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Abstract. The so-called problem of the realization of the holonomic constraints
of classical mechanics is here revisited, in the light of Nekhoroshev-like classical
perturbation theory. Precisely, if constraints are physically represented by very
steep potential wells, with associated high frequency transversal vibrations,
then one shows that (within suitable assumptions) the vibrational energy and
the energy associated to the constrained motion are separately almost constant,
for a very long time scale growing exponentially with the frequency (i.e., with
the rigidity of the constraint one aims to realize). This result can also be applied
to microscopic physics, providing a possible entirely classical mechanism
for the "freezing" of the high-frequency degrees of freedom, in terms of
non-equilibrium statistical mechanics, according to some ideas expressed by
Boltzmann and Jeans at the turn of the century. In this Part I we introduce
the problem and prove a first theorem concerning the realization of a single
constraint (within a system of any number of degrees of freedom). The problem
of the realization of many constraints will be considered in a forthcoming Part II.

1. Introduction

1.1 In this paper, and in a forthcoming second part, we will be concerned with
Hamiltonian dynamical systems of the form

Hω(p, x, π, ξ) = hω(π, ξ) + h(p, x) + /(p, x,π,ξ), (1.1)

where hω(π,ξ\ with (π,ξ) = ( π 1 , . . . , π v , ^ 1 , . . . , ξ v ) G R 2 v , is the Hamiltonian of a set
of v uncoupled harmonic oscillators of angular frequency ω = ( ω 1 ? . . . ,ωv), i.e.

hJπ,ξ) = \i(πf + ωfξϊ), (1.2)
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while h(p,x), (p,x) = (pl9...,pn,x1,...,xn)eG c R 2 " , represents any dynamical
system with n degrees of freedom, defined in a domain G c= R2"; f(p, x, π, ξ) is a
coupling term, which is assumed to vanish for ξ = 0.

The reason why we are interested in this class of Hamiltonians is that they
naturally appear in the so-called problem of the "realization of constraints" [1 — 5]
of classical mechanics, and in particular, as we explain in subsection (1.3), in one
of the fundamental problems of classical statistical mechanics discussed particularly
by Boltzmann [6] and Jeans [7,8] at the turn of the century, which concerns the
dynamical foundations of the principle of equipartition of energy.

As the problem of realization of constraints is not much studied in the literature,
it will be recalled in some detail in the Appendix; just to give here the basic idea,
let us consider the simple example of a spherical pendulum of mass m and length
R. Using spherical coordinates (r, θ, φ), and denoting x = (θ, φ) and p = (pβ, pφ), the
Hamiltonian of the constrained system is

2 2

h(p, x) = — ~ H —-.——^ + mq R cos θ. (1.3)
2mRz 2m(R sin θ)z

The question is then how the constraint is physically realized. The idea is that the
physical device which actually produces the constraint (for example, a bar of
negligible mass and length R) can be represented by a steep potential well of the
form, say, \k(r — R)2, with very large k. This leads to consider in place of (1.3) the
complete Hamiltonian

^ 2 2
2^2 , PθHJp, x9 π, ξ) = -- + mω2ξ

2m ' * ' 2m(R + ξ)2

with ω2 = k/m, ξ = r — R, and π the corresponding momentum. One wants to study
this physical model for large ω, and understand whether, and in which sense, its
behavior is close to that of the corresponding ideal system (1.3). The trivial
rescaling ξ = m~1/2ξ\ π = mll2π' and a Taylor expansion in ξ at ξ = 0 for the third
and the fourth terms give the Hamiltonian (1.4) the form (1.1), the accents in the
new variables having been omitted; as explained in the Appendix, one is quite
naturally led to consider in general Hamiltonians of the form (1.1) whenever one
has a dynamical system with n + v degrees of freedom, which reduces to n degrees
of freedom via the "physical" introduction of v holonomic constraints.

1.2 The purpose of the present paper and of the forthcoming one is thus to study
the above class of Hamiltonian systems in the limit of large ω, say ω = λΩ, with
some fixed Ω = (Ω1,...,ΩV) and large λ. In particular, our aim is to study
the time-scale on which sensible energy exchanges among the (p, x) and the (π, ξ)
degrees of freedom are possible, and to show that, within suitable assumptions,
there is almost no energy exchange (more precisely, there is an energy exchange
bounded by an inverse power of λ) for a time-scale growing exponentially with λ,
say for

\t\^t*ei;/λ*)a, (1.5)
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where t* is a certain time, while A* and a are suitable positive constants. To this
purpose, we will make use of classical perturbation theory, treating (π, ξ) as the
fast variables, which is equivalent to using an inverse power of λ as the small
perturbation parameter; indeed, as is well known after Nekhoroshev's work [9]
(see also refs. [10-13]), classical perturbation theory quite naturally leads to
exponentially long time scales. As in the above quoted references, we will restrict
ourselves to the analytic case.

Another question that can be asked in connection with a Hamiltonian of the
form (1.1) concerns the relations between orbits of the complete Hamiltonian Hω

and orbits of the constrained Hamiltonian h. For example, denoting (pλ(t\ xλ(ή,
nλ(t), ζλ(t)) a particular solution for the Hamiltonian Hω, one can wonder whether,
for initial data satisfying the constraints, one can obtain (pλ(t\ xλ(t))^(p(t\ x(ή)
as Λ-*OO, (p(t),x(t)) being a particular solution for the Hamiltonian h with
corresponding initial data. As recalled in the Appendix, a result substantially
equivalent to an affirmative answer has in fact been obtained in refs. [1-5]. The
point however is that the above limit is highly non-uniform in time: in fact, from
the proofs reported in the above quoted references (which essentially rely on the
uniqueness theorem for the solutions of ordinary differential equations) one only
gets quite poor estimates of the form

distUίpMxxWMVΛtmύKλ-W, X,μ>0, (1.6)

which, although being in general optimal, loose any usefulness after a time scale

of order μ~ι\ogλ.
Results for long time scales as in (1.5) can thus be expected only for integrals

of motion of the unperturbed system, like the energy of the constrained system,
and not for orbits. In fact, such a situation of rapidly lost orbits with nevertheless
preservation of some integrals of motion, like /z, is rather natural in classical
perturbation theory; for a discussion on this point, see Sect. 5 of ref. [13], or ref. [14].

In this first part we will consider the simpler case v = 1 (but any n), i.e., the
realization of a single constraint; all of our estimates will be independent of n, and
the exponent a appearing in (1.5), which gives the correction to the pure exponential
law, will be 1/2. The same techniques could be extended to v > 1 (see the discussion
in Sect. 5), but only for Diophantine frequencies, and with a heavy v-dependence
of the estimates.

1.3 On the other hand, the case v > 1 with exactly equal angular frequencies (v — 1
independent resonances, in the language of perturbation theory) is of particular
importance in classical statistical mechanics. Indeed, take, as a model example, a
classical diatomic gas of N identical molecules of unitary mass; assume that the
free molecules vibrate elastically, with elastic constant ω 2, and interact via purely
positional forces. Then, denoting by x = (xί9...,x5N) the set of translational and
rotational degrees of freedom, and by ξ = (ξ1,..., ξN) the internal vibrational ones,
it is quite evident that the Hamiltonian of the system can be given the form

H = \ Σ (πί + ω2tf) + H(P> x, ξ), (1.7)
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for a certain H. This Hamiltonian has just the form (1.1), with n = 5N and v = JV,
if one denotes h(p,x) = H(p,x,0) and f = H ~h; all of the frequencies are equal
and / is independent of π, while h is clearly the Hamiltonian of the classical diatomic
gas, with ideally rigid molecules. Thus, studying the behavior of the classical gas
in the limit of high vibrational frequencies is just studying the problem of the
physical realization of the constraint of rigidity of the molecules.

As is well known, such a system presents the severest of the difficulties of
classical statistical mechanics: indeed, for no matter how large ω, the equipartition
principle would lead to the value CV = ^R for the specific heat, while ordinary
temperature experiments give CV=%R9 as if the vibrational degrees of freedom
were "frozen." A possible entirely classical way out of such and similar difficulties
(including the blackbody questions) was proposed by Boltzmann and Jeans in the
above quoted references [6-8], and reconsidered very recently [15] in the
framework of Nekhoroshev's theorem. The idea is precisely that the time scale
associated to the energy flow between the vibrational degrees of freedom and the
translational and rotational ones could be so large ("years", [6] "billions of years",
[7] in the words of Boltzmann and Jeans), that on the time-scale of ordinary
experiments the high frequency degrees of freedom would behave as if they were
really frozen. Moreover, a very relevant fact from our point of view is that in one
of Jeans's papers an exponential law of the form t = £*eαω, corresponding to (1.5)
with a = \, is explicitly proposed in connection with the diatomic gas model
sketched above, ί* and a being typical microscopic times.

The second part of this work, which is published separately, treats just the case
v > 1 (with the restriction that the coupling / be independent of π), with a technique
that allows to consider the case described above of exactly equal angular
frequencies. The results to be reported in Part II are thus intended to support
theoretically the ideas of Boltzmann and Jeans. As will be better explained in Part
II, a and ί* will be independent of N, while unfortunately Λ* will turn out to be
proportional to JV. This fact, in our opinion, cannot be avoided at a purely
dynamical level, essentially because one cannot exclude those extremely unlike
states where all of the energy is concentrated in a few degrees of freedom, or where
a number of molecules of the order of N interact simultaneously. The reader
interested in this application to statistical mechanics should perhaps consider our
previous paper [16], where the ideas of Boltzmann and Jeans are revisited in
greater detail, and supported by numerical experiments.

1.4 The present Part I is organized as follows: In Sect. 2 we state our main theorem,
providing estimates for a canonical transformation relevant for our Hamiltonian,
and deduce from it a corollary which proves the practical conservation of energy
for the constrained system for long time scales. The proof of the theorem is given
in Sect. 3, while a few technical lemmas are proven in Sect. 4. A conclusion follows.
The problem of the realization of constraints is briefly recalled in the Appendix.

We are indebted to G. Gallavotti and J.-M. Strelcyn for useful discussions.
Part of this work was done when two of us (G.B. and A.G.) were guests of the
Institute of Theoretical Physics of ETH, Zurich. We are very grateful to professor
J. Froehlich for his kind invitation.
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2. Results for the Case v = 1

Let us consider the Hamiltonian system (1.1) for v = 1, with hω given by (1.2), namely

Hω = i ( π 2 + ω2ξ2) + Λ(p, x) +/(p, x, π, £), (2.1)

where (p,x)eG a R2n, G being a bounded domain (which should be thought of as
the natural domain of definition of h, say the domain inside a compact energy
surface), while (π,ξ)eBczR2, B being defined by a condition of the form
\{π2 + ω2ξ2) SE0, with some fixed energy Eo. Both ίi a n d / a r e assumed to be
analytic in B x G; moreover, /vanishes for vanishing ξ, so that one can write / = ξf,
f being analytic and bounded in B x G.

Denote ω = /i2, where Ω is some fixed frequency (say the inverse of
a typical time-scale associated to the unperturbed problem), and introduce, in place
of (π, ξ) the action-angle variables (/, φ), by the usual substitution

π = ̂ ίΐϊω cos φ = ̂ JΐλΩl cos φ,
— _ / (2-2)
/ω sin φ = (λΩ) ι ^JlλΩl sin φ.

Then the Hamiltonian takes the form

Hλ = λΩI + h(p9 x) + λ~ιfλ{p9 x9 /, φ), (2.3)

with

fx(ρ, x, /, <p) = β ~1 y/2λΩI sin <p/(p, x, ^/2λΩI cos φ, (A/3)~x ^JlλΩl sin φ),
(2.4)

a n d / A is bounded, as follows from the assumption λΩI^E0, which corres-
ponds to / ̂  I0/λ with / 0 = Eo/Ω, and from the fact that / is bounded. To
such a Hamiltonian we will apply classical perturbation theory, using λ~ι as the
small parameter.

Our Hamiltonian is then defined in the real domain D = G x [0,/ 0 /Λ] X T 1,
where T 1 is the one-dimensional torus, or circle; this is equivalent to considering
φeR, all functions being periodic in φ with period 2π. Unfortunately, as is clear
from (2.4), fλ is not analytic as a function of / at / = 0. Thus, in order to use the
simple apparatus of classical perturbation theory in the analytic case, we make a
preliminary restriction of the domain of definition of Hλ from D to D o =
G x [poA, /oM] χ T 1, with a suitable p 0 < / 0 (as we shall see later, it will be possible
to take p 0 proportional to λ~β with 0 ^ j 9 < ^ , so that the restriction becomes
unessential for large λ). Then, we will assume that h and/ ; are analytic and bounded
in a complex domain Dp^D0, defined as follows: p is the vector (pp,px,Pi,pφ),
while Dp is the union of the polydisks of radii pp, ρu λ~1pI, pφ centered in
the points of D o , i.e.

Dp= U Δp(p9x,I,φ), (2.5)
(p,x.I,φ)eDo

with

Δp{p,xJ,φ) = {{p\x>J\φf)eC2n + 2 \pf

i~pι\^pp.ι
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(pay attention to the restriction on /, which is necessary to keep the energy λΩI
finite when λ-+ GO). In particular, in agreement with a previous remark, the angle
φ can be considered as defined in the strip \lmφ\^ρφ, with no restriction on Re φ,
all functions being periodic in φ with real period 2π. Although it is not strictly
necessary, for practical convenience we will introduce in the following theorem
the restriction ρφ^l. Concerning p / 9 one clearly needs only pι rg p0, but the optimal
choice is obviously ρo = pτ. In order to make use of Cauchy inequality (see Lemma
1 of Sect. 4) we will consider restricted domains of the form Dp_ό, with
δ = (δp,δx,δI,δφ) and δ < p, the inequality working separately on the different
components. The supremum norm in any set Dβ,, p' rg p, will be denoted by || ||p,.
A relevant role in the perturbation scheme will be played by min {pppx, PiPφ), which
will be simply denoted by p2, with a similar notation for the restriction δ.

After these preliminaries, we can now state the following

Theorem. Consider the Hamίltonίan

Hλ = λΩI + h(p, x) + λ~ 'UP, x, 1, φ), (2.7)

in the domain Dp given by (2.5), with p = (pp,px,Pi,pφ) and ρφ gj 1. Assume that h
and fλ are analytic in the interior ofDp, and denote

and
E=\\fx\\P, £ = max(||/j||p,£,ί3p :

;.* = 2 1 1 p " 2 β " 1 £

Then there exists a real analytic canonical transformation (p, x, /, φ) = ̂ λ{p

^λ D(i/2)p-*Dp> with ^λ(D(i/2)P) => D(i/4r)p> which satisfies the estimates

and gives the

H'λ(p',x',Γ

\Pι-

\i-

\φ-

-P'i <2-3λ-ι(λ/λ*yll2(E/E)pp (i =

-x'i\<2-3λ-\λ/λ*r1'\E/E)px (i =

I'\<2~5λ-1(λ/λ*y1(E/E)pI,

φ' <2-3(λβ*Γι'2(E/E)pφ,

Hamiltonian H'λ = Hλ

o(H>λ the form

,Ψ') = λΩΓ + h{p',x^ + λ-1gλ{p',x',Γ) + λ-1e

1,...,«),

J λ\P' "̂

(2.8)

(2.9)

(2.10a)

(2.10b)

(2.10c)

(2.10d)

(2.11)

where gλ and f'λ satisfy the estimates

I |0AII (I/2)P<2E, | | / ' λ | | ( 1 / 2 ) p < 8 £ . (2.12)

The proof is deferred to the next section. From this theorem one immediately
deduces the following

Corollary. For any orbit (p(t)9 x(t), I(t), φ(t)) of the Hamiltonian system {2.7), with
initial datum in D o, denoting by (p'(t), x'(t\ Γ(t\ φ\t)) the corresponding orbit ^l 1(p{t),
x(ί), I{t), φ(t)\ one has

( λ V 1

\λΩI'(t)- λΩl'(ϋ)\<^(y\ £, (2.13a)
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\h(p'(t),x'(ή) - kp'(0),x'(0))| < ( ~ ) E, (2.13b)

£ , (2.13c)

h(p(l), x(ί)) - h(p(O), x(0)) | < ( - ) £ , (2.13d)

for
| ί | rgmin(r,T 0 ), (2.14)

where

(^\ le^)l'2pφ, (2.15)

while To is the (possibly infinite) escape time of (p(t%x(t\l(t\ φ(ή) from Do. To is
actually greater than T if the initial datum is further restricted according to

( ; 4 ) E> (2.16)

Eo being the minimum of h on the border of G.

Indeed, one has Γ = — λ~1e{λ//*) adf'Jdφ', and one can estimate df'Jdφ' for real
φ' by Cauchy inequality (see Lemma 1 of Sect. 4). So one obtains (2.13a) for t
satisfying (2.14). The estimates (2.13b-d) are consequences of (2.13a), taking into
account the estimate (2.10c) on / and the conservation of energy to pass from
estimates on λΩI to estimates on h. The last statement concerning To is also
completely trivial.

Remarks.
1. The estimates (2.10) and (2.12) given in the theorem are global, i.e., refer to the
whole of the phase space, but with very minor modifications in the proof one easily
obtains more detailed local estimates. Precisely, denote Δp(p, xJ)={J ,
Δp(p9xj9φ), and

£ p(p,x,J)= sup |/λ(p,x,/,φ)|; (2.17)
(pS,lφ)eΛp(p,x,I)

then, for (p°,x°J°)eG x lpQ/λ,I0/λ'] and (p,xJ)eΔ1/2p(pQ,x°J0) one gets the
analogs of (2.10a-d), with Ep(p°9x°,I°) in place of E, and similarly one gets

I gλ(p\ x\ Γ) I < 2Ep(p°, x°, /°), | f'λ{p\ x\ l\ φ) \ < 8£p(p°, χ°, 1°) (2.18)

as the analog of (2.12). We did not insert this local form of the estimates in the
statement and in the proof of the theorem merely to simplify the notation. Some
consequences of these local estimates will be pointed out in the conclusions.

2. As already remarked, one can also take the constants pp, p x , p / 5 pφ appearing



94 G. Bencttin, L. Galgani and A. Giorgilli

in the statement of the above theorem to be dependent on /. In particular, it could
be convenient to take p = (λ~a/2ρp,λ~a/2ρx,λ~apI,pφ), with some given {pp,px,Pi,pφ)
independent of /, which gives p2 = λ~ccp2, λ* = 211Ep2λΛ, and thus (assuming

|Λ(ί)-Λ(O)|<UI E, (2.19)

for

T Y V".'7'"-*"2, (2.20)
A I

w i t h l = ( 2 n £ p 2 ) 1 / ( 1 - α ) .
The advantage of this reformulation of the result is that if one takes, as is

possible, p0 = pl9 the unnatural restriction of the domain from D to Do disappears
for large /; moreover, as a byproduct, a very small amount of analyticity of h is
needed.

3. More precisely, with p0 = p1 the domain \_PoΓλ^oΓλΛ x T1 of the /, φ variables
corresponds, for the original variables π, ξ, to the annulus

Ωβiλ~a S i(π 2 + λ2Ω2ξ2) ^ ΩI0. (2.21)

Although perturbation theory does not work directly in the "hole"
\(π2 + λ2Ω2ρ2) <Ωpjλ~a, it is quite clear that orbits with initial datum
1(0) in the hole cannot escape from a small neighborhood of the hole for |ί | g Ta.
Taking for example a = \, one obtains that the oscillation of h is bounded as in
(2.19), for |ί | g T1/2 and any initial datum, including those inside the hole.

3. Proof of the Theorem

The theorem is a direct consequence of the following

Iterative Lemma. Let the Hamίltonίan

Hf = λΩl + h(p, x) + λ-'gfa x, I,λ) + λ~1 ~kfk(p9 x, /, φ, λ) (3.1)

be analytic in Dp_kδ, with p = (pp,px,Pi,pφ\ PφSK cind δ < p/(k + 1); assume

W\p-kδ^E, (3.2a)

i/λ)1 iϊk>0

1=0 iffc = 0'

II Jk \\β-kό = / ι ^5 yj.ΔL)

with E^E and A = 28δ~2Ω~ΪE; assume also

λ^2A. (3.3)

Then there exists a canonical transformation (p,x,l,φ)-=(€{l\p\x\l\φ), ^ψ:
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Dp-{k+1)δ-+Dβ^kδ, bounded by

\I-Γ\S2-Ίλ-1(Λ/λ)k+1(E/E)δIδφ,

such that the new Hamiltonian H{k+1) = H(k)o(£{k) has the form (3.1), and satisfies
(3.2), with k + 1 in place ofk.

Proof of the Iterative Lemma. Given H{k) of the form (3.1), we generate the canonical
transformation Ήψ as the time-one solution of an auxiliary Hamiltonian problem,
with a suitably chosen Hamiltonian χ: Dp_kδ-^C.

Denoting fk = (2n)-l2\ fkdφ, so that \\fk\\β-u^\\f\\l>-kt^ΛkE, our choice
0

of χ is

χ = λ~2~kΩ~1 \(fk —fk)dφ. (3.5)
o

The reason of this choice is the following: first of all, using δψ < pφ :g 1, from the
above expression for χ one finds

:δ^SEλ~2Ω~1(Λ/λ)k; (3.6)

recalling then (3.3) and the expression of A, one deduces \\χ\\p-kδS
2~6(A/λ)k?,~1δ2 <\λ~1δ2\ thus, according to Lemma 3 of Sect. 4, with in our
case σ = λ~1δ2, the solution Φ\p\x\I\φ') of the Hamiltonian system with
Hamiltonian χ, corresponding to initial datum (//, x', /', φ'), is certainly defined for
ί = 1, and one can set ^(k} = Φ 1 . Then one can consider the new Hamiltonian
H(k + 1) = H^oφ1, and decompose it in the following way:

(3.7)

where ^ [ F ] = Foφ1-F, and K 2 [F] = F-ΦX -F- {χ,F}.
The second line of this expression contains φ'-dependent terms of order Λ~ x ~fc,

but vanishes just because of the choice (3.5) of χ. The new Hamiltonian H{k+1) has
then the form (3.1), if one sets

gk+i=gk + λ~kfk (3.8a)

λ-2-% + 1 = RίW + R1lλ-1gk + λ-ί-kfA + R2lλΩn (3.8b)

One must now show that the inequalities (3.2) are satisfied with k + 1 in place of
k. Clearly (3.2a) is trivially true, while (3.2b) immediately follows from ||/ f c | | ^
ΛkE. To achieve (3.2c) we must use Lemma 2 and Lemma 3 to estimate the
remainders. By (4.8) of Lemma 3 one has

\\{x,i!}\\P-ik + ll2)3> (3.9)
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and by Lemma 2, recalling that h is independent of / and φ, so that one can take
σ = (δp/2)/(δx/2) ̂  |(5 2, one obtains

II R ΓhlW < 4 ^ ~ 2 l l v l l F Π 1Ωϊ
\\KlLnj\\p-(k+l)δ = ^ 0 WXWp-kδ^ [D.iK))

In a similar way, using ]|gk \\p-kδ < 2£, which trivially follows from (3.2b) and (3.3),
and taking σ = min[(^/2)(δJC/2), λ-ι(δIβ)(δφl2)']^λ-1δ2 in Lemma 2, one
immediately finds

Finally, using (4.9) of Lemma 3, and recalling that {χ,λΩI}= — λ~ί~k(fk — fk)
by the choice (3.5) of χ, one finds

so that, recalling the definition (3.8b) of fk+u the estimate (3.6) of | |χ | | p_ k a, and
the definition of Λ, one finally has

as required.
To complete the proof of the iterative lemma, one must verify the estimates

(3.4) on the canonical transformation. These however are trivial consequences of
(4.7) of Lemma 3: precisely, one has

\Pi-p\\S
dX; p-{k+l/2)δ

\\p-kδ

(3.14)

and similarly for |x ; — x |. Concerning \φ — φ'\, one has instead

Sχ
\ψ-ψ'\ύ

dl
p-(k+ \j2)δ

<2-*(Λ/λ)k+1(E/E)δφ, (3.15)

while to estimate \I — Γ\ one can use the explicit expression (3.5) of χ, obtaining

p-(k+i,2)d

(3.16)

S2-7(Λ/λ)k+1(E/E)δIδφ.

The iterative lemma is thus proven.
We now come back to the proof of the theorem. To this purpose, we make use

of the iterative lemma for k = 0,... ,r - 1, with δ = p/2r9 so that the constant A
appearing in the lemma assumes the value A = 2ίOp~2Ω~1Er2 = A0r

2.
According to (3.3), one can choose any value of r not exceeding r = (λ/2A0)

lί2,
and set H'λ = H([\ The value of r is now precisely chosen in the interval [l,f] in
order to optimize the estimate on the φ'-dependent part of the H{[\ i.e., according
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to (3.2c), in order to minimize the quantity

R = λ-^Λ/λYE = λ'\r2AJλ)rE. (3.17)

An elementary computation gives for r the optimal (noninteger) value

r* = e- 1 (/Mo) 1 / 2 , (3.18)

which is less than r, and greater than one if / satisfies the further requirement
λ>Λ0e

2. Clearly, one should treat only this case, because for / r g / l 0 β 2 <
213p~2E = 42*, /* being given by (3.3), the theorem is trivially true (and completely
useless). The best choice of r is then given by the integer satisfying

r*- 1 <r^r*, (3.19)

which leads to

R < ir^-2^-"E = /rxe- JAλ IΛoe2 + 2E

and thus to the second of (2.12).
The first of (2.12) is a trivial consequence of the corresponding inequality (3.2b),

while (2.10a-d) follow from (3.4) by a sum on k: for example, one has

<2- 3 /- 1 μ/; .*)- 1 / 2 (£/E)p p , (3.21)

where 2r > r* has been used.
The canonical transformation obtained by iteration of the lemma is clearly

analytic in D p / 2 , while the estimates (3.4) also imply that ^λ(Dp/2) => Dp/4, as claimed.
This completes the proof of the theorem. The idea to choose the order r as a
function of the perturbative parameter as was done in (3.19), is the heart of
Nekhoroshev's exponential estimate; [9] the optimization procedure followed here
can be found in ref. [12].

4o Technical Lemmas

We introduce here a few elementary lemmas, used in the estimates of canonical
transformations.

Lemma 1 (Cauchy inequality). Let f(z1,... ,zz) be defined in the polydisk

A = {(z1,...,zι)eCι; \Zi-z9\^γil (4.1)

yι,...,yι being positive constants, and analytic in the interior of A. Then one

has, for i= 1,...,/,

SyiΊfl (4.2)

where \\-\\ denotes the supremum norm on A.
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Proof. The proof is a well known easy application of Cauchy integral formula.

Lemma 2 (on Poisson brackets). Let ( P , β ) = ( P i , . . . , P j , β i , . . . , βi) be canonical

variables and assume / ( P , β), g(P, β) are defined in the poly disc

and are analytic in its interior; denote by \\-\\ the supremum norm in A. Then

for the Poisson bracket {f,g} one has the estimate

with σ = mint otiβt.

i

Σ
i = 1

Proof. By definition it is [f\g}= £
denoting

G(t) = g ί ^

(4.4)

dPt). Then,

(4.5)

one has {f,g}(P°,Q°) = (dG/dt)(O). Now, one has clearly |G(ί)| g | |#i | for t such

that I t{df/δQi) (P°, β°) | ̂  α, and | f(δ//δPf) (P°, β ° ) | ̂  j8f for f = 1,..., /, i.e., using the

Cauchy inequality (4.2) to estimate the derivatives of / in (P°, β°), certainly for

| ί | ^ T = II / II ~ 1 m i n ^ ^ α^j . Using again Cauchy inequality to estimate (dG/dt)(O),

(4.4) immediately follows.

Lemma 3 (on canonical transformations). Let (Plf...,Pι,Q1,...,Qι) be canonical

coordinates in a domain D cz C 2 / , and for a given δ = (θLί9...,zι,βu... ,j8z), denote by

Δδ(P9Q) the polydisc {{P\Q')GC21; | P ; . - P f | ^ α / 9 \Q'i-Qi\ύβi, Ϊ = 1 , . . . , / } , and

by D-δ the subset of D defined by D - δ = {(P,Q)eD;Aδ{P,Q) a D}. For any

D' cz D, denote by || ||D, the supremum norm in D'.

Consider now any Hamiltonian χ(P, β) defined in D, aπ<i analytic in its interior,

denote by Φ f (P, β) = (P^P, β), β r (P, β)) the solution of the corresponding equa-

tions of motion at time t, with initial datum (P, β), and assume

(4.6)

-t>-»_D, which forΦ f is an analytic canonical transformation:

z ̂  / satisfies the estimates

\P\-Pi\u

(4.7)
D-δ/2

Moreover, for any function F analytic in the interior ofD, the transformed function
ft = F°Φtsatisfies the estimates



(4.9)

(4.10)
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and

Proof. By Cauchy inequality (4.2) one has

D-δ/2

D~δl2

Then the existence and uniqueness theorem for the solutions of ordinary differential
equations allows one to conclude that for initial data (P, Q)eD — δ the solution
Φ\P, Q) is well defined, and does not escape D — (5/2, for t satisfying the
inequality (4.6). Moreover, Φ\P,Q) is analytic both as a function of ί and of
(P, Q), and is canonical for each ί.

t

Then, to achieve (4,7), one simply writes \P\ — P, | ^ \{dyJdQi){P\ Qs)ds g
o

\t\ W(dχ/dQi)\\D-δ/2> a n d similarly for \Q\ — Qh while to achieve (4.8) one makes use
of Lemma 2, and writes the identity

\\D-

F(P, Q) - F(P, Q) - } {χ, F} (Φ^P, Q))dt',
o

which gives

(4.11)

(4.12)

Finally, to obtain (4.9), one writes

F'(P, Q) - F{P, Q) - l{χ, F} (P, Q) = \df) dt"{χ, (χ, F)} (Φ'"(P, 0 ) ,
0 0

lίF' - F - t{χ, F} \\D_a }'df )άf || \χ, {x,F}} ||D_ί/2
0 0

£Ϊ\t\2\\{xΛx>F}}\\D-il2.

So Concluding Remarks

(4.13)

As already commented in the introduction, the theorem stated in Sect. 2 naturally
applies to the problem of the introduction of a single constraint in a dynamical
system, in order to reduce the effective number of degrees of freedom from n + 1
to n. No essential difference is expected when v constraints are introduced, if the
frequency vector is ω = λΩ, with λ large and Ω = (Ω1,...,ΩV) satisfying
a Diophantine condition, apart from a bad v-dependence in all constants entering
the theorem. A more interesting case is that of resonant frequencies, in particular
completely resonant ones, because of its relevance for statistical mechanics.
Unfortunately, it is not possible to extend the present technique to the resonant
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case, because for resonant systems the actions are not separately constant, and in
particular cannot be kept out of zero, where the Hamiltonian is no more analytic.
So the resonant case will be treated in the forthcoming second part of this work
with a different technique.

The existence of time scales growing exponentially with λ was exhibited by
numerical computations, reported in ref. [14] for the case v — 1, and in ref. [14, 16]
for v > 1. These numerical experiments are quite delicate, and must be considered
very carefully, but in any case they give some evidence of a /Independence of the
time-scale of the form exp (/,//*), instead of the weaker form cxp (///*)", α ^ i ,
which we find in our perturbative approach. This fact could be an indication that
the perturbative approach is still far from providing a complete understanding of
the mechanism which leads to the exponentially long time scales.

As a final remark, let us comment on the possible use of the above theorem
to support the ideas expressed by Jeans in his 1903 paper [7]. The heart of this
paper is the study of the collision of a point-particle with an internally structured,
fast vibrating molecule; Jeans's purpose is to show that at the end of the collision
the vibrational energy of the molecule is left unchanged, up to an extremely small
amount, exponentially small with /. This is different from the conclusion obtained
in the corollary of Sect. 2, because Jeans looks for an exponentially small energy
exchange during a single collision, i.e. in a short time, while we did consider
exponentially long time scales, allowing much larger energy exchanges.

In fact, it seems to be very easy to apply our theorem to Jeans's case, if one
considers (as Jeans does) the case of short-range interaction potentials, say
potentials decaying with the distance r like e~rlro. indeed, take as the time origin
a moment when the two colliding molecules are still far apart, at a distance i\ » r0,
precisely r1 = (///.*)1/2r0, and consider the energy exchange after a time ί1? when
the molecules are again at a distance i\\ due to the choice of r 1 ? it turns out that
tΛ is of order (///*)1/2, so that, from the expression (2.11) of the new Hamiltonian,
in place of (2.13a) one obtains \λΩΓ{ϊι) - λΩΓ(0)\ ~ (λ/λ*)1/2e~iλlλ*)l!\ To
obtain the corresponding energy exchange in the old variables, i.e. the quantity
\λΩI(t{)~ λΩI(0)\ (which corresponds to Jeans's purpose), one must add
to the above exponential estimate the contribution of the canonical transformation,
precisely I λ β / ^ ) - λΩ/'(ίi)| 4- \λΩI(0) - λΩΓ(Q)\. To estimate such quantity one
can use (2.10c): however, the estimate being necessary only in a region with r ^ i\,
one can take E — e~rχιr° — c~(Λ/Λ¥)1/2, so that the exponential estimate for the energy
transfer is preserved, and Jeans's conjecture (apart from the precise form of the
exponential dependence) is thus proven.

This comment has been inserted here mainly as a tribute to the ideas and the
intuition of Jeans, which appear today to have been essentially right.

Appendix: The Realization of Holonomic Constraints

The aim of this Appendix is to recall the problem of the realization of constraints
of classical mechanics [1 -5]; the basic purpose is to justify the interest in
Hamiltonian systems of the form (1), to which the present paper is devoted. For
obvious simplicity reasons, our exposition will be not as formal as it could be; for
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a more formal introduction to the problem, the reader is deferred to the above
quoted references, in particular to ref. [3] which we will follow more closely.

Let us consider a Lagrangian system with n + v degrees of freedom, and assume
it reduces to n degrees of freedom by the introduction of v holonomic constraints.
Assume one is able to introduce adapted coordinates (x,ξ), x = (xi,-. . ,xκ),
ξ = (ξ1,..., £v), such that ξι = 0,..., ςv = 0 are the equations of the constraints. If
the free system is described by the "free Lagrangian"

L(x9 ξ9 x, ξ) = Γ(x, ξ, x, ξ) - 7(x, c), (A.I)

then the constrained system is well known to be described by the "constrained
Lagrangian"

L(x, x) - f (x, x) - V(xl

Γ(x,x)=Γ(x,0,x,0), (A.2)

For example, for a point-mass m confined to a spherical surface of radius R around
the origin, using the ordinary spherical coordinates (r, θ, φ) and denoting x = (0, φ),
ς; = r — R, one has

L = \ m[ξ2 + (ς + R)2Θ2 + ({ξ + R) sin 0) 2φ 2] - V(θ, φ, ξ\

L - iίn(R2θ2 + K2 sin 02φ2) - K(θ, φ, 0). (A3)

This purely geometrical introduction of constraints is easy and powerful, but
completely ignores the physics, i.e., how constraining forces are practically
produced. Physically one expects that the constraining forces are the elastic
reactions to very small deformations of some material objects, characterized by
very large elastic constants. In the above example, one can think the mass m is
bonded to the origin by a spring of unstretched length R and large elastic constant;
for more general systems, one would like to represent each (holonomic and bilateral)
constraining device by a suitable "confining potential" λ2W(x, ξ% with W(x,0) = 0,
and W(x, ζ)> 0 for ξφO. This means one aims to study, in place of the already
constrained system (A.2), the complete Lagrangian system

LA(x, ξ9 x, ξ) = T(x, ξ9 i , ξ) - V(x, ξ)-λ2 W(x, ξ). (A.4)

The physical intuition is that one should recover, in some sense, the constrained
system, in the limit /.-> oc.

Let

Γ = i t ^/x^μ^. + i t B0<x,ξ)ξ^.+ X Σ Cifaςjxtξj (A.5)

be the kinetic energy of the system. Now, one can always introduce adapted
coordinates, such that one has C^(x, 0) = 0 (orthogonality of the x and ξ coordinates
on the constraint), and Bίj(x,0) = δij (as is obtained by the substitution ξ =
B~1/2(x,0)ξf in (A.4), which is possible because the matrix B is symmetric and
positive definite). For example, the Lagrangian (A.3) is already written in the
adapted coordinates, apart from the trivial substitution ξ = m~ι/2ζ'. Using adapted



102 G. Benettin, L. Galgani and A. Giorgilli

coordinates, the Lagrangian (A.4) can be given the form

Lλ(x, ξ, x, ξ) = L(x, x) + i- t % ~ λl w^ Q + F(χ> ̂  *> ft ( A 6 )

where L is given by (A.2), and F vanishes for vanishing ξ.
Denote by (X[(x, ξ, x, ξ), Ξ[(x, ς, x, ξ)) the solution to the Lagrangian

problem (A.6), with initial datum (x, ξ, x, ξ). The basic question posed in refs. [1-5]
is whether, at fixed t, one can achieve

lim X[(x, 0, x5 ξ) = X\x, x), (A.7)
λ~* 00

X1 being the solution of the constrained Lagrangian problem (A.2). As is proven
in the above quoted references, a sufficient condition for the validity of (A.7) is
that W(x9 ζ) does not depend on x, i.e. one has W(x9 ζ) = w(ς). Such a condition is
clearly satisfied by our model example (A.3), if the spring connecting the mass m
to the origin is isotropic, but otherwise is not. As widely discussed for example in
ref. [3], such an apparently strong condition cannot in general be released, unless
in (A.7) one imposes ξ = 0 in the initial datum, beside ξ = 0.

Passing now to the Hamiltonian formalism, and assuming the x-independence
of the confining potential, one clearly obtains, from (A.6), a Hamiltonian of the form

H(p, x, π, ξ) = \ X πj + λ2w(ξ) + h(p, x) + f(p, x, π, ξ), (A.8)

where p = ( p l 5 . . . ,pn) and π = ( π l 5 . . . ,πv) are the momenta conjugated to x and ξ,
while h is the Hamiltonian corresponding to L, and / collects the terms which
vanish for ξ = 0. Such an Hamiltonian already has the form (1.1); the expression

V

(1.2) of hω corresponds to the particular choice w(ξ) = ̂  Σ Ωfξf. The only
i= 1

relevant point in this choice is that none of the Ω{ should vanish, while the
possible presence of higher order terms in ξ would be completely irrelevant; these
terms have not been inserted just for simplicity.

As explained in the introduction, we are interested in the possible existence of
long time-scales, growing exponentially with λ according to (1.5), on which the
energy exchanges between the x and ξ degrees of freedom are almost forbidden,
so that in particular his practically constant, as in the case of an ideally constrained
system. It is perhaps worth noticing that on such long time scales it is not
conceivable to obtain point-wise convergence of orbits, comparable with (A.7),
which holds only for / -> oo at fixed t. Indeed, it should be clear that, for example,
whenever the constrained system to be realized has unstable orbits (positive
Lyapunov exponents), the limit (A.7) must be highly non-uniform in time; in fact,
from the proofs reported in the above quoted references (which essentially rely on
the uniqueness theorem for the solutions of ordinary differential equations) one
only gets quite poor estimates of the form

X^^Kλ'^^ K,μ>0, (A.9)

which, although being in general optimal, lose any usefulness after a time scale
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of order λ'1 logμ; only in the particular case of integrable systems, it should be
possible to replace the exponential of time in (A.9) by a linear function, but in any
case one would remain far from the long time scale (1.5).
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Note added in proofs. A problem related to ours was studied by A. I. Neishtadt fPPM USSR Vol. 48, no. 2,
133-139, 1984], in giving estimates for adiabatic invariants. The main difference is that our problem
requires to consider for the action / a domain with a radius inversely proportional to / (see Sect. 2), and
this significantly alters the perturbative scheme. We are indebted to Prof. J. Moser for indicating to us
Neishtadt paper. Earlier rigorous estimates for normal forms were obtained in J. Moser, Nachr, Akad.
Wiss. Goett., 1955, 87.






