = e~iθ

we pass from the operator H(g) to the operator

H(μ,g) = e2W(p2 + e~4ίθF(p)) = e2teK(p),

which, from the above remarks, has compact resolvent and discrete spectrum which
coincides with σ(H(g)). We want to prove analogous properties to the self-adjoint
case for the eigenvalues of K(p\ D(K(p)) = D(p2) n D(x4), as p-»0 + . To this end
we will make large use of the symmetry of the potential V(p) with respect to the
barrier point l/2p. More precisely let P + (ρ) (P~(p)) be the operator on L2([R) which
projects onto the even (odd) functions with respect to l/2p, i.e.
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P±(p) are orthogonal projections, i.e. they are self-adjoint and idempotent, and the
following properties are immediately verified:

(a) P + (p) + P~(p) = I and thus P+(p)P~(p) = P»P + (p) = 0;

(b) 11^(0)11 = 1;
(c) UERange(P±(p)) if and only if u(x)= ±u(p 1 - x). In particular 7(p)e

Range (P+(p));
(d) P±(p}K(p)u = K(p}P±(p)u, \/uεD(p2)nD(x4).

Finally let us introduce the operators

K±(p) = K(ρ}P ± (p), D(K±(p)) = D(K(p)).

It is easy to show that σ(K(p)) = σ(K+(p))u σ(K~(ρ))\{0} and that σ(K±(p)) consists
of discrete eigenvalues and of the point λ — 0 which belongs to the essential
spectrum, since it is an eigenvalue of infinite multiplicity. Let now K(0) denote the
dilated harmonic oscillator defined by K(0)u = (p2 + e~4Wx2)u, VueD(K(Q)) =
D(p2)nD(x2). We shall prove the stability of the eigenvalues of K(0) with respect
to both {K + (p)}p>0 and {K~(p)}p>0. To this end we shall first show that

(i) if λ£σ(K(0))u{0}, then λeA + r\A~, where Δ± = {zeC: zφσ(K±(p)) and
(K±(p) — z)~ί is uniformly bounded as p->0 + );

(ii) if λεσ(K(0))9 let r > 0 be sufficiently small so that the only eigenvalue of K(0)
enclosed in Γr = {zεC: z — λ\ = r} is λ. Then dimβ±(p) ̂  dimg(O) as
p->0 + , where

rr

is the spectral projection of K±(ρ) corresponding to the part of the spectrum
enclosed in Γr c C\σ(K±(p)). Similarly for β(0).

The proof is based on the stability theory developed by Hunziker-Vock in [15],
which we shall follow in the basic steps, pointing out the changes whenever
necessary. In order to complete the stability result we need also the following
inequality:

(iii) dimg±(p) ̂  dim β(0), asp—>0 + .

It usually follows in a simple way from the strong convergence in the generalized
sense, which however does not hold in this case, neither for K + (p) nor for K~(p).
Our proof of (iii) will make use, instead, of the following

Lemma 2.1.
(a) K(p)u^K(Q)u as p^0+, VweC^(ίR).

The same properties hold for the adjoint operators.
(c) K±(p)u = K(p)u, VueD(K(p)) such that u = P±(p)u.

Proof. Part (a) immediately follows from the convergence of V(p) to x2 as p ->0 + ,
uniform on the compact subsets of (R. As for (b), it easily follows from (a) once we
have proved that (P + (p) — P~(p))-%0, as p-»0 + . This is trivial, since for ueL2(U)
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and

= J u(p-l-x)v(x)dx^0 as p^0+.
supp(ι )

Part (c) is due to the fact that P±(ρ) is idempotent.
We now start to examine (i) and (ii). To fix the ideas we shall work with the

family {K + (p)}p>0, the case {K ~ (p) }p > 0 being completely analogous. The following
result refers to Example 5 of [15].

Lemma 2.2. There exist ξ>0 and y, dependent only on Θ such that

(u,K+(p)uy

Vp>0.

Proof. Choosing y = — 2θ we have

£{(cosy)Re(p2 + e~4ieV(p)) + (siny)Inφ2 + e~

= ξ{(cos 2θ)p2 + F(p)(cos 2Θ)} ^ p2

if we take ξ^(cos2ΘΓ\ since cos2fl>0, Vθe(-π/4,π/4). Thus, VMεCg>(IR)

Now we need to insert the projection P + (p). We have

(P+(p)u^

^ (P+(p)u,p2P+(p)uy = (u,p2P + (p)uy,

where we have used the fact that P+(p) is self-adjoint and idempotent, and it
commutes with p2 and K(p). This concludes the proof of the lemma.

It follows from Lemma 2.2 that the numerical range of K+(p) is contained in
a half-plane β independent of p > 0: Q = {zeC: (cos y) Re (z) + (sin y) Im (z) ̂  0}.
Since the spectrum of K+(p) consists only of eigenvalues, σ(K + (p)} a Q, \jρ > 0.
Then, Vz^β we have ||(z - K + (p))~1 1| g {distί^Q)}-1 and thus zeΔ+.

As a consequence we have the following corollaries.

Corollary 2.3. Δ + ^ 0.

Corollary 2.4. There exists a > 0 independent of p— >0+ st/c/z ί/zαί

|| (1 + p2)1/2P+(p)M || g α{ || ̂ +(p)u || + || P+(p)u || }, Vw€C0»(R).

In the next two lemmas we adapt Lemma 5.1 of [15] to the present situation.

Lemma 2.5. Let AeC\{0}. Suppose there exists a sequence {pn,un} such that p n — >0 + ,
un£D(K+(pn)), | |M W | | - »1 and \\(λ — K+(pn))un\\ ->0 as n->oo. Then there exists a
subsequence {ρm(n),um(n}} such that {pm(n],P (pm(n))um(n}} enjoys the same properties,
i.e. \\P+(pm(n))um(n}\\^l \\(λ-K+(pm(n}))P+(pm(n))um(n)\\->0 as n-*oo.

Proof. Since P+(p) and P~(p) are orthogonal to each other and commute with
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K + (p) we have

0=lim\\(λ-K+(pn))un\\
n-»oo

= lim {\\(λ~K+(Pn))P+(pn)un\\ + \\(λ-K+(pn))p-(pn)un\\}
«-> oo

^limin{\\(λ-K+(pn))P+(pn)un\\+ \iminf \\λP-(pn)un\\.
π-> oo «-> oo

Thus, since /I/O, there exists a subsequence {pm(n)5 um(n)} such that
l|ί"(Pm(ι,))Wm(»)HO, whence \\P+(pm(n))um(n)\\ -> 1, as n->oo. Since ||P+(pw(π))|| - 1,
we have \\(λ- K+(Pm(n}))P + (Pm(n))um(n}\\ = \P+(Pm(n))(λ- K+(Pm(n)))um(n}\\ ^
|| (λ — K + (pm(n)))um(n) I I . Since the third term tends to zero by hypothesis, so does the
first one, and this completes the proof of the lemma.

Lemma 2.6. If λφσ(K(Q))v{Q}, then λeΔ + unless there exists a sequence {pn,un}
such that

\\(λ-K+(pJ)un\\^09 as n-*oo. (2.1)

Proof. Suppose there exists ε>0 such that \\(K+ (p) - λ}u\\ ^ε | |w | | for all p > 0
small enough and all ueD(K+(ρ)). Since / I / O this implies λφσ(K+(p)) and
\\(K+(p) — λ)~1\\^ε~1

9 thus λεΔ+. Hence if λφΔ+ there exist two sequences
pπ-»0+ and unεD(K+(pn}\ \\un\\ = 1, such that \\(λ-K+(pn))un\\ -^0. By Lemma
2.5 we may assume un = P+(ρn)un, and by passing to a subsequence we may assume
un^u as n->oo. Since un = P+(pn)un, it then follows from Lemma 2.1(a)-(c) that
for all vεC%(R),

= lim <υ,(λ-K(pn))uny
n—>cc

= lim «λ-

Since C%(R) is a core of K(ϋ)*9 it follows that ueD(K(0)) and (/ί - K(0))u = 0. This
implies u = 0, because l^σ(X(0)) by assumption.

Now we shall see how Weyl-type sequences can be obtained which are supported
away from the two wells. More precisely we shall prove that Hypothesis 3 of [15]
is satisfied.

Let χeC^(lR) with χ(x) = 1 for |x| ̂  1 and 0 ̂  χ(x) ̂  1, VxeK. For nεN and
p > 0 let us define γ?n as follows. Let supp(χ) c [ — M, M] for some M > 0, and let

χn(χ) = x(χ/n)- τhen SUPP (/J c C -
(1) IfMπ

tf(*)=
(2) If n^(2pΓί^Mn, let

^ n
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(3) If (IpΓ^n, again let

By construction the function χp

n is in the range of P+(p\ i.e. it is even with respect
to (2p)~l\ P+(p)Xp

n = Xn Now let Mn(p) = 1 - χ ζ . The function Mn(p) is also in the
range of P+(p) and supported away from the two wells, which are centered at x = 0
and x = p"1. In the next theorem we check that Hypothesis 3 of [15] is satisfied.

Theorem 2.7. For the function Mn(p) defined above the following assertions hold:

(a) Mn(p) is uniformly bounded in n and p;
(b) if pm-+0+ and umeD(K+(pm}) with | | tιm | |->l, κw = P+(p>M, κM^0 and

\\K + (pm)um\\ ^(const) Vra, then there exists a>0 such that

lim sup || Mn(pm)um \\ > a > 0 Vn;
m—> oo

(c) Mn(p) maps D(K+(p)) into itself and lim ||[M11(pXK+(p)](z-IC+(p))-11| =0
n-> oo

uniformly in ρ,for some zeΔ+.

Proof.
(a) It obviously follows from χ%(x) ^ 1, VxelR.
(b) For any fixed n we have

(2pm)-1 (2pw)-l

m~^oo —oo w-»oo — oo

= 2 lim ||y,,wj|2 = 2 lim | |yM(l + p2]

The first equality follows from the fact that χ£mww is even with respect to βpj"1;
the second one follows from the definition of χ£m is the case (2pJ"x ^ M«. As for
the third equality simply notice that χn(x) = 0 for x ^ Mπ. Finally, to obtain that
the limit is zero we have used the fact that the operator χn(ί + p2)~1/2 is compact
and that (1 + p2}1/2P+(pm)um^Q. In fact, since {K+(pJum} is bounded by assump-
tion it follows from Corollary 2.4 that {(1 +p2)1/2P+(>w)wm} is bounded and thus
weakly convergent to zero. Now (b) is proved since, in particular, lim sup

(c) Let us estimate the commutator [Mn(p\ K+(p}~]. We have

[_Mn(p\p2 + e-

where the functions φ? and ψ%9 obtained by differentiating χ% once and twice
respectively, are uniformly bounded in n and p. This is due to the fact that χ
belongs to Qf(R) and thus dχ/dx and d2χ/dx2 are bounded on R. Since from
Corollary 2.4 \\pP+(p)u\\ ^ (const) (\\K+(p)u \\ + | |w | | ) , we have

p}u\\ + \\u\\) (2.2)
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VuED(K+(p)), for some constant c>Q. Now (2.2) obviously implies (c) for all
zεΔ+.

The following result corresponds to Lemma 5.3 of [15].

Lemma 2.8. // {pn, un} satisfies (2.1\ then so does {pm, vn = MB(pm)Mm}Λ_> 0 0, provided
that m = m(h) is chosen sufficiently large for each n.

Theorem 2.9. For each /leC there exists δ>0 such that

d:(λ,p} = mi{\\(λ-K+(p}}Mn(p}u\\:uεD(K^ P+(p)u = u}^δ,

for all n>n0 and p -> 0 +.

Proof. First notice that \\(λ-K + (p))Mn(p)u\\ ^dist(λ,E+(p)), where E^(p) =
{(Mn(p)u,K+(p)Mn(p)uy:uED(K+(p)l P+(p)u = u, \\Mn(p)u\\ = 1}. Since £„» ̂
[R + -f{e 4 i θ V ( p , x ) : \ x \ >n and x — p 1 |>n}, we only need to examine the
numerical range of K+(p) at infinity and away from the two wells. Now the assertion
follows from lim V(p,x) = + oo, which implies lim dist(/l, E+(p)) = + oo.

|x|-»oo n—χχ>
p^0 + p-+0 +

We are now ready to prove the above mentioned result (i).

Theorem 2.10. Ifλφσ(K(Q))u{0}, then λeΔ +.

Proof. If λφσ(K(0)) and λ ^0, by Lemma 2.6 there exists {pn9un} satisfying (2.1).
From Lemma 2.8 there exists a subsequence {pm(n)} of {pn} such that d*(λ,pm(n))-+Q
as n-> oo, which contradicts Theorem 2.9.

In order to prove (ii) we need some further results.

Lemma 2.11. Let λeσ(K(0)) and Q±(p) be defined as in (ii). Then Range Q±(p) c
Range P±(p\ for α»p->0+.

Proof. Let p > 0 be fixed and sufficiently small, and u = Q+(p)ueRange β+(p). We
want to show that u — P+(p)u. We have

p-(p)M = (2πir
1 § (z-K+(p)Γ1P-(p)udZ (2.3)

Γr

and, setting w(z) = (z-K+(p)Γ'P~(ρ)ueD(K+(p)\ it follows that P~(p)u =
(z — K+(p))w(z) = zw(z), since w(z) — P~(p)w(z). Then from (2.3) we have P~(p)u =
(2π/)~1 $ P~~(p)uz~1dz = Q, since /l^O, if r is sufficiently small, and the claim

rr

is proved. The argument is completely analogous to show that Range β~(p)^
Range p-(p).

Lemma 2.12. Let λeσ(K(Q)). If{pm,um} is a sequence such that pm->0+, \\um\\ = 1,
β + (p m )Um = "m ^nd um Λ M, then u^O.

Proof. If we assume u = 0 we obtain a contradiction proceeding exactly as in the
proof of Theorem 5.4 of [15], thus we shall omit the details. Following the same
argument we obtain

lim(Umsup||M I I(pJtιm | |) = 0. (2.4)
«-»oo m-» oo

On the other hand the sequence K+(pm)um = K+(pm)Q+(pm)um is bounded because
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K + (p)Q + (p) is uniformly bounded as p->0 + by Theorem 2.10. Then (2.4)
contradicts Theorem 2.7(b), since um = P+(pm)um by Lemma 2.11.

Finally we can prove the main result of this section.

Theorem 2.13. Ifλeσ(K(0))9 then there exists p0 > 0 such that dim Q+(ρ) ^ dim Q(ρ)
for all p: 0<p <p0

Proof. Suppose there exist sequences pm-»0 + and umeL2(U), \\um\\ = 1, such that
Q+(pm)um = um and β(0)ww = 0. By passing to a subsequence we may assume um A u.
Now let g(p) and 4 be defined as Q + (p) and /i+ respectively, with K + (p)
replaced by K(0). Then it is easy to see that A ^A + r\A~ = C\(σ(^(0))u{0}).
Hence it follows from Lemma 2.1(a) and Theorem 2.10 that Q(p) converges strongly
to β(0) as p ->0+, and similarly for the adjoint operators. Moreover, from Lemmas
2.11 and 2.1(c) we have Q+(pm)um = Q(pjum = um. Thus, Vt>eCg>(R) <uw,ι>> =
< Q(P m)um , t> > = < κm , β(p J*t; > -> < u, Q(Q)*υ > = < β(0)κ, i; > , which implies β(0)κ - ti.
On the other hand one can easily see that β(0)wm A β(0)w, and thus 0 = β(0)w = w.
Now the contradiction immediately follows from Lemma 2.12.

Before proving (iii) we make some remarks, in order to summarize the results
obtained so far. First of all notice that β(p) = Q+(p) + β~(p) easily follows from
Lemmas 2.1(c) and 2.11. Next recall, as mentioned at the beginning of the section,
that all the properties obtained so far, although stated and proved in many cases
only for K + (p), hold also for K ~ (p). Since Range Q + (p) is orthogonal to Range Q ~ (p)
we have

dim Q(p) = dim g+(p) + dim Q~(p). (2.5)

Moreover, since Q(p) A β(0) as p ->0 + , we have dim β(p) ̂  dim β(0). Finally recall
that σ(K(0)) consists of the sequence of simple eigenvalues {(2n + l)e~2ίθ:n£N}>
thus it follows from (2.5) and Theorem 2.13 that

-(p)^2, as p^0 + . (2.6)

Thus we cannot have both dim Q + (p) = 0 and dim Q~(p) = 0. In the next theorem
we shall prove that dimβ+(p) = dimβ~(p) as p-*0 + , which, together with (2.5)
and (2.6), implies that

dim β + (p) = dim β "(p) = dim β(0) -

In other words, in any neighbourhood of a given eigenvalue λ of K(0) there are
exactly two distinct eigenvalues λ + (p] and λ~(p) of K(p) (the former of K+(p) and
the latter of K~(p)\ both converging to λ as p->0 + . In order to complete our
stability result we need the following

Lemma 2.14. For each zeA+=A~, {(K + (p) -z)'1 - (K~(p)- z)"1} Aθ,
as p->0 + , and similarly for the adjoint operators.

Proof. Let M, ι eC^(ίR). Then, using the second resolvent formula, the fact that
K + (p) and K~(p) commute and the identity K(ρ) = K+(ρ) + K~(p\ we obtain
<{(K+(p)-zΓ1HK-(p)-zΓί}u9υy = (z-\z-K(p)Γ\K-^
it follows from Lemma 2.1 (a) that {(z — K(ρ)) l}* converges strongly to
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{(z-X(O)Γ1}* as p-»0 + . Since C$(U) is dense in L2([R), the assertion is a
consequence of Lemma 2.1(b).

Theorem 2.15. Let Aeσ(K(0)). Then there exists p 0>° such tnat dimβ+(p) =
dimβ~(p)/or all ρe(Q,p0).

Proof. Suppose there exists a sequence pπ->0+ such that dimβ+(pj = 1 >0 =
dimβ~(pn). Then there exists {uj c= L2([R) with \\un\\ = 1 and un = Q + (pn)un. By
passing to a subsequence, if necessary, we may assume un^u and, by Theorem
2.12, u*Q. Since un = P+(pn)un, by Lemma 2.1(c) un = Q(pn)un. Since Q(pn}* ^ β(0)*,
we have Mπ ^»β(0)w, and thus u = Q(0)u. Moreover Q(pn) = Q+(pn) + Q ~(pn)

 =

β+(pπ), because β~(pn) = 0, for each n. Now we obtain a contradiction. In fact, on
one hand < (Q + (pn) — Q~ (pn) )u, u } -» 0 as n -» oo by Lemma 2. 1 4. On the other hand
<(β + (P»)- β"(Pπ)X"> = <β(p>,M>-><β(0)w,M> - < M , M > /O. Similarly one can
show there cannot exist a sequence pn-»0 + such that dimβ (p „) = 1 and
dimβ + (pj = 0. This result combined with (2.6) proves the assertion.

We conclude this section with the following

Remark 2.16. All the results obtained in this section, in particular the stability of
the eigenvalues of K(0) with respect to the family {K±(p)}p>0, hold uniformly in
θ, in any compact interval \θ\ ^ Θ0, 00e(0,π/4).

3. Associated Operators

In the present section some non-modal operators are studied, which are associated
with the Schrδdinger equations considered. We want to obtain in a rigorous way
the stability of "resonances" (Theorem 3.5) already introduced in [7], and we want
to prove the convergence (as g->0) of some ratio of Wronskians (Theorems 3.6,
3.13). In particular, we start off with case (II).

In the following we denote by σp(A) the set of isolated eigenvalues of finite
multiplicity of the operator A, and by σess(A) the set σ(A)\σp(A).

Lemma 3.1. Let p0>Q be fixed and 0^p<p0. Let A(p) be operators in L2((R)
obtained as the closure of the differential expressions f ( x ) 2 p 2 — if'(x)f(x)p + Vp(x)
on Cg>(IR), with VpeLfoc(R), /eL°°(IR) n tf^lR). Let Vp^V0 as p-+Q in the Lj2

oc([R)
topology. Suppose that, for some c > 0 independent of p,

|| (1 + P

2}li2u || ^ c( \\u || + || A(p)u \\ ), VuεC£(U). (3.1)

Suppose that (J σess(A(p)) φ C ana let zφ (J σess(A(p)). Moreover, let there exist
P^O p^O

intervals (afap), b j ( n , p ) ) ( j = ± 1, + 2, . . . , + r πeN; 0^p^p 0 ) of length greater
than 2n satisfying

} = aτ>(n,p) + n< -•• <br= +00,

- GO = a_r< ~ < b _ 1 ( w , p ) = -n, {x:\x >n} = \J(aj(n,p)9bj(n9p))9

j

and let Ej(n,p) = {(u,A(p)uy .ueC£(R}, \\u\\ = 1, suppu c= (aj(n,p),bj(n,p))} satisfy
the following property, there is {σ,J— »0 such that, for any sequence σ'n — 0(σn) one
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can find δ>0 so that

dist (z, Ej(n, σ'n)) ^ δ > 0 for n large enough. (3.2)

If zφσp(A(0)\ then zeΔ = (weC: wφσ(A(p)) and [^(p)-w]"1 is uniformly

bounded for small p ̂  0}. In particular A / 0.

Proo/ After fixing χeCJftlR), 0 ̂  χ ̂  1, χ(x) = 1 for |x | ̂  1 and χ(x) = 0 for |x| ^ 2,
we set Mπ(x) - 1 - χn(x) = 1 - χ(x/n). We also define MJ'(rc, p)eC°°(^) (for all j, n

and p) so that

supp M7(n, p) c (aj(n, p), bj(n, p)), Mn(x) =
J= -r,JTU

\dk/dxk(Mj(n,p)(x))\ ^n~ksup\dkχ(x)/dxk\. (3.3)
x

One way of defining M7'(n, p) is the following: for j = 1,2,..., r — 1 let

(n, p), bj(n,p))

..,, w . J A , ΛcVι* 7 (n,p) + n, fe. (n,p) —n)
MJ(rc,p)(x)= <^ J J

- χ(π "1 [x - β/rc, p) + n]), α/n, p) ̂  x ̂  α/n, /
and

Similar definitions for j < 0.
Taking into account these definitions the lemma is proved "ab absurdo." Since

zφ (J σess(A(p))9 by Lemma 5.1 of [15] we have zeΔ unless there are two sequences

{pm} c ̂ +, {um} c Dμ(pm)) such that

Since C^(IR) is a core of A(p\ we can choose {ww} in CJ(1R). Since, by (3.1), {(1 +
p2)ί/2um} is bounded, it tends weakly to zero, whence ||^Λ(1 +p 2)~ 1 / 2.
(1 + p2)ίl2um\\ ->0 as m->oo. As a consequence, for each n, l im| |M π w m | | = 1. So

m

limsup || Mj(n, ρ)um \\ ̂  (2r)~1 > 0 at least for one j (3.5)
m

for each neN, uniformly in p(j = ± 1, ± 2,..., + r O <p <p0). Besides, by (3.1),
(3.3) and by conditions on /(x) we have:

|| [MJ(n, p), ̂ 4(p)]w|| ^ c 0 n~ 1 ( | | y4(p)w| | + || w | | ) (3.6)

with c0 independent of n and p.
Therefore, if {pm} satisfies (3.4) then by (3.5) and (3.6) there is m = m(n) such

that pm(II)-»0, ||M^,pm(π))ww(n)|| ̂ 0 for at least one ,

and || (z

l l + I I [M7 '(n,pm π),^l(pm π)]wm n 11)^0 as
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By passing to a subsequence we may assume that ρm(n} = O(σn) so that by hypothesis
(3.2) we have the contradiction

]| {z ~ A(pm(n))}MJ(n, pm(n])um(n} \\ ̂  dist(z, E/n, pm(π))) ̂  δ > 0 (3.7)

for n large. This proves the lemma.

Theorem 3.2. Let the hypotheses of the preceding lemma be verified except for the
following modifications:

(i) dist(z, σem(A(p))) ^ δ', for some δ'>0,0^p^Po,
(ii) zeσp(A(0)) (instead of: zφσp(A(Q))).
Then z is a stable eigenvalue of A(ty with respect to the family A(p) as p— >0.

Proof. By Lemma 3.1 any λ φz of a convenient neighbourhood of z belongs to
Δ, so that Δ / 0. From this fact and from the construction of Mj(n, p) in the proof
of Lemma 3.1 (in particular from (3.5) and (3.6)) it follows that the operator family
A(p) and the associated operators Mj(n,p) satisfy Hypothesis 3 of [15]. Under
these conditions, according to the stability criterion stated in [15], Theorem 5.8,
the needed estimate would be

z9 p) = inf { || (z - A(p))Mj(n, p)u \\ : MJ(n, p)ueD(A(p)),

-\\MJ(n9p)u\\ = l}^δ>0 (3.8)

uniformly in n and p, for j = ± 1, + 2, . . . , ± r.
Now, by (3.2) we have that d(^(z, p'n) ^ δ ̂  0(j = ± 1, . . . , + r) for any sequence

{p'n} tending to zero sufficiently fast. This is sufficient to ensure stability, as it turns
out by the same arguments used in [15, Theorem 5.4]. This completes the proof.

Let us consider the "resonance" operators defined in [7] as the closed operators
given by

H^(g) = e-l(±π-2θ^{p2 + x2(ei(±π-2θ}/3 - \ g \ e ± ί a / 2 x ) } , (3.9)

and having C2(R)nL2(R) as a core, with θ = argfer), - π/4 < θ < 5π/4 for H ( + } ( g )
and - 5π/4 < θ < π/4 for H(~](g\ H(±\g) is the realization in L2([R) through complex
scaling of the eigenvalue problem (p2 + x2(l — gx)2)ψ = zψ, when we look for
eigenfunctions exponentially decaying along the line Ue±lπ/6 if gεU, as x\-+ao
(along the line Rel(-θ±π/m if θ φ 0).

To fix ideas, let us consider H(~\g) and set α = — (θ + π/2)/3. By the standard
Liouville-Green approximation one checks that the solutions keep their L2

properties if x is replaced by xe~ιη for x » 0 and by xelή for x « 0 (Q<ή« 1): see
(9) in [7] and [12, par.6,21,24]. Hence, choosing a non-increasing ^6C°°([R) such
that η(x) = ή for x ^ — 3 and η(x) = — ή for x ^ 3, we have a deformation:

)(ξf(x)y\ ξ(x) = xe1^ (3.10)

which transforms H(~\g) into a compact resolvent operator with the same
eigenvalues.

Explicitly, factoring £ί(2θ + π>/3

? H(~\g) is transformed into

H ( - } ( g ) - f(x)2p2 - if'(x)f(x)p - ξ(x)2(e«-2θ + π^ - Pξ(x))\ (3.1 1)

where g = peίθ, p ^ 0, and
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f(x) = (ξ'(x)Γ1. (3-12)

Now we prove that, for some dense set of dilation analytic functions (such as
e-χ2/2P(xlP(x) is a polynomial}),

^ ) - z ] - 1 0 _ α , > , (3.13)

where φ, ψεV, ΦΛ(x) = e^2φ(eixx\φΛ(x) = 0β(£(x))K' (x))1/2, with | α ± f / | < π / 4 .
Indeed this equality is obtained by a deformation of the real axis into the integration
path defined by ξ(x) and using Cauchy's theorem and the fast decay of the integrand
in the whole sector between π and π + ή and in the sector between 0 and — ή. This
proves (3.13), so we can show the spectral properties and the estimates relative to
H(~\g) by studying H^g).

Notice that, for 0 = 0, this construction leads to an operator H(~\0) which has
the same spectrum of the usual harmonic oscillator (up to the above phase factor).
We want to prove that the eigenvalues of H(~\ty are stable with respect to the
family H(~}(g) as p -> 0, for — 5π/4 + ε rg θ ̂  π/4 — ε, for any fixed ε > 0, choosing
Q<ή«ε. For sake of simplicity we prove the intermediate steps only for
- π/2 ̂  θ ̂  π/4 - ε.

Proposition 3.3. For any fixed ε > 0, 0e[ — π/2, π/4 — ε] and ή>Q sufficiently small
with respect to ε, the operator H(~\g) satisfies assumption (3.1) of Lemma 1.

Proof. Setting β = π/4 - θ, Vp(x) = - ξ ( x ) 2 ( e 2 ί β / 3 - pξ(x))2, βefe 3π/4], it is
enough to find a real- valued function yp(x), xeίR, such that

Re{exp(- iyp(x))(f(x)2μ2 - if'(x)f(x)μ + Vp(x))} + k ̂  cμ2, (3.14)

where k,c> 0 are independent of x, μ and p(μe(R,0 rg p < p0). Since 77 (x) = ±ή,
f(x) = e

±lήίθΐ |x| ̂  3, choosing yp(x) - (l/2)(arg Fp(x) + 2arg/(x)) one checks that

Re{exp(- iyp(x))Vp(x)} + fc, ̂  0 (3.15)

for some kl > 0: indeed Vp is bounded for | x | ̂  3. Moreover there is c0 > 0 such that

Re{exp(-/yp(x))/(x)2μ2}^c0μ
2, V x e R (3.16)

Indeed one can take c0 = sinή for |x | > 3. For |x | ̂  3 one can find p0 > 0 so that,
if 0<p<p 0 ,F p (x) is close to - e4ίβ/3ξ(x)2, whose phase is - π + 4β/3 + 2η (x),
with \ η ( x ) \ ^ ή : this allows us to find c0 > 0 satisfying (3.16). Now (3.14) is a
consequence of (3.15) and (3.16): indeed the term — ι//(x)/(x)μ(μ6lR) is easily
checked not to modify the asymptotic behaviour of /(x)2μ2 + Vp(x) as |μ| -> oo.
This proves the assertion.

Proposition 3.4. //zeC\σp(H (~ }(0)), then the resolvents (H(~}(g) — z)"1 exist for
\g\ small and are uniformly bounded as \g\ -»0. // zeσp(H(~\(S)} then it is a stable
eigenvalue with respect to the family H(~](g).

Proof. The estimate (3.1) is satisfied by H(~}(g) by virtue of Proposition 3.3 while
σess(H(~}(g)} = 0>Vg Therefore it is enough to verify, VzeC, the second group of
hypotheses of Lemma 3.1, in particular (3.2); then the first assertion will follow
from Lemma 3.1 and the second assertion will be true by Theorem 3.2.
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Suppose β = π/4 — 0,/Je[ε, 3π/4] (analogous arguments hold for β > 3π/4).
Define, for each neN and 0 < p < l/2n: a1 (n,p) = n, b1(n,p) = 2n + 1/p, a2(n,p) =
n + ί/p, b2(n,p)= + CQ. Let α _ 1 , f o _ 1 , α _ 2 , ^ - 2 b e defined by symmetry with respect
to zero. In this case Ej(n,p\ as defined in Lemma 3.1, coincides with the convex
hull oϊ{f(x)2μ2-if(x)f(x)μ+Vp(x):μeU,xE(aj9bj)} (j = ± 1, ±2). We want to
prove that, for any zeC, dist(z, Ej(n, σn)) -> oo as n -» oo if σn tends to zero sufficiently
fast. The idea is to show that if xφ7 , fyλμeR, then f(x)2μ2 - if(x)f(x)μ + Vσn(x)
is contained in some angular sector of amplitude strictly less than π( j = ± 1, + 2, n
large): thus the divergence lim \Vσn(x)\= +00 will be preserved under convex

(jcHx)

combinations restricted to xe(α7 (n, σj, b7 (n, σj) and, as a consequence,
limdist(z5E7 (n,σw))= + oo. Therefore the proof is reduced to the following

n

statements:
a) lim I Vp(x)\ = + oo uniformly for 0 < p < p0

|x|->oo

b) for suitable pn-»0 let σn = 0(pn): then
bj Vε '>0, 3n:Mn>n, -π +4ή <^argVσn(x)^ - π + 4)8/3 -f 2/y + ε', Vxe

(- GO, -n)
b2) 3ε'>0, 3n:Vrc>tt , - π + 4)3/3 - 2ή ̂  arg Fσ»^ 4ββ -2ή-ε'Vxe

(n,2n+l/σ n )
b3) V ε ' > 0 , 3 r c : V t t > f t , 0 ̂  arg Fσn(x) ̂  π- 4^ + e',Vxe(n + l/σw, + oo).
To prove part a) it is enough to find a uniform positive lower bound for

e2iβ/3 _ pxein(χ)\2 = ! + ̂ 2^2 _ 2pχcos(2β/3 - η(χ)). Since >/(x) - ± ή for χ| ̂  3,

with ή small with respect to ε, /Je[ε, 3π/4], we have cos(2/?/3 — η(x)) <c<\, which
proves the lower estimate. Part bj is immediately suggested by the phases of
— ξ(x)4 and — e4iβ/3 ξ(x)2 for x < — n. For part b2) suppose j8e[ε, 3π/8] (in complete
analogy one can treat other β's). It is enough to see that

- π + 4β/3 - 2ή ̂  arg Vσn(x) ^ π/2 (3.17a)

3εr > 0,3^:Vn > n, Im Vσn(x) ^ tan(4^/3 -2ή- ε') Re Vσn(x) (3.17b)

are both valid \/xe(n,2n + 1/σJ. Now (3.17α) follows from Im Vσn(x] ^ tan(4ββ -
2ή) Re Vσn(x). This inequality in turn reduces to σnx ^ L, where L = (2 tan(4)8/3 —
2?/) cos(2β/3 -3ή)-2 sin(2ββ - 3ή))(tan(4ββ - 2ή] cos 4/y + sin 4//)~ x . So we
have 2n + l/σπ ̂  L/σn, for σn-»0 sufficiently fast, only if L> 1, which is true by
direct inspection. Equation (3.17b) is equivalent to an inequality which is a fortiori
verified if σnxrgM(ε'), where M(ε')> 1 for ε' small: so, if xe(n,2n+ l/σn), then
(3.17Z?) holds. Similarly one can show part b3) and the proposition is thus proved.

These results and the analogous ones that we can obtain for H(+\g) can be
summarized as follows.

Theorem 3.5. Every eigenvalue of the harmonic oscillator p2 + x2 is stable with
respect to the families H( + )(g), H(~\g) defined by (3.9) as 0->0, if |arg(0) +
π/21 < 3π/4 respectively. In particular, for any ε > 0 the stability with respect to both
H( + \g) and H(~\g) is uniform for arg(#)e[ — π/4 + ε, π/4 — ε].

In the following section we shall use the solutions Uj(x) — Uj(x, g, z) of the
equation [ — d2/dx2 + x2(l — gx)2^\u = zu exponentially decaying as |;x|-»oo in
any direction of the sector Sj(g) = {xeC:|argx + arg(#)/3 — πj'/3| <π/6), j =
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— 2, — 1,...,3. Such solutions are determined up to constant factors, which are

taken so that Uj(x, g, z) = w _ 7 (x, g9 z). We are interested in the behaviour, as g -> 0 + ,
of the ratio

k(g9z) = (W0tί(g9z)W3t.ί(g9z))(W0ί.ί(g9z)W3tl{g9z)Γ1

9 (3.18)

where Witj(g,z) is the Wronskian of the solutions uhuj (notice that k(g,z) does not
depend on the choice of the above mentioned constant factors). Similarly let Uj(x, z)
denote the analogous solutions of the equation [ — d2/dx2 + x2]w = zu decaying
as |x|->oo in the sectors Sj= {x: |argx — πj/2\ < π/4}(j = — 1,...,2), and let
Witj(09z) denote the Wronskian of the solutions ύ i 9 ύ j . Then we are able to prove
the following convergence.

Theorem 3.6. Let g > 0 and let zeC\σp(H(0)). Then the function k(g9z) defined by
(3.18) satisfies

^^ (3.19)

as g-+Q9 uniformly on compact sets in z.
The proof of Theorem 3.6 comes down to operator techniques the following way:
(A) Expression (3.18) can be written in terms of Green functions:

k(g9z) = (G0ί-ί(xg9xg9g9z)G3iί(xg9xgιg9z))(G0tί(xg9xg9g9z
(3.20)

Here Gitj(x9 y; g, z) denotes the (formal) Green function associated with the solutions
ui9Uj. Similarly one can define Gtj and write fc(0, z) in terms of G 1 7. The point xg

is arbitrary, except for the fact that G i j ( x g 9 x g ; g 9 z ) ^0 for any i and j.
(B) We consider the closed operator

Ko,ι(0) ̂  /MV - if'WfWP + £(*)2(1 +9ξ(x))2, (3.21)

with C$(U) as a core. Here g^Q, ξ(x) = xeiη(x\f(x) = (ξ'(χ))-1 and η(x) is a
non-decreasing function such that: ηeCco(U),η(x) = —π/2 — ή for x^ — 1 (ή>0
and small), η(x) = 0 for x ^ 1. Similarly we consider the closed operator K3tl(g)9

having C^((R) as a core, defined by

K3tί(g) = h(x)2p2 - ih'(x)h(x)p + ζ(x)2(l + gζ(χ ))2. (3.22)

Here g > 0, ζ(x) = xelQ(x\ h(x) = (ζ'(x))~ 1 and θ(x) is a non-decreasing function such
that $eC°°(R), θ(x) = 0 for x ^ 2 and θ(x) = ή + π/4 for x ^ 3(f/ > 0 and small).
When # = 0 we denote K2tί(0) the operator defined this way.

(C) The functions u0(x + 1/g; g, z) and ul (x + l/g; g, z) are fundamental solutions
of the equation K 0 t l ( g ) v ( x ) = zυ(x) in the interval (1, + oc). Indeed such equation
reduces to — u"(x) + x2(l — gx)2u(x) = zu(x) (with u(x) = v(x — l/g)) for x > 1 and,
taking into account the deformation which defines K0 ?1(g), uθ9u^ are L2 at
+ oo, — oo respectively. Similarly u3(x + l/g,g9z) and u^x + 1/0; g,z) are funda-
mental solutions of the equation K 3 t l ( g ) v ( x ) = zv(x) in the interval (— oo,2). Now,
let 1 < x0 < 2: by these remarks the Green functions for KQΛ(g) and K 3 > ί ( g ) can
be constructed so that, when calculated in (x0,x0), they coincide with G0 >ι(x0 +
l/g, x0 + l/g) and G 3 j l(x 0 + ί/g9x0 + l/g) respectively.
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(D) Take xg = x0 -f g~ 1 in (3.20), for some suitable x0e(l, 2) and consider the Green
functions Gfj of the operators Kitj(g) satisfying the property just quoted in (C) (a
symmetric definition and an analogous discussion can be given for the operators

£o-ι(0) and 3-ι(0)) τhen:

(3.23)

We have the analogous representation of k(0,z) in terms of Green functions G^
associated with the operators Ktj(0) defined in (B) and constructed so that
Gtj(xQ9XQlz) = G i J ( x θ 9 X Q ' 9 z ) for x0e(l,2).

As a consequence, Theorem 3.6 is proved if we can show that

K0.ι(0)->Ko,ι(0) as #-»°> (3 24a)

K3tl(g)-+K2tί(0) as g^V, (3.24b)

in the strong resolvent sense. If (3.24) is verified, choosing x0e(l,2) so that
Gιj(xθ9 x0; z) Φ 0, we have G/ 5 j (x0, x0; g9 z) •=£ 0 for g sufficiently small, the right-hand
side of (3.20) is well defined and (3.19) follows.

To prove (3.24) we need the following propositions.

Proposition 3.7. The set Δ = {zEC:zφσp(K0tl(g)) and (K0tl(g) — z)"1 is uniformly
bounded for g ̂  0} coincides with C.

Proof. An application of Lemma 3.1. To prove the needed estimate (3.1) it is
enough to consider eiβKQΛ(g) (with β = - π + 3ή/2) and to show the existence of
a real- valued function γ(x) such that:

Re e-iy(*V'K0,ι(0) ̂  cιP2 ~ C2 (3.25)

(as quadratic forms on Q?([R)) for c 1 ? c 2 >0 independent of g. Choosing a
non-increasing C°° -function y(x) such that y(x) = (π — ή)/2 for x ^ — 1 and y(x) =
( — π + ή)/2 for x ^ 1 and taking into account the behaviour of ξ(x)9 one can show
(3.25) by the same arguments used in the proof of Proposition 3.3. As for the
second group of hypotheses of Lemma 3.1, the situation is simplified with respect
to the proof of Proposition 3.4. Indeed we can simply take (aί,b1) = (n, 4- oo),
(α-!, b-JΛ- oo, -n).Itis easy to verify that {(u,eiβK0tl(g)uy:ueCo(U), \\u\\ = 1,
suρpwc=(— oo, — n)} is contained in a sector of amplitude strictly less than π
uniformly for small g, so that dist(z, £_1(n, g))-> oo as n-> oo, zeC, g small. Since
the same result holds for E^n^g), Lemma 3.1 applies for all zφσp(K0jl(0)). This
spectrum, in turn, is empty because the solutions w0(x,z) and Uι(x,z) (as defined
above) are linearly independent for all z (see [12], par. 21) and the Green function
associated with K0tl(0) can be constructed by means of solutions coinciding with
MO, M! for x ^ 1. Thus Lemma 3.1 applies for any zeC and the proposition is proved.

To prove an analogous result for K3ti(g), it is convenient to define H 3 t ί ( g ) =
T-ι/gK3ti(g)Tlfg9 where T.ίlgφ(x) = φ(x-l/g). K3tl(g) and H3tl(g) are unitarily
equivalent and have the same spectrum, but the formal limits as g -> 0 + are K2,ι (0)
and K2>0(0) respectively:

X2ιl(0) = /z(x)V - ih'(x)h(x)p + C(x)2, (3.26a)
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K2ί0(0) = p2 + x2. (3.26b)

If we consider the closure of the differential expressions (3.26) on Cg^lR), K20(Q)
is the usual harmonic oscillator, while K2^(ty has empty spectrum (indeed the
solutions u2(x,z\ϋ1(x,z) are linearly independent for all z, and the Green function
associated with K2 ^(0) can be constructed by means of solutions coinciding with
U29u1 for x ^2).

Proposition 3.8. The operators K3tί(g) and H3tί(g) satisfy (3.1) uniformly for g^O.

Proof. Let y be a non-increasing C°° -function such that y(x) = — π/4 for x g 2 and
γ(x) = — π for x ^ 3. Proceeding as in Proposition 3.3 the required estimate is
proved for eiv(x}K3tl(g)9 and hence for K3Λ(g) and H3tί(g).

Let χεC$(R),χ(x)=l for |x |^l,χ(x) = 0 for |x ^ 2,0^ χ(x) ̂  1, and let
χn(x) = χ(χ/n),neN. Let us define, for g sufficiently small with respect to 1/w,

(3.27b)

Proposition 3.9.
a) Mn(g) is uniformly bounded in n and g.

b) // gn-+Q + and umeD(K^(gm))9 \\um\\ -+ l,um

and \\K3tι(gm)um\\ ^ C, /or .some C>0, Vm, then

l im| |M n(gfm)um | | = l, Vn.

c) IICM^
uniformly with respect to g ^ 0 αwd WE 1^1.

Proo/. The first assertion is trivial. To prove b) notice that, for gm sufficiently small,

l l^ w w m | | 2 ^| | Z / I t/ m | | 2 +| | Z ^ m | | 2 ^0 as m-^oo. (3.28)

Indeed χn(l +/? 2)~ 1 / 2 is a compact operator independent of m, while

(1 + p2)1/2vm-^Q by Proposition 3.8. This proves that \\Mn(gm)um\\ -> 1, for all n,

as m -> oo. Since the derivatives of χ9

n are bounded independently of (g, c) is proved
using Proposition 3.8.

Definition. Let λeC and let

(g}\ \\M±(g)u\\ = 1},
(3.29)

where MΛ

+(0)(x) = MΛ(0)(x) if x^O,M-(gf)(x) = MIIto)(x) if x < 0, and
M*(g)(x) = 0 otherwise.

Proposition 3.10.
(i) // {^m,wm} satisfies b) 0/ Proposition 3.9, ί/zβw /or any weN we have

limsup || M; (#>,„ || ̂  1/2 or limsup || M; few)uw || ̂  1/2.
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(ii) Point c) of Proposition 3.9 holds both if Mn(gm) is replaced by M^(gm) and
byM-(gm).

(iii) V/eC, lim d*(λ,g)= +00.
«-»• oo

g^0 +

Proof. The first two assertions are easily verified. We have lim |C(x)(l + gζ(x))\2 =

+ oo uniformly in g ^ 0. Moreover the values taken on by the potential and by
h(x)2p2 — ih(x)h(x)p remain in some sector whose amplitude is less than π uniformly
in g. Hence dw

+ (A, g) -> + oo . For d~(λ9g) we have to consider K3tl(g) for
x< — n9 \x + g~1\>n9 where K3Λ(g) = p2 + x2(l + gx)2. Thus the proposition is
proved.

Proposition 3.11. Let λεC\σ(H(0)). Then λeΛ unless there exist gm-^Q + ,umeD

Proof. Proceeding as in Lemma 5.1 of [15], we have only to verify that υm — %0.
Since \\(λ-K3tl(gJ)um\\^09\\(λ-H3tl(gm))vm\\^0. Now, passing to a sub-

sequence if necessary, vm-^v so that, for any

which implies v = 0, and the assertion is proved.

Proposition 3.12. The resolvents (λ — K3 ι(g)}~1 are uniformly bounded as #->0 +
for λeC\σ(H(0)).

Proof. If λeC\σ(H(ϋ)) and λφΔ9 then there are two sequences {gn,un} satisfying
the properties stated in Proposition 3.11. By Proposition 3.9 the same properties
are satisfied by {gm(npMn(gm(n))um{n}} as n-» oo. Indeed, we only need to check the
weak convergence to zero of Mn(gm)um and of T.ll?mMn(gm)T1/gmT_llgmum (with
m = m(n)) as n-> GO. Such weak convergence occurs since both the operators Mn(g)
and T_1/gMn(g)T1/g strongly tend to zero uniformly in g. Then we know from
(i)-(ii) of Proposition 3.10 that the same properties are satisfied by both
{gm,M?(gm)um} and {gm9M~(gm)um}9m = m(n). Therefore (iii) of Proposition 3.10
is contradicted and λεΔ.

Now for the model H1(g) = p2 + x2(l — gx)2 + 2gx — 1, one can prove the
following statements in full analogy with the preceding theorems.

Theorem 3.13.
(i) The ground state eigenvalue of p2 + x2 — 1 = H(0) — 1 is stable with respect

to the family H^g] = p2 + x2(\ — gx}2 -f 2gx — 1 (defined so as to have C^(R) as a
core).

(ii) The eigenvalues of H(0) — 1 = p2 + x2 — 1 are stable with respect to the two
families of "resonance" operators H\±}(g) defined in analogy with (3.9).

(iii) // k(g,z) denotes the ratio (3.18) constructed by means of solutions of
Hι(g)u = zu(g > 0), then fc(0, z) -> fc(0, z - 1) = eίzπas g^O.
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4. The Method

a) The Resolvent Formula. A crucial point of the method consists in the expansion
of some matrix elements of the resolvent in terms of matrix elements of the two
Hermitian conjugate resolvents for the "resonances" (see (4.6) below). This result
applies unchanged to case (I) and case (II). Now let H(g) = p2 + V(g) = Hk(g\
/c=l ,2 , for geC,g /0,θ = arg(0). Following Sibuya [12] we introduce the
fundamental solutions Uj = Uj(g9z) of the formal Schrδdinger equation H(g)u = zu,
each vanishing for \x -> oo in any direction in the sector Sj(g) = (.xeC:|arg(x) +
θ/3 — πjβ I < π/6}, — 2 :g j ^ 3, and completely determined up to a constant factor,

here taken in such a way that Uj(g,z) = u_j(g,z) for xetR. This is possible because
the equation is real for x,g,z real and the conditions are complex conjugate. Let
Witj = Witj(g, z) = Ui(x)Uj(x) — ufi(x)Uj(x), V cetR, be the Wronskian of two solutions,
and suppose Wlί-1 = — W_IΛ /O. In this case {u1,u,1} is a basis for the space
of the solutions of the Schrόdinger equation, and we have:

u0 = c+uί + c _ M _ l 9 (4.1)

where c± = t^0,+ι/^±ι,+ι are the Stokes multipliers of u0 with respect to {u^.u- ^}
(see [12] page '83).

Let Wjtk φ 0 and define the two-index "kernels":

In particular, if W0^, W2 j ± 1 are different from zero, using (4.1) and (4.2), we have
the relation:

ί -1(x9y), (4.3)

where ά+ = c+ ^.+1/^3,0 - W^W^/W+^W^ = (1 -k±lΓ\k=WQΛW^_,/

W0, _ ! W3tl , and h = h(g, z) = h(g, z) = - ί(l + k}/(\ - k\ We set G(x, y) = G3,0(x, y\
since it is the kernel of the resolvent R = R(g9 z) = (H(g) — z)~ 1. Now we state the
main result of this paragraph a):

Lemma 4.1. Let R = R(g9z) = (H(g)-zΓ1 far zφσ(H(g)\ 0 /0,|θ| <π/4, and
φ,\l/ENπ/4 the class of dilation analytic vectors [10]:Nπ/4 = {^eL2([R):^α is analytic-
ally continuable from Re(α) = 0 to |Re(α)|<π/4, where ψa(χ) = (Uaψ)(x) =
el*/2 ψ(eiax)}, containing the set {e~χ2/2P(x):P(x) is a polynomial} dense in L2(R). Then

<φ,^>=i(l + iΛ)<φ- α ,Λ ( + Vα>+i(l-i f t)<0«'^<->^_ β ,χ (4.4)

where R(±) = R(±)(g,z) = (H(±)(g) - z)~\ and H( + \g}(H(-\g}\ defined in (3.38) as the
"resonance operator" (see also [6]), is formally given by H( + \g) = UaH(g)U_Λ

(H(-\g] = U_a,H(g) UΛ, = H(+}*(g}\ where α = α(0) = π/6 - θ/3(α' = α(^) =

π/6 + θ/3).

Proof. The operator R( + } (and similarly R ( ~ } ) is directly defined through the Green



644 E. Caliceti, V. Grecchi, and M. Maioli

function G(+)(x,y) as integral kernel [7], where:

with ujίlx=Uauj, and G3 > l j α(x,j;) = eiaG3 Λ(eiax, ei<xy). In order to prove (4.4) we
consider for g ^0, |arg(0)| < π/4, the class Dg dense in L2([R) given by: Dg =
{φg:φg(x) = P(x)exp( - g(x2 + 1)3/2 - x2), for some polynomial P(x)}. Let <^, ψg£Dg;
then we have

= J φg(χ) G(x,y)ψβ(y)dxdy = i(l + ih) J

J Φg(^}G3ί_1(x,y
π>2

-/Λ) J Φes(

^-Vfl.-.'>, (4-6)

where we have performed a change of path and of variable: (x,y)-^elcί(x,y\
(x,y)-+e~l*(x,y) in the first and the second integral respectively, justified by
the rapid decay of the integrand in the intermediate directions at infinity.
In fact [12] we have ttj(x) - CjXvQxp( ± (gx3β - x2/2}\ - 2 ̂  j g 3, and φg(x) -
c'nx

nGxp( — g\x 3 — x2 — f^ |x |) as | x | — >oo in 50(gf). The proof is completed con-
sidering the density of Dg for any g, |arg(#)| < π/4, and the continuity of (φ,Rψy
in the vectors φ, ψ.

b I) The Perturbation Formula for Case (/). In case (I) we can apply (see
Theorem 3.13) the perturbation theory for an isolated stable eigenvalue as #->0 + ,
so that for small positive g, we have

= N(g)/D(g), (4.7)

where N(g) = (2mΓ1$z(ιl/l9R(g9z)ιl/2ydz, D(g) = (2πi

and Γ is a closed path encircling the origin (for instance the circle |z| = 1). i/^, ι/f 2 ,
possibly dependent on 0, should belong to 7Vπ/4 for our purpose. Actually, in order
to have the most explicit results with the use of (4.4), it is convenient to extend
(4.7) to formal vectors φl(x) = Φ2(

x) = Ψ(0>x) = 9Q*$(g^β ~ i*2) We notice that
ψ(y,x} = yQxp(ί\y\x3/3-^x2e2ί«), where α = π/6-θ/3, θ = arg(y), - π/4 < θ <
5π/4, is an eigenvector of H + (y) with eigenvalue λ = 0, the real "resonance" associated
with the ground state. This choice of vectors is justified by formula (4.4) and the
existence, for any given g, of a sequence {φ(n)} belonging Nπ/4 such that
Φ(n}±π/6 _ > lA±π/6(0) ^n (4-4) we can disregard the term containing R(~\ since we

have (ψ,Rψy = Re((l + i/ί)<^_π / 6,Λ ( + )^π / 6» for positive g and ψ<ENπ/4r. Thus
we have

F0(g,g\ (4.8)
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where Fj(g, y) = (Φj(g, y) + Φ/0, y))/2 and

for — π/4 < arg(y) < 5π/4, \γ\ small and positive. Since R(+)(y,z)ψa(y) = — z 1ψoc(y)
for z Φ 0, we have

Φj(g,γ) = - G(y2)(2πιr1^^1(l + ih(g,z))dz = - G(y2)(<$7,0 + ifj(g))9 (4.9)
r

+ 00

where/7.(0) = Res(zJ'%,z),z = 0) and G(y2) = y2 J Qxp(2i\y\x3β -e2ί*x2)eίΰίdx is a
— 00

bounded analytic function in any region Re(y~2) >p~ 2 ,p >0. In fact in such a
region we have the estimate

< \y\p(3πω(3s)/ω(ε))^2 < \y\p(lπ)^2, (4.10)

where ε = π/2 — 2α = 2θ/3 4- π/6, 0 < ε < π/3, and ω(α) = sin(α)/α is positive and
00

decreasing in (0, π). It is also easy to prove that G(y2) ~ ^ ««y2" with the following
n = 1

estimate for the remainders:

N- 1

n = l

(4.11)

for arg(y)^ - π/4+ ε,Re(y~2) >p~ 2, where an = (2/3)2n~2Γ(3n - 5/2)/(2n - 2)!.
Thus we have the following.

Theorem 4.2. L^ί E(gf) be the first eigenvalue of the operator H1(g) of Herb st-Simon
[10], Hi(0) - p2 + x2(l - ^x)2 - 1 + 2gx. Then

(i) For any ε, 0 <ε < π/4 ί/z<?re e dsίs cε >0 such that for 0<g <cε we have
E(g) = N(g)/D(g) with N(g) = F,(g,g\D(g) = F0(g,g\ and

Fj(g, y) = (Φj(g, y) + Φs(g, y))/2, (4.12)
00

where Φj(g,y) is the Borel sum of its asymptotic expansion Σ= Σ (aj,n + ibjn(g))y2n

n = 0

in the domains

Al - {yeC ε < arg(y) < π - ε, |y | < cj

with analytic continuation to the domains

Δ2 = {yeC: - π/4 + ε < arg(y) < 5π/4 - ε, \γ\ < cε}.

(ii) Fix ε = η and set c = cη. For any fixed g, 0 < g < c, Fj(g, y) is analytic in the
disc Re(y~ 2) > c~2, and it can be decomposed in two terms

\ (4.13)

where Ff(γ) = (Φf(γ) + Φf(γ))/2, d'(g, γ) = Φj(g, γ) - Φ}(g, γ) are the distributional



646 E. Caliceti, V. Grecchi, and M. Maioli

oo oo

Borel sum and the "discontinuity" of the series Σ aj,ny
2n> Σ bj,n(g)y2n respectively

n=0 n = 0

(see [3,4]).

(iii) Φ*(γ) = - G(7

2)δjι0, Φ}(g, y) = - G(γ2)fj(g), (4.14)

where G(y2) = y2 ] eiίp(2i\y\x3/3-e2iax2)eίxdx and f}(g) = Res(z'%,z),z = 0)-»

—^->(2/π)δJtl, α = π/6 - arg(y)/3.

Remark. 4.3. Point (i) means that Φj(g9 y) for fixed g is a function of 7 which at
y = g > 0 is the analytic continuation of a Borel sum for Im(y) > 0. Point (ii) means
that Φj(g,y) at y = g>0 is also an "upper sum" (see [3,4]) of its asymptotic
expansion, but since the series is complex, Fj(g,y) at y = g is not the distributional
Borel sum of the same expansion. In fact Fj(g, y) can be written as a combination
of the distributional Borel sum (DBS) of the "real part" of the series and the
"discontinuity" uniquely associated with the "imaginary part" of the series by the
DBS criterion (see [3,4]).

Proof of Theorem 4.2. The proof of (i), (ii) follows from Theorem 3.13 and (iii); a
direct operator proof of (i) can be given in the same way as in the subsequent
Theorem 4.4. In fact h(g,z) - -» cotan(πz/2) by Theorem 3.13 uniformly in

gr-»0

the compact set Γ9 and so /}(#) - ̂  Res(z7cotan(πz/2), z = 0) = δjΛ2/n.

b II) The Perturbation Formula for Case II). Because of the symmetry of the
operators H(g) = H2(g) with respect to the point x = 1/20 we have proved the
stability of the eigenvalues of H(0) with respect to the operators K ± (g) formally
given by

K^) = P±(g)H(g)P±(g) = H(g)P±(g) = P±(g)H(g) (4.15)

as #-»0+, where P±(g) = (l ± U(g))/2,(U(g)f)(x) = f(g~1 - x) (see Sect. 2, state-
ments (i), (ii), (iii), where the result is suitably extended to the sector |arg(#)| =
|θ| < π/4). Let P(g) = P± (g) for a fixed choice of + or - , g > 0, and ψ(g) - 2P(g)\l/(Q)
where ψ(0) = ψn is the eigenfunction of H(0) with eigenvalue E(Q) = 2n + l, for

n = 0, 1, . . . , || ψ(Q) || - 1, <A(0) - i/^OJ. We have (4.7) with R = R(g, z) = (H(g) - z}~ 1

and Φί=φ2

 = Ψ(g) IR fact tne projection operator P(g) in the expression of \jj(g)
selects the space of even or odd functions, in such a way that H(g) acts as K + (g)
or K~(g) and we have the stability of the perturbation formula (4.7). By (4.15) we
have the identity

(4.16)

where g > 0. By (4.7), (4.4) and Propositions 3.3, 3.4, we have

JV( f lf) = Re(Φ1to^)), Dfo) = Re(Φ0(0,0)), (4.17)
where
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Γ is a path encircling E(0) at distance 1, α = π/6 — 0/3, — π/4 < θ = arg(y) < 5π/4,
and | y | , 0 small enough. Thus we are able to prove:

Theorem 4.4. Let £(0) = 2rc + 1, n = 0, 1, . . . , be an eigenvalue of H(0) = H2(0) with
eigenvector ψ(Q). Then

(i) For any ε, 0 < ε < π/4, 3 cε > 0 SMC/I ί/zαί ί/zerβ exists an isolated eigenvalue
E(g) = E±(g) o f K ± ( g ) analytic inAε = {gεC: arg(0)| < (π/4) - ε, |#| < cε} with limit

(ii) For fixed ε and g,Q<g <cε, we have (4.7) with N(g) = F1 (g, g\ D(g) = F0(g, g)
and

Fj(g, y) = (Φfa y) + Φj(g,y))/2, (4.19)

where Φj(g,y), given by (4.18), is analytic in the domain Δε = {yeC: — (π/4) +
ε < arg(y) < (5π/4) — ε, 0 < | y | < c ε } and is the Borel sum of order ^[3] of its

OO

asymptotic expansion ^ (ajk(g) + ibjk(g))yk in the domain Δ\ = (yeC ε < arg(y) <
k = 0

π-ε,0< |y |<c ε } .
(iii) Any ajk(g) is directly computable and we have ajk(g) = ajk(Q) + P2n + 3k(l/g)

exp( — (2g)~2\ where Pk is a polynomial of degree k. We have the same result for
bjk(g) in the approximation h(g, z) = h(g, z) = /z(0, z) = cotan((z + l)π/2).

Remark 4.5. In this case we are not able to prove that, for fixed g >0, Fj(g,γ) is
a combination of a distributional Borel sum and a "discontinuity" (see [3,4]). In
particular we are not able to prove the analyticity on the disc Re(y~ 2) > C~2. We
recall that this result is claimed by Crutchfield [5] by non-rigorous arguments. In
any case for y in Δε we can write

Fj(g,y) = Ff{g9γ) + ±idI

j(g9γ)9 (4.20)

where Ff(g, y) = (Φf(g, y) + Φf(g, y))/2, d](g, y) = Φ](g, y) - Φj(g9 y) and Φf(g9 y\
oo oo

ΦI

j(g,y) are the Borel sums of order i of ^ ajk(g)yk, ^ bjk(g)yk respectively in A*.
k=Q k=0

Proof of Theorem 4.4. Point (i) follows from the stability results of Sect. 2, taking
into account Remark 2.16. As for (ii), the analyticity of the "resonance" E( + \y) in
the domain Al follows from Theorem 3.5 (see [11]). Thus the eigenvalue
perturbation theory and standard remainder estimates [11] imply that E( + }(y) is
the Borel sum of order \ [3] of the associated expansion in any direction contained
in A\ . To prove (ii) it is enough to note that Φj(g, γ) (where g is fixed) has the same
analyticity properties of E( + )(y). Indeed, h(g9z)(g > O.zeΓ) is uniformly bounded
on Γ for small g9 since by Theorem 3.6 it is convergent as #-»0 + . We have
K(g, z) -> exp(i(z + l)π), so that h(g, z) -> cotan((z + l)π/2) uniformly on the compact
set Γ which does not contain the singular points z = 2 f c + l , / c = 0, l , . . . . Moreover

notice that ψ(g) is bounded and ψ(g)^-^ψ(Q) as 0-»0. To prove (iii) it is enough
to notice that

bjk(g) - (2πίΓl $h(g9z)z>'(Ak(g9z) + Ak(g9z))/2dz, (4.21)
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where Ak(g,z) = ιl/(g)9R(Q,z) &-m)(2x3R(Q9z))2m-k

\ m = [k/2] ^

and %(#) is given by (4.21) with h(g,z) replaced by 1. Thus bjk(g) is directly
computable as well as ajk(g) if we approximate in (4.21) h(g, z) by h(g, z) = h(0, z) =
cotan((z + l)π/2). In this approximation we only have to compute terms of the

type <M0), ψmy, where (\l/(g))(x) = ψn(x) + ψn(d~1- *)•

where 0 ^ m ^ 3 f e + n. Notice that the approximation h(g,z)-*h(Q,z) does not
destroy the summability properties discussed above and the sum is obviously given
by the same expression (4.18) with /ι(0,z) in place of h(g,z). The same happens in
the case of better approximations of h(g,z) obtained by semiclassical methods.
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