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Abstract. For the strong unstable foliation (or horocycle foliation) of an Anosov
flow there exists a unique transverse measure called the Margulis measure. In
this paper we extend Margulis' results to more general "transverse distri-
butions" for the foliation. As an application we derive our main result: The
non-zero analytic extension to a strip of the Selberg zeta function for compact
surfaces of constant negative curvature persists under small perturbations in
the metric. There is an equivalent formulation in terms of the Fourier
transform of the correlation function.

0. Introduction

In the study of Axiom A flows there are two functions (of a single complex variable)
which contain a considerable amount of information on the dynamics of the flow -
the zeta function and the Fourier transform of the correlation function (which
describes the way in which the flow mixes). Their meromorphic domains influence
the asymptotic growth of closed orbit periods (through the zeta function [14]) and
the rate of mixing of the flow (through the correlation function [16,21]).

David Ruelle has gone some way in analysing the residues which occur for the
Fourier transform and he has given them some interpretation in terms of "Gibbs
distributions" [22] (similar in nature to distributions in the Schwartzian sense, but
which are complex valued). However, this does not broach the problem of locating
the poles. There is a simple correspondence between poles for the zeta function and
poles for the Fourier transform of the correlation function (within appropriate
domains) which reduces this to a single problem [16].

In this article we give an approach to determining the location of the poles and
to giving them, along with the residues, a clearer interpretation, at least for Anosov
flows.

We shall formulate most of our results at the level of three-dimensional Anosov
flows. This will be most appropriate for our main application.

Our approach to these problems is to consider transverse distributions
(generalising transverse measures) for the natural foliation associated with the
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strong stable manifolds of Anosov flows. This approach is motivated by Margulis'
very elegant work on transverse measures for horocycle foliations [25], although
the techniques we use are very different. (We should remark that Margulis
apparently used these measures in obtaining asymptotic estimates for closed
geodesic lengths, demonstrating how closely related these concepts are, cf. also
[14].)

Bo wen profoundly influenced the study of both Axiom A diffeomorphisms and
flows with the use of symbolic dynamics [4,5] (Bowen was obviously inspired by
the Russian school [18,19]). This allowed many problems to be reformulated for
subshifts of finite type (in the discrete case) or suspended flows (in the continuous
case). For subshifts of finite type a number of powerful results can be proved using
techniques originating in statistical mechanics. In particular, the Ruelle operator
proves to be a very useful tool [5]. For flows the situation is slightly more involved
(not least because of the difficulty in directly applying ideas from statistical
mechanics). The Ruelle operator can be used again, although for flows it plays a
rather more subtle role [17].

In Sect. 1 we review the basic definitions and ideas connected with Axiom A
flows and strong stable (horocycle) foliations. In Sect. 2 we relate this to our
working format of suspended flows over subshifts (of finite type) by the use of
symbolic dynamics.

In Sect. 3 we give an alternative construction of Margulis (transverse)
measures, the unique transverse measure associated with the strong stable
foliation. This makes use of the spectrum of (the dual to) the Ruelle operator.

In Sect. 4 we recall some results on the Fourier transform of the correlation
function (which describes the rate at which the flow mixes). This is intimately
connected with the spectrum of the Ruelle operator, which allows us to relate the
existence of poles to the existence of certain "Margulis distributions" generalising
Margulis measures.

In Sect. 5 we relate the existence of poles (where the correlation is with respect
to the measure of maximal entropy) to the induced action of φt on an appropriate
Banach space (subject to an orientation condition on φt). The intermediate step is
the connection with the Margulis distributions.

The Sect. 6 contains the first version of our main result: For metrics close to
those of constant negative (sectional) curvature the Fourier transform of the
correlation function for the geodesic flow (with the measure of maximal entropy)
has an analytic extension to a strip.

In Sect. 7 we give the equivalent formulation of our results in terms of the
(dynamical) zeta function. Our main result now becomes: For metrics close to those
of constant negative curvature the zeta function for the geodesic flow has an analytic
extension to a strip.

1. Axiom A Flows and Strong Stable Foliations

We begin by introducing our basic object of study, a C00 Axiom A flow on a
compact Riemannian manifold, and recall some of the basic definitions and
properties.
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Let M be a compact C00 Riemannian manifold, and let φt:M->M be a
C1+ε-flow. We define the nonwandering set

Ω= fxeM| V open neighbourhoods U3x, 3to>0 s.t. Unί (J φtU\ ΦφX.

1 v^o / J
A flow satisfies Axiom A if the non-wandering set is the disjoint union of a finite
number of hyperbolic fixed points and a finite number of φt invariant sets A
satisfying:

1) φ\A has no fixed points and closed orbits of φ\Λ are dense in A.
2) φ\Λ is transitive (i.e. A contains a dense orbit).
3) TΛM splits into 3 DφΓinvariant continuous sub-bundles TΛM = E@Euζ&Es

with E tangent to the flow direction and

\\Dφt(v)\\^Ce'λt\\v\\ for ΌEES,

\\Dφ_t(v)\\^Ce~λt\\v\\ forveE\

(Each such A is called a basic set) [27]
We call the flow φt:A-*A (topologically) weak-mixing if there are no non-

trivial solutions to Fφt = eιatF for F e C(A) and a > 0. Not weakmixing flows are
topologically conjugate to constant suspensions of Axiom A diffeomorphisms and
consequently much of their analysis has already been performed at the level of
diffeomorphisms [5]. Thus we shall be interested generally only in weak-mixing
Axiom A flows.

We call φt Anosov if we can replace A by M in condition 3), i.e. the entire
manifold is hyperbolic.

We call an Anosov flow transitive if 3x e M with a dense orbit.
Having established the definitions for the flow we shall now consider the

associated ergodic theory.
For any ^-invariant measure ρ we define the entropy h(ρ) of φ (with respect to

ρ) to be the entropy of the time-one homeomorphism φί :A^A. There are an
infinite number of (ergodic) invariant measures and their entropies are bounded
above. We define the (topological) entropy by

h(φ) = sup {h(ρ)\ρ is φ-invariant}.

The entropy has a number of different definitions and gives a quantitative estimate
on the "randomness" of the flow. For Axiom A flows the entropy is always strictly
positive and there is a unique φ-invariant measure m where the supremum is
attained [i.e. h(m) = h(φj]. This measure m is called the maximal measure (or Bo wen
measure, or measure of maximal entropy) [7].

We now consider some slightly more geometric aspects of the flow. The
hyperbolicity condition on the basic set is defined in terms of the tangent bundle
TΛM but has a direct influence on the manifold M. For xeA we can define the
strong unstable and strong stable manifolds as

Wsu(x) = {yeM\d(φ_tx,ψ_ty)->O<ϊs ί^ + oo},

WsXx)={yeM\d(φtx,φty)->0 as ί-> + oo}
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respectively. [We shall also sometimes use W*h(x) = {y e M\d(φtx, φty)^ε, Vί^O}
which forms a neighbourhood of x in FPs(x) for ε>0.]

In accordance with their names WSλi(x) and WSh(x) form C°°-immersed
submanifolds of dimensions n = άimEu and m = dim£ s respectively. Furthermore,
for xeΛ we have TxW™(x) = Eu

x and TXW**(X) = E*X (cf. [2]).

For Anosov flows the strong-stable manifolds form a foliation for M in the
usual sense. However, although each leaf is C00 in general the foliation itself is only
Holder continuous.

We shall denote this foliation by Fss (cf. [8]).
We should also consider the effect of the flow φt :Λ->Λ on these foliations. The

main point is that for xeΛ we have φtW
ss(x)=Wss(φtx) and φtW

su(x)=Wsu(φtx\
i.e. the flow preserves the foliation by taking leaves to leaves (without necessarily
preserving the individual leaves).

We can use these foliations to generate new foliations Fwu and F w s whose leaves
are the (n + l)-dimensional weak unstable manifolds and (m + l)-dimensional weak
stable manifolds given by

Wwu{x)= (J Wsu{φtx) and Wws{x)= [j Wss(φtx),
ί e R ί e R

respectively (xeΛ). For these foliations the individual leaves are now invariant
under the flow. (The weak unstable manifolds form transverse sections to the
foliation Fss.)

An important example is the geodesic flow on the (three-dimensional) unit
tangent bundle of a compact surface of strictly negative curvature. This is a
transitive Anosov flow for which the leaves of F s s are one dimensional and the
leaves of F w u are two dimensional.

For geodesic flows all of these foliations are known to be C1 (and so in
particular Holder continuous with exponent one) [12].

2. The Symbolic Dynamics

To study problems about Axiom A flows it is frequently convenient to reduce them
to questions at the level of the simpler symbolic or suspended flows. This approach
has been developed by such people as Sinai, Ratner, Bowen, and Ruelle. We shall
now give a brief account, explaining only those parts of the theory relevant to
subsequent sections (for full details, cf. [4]).

If φt:M->M is our Axioms! flow then we construct (n + m)-dimensional
differentiable, disjoint closed sections Γ1?..., Tk transverse to the flow φ\Λ. [They
can be assumed to lie in the intersection of the interiors of (rc + m)-dimensional C00

closed discs Dt transverse to the flow and A.~] Furthermore, these sections can be
chosen arbitrarily small (Diam Tt < ε, say) and assumed to capture all of the flow in
the sense that for any xeΛ we can choose sequences fp| + oo and t-q[ — oo (for
p,qeZ + ) such that \tt — ί / + 1 | < ε and φtpx, φt_ xeTtu...uTk. With respect to the

topology on {J Dtr\A we can consider dTt and intTί5 z = l5 ...,/c. Let x e A be a point
ΐ

whose orbit under φt intersects the 7̂ s in their interiors in the sequence
+ OG

. . . 7 ^ , T , T , . . . , t h e n x g ives r i se t o a s e q u e n c e x = ( x X = G O - o ϋ e f ] {!> ••-,&}•



Margulis Distributions for Anosov Flows 141

The sequence x records the orbit of the point x (and the zeroth term x 0 e {1,..., k]
determines the last section traversed by the orbit whilst x is flowing forwards in
time). The hyperbolicity of the flow on A permits these sections {7]} to be chosen so
that they give very precise information on the corresponding orbit. (In particular,
no two distinct orbits in A give rise to the same sequence.) Let P: [j 7̂—• [j Tt be the

i i

Poincare map given by P(x) = φa(x\ where α = inf ίt>0\φtxe[j Tλ. We can

1 ι )
introduce a k x k aperiodic matrix with entries either one or zero by

|Ί if P(int7])n(int7})Φ</)

[0 otherwise.

We define a space of sequences ΣA by

Without loss of generality we can assume that the matrix A is aperiodic.
We have a topology on ΣA induced from the product of the discrete topology

on {1, ...,/c} and with respect to this topology ΣA is a compact zero-dimensional
space. We define a metric for this topology by

d(x,y)= Y — T | " , where e(cc,β) =
- n=-oo 21 ' 1 otherwise.

The shift σ\ΣA-+ΣA is defined by (σx)n = xn+ι, and with respect to the above
topology is a homeomorphism. k

The sections {T^k

i=x can be chosen so that the map π:ΣA-+ [J Tt with
i= 1

π(x)= Π° F
n= ~ oc

is w e l l - d e f i n e d . D e f i n e r : Z ^ — > ] R b y

then r is strictly positive (and uniformly bounded away from zero).
The sections 7j can be chosen so that r(x) = r(y) whenever xn = yn for n^.0.

(Strictly speaking, we can no longer think of Dt as being C x cf. [19] for details.)
We define

where (x, r(x)) and (σx, 0) are identified. This space inherits a product topology
from ΣA and R.

We define the suspended flow σ\\ΣA-+ΣA locally by σί"(x,s) = (x,s-M), taking
account of the identifications where appropriate. We can extend the map π to
π: Σr

A-+A by π(x, t) = φtπ(x).
The suspended flow σr gives a very accurate model of the original Axiom A flow

φt:M-*M. We summarise some of the main results in the following proposition:
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Proposition 1 (Bowen) [4J. There exists a choice of {Tf} such that
(i) The map π\Σr

A-+Λ is Holder, surjective, bounded-one and one-one on a
residual set.

(ii) The map π is a semi-conjugacy, i.e. πσr

t = φtπ.
(iii) The map π preserves the maximal measures.
(iv) σr and φ have the same topological entropy h = h(φ) = h(σr).

We shall denote the Holder exponent of π by α>0, i.e. 3C>0 such that
dM(π(x),π(x))^C(d(x,y))a, Mx,yeΣA, where dM denotes the metric on M.

Let Si = {φtπ{x)\x0 = U O ^ ί ^ r ( x ) , i=l, . . . ,/c.} Clearly Λ= (J St since π is

surjective. ι ~1

Associated to each St is a partition # j s s . We take each element of #; s s to be a set
Wε

ss(x)nSh where xeSt and ε > 0 is small with respect to the manifold, but large
with respect to the size of the sections Tt. Each element of # j s s can be written in the
form φtπ{yeΣA\xn = yn}, Org£rgr(x), where xeΣA with xo = i.

In the special case that M is a three dimensional manifold the boundaries dTt

(and hence the boundaries dSt) take a special form. Each of the discs Dt is two
dimensional and Tt is a "rectangle" whose one dimensional sides lie in either strong
stable or weak unstable leaves. We can assume that there are only finitely many
orbits (which must therefore all be closed) which are confined to (J dSt for all time.

This only requires a slight modification to the construction in [4] (and in
particular the lemma on p. 456). We need only require that the projection of strong
stable manifolds onto each rectangle 7] should be carried forward into the interior
of rectangles sufficiently far in the future, and similarly for unstable manifolds
projected onto 7] on flowing backwards in time. Bowen first constructs a
Markovian cover and then refines it to a Markov partition. The additional
property described above is preserved under this procedure. Thus the forward
image of the unstable part of the boundaries dTt eventually meet [jdTt

i

transversely, i.e. in a finite set of points. Similarly for the backward images of the
stable parts of the boundaries.

Fie. 1



Margulis Distributions for Anosov Flows 143

Remark. A slightly different system to Axiom A flows are expanding semi-flows:
Let φt: M-+M (ί^O) be a semi-flow on a compact Riemannian manifold and let
TM = E°@EU, where E° is tangent to the flow direction and for veEu we have
\\Dφt(v)\\ ^Ceλt\\v\\, for some C, Λ>0. In a similar way to Axiom ,4 flows we can
construct a symbolic dynamics (involving a one-sided subshift) and adapt the
analysis of this paper.

3, The Margulis Measure

In 1970 Margulis published a paper in which he constructed a transverse measure
for the strong-stable foliation for an Anosov flow [13]. In this section we shall
present another approach to its construction which will generalise to a construc-
tion of "transverse distributions" in the next section.

Let {K} be the family of compact transversals to the strong-stable foliation
#" s s. Let v = {vκ}κ be a family of Borel measures with vκ having support on K. Let
p:K-*Kf be a Borel isomorphism with x, p(x) e Fx e #" s s . We call v a transverse
measure if vκ,(pA) = vκ(A) for all Borel sets AQK.

Margulis' approach was to construct v as a linear functional on continuous
functions / of compact support K transverse to the strong-stable foliation. He
defined an equivalence relation on all such functions by f~g if / ° p = g, where
p: K' —>K is a homeomorphism between the supports of g and / respectively such
that p(x)eFxi where xeFxe^s\ Margulis constructed a linear functional v such
that v(/) = v(g) whenever /~g.

We shall now reconstruct this linear functional using symbolic dynamics.
Much of this approach is implicit in [6].

To avoid confusion we shall restrict ourselves to the case of transitive three
dimensional Anosov flows throughout the rest of this section. However, most of
the analysis works in greater generality.

We construct a new space ΣA defined by

(x Λ ,x l l + 1 )=l for n^0>

and a shift σ: ΣA -»ΣA by (σx)n = xn + j , n g; 0 (we have retained the same notation
as for σ:ΣA->ΣA defined in the preceding section).

+ 00 e(χ y \

We define a metric on ΣA by d(x,y)= Σ —^r^""' w n e r e

if i=j*

With this metric ΣA is a compact, zero-dimensional space and σ:ΣA-^ΣA is a local
homeomorphism.

Given α > 0 let Jtfa = J^a(ΣA,(C) denote those functions f:ΣA ->C which are
Holder continuous with Holder exponent α. This function space becomes a
Banach algebra with respect to the norm.

11/11 = I
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(The first term on the right-hand side is the supremum norm, and the second is the
best Holder constant for the exponent α.)

Recall that r: ΣA-+1R was a function determined by its future co-ordinates [i.e.
r(χ) = r(y) if xn = yn for n^O] and therefore it can be considered as an element of
C(Z^,IR). In fact, re Jfα also, for an appropriate choice of α > 0 [4].

Let h>0 be the topological entropy of the flow φt:M-*M. We assume the
matrix A to be aperiodic.

We define the Ruelle operator Lhr:J^a^J^a by

(Lhrg)(x)= Σ g{y)exp-hr(y).
y:σv — x

This is a bounded linear operator with a dual operator L%r: p f α)*-+(Jfα)* given by
{L%rl) (g) = l(Lhrg). We summarise some of its relevant properties in the following
proposition.

Proposition 2 (Ruelle Operator Theorem) (cf. [23, Sect. 5]).
(i) Lhr has an eigenvalue at 1 with a strictly positive eigenvector in 2/fa.

(ii) The rest of spectrum of Lhr is contained in a disc of strictly smaller radius
than 1.

(iii) There exists a (positive) measure μ such that iχrμ = μ.

There are some slight differences between the statement above and the usual
version. However, the form that Proposition 2 takes can be easily derived from
[23]. [In particular, to show part (i) we need only invoke Abramov's theorem.]

Corollary 2.1. dμσ/dμ = Qxphr.

Proof Given xeΣ^ we let Cn = {y\xi = yb O^i^n — ί} and let γCn be the
characteristic function for Cn. Then,

= \{LhrχCn){z)dμ{z)

= ί Σ XcM ' e x P - hr(il)dμ(z),
i:A(i,zo)= 1

where iz denotes the sequence (i, zo,z1, z2,.. .)• By the continuity of r we have that
for all ε > 0 we can find N > 0 so that

, - (hr(x) - ε)

for n^N. (Here σCπ= {z|xf+1 =z f, O^i^n-ί}.) Thus (dμσ/dμ)(x) = exphr{x) by
letting ε->0.

Recall that we can cover M with compact sets S, each equipped with a partition
# j s s constructed using the strong stable foliation.

Let S? = {{x, ήeΣ^x TR\x0 = i, 0 ̂  t^ r{x)}. We define a map π^+ : Sf -^SJ - by

π.+(x,/) = [π(x,ί)], where x^y if x and j ; are in the same element of Ff, [ ] is an
equivalence class in S(, and XEΣA is any element with xn = xn for n^0.

it fe

L e t S + = I J 5 - + a n d d e f i n e π+ : S + ̂  ]_] S ; / — b y π + | S f = π ;

+ .
/ = 1 i = 1
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Let K be a compact transverse section to Fss which supports a continuous (real-
valued) function / We shall assume initially that K lies in some leaf of the strong-
stable foliation, i.e. KQ W™u(x) for some x e M .

Let Ki = KnSb z = l, ...,fc. We shall assume that the weak unstable manifold
WWλi(x) containing K satisfies W^u(z)nSi=W^/u(z)nmtSi for ze Wwu(x)nSh

i = 1,..., k. This is certainly true for a dense family of weak unstable leaves FFwu(x).
There is a natural map q{: K ί-»S ί/~. Without loss of generality we can assume that
K is sufficiently small (on the scale of the manifold M) that each q{ is injective.

We define /:S + -»IR by /(x, ή=f°qϊ~ι °π + (x, ί) if # Γ l π + f e ί ) e ^ i and
/(x, ί) = 0 otherwise. Choose 0 < T< inf r. Define a linear functional on pairs (/, K)
by

v ( / ) = J J f(xj)e~htdtdμ{x). (3.1)
2 1 o

Observe that

" f /(x5 ί)e " Λίdί = " " f /(x, ί)e " htdt + Σ 7 &(x)/(x, t)e " AVf
0 0 i= 1 r(x)-Γ

(where χ̂  is the characteristic function for {xeΣ^\xo = i})

= ehτ^ f(x,t-T)e'htdt

T

k T

-)re
hTe~hr{Qj-) Σ Σ ί Xi(x)f(Qβ>r(QjX)~~ T-\-t)e~htdt, (3.2)

ΐ = i ^ α , / ) = i o

where ρ ; : Σ ^ - » { x G ^ | x 0 = j } is the local inverse to the shift σ.

For brevity we shall write /^(x)= f /(x, ί - T)e ~htdt and
r

/' (x) = ί Zi(σx)/(x5r(x)- T+ t)e~htdt.
b

( k \

Then (3.2) becomes e~ht[ /°(x)+ Σ LhrfXx) 1. Therefore we can rewrite (3.1) as

Finally we have that

v(/) = ez J (/ (x)~f Σ Lhrf
ι(x))dμ(x) = ehT { (/°(x)+ Σ fι(x))dμ(x), (3.3)

I^ i = 1 I | ί = l

since by Proposition 2(iii) we have that j Lhrf
idμ= j /I#dμ. By the additional

y + v +

assumption we put on Wwu(x) (the weak-unstable leaf containing both K and φτK)
we have that

r(x) k /v
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and so by (3.3) we have that v(/) = ehTv(fφ_τ). [By replacing / by fφτ gives v(fφΓ)

To extend this to arbitrary f > 0 choose T=t/n<inϊr, for a sufficiently large
positive integer n. Then v(fφt) = v(fφnr) = ehτv(fφin^ί)T). The result follows by
induction.

We want to show that for f~g then v(/) = v(g). if p:K'-+K is a homeomor-
phism with x,p(x)eSinWε

s(x) [for some / = z'(x)] then this is clearly true by the
construction. More generally we proceed as follows. Since we have assumed that
M is three dimensional there are at most a finite number of (closed) orbits

k

intersecting (J dTt. Furthermore since π is bounded to one these correspond to a
ι = l

finite n u m b e r TV, say, of sequences {x(0}f=1 in Σ^. F o r each / = ! , . . . , T V let

k

Ci = Ci{Q)^{zeΣ^\zj = xfϊorj-=ί,...,Q} and C = Q C \
r = 1

where Q is a large integer. The set

k

K(Q)= [j q~1 ° π + {(z, t)\zE C5 0 < ί <r(x)}

is a neighbourhood in K around the projection onto K of the closed orbits
k

intersecting [j cTt. Corresponding to fK{Q) and fκ-κ(Qp w e have
ί= 1

) {x) r(x) f(x,t)e~~htdtdμ(x), (3.4)
c o i+ - c ό

and

v(&)= ί I g(x,t)e~htdtdμ(x)+ j j g(x, t)e~htdμ(x). (3.5)

We can equate the second terms in (3.4) and (3.5). To see this let x = π + (x, t) and
y = π + (>', s), where xφC then there exists t0 > 0 such that </>ί0(x), 0ίo(}^) both lie in the
same set St (i = i(x, ί0)). This is because the orbit of x cannot always be confined to

k

[j dSt else it would correspond to a periodic orbit, contradicting our assumption

that x φ C. If x and y are sufficiently close, then when φtox e intSb say, then we can
assume that φtoy lies in the same set. Furthermore, we can choose a neighbourhood
C(x) x (t — ε, ί + ε) about (x, ί) such that this remains true for all points in this set. By
considering φt,C(x)x(t — ε,t + έ) for a range of values of t' close to t0 we can
establish the equality of the second terms in (3.4) and (3.5) with C replaced by C(x).
But by a compactness argument we can cover C by only finitely many such C(x).
Summing gives the desired result.

In remains to deal with the first terms in (3.4) and (3.5). We shall show that these
terms tend to zero as Q-> + oo. Since μ is a positive measure we have

7 f(x,t)e~htdtdμ(x)
c o
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However, μ(C)^μ(σQC) • (\\dμ/dμσ\\)^ which tends to zero as Q tends to infinity
since by Corollary 2.1 we know that \\dμ/dμσ\\ ^^Qxp — (infr)<l.

The condition we imposed on W™u(x) is unimportant, since we have established
the result on a dense set of transversals. Given a function supported on any other
compact transversal we can project it onto a transversal of the form considered
above (after localising with a partition of unity if necessary).

We have now established a version of the following theorem due to Margulis
[13]:

Theorem 1 (Margulis). Let φt:M-+M be a (three dimensional) transitive Anosov
flow with topological entropy h>0. There exists a transverse measure to the strong-
stable foliation JFSS of M which satisfies φ*v = ehtv.

Remark, ϊf F1 denotes the smooth 1-forms on M, then a current is a continuous
linear map F ^ C Given a transverse measure v there is an associated current,
called the Ruelle-Sullivan current C [25], defined as follows: Choose a cover for M
by interiors of the images of sets of the form Df x D , where Df corresponds to a
transverse section and Dt corresponds to neighbourhoods on each leaf. Assume
that wf is a smooth 1 -form with support on Df x Db then we define

C(wf)= J ί I w)dvDτ(x),
DJ {{x}xDι j

and extend to all smooth 1-forms using a partition of unity. (The inner integral is
along leaves of the foliation and they are weighted in the outer integral by the
transverse measure supported on Df.) The integral on a leaf has to be with respect
to an orientation. Ruelle and Sullivan showed this defines a closed current i.e.
Cod = 0 (d is the exterior derivative on forms) and so we can consider
lC^eH2(M,Q:) [25]. The condition φ*v = ehtv gives that 0t*[C] = e~Λ t[C],
provided the orientation on leaves is respected by φt. However, since φt is homotopic
to the identity we have that, for t>0, e~ht cannot be an eigenvalue of φf and we
conclude that [ C ] = 0 .

Following Schwartzman [26] (as interpreted by Sullivan [28]) we have the
following: Given xeD let α be a loop formed by a segment of the foliation leaf
starting at x of length L and with the ends linked by a geodesic. This gives

M.ΊR). For a- a°(v)xeD we have [αL]-»0 (corresponding to [C]=0).

4. Rates of Mixing and Margulis Distributions

In this section we shall recall some results on the rate of mixing of an Axiom A flow
and describe its connection with certain generalisations of the Margulis measure.

The basic problem is as follows: Let φt :A-^A be a weak-mixing Axiom A flow
and let F, G :Λ-><E be Holder continuous and let m be the maximal measure. It is
known that J Fφt Gdm->§ Fdm - j Gdm as t ~> -f oo. We want to describe the rate of
this convergence

We set

FrGdm-\Fdm \Gdm for t>0

for i
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+ 00

and approach the problem by studying its Fourier transform ρ(s) = J eιstρ(ήdt.
One result in this direction is the following: ~°°

Proposition 3 [16,21]. The function ρ(s) has a meromorphic extension to a half-plane
Im(s)> — c (for some c>0).

The behaviour of ρ(t) is considerably influenced by the domain of ρ(s) and, in
particular, by the location of its poles. These in turn are closely related to the Ruelle
operator through the symbolic dynamics.

For z e C w e have the Ruelle operator Lzr\ Jfα-+jTα, where Jfα denotes the
Banach algebra of α-Hόlder continuous complex valued functions /:2^->(C.

The following proposition was proved in [17].

Proposition 4 (Complex Ruelle Operator Theorem). There exists C > 0 such that
for Re(z)>/z — C the essential spectrum of Lzr: J^a-^J^a is contained in the disc
{we<C|H<l}.

We recall that the essential spectrum of an operator is that part of the spectrum
that remains after removing isolated eigenvalues of finite multiplicity which
correspond to finite dimensional eigenspaces.

The relationship between the poles for ρ(s) and the spectrum of the operator Lzr

is given by the following (cf. [16,21]).

Proposition 5. // we write z = h — is then the following are equivalent in the range
Im(s)> — c (for some c>0).

(a) For z = zo,ί is in the spectrum of Lzr: Jfα->J^α (and /t(z0) =1 is an isolated
eigenvalue of multiplicity m^l).

(b) For s = s0, ρ(s) has a pole.

As before we shall now confine our attention to three dimensional transitive
Anosov flows.

An important feature of Anosov flows is that the strong stable foliation J^88 is
Holder continuous. We shall assume that the Holder exponent is 1.

Let F be a complex valued function which is compactly supported on a weak
unstable leaf Wwu(x). Furthermore we assume that F is α-Holder continuous. We
shall call two functions F,G related if there exists a homeomorphism p:K'-^K
between the compact supports of F and G with F ^p = G such that if x e Fx e ^ s s

then p(x)eK'nWε

s%x). We shall call a linear functional v on such functions a
"transverse distribution" if v(F) = v(G) whenever F ~ G. (We should observe that if
we want all related functions to have the same Holder exponent it will generally be
necessary to assume that the Holder exponent of the strong-stable foliation is
unity.)

Given F as above we define F: {(x, t)eΣ^ xIR|0^ί^r(x)}^(C as in the
r(x) ^

previous section. We then define feJ^a(Σ^,(C) by f(x)= J F(x,t)eztdt, where
ZG(C.

Assume that 1 is an isolated eigenvalue for L z r :J^ α ->J^ α with L*zrμ = μ, with



Margulis Distributions for Anosov Flows 149

Without loss of generality we shall assume, as in the previous section, that
;= W7υ(z)nintS; for zeKnS^ Under these conditions we define v(F)

Let 0<T<infr .

Let g(x)= J Fφτe
ztdt, then

o

g(x) = 7 Fφτ& t)eztdt = 7 % , ί - T)eztdt
o r

Γ

+ Σ Σ ί Xι{x)P(QjX> r(QjX) ~ τ+ t)eztdt
i A(j, 0=1 0

(where χt is the characteristic function for {χ|χo = /} and QJ . {x\xo=j}-^Σ^ is the
local inverse to σ:Σ^-^Σ^). Therefore:

r(x)-T
g{x) = ezT J F{x,t)eztdt

o

+Σ Σ \ i xt

= ezΓΓ/°(ϊ) + Σ Σ J
[_ i , 4 ( 7 , 0 = 1

where /°(x) = " ~ j F(x, ί)βzίdt; Z ^ ) = 7 &(σ)')%> Oezίdί . In particular, g(x)
0 Γ-r(v) J

μ(g) = e z r f μ(/°) + Σ M/1)) = e z Γ μ (f° + Σ f')= eezT

Thus we may conclude that v(Fφτ) = ezT v(F).
The argument to show that related functions F and G give the same value v(F)

= v(G) follows the same lines as the proof for the Margulis measure in the previous
section. The only additional feature is in proving that the contribution to μ(f) and
μ(g) "from C " are the same. Assume that f(xι) = 0. Since / is Holder continuous we
have ||/lolloo-"^O a s β-^ + oo. Furthermore we have that μ is a bounded linear
functional on J^α(Σ^,(C) for some α'<α. (Changing the exponent a has the
effect of changing the constant c in Proposition 3.) If || ||α and || ||α, are the
corresponding Holder semi-norms on for the spaces of Holder continuous
functions with exponents α and α', respectively, then | | / |o ί l α '= Il/L(i) ( α~α )Q Thus
|μ(/lcOI^JIμL'(ll/lcll«'+ll/lc.lL)^0 as β-+ + α). Hence v(F) = v(G).

If/(x ( i ))Φθ then we replace / by f-f(x{i)). The limit then becomes f(x{ί))μ{l\
and so again the expressions v(F) and v(G) can be seen to be the same by taking
limits.

As before we can remove the condition on P^wu(x) by projecting onto one of the
dense family of leaves satisfying this condition. (Again we note that unless we
assume that the Holder coefficient for the strong-stable foliation is unity then this
may involve a modification in the exponent.)

We summarize below
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Theorem 2. Let φt: M->M be a three dimensional Λnosov flow whose strong stable
foliation has Holder exponent unity. If s = s0 is a pole for the complex function ρ(s)
(for Im(s) > — C, say) then there exists a linear functional v on the class of a-Holder
continuous transverse functions, for α S \,such that φfv — eztv, where z = h — is (i.e. a
transverse distribution).

By analogy with the case of Margulis measures we call the transverse
distributions in the above theorem Margulis Distributions.

The assumption that the foliations should have Holder exponent unity will not
prove necessary in applications, since we shall generally need to deal with a finite
family of transversals. We should remark that it is true for geodesic flows for
surfaces of strictly negative curvature where the foliation is even C1.

5. Location of Poles

We have analysed the meromorphic domains of Fourier transforms of correlation
functions (for the maximal measure) and characterised the poles in terms of
transverse Margulis distributions. We now want to use this to get concrete
information on the location of poles during this section and the next. Let
φt:M^M be a transitive three dimensional Anosov Flow.

Let v be a Ca Margulis distribution transverse to the strong-stable foliation
,jFss. The Banach space of complex Cα-forms tangent to the foliation will be
denoted by Q, and let (C*)* denote its dual. We want to define an element m in
(Q)* using the Margulis distribution v. Given a Cαl-form w tangent to the
foliation, assume that w has support (as in Sect. 3) on Dτ x D, where Dτ supports
the transverse distribution vD. We have a Cα-function defined on Dτ by x-> J w\

D x {x}

i.e. integrating the form across the leaf D x {x}. We define me(Cfj* by

w(w) = ί { ί w\dvDτ(x)
Dτ [D x {x} j

and a C^-partition of unity. (This definition is obviously motivated by the Ruelle-
Sullivan current.) The bundles Eu and Es are automatically oriented and so
x-» j w can be defined with a consistent choice of sign.

Dx{x}

By definition we know that φfv = eztv. We therefore have that φfm = e ztm, i.e.
m is an eigenfunction for φf : (C")*-*(Q)* with eigenvalue e~zt. (We shall assume
that t > 0 is fixed throughout this argument.)

We know that φf: (Q)*->(C*)* is the dual operator to the ^-induced operator
φt*: Q - > Q , and as such shares the same spectrum. We then conclude that e'zt lies
in the spectrum of φt*\ Q - > Q . We state this as a theorem:

Theorem 3. Let φt:M^M be a transitive three dimensional Anosov flow and let
φt*:CΛ

s-+C* be the induced operator on Ca-forms tangent to the strong stable
foliation.

There exist C, α > 0 such that if s = s0, Im(s) > — c, is a pole for ρ(s) (with respect
to the maximal measure), then e~Zot is in the spectrum of φt*, where zo — h — iso.
( There is a similar version of this result for φ_t*:Cl-+Cl for the unstable foliation.)
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Let φt:M-+M be an Anosov flow for which spectrum of φ f*:C"-»Q is
contained in a single circle. We call such a flow homogeneous. Examples of
homogeneous flows are geodesic flows on surfaces of constant negative curvature
and suspensions by constant functions of hyperbolic toral automorphisms
f:T2 — T2. To see this we have only to apply the standard equation on the
transformation of forms under the action of a diffeomorphism. This corresponds to
scalar multiplication by exp/zί and the result follows from the spectral radius
theorem.

A flow is weak-mixing if there are no non-trivial solutions to the equation F(φt)
= eίatF, with a>0 and FeC(M).

A direct application of Theorem 3 gives:

Corollary 3.1. For any homogeneous weak-mixing flow, ρ(s) is analytic for
Im(s)> - C (for some C>0).

This result is known already for geodesic flows on surfaces of constant negative
curvature (cf. [20]).

6. Geodesic Flows

In this section we restrict our attention to the very important case of geodesic flows
on manifolds of negative (sectional) curvature.

Let M be a compact manifold with Riemannian metric <, > of negative
sectional curvatures. We define a geodesic flow on the unit tangent bundle in the
usual way: Given (x,v)eR1M, let y :R-»M be the unique unit speed geodesic
through x in the direction v at time ί = 0 [i.e. y(0) = x, y(0) = υ) then set φt{x,v)
= (y(t),y(t))']. This defines the geodesic flow φt: T^M-^TγM.

To understand better Dφt: T^M^T^M) we follow Eberlein [9]. The map
π:TM-^M, π(x,v) = x gives the derivative Dπ:T{xv)(TM)-+TxM. We can con-
struct a second linear map K: T(x V)(TM)-^TXM by first choosing for ξ e T{XfV)(TM)
a curve Z:(~S,F)-^TM tangent to ξ at time f = 0. We then have a curve
α = π ° Z : ( — ε, ε)->M and set Kξ = FαZ, i.e. the covariant derivative of Z along α at
time ί = 0. It is known that for all (x,υ)eTM we can decompose Tix^v)(TM) as
7^υ )(TM) = (Ker2)π)©(KerK). The Riemannian metric <, ) x for M then prompts
the definition of a metric for TM by <ξ, η}(x^v) = (Dπξ,Dπη}x + (Kξ,Kη)x, for
ξ,ηeTiXfV)(TM). We proceed to consider the evolution of the flow φt. For every
point (x, v) G TM we have an associated geodesic y with y(0) = x and 7(0) = v. Given
any ξ e T{x v)(TM) we associate with it the Jacobi field Yξ on y such that Yξ(x) = Dπς,
VaY(x) = Kξ. This map ξ^Yξ gives a linear isomorphism from T{XtV)(TM) to the
Jacobi fields on y [for (x,t;)]. The map Dφt:T(TM)-+T(TM) is related to this
geometric construction by: DπDφt(ξ)= Yξ{y(t)) and DKDφt(ξ) = (VγYξ)(y{ή).

To understand this characterisation of Dφv we consider the following view of
Jacobi fields (due to Green [10]). For the geodesic y let e^f),..., en(t) be a system of
parallel orthonormal vector fields along y with y tangent to en(t) at f = 0. (This is
called an adapted frame field) A vector field Y on y can be identified with (n— 1)-
tuple (}>ί(ή,...,yn-1(ή) of C00 functions ^ : R - > R , where Y(t) = Σyi(t)ei{t). The
co variant derivative becomes VyY=^y'ί{ήei(ή= Y'(t). '
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Let R be the curvature tensor for M (i.e. R(X, Y)Z = \_VXY, FyX]Z - Ffx>ylZ), then
we c a n define a n (n — l)x(n — l) m a t r i x R(t) = (Rij(t)) b y

A perpendicular Jacobi vector field on y is defined by ί-> Y(t)x, where
and Y(t) is a solution of the matrix differential equation

[For a surface this reduces to a single differential equation where R(t) is the
curvature at y(ί).]

We can conclude from the above that smooth changes in the metric will cause a
smooth change in the operator Dφt:T(T1M)-+T(T1M) and φt*:C*-+Ca for the
associated geodesic flows. (Here a Riemannian metric is a smooth section in the
fibre bundle of positive definite inner products for the tangent space. A smooth
change in the topology of sections should correspond to a smooth change in the
curvature tensor and so to a smooth change in the Jacobi vector fields. Similarly a
smooth change in the metric should give a smooth change in the derivative of the
Jacobi vector fields. Together these induce a smooth change in Dφt by the
decomposition described above.) When the manifolds have constant sectional
curvatures K= — fc2, then the flow is homogeneous and the spectrum is contained
in a circle of radius exp — tk. For smooth perturbations in the metric the spectrum
of φt*'.Ca

s-^>Ca

s is contained in an annulus with inner and outer radii close to
exp — ht [where h = h(φ) is the topological entropy of the flow].

We may assume that the width of the meromorphic extension is constant (since
the factors that determine this - the roof function, the expansiveness of the flow,
and the geometric constraints on the transverse sections - vary continuously with
the metric cf. [17]). Together these two observations give the following.

Theorem 4. Let <, > be a metric of constant negative (sectional) curvature on a
compact manifold and let <, >' be a Cα-close metric, then the Fourier transform of a
corresponding correlation function ρ(s) has an analytic extension to a half-plane
Im(s)> —(5, for some δ>0.

7. The Zeta Function

So far we have confined ourselves to the relationship between Margulis
distributions and the Fourier transform of the correlation function. This analysis is
squarely based on the connection of the spectrum of the Ruelle operator with the
meromorphic domain of the Fourier transform. However, there is a parallel theory
for the meromorphic extension of a certain zeta function associated with the
Axiom A flow. Here the poles are again determined by the spectrum of the zeta
function [17]. We shall now turn our attention to the relationship between this
zeta function and Margulis distributions.

Let φt: M-+M be an Axiom A flow and let A be an attractor. For each closed
orbit τ we denote its least period by λ(τ). We define the zeta function for φ by
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where se(C. (The Euler product converges to a non-zero, analytic function for
R(s)>h [24].) We know the following about the domain of ζ(s):

Proposition 6 [17]. The zeta function ζ(s) has a non-zero meromorphic extension to a
half-plane Re(s)>/z — c, for some c>0. Furthermore, s = s0 is a pole for ζ(s) if and
only if 1 is an eigenvalue for L_S o r: Jfα-^^fα, for some α>0.

The constant c>0 is dictated not only by the constraints of the associated
suspended flow but also by the need to take into account difficulties with closed
orbits which pass through the boundaries of the transverse sections (although
when dimM = 3 there are only finitely many such orbits). There is a simple pole at
s = h which corresponds to 1 being an eigenvalue for Lhr, by the Ruelle operator
theorem. The condition that φ is weak-mixing is equivalent to ζ(s) being analytic
on the line Re (s) = h7 except for s = h.lϊφis not weak-mixing then ζ(s) has period ia,
for some α > 0 [14].

Parallel to Theorem 3 for correlation functions we have the following:

Theorem 5. Let φt:M-+M be a transitive three dimensional Anosov flow and let
φt*: Ca

s-*Ca

s be the induced operator on Ca-forms along the stable manifold. There
exists c>0, such that if s = s0, with Re(s)>/z — c, is a pole for ζ(s), then e~SQt is in
the spectrum of φt*.

The usefulness of this theorem depends on our information on the spectrum of
φt* as before. Corresponding to Corollary 3.1 we have:

Corollary 5.1. For any homogeneous flow ζ(s) is analytic for Re(s) > h — c (for some
c > 0), except for a simple pole at s = hif φ is weak-mixing or simple poles ath + nia
(neΈ) if φ is not weak-mixing.

This is applicable to geodesic flows for surfaces of constant negative curvature
and constant suspensions of hyperbolic toral automorphisms.

The most interesting case is that of the geodesic flow. In this context we have
the following:

Theorem 6. Let (,}be a metric of constant negative curvature on a compact surface.
For geodesic flows corresponding to metrics <, >'CG0 close to < > we have that ζ< y(s)
is analytic in a half plane Re(s)>/ι —c, except for a simple pole at s = h, for some
c>0 (where h is the entropy of the geodesic flow for <, >').

The case of constant curvature surfaces has been extensively studied cf., for
example, [11].
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