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Abstract. Introducing the Hellmann-Weizsicker functional for large angular
momenta and the orbitals of the Bohr atom for small angular momenta we
obtain an upper bound on the quantum mechanical ground state energy of
atoms that proves Scott’s conjecture.

1. Introduction
Let H be the hamiltonian of N electrons moving in the field of a nucleus of charge Z,
ie.
il 4 N 1
net (o E)es
i=1 j

r; ij=1 Iri—rj
i<j

as a self-adjoint realization on /\ (L2(R*) ® €Y. In this paper we show for the
ground state energy £, (Z, N) of H

Theorem 1.1.
EQ(Z,Z)§Z7/3E1TF(1)+gZZ+0(ZZ), (1.1)

where ETF(N) is the Thomas-Fermi energy of the above hamiltonian.
Combining this result with the reverse of (1.1), an inequality that has been
claimed by Hughes [1], would imply

q

Eg(Z.Z)=EfF () Z7P + 2 Z° + 0(Z?). (1.2)

Scott [2] claimed this result arguing that the leading energy which is given by the
Thomas-Fermi energy (Lieb and Simon [3], Lieb [4], Thirring [5]) should be
corrected in those regions where the assumptions of the statistical theory of the
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atom are not well fulfilled. The leading correction turned out to be generated by the
electrons near the nucleus where the interaction between the electrons is dominated
by the electron-nucleus interaction. Later Scott’s conjecture was amended
(Lieb [4]) and further supported by heuristic arguments (Schwinger [6]; Englert and
Schwinger [7]; Bander [8]).

The strategy of the proof follows Scott’s intuition, at least partially: The
electrons with high angular momentum are treated statistically via the Hellmann-
Weizsicker functional [9, 10]. Only the electrons with small angular momentum
whose radial density vanishes only slowly at the origin compared to the bulk of the
electrons are treated by introducing Bohr orbitals i.e. orbitals which describe
electrons interacting with the nucleus only.

The organization of the paper is as follows: In Sect. two we introduce the basic
density matrix and estimate its expectation, in Sect. three we show that we obtain
the Hellmann functional plus the ¢ Z? correction, and, finally, in the last section we
show that the Hellmann functional with our trial density may be bounded from
above by the Thomas-Fermi energy.

2. The Basic One-Particle Density Matrix

We choose the following one-particle density matrix
dl (x> xl)

2

= o0}

q [
Z wn,l,m,sq)n,l(r) (pn,l(r/) s (O.) s (OJ) }/l,m(w) Yl,m(U)/) s (21)

m=-—ls=1

M~

oe
=0
where x, x’ denote space-spin variables, the weights w, , ,, ; are between zero and
one, sum up to at most Z and are independent of m and s, and y,(c) = J, , are spin
functions. Now let L be a sequence of integers tending to infinity as Z tends to

infinity. We define L = [Z'/*?]. Then, for /= L we choose the orbitals ¢, , to be
Macke orbitals. More explicitly we choose

o VA0
s
r

n

@1 (r) = e

where {;: [0, 00)— [0, 1), monotone increasing, {;(0) = 0 and {;(r) > 1 for r— o0, i.e.
¥ © -1
()= f@z(l)dt (IQ:(Q‘”)
0 0

with nonnegative g,. Moreover we require ¢;(0)=0. The functions ¢, may be
interpreted as radial densities in the angular momentum channel /. They are chosen
as follows

Definition 2.1.
1. For sufficiently large Z, let 9" = (ofl, of. ...) be defined by

Qz’*(r)=fxf”2%J[}‘Z(r)_<l+%>2J . (2.2)
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with A(r) = (1 —aZ = Y*)'3 L, (r) for a certain positive constant a which will be chosen
2

later and o, = —26%1? The function L, which is essentially the cubic root of the
q
Thomas-Fermi density, is defined in Appendix B.
2. Letr,(l) and r,(I) be the points where off becomes zero. Furthermore let k be
defined by k +%=max {A(r)|re R"}, and let k' be the greatest integer less than k.
Then we define for sufficiently large Z: For |2 k' let 9,(r)=0.For0=I/< k' — 1, let

gRI+1)a?r? 2 for 0<r<x,()
a(m=1 o Jor x; () Sr=x,(1),
qgQRI+1)p2e 2 for x,(DEr
where the constants o and 8 are chosen such that g, becomes continuous at x,(I) and
x,(0), i.e.

,_ VR () _VRx0) .,

where we introduced the abbreviation R, (r) = [A*(r) — (I+%)*], . Furthermore we set

J+1
=2 n=r DT 2 xu()=r0)— S22,
T and S are positive constants. S is arbitrary, while T is in (0,1). For [ = k' we set
xy ()= x,(I) to be an arbitrary constant.

Next we define the weights w and the phase factors k, ;. Let

n,l,m,s

Ny s= [0 (ndr/(qg21+1)). If [N,,, ] is odd, we choose k,,=2n, otherwise
0

k,,=2n—1. The weights are chosen as

1 for |k, | [N, .. J—1
Wn.l.m,sz 81/2:(Nl,m,s_ []Vl,m,s])/2 fOI' |kn.l|=[]Vl,m,s]_*—1
0 otherwise.

This defines the orbitals for high angular momentum completely and yields one-
dimensional Thomas-Fermi-Weizsicker functionals in these angular momentum
channels. Our choice of the radial densities reflects the fact that we expect the bulk
of the electron well described by a ‘statistical model”. Thus we choose them to be
approximate minimizing Hellmann densities [11, 10]. However, at places where
these densities become small, i.e. near the origin and near infinity, we cannot expect
this a good approximation. The gradient term would in fact diverge where the radial
densities vanish. Thus we modify them in these regions according to the
asymptotics of the Bohr atom. Up to this point the ansatz for the one-particle
density matrix is exactly the same as in [9]. However, for / < L we choose the ¢, ; to
be the first (weight one) K —/ eigenfunction of the radial Schroédinger equation
in a Coulomb field with point charge Z. We set K= [dZ'/3] with some positive
constant d.
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Thus the electrons near the nucleus are treated without statistical approxi-
mation but with orbitals belonging to non-interacting electrons. For electrons with
/= L the interaction is taken into account but only within a statistical model.

The ground state energy may be bounded by using the usual Hartree-Fock
functional written as a functional of the one-particle density matrix. Furthermore
we estimate the indirect part of the Coulomb energy by zero (positivity of the
Coulomb kernel). We remark that this density matrix is admissible for this
functional: The weights are given explicitly between zero and one and d; has finite
kinetic energy (see[9] and the proofs of Lemma4.1 and of Proposition 3.3).
Because of Theorem 5.1 of [9] it suffices to show that d; represents Z particles or
less. To show this trace property we need some more results, and thus we shall come
back to this point in chapter four.

Next we calculate the value of this functional explicitly. According to [9] and the
2

fact that the energy levels of the Bohr atom are — T in our units, we obtain
n

Ey(Z,Z)

2 L-1 K

Z
<-=- Y qQi+1) Y =
4 =0 n=1+1

& R = I(+1) Z
+ Y [ Ve 2+ﬁ93+<( i )—*>der
I=L 0 3 r r
TR N TG g — 23
2() 0LlI'=L maX{V r’}
1@ L~
+§H<2Z g+ Y <p,,,<r>zol<r)
00\ I=0 n=l+1
L-1 K K 1
+ 20+ 1) g2l +1 a1 oy ———dr'dr
LI'=0 q( )q( )n;+1n—;+1(p l()q} I( )> maX{r,V}
o [—1+6¢g—3e 2¢ —6¢f +48,>°° N
+ oY + 0P dr,
1=ZL 3< Nl?m,s Nl?m,s g !
Ny #0

a result that follows from Theorem 5.1 of [9]. It is based on Lieb’s upper bound on
the ground state energy [12].

3. The Hellmann Functional Plus ¢ Z* Bounds the Ground State Energy from Above

We begin this chapter with some definitions: Denote by £/, (¥,) the infimum of the

functional
2 M1 +H* Z
&)= | <§ w07 + <( AZZ) — —> a,) dr,
o ¥ r
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taken over the densities with particle number N, or less. Analogously we define
E[Y (N,) as the infimum of

&1 (o) = | (Va,'z <Z(’;“—§>m> i

Finally we introduce the functional &% (¢) to be the sum over all non-negative

integerslofé”{}'z(ol)plus% Y [ar fd’w

LI'=00 max {r, '}’
of these functionals see [9].)
In this chapter we shall prove the

(For a detailed investigation

Lemma 3.1. E,(Z,Z) < &} (") + _g 724+ 0(Z47%%,

To this end we collect some technical results:

Proposition 3.1.

2 L-1

Z gQI+1) Z e 822+ Z H,(qQ21+1)(K— 1))+ 0(Z*¥12),

n=

Proof. In order to evaluate the sum over n we use the following asymptotic
expansion as x — oo of the Riemann zeta function (see Erdelyi et al. [13], formula
1.18(9)):

i 1 S TR E B)

Cox)= 2 (07" = r'e) 2

Rearranging the sums over n and / and using (3.1), we find after some algebra,

L—-1 K
Yoy Mo liowy, (3.2)
1=0 n=1+1 2
for our choice of L and K. In [11], Eq. 2.9, we determined E/,(q(2/+ 1) (K —1))
o— 2 J—
to be Z7q 4K=1) We find

4 2K+1°

WUAK=D 2L

=2L— . 3
,;0 2K+1 2K+1 (33

The equalities (3.2) and (3.3) yield

1

e O RS N =10 )
L2 a3 ,;0 2K +1

1=0 n=1l+1

+OL™Y).

72
Multiplication with 9 yields the proposed result. [

Proposition 3.2. There exists a positive constant d such that for our choice of K,
namely K= [dZ'?], and for sufficiently large Z

Elf(q21+ 1) (K= D) < &(ef") .
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Proof. Since E[, denotes the infimum of &/,, we have only to prove that

?Q:H(V)dr§CI(2l+1)(K—l)-
0

. . o 18 .
Since 4 may be enlarged either by ]/Zr or by T we find for some positive
constant ¢ a

“ 2+1) (R2° Y/ Zr 0 18
[ o<t ; )< f V2 s [ %dr>gcq(zz+1)21/3.

0 ney T RZ"

Hence the claim follows, if we choose, for instance, d=c+1. []

Proposition 3.3. For sufficiently large Z the following holds:

Z &7 (o) = Z &' (of) + 0(Z*772%).

Proof. We remark that each R, has exactly one maximum at RZ ~ '/, since 4 has a
single maximum at RZ~!/3, and that A” has only one zero at WZ ™'/ for some
positive constants R and . These facts follow from Appendix A. Throughout the
following we need the results of Lemma C1.

By integration we obtain

fw I+ 7 1\ "2
(V@l T+ (( J,’Z) -—~> g,> dr < const 22 (1+;> :
" r L

(1+2)2 4 7 1
— dr < tZ78([+= ).
ij(l)<]/gl 3\1 ( = ~ ), ) dr=cons +2

Next we consider the gradient term in the middle region. First we calculate the
integrand for 0= /<k’—1 and x; (/) £r =< x,(/), and get:

ﬁ/zzq(Zl-l-l)[ a2 , AN +Vm)7}
N 4n ViR (D TRy R+’ r?

(3.4)

Now we estimate the integrals. Since /4> — (/+%)* <1, we find
x5 () 2_ ]+ 12 2 1\ "3
| 1//1—3(+—2)dr§422 (1+-> . (3.5)
) r 3 2

The second term of the sum is negative, if r € [x, (/), RZ~'/3]. Therefore we
consider only the interval [RZ ~'/?, x, (/)]. Using the substitution A* (r) = x we find:

x(h) =21
roe 1 Y2 = (143
The first term of the sum may be divided into two parts by splitting the

integration interval at RZ '3, Considering the first part yields, using the
substitution A(r) = x,

) 1
<3 Z23 <k + 5) < const Z. (3.6)

RZ~13 12 }./2 , A(Rz-l/l) dx
AZT_I___? dr é Z)» (Xl (1)) j ‘—ﬁ:& N
o rYAE—(1+9) oy Yx2—(1+3)
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o A () = (+D)
L t A Ns———FF—.
since = <r. By the mean value theorem we ge (x () = x ()= r(0)

Z2YR () -+’

Carrying out the integration yields the estimate 3 . Hence
we obtain Ti+2
RZ~-13 /’{2 212 1 -5/2
[ gr<constZ? (1+ —> : 3.7)
wo YA —(1+3)? 2

xzu) 22 )2

m dr remains. We enlarge the integrand using
RZ B r ) A +3

The integral

A(r) A (r
_0A0) < const Z*3, since A'(r) = — const Z** holds. Hence
;
0 2202 d) A(RZTIR) dx
_—_r—3_§ const Z4/3 33
xzer ) 2E—(+5)? 2oy Vx—(1+3)
onst Z3/3
< cons (3.8)

I+ D) min{/+3, 24}

Combining the results (3.5-3.8) yields

X3 (1) —12 1
| Vo, dr<const <I+ 5)

x (1)

1\ "3 1\ 52 25’3(l+l)_1/2
. 2 - 2 - 2
[z <z+2> +Z+Z <1+2> T min (i1 279 | (3.9

Since for 0 <1<k’ —1,

x‘nggl (ydr < <q( 1+1)

no " xy (Dry ()

ZY/ R (x, (D) M_ const Z? (Z+%>—3/2,

R Z q21+1) ry (D)= x, (1) 1
Jm_g (Ndr <=2 7/ Ry(x 2(1))W§mmtzm<[+§>

holds, we have

x,(0) ll 1 1 —-3/2
j(ﬁghr(ﬁz—) f) )dr<£’z(0f1)+const22<l+§> . (3.10)

1 .
D 3 7

Moreover for [=k’,

’z(k)
| —0 H(r)dr < const Z11/¢ (3.11)

Vl(k)

holds.
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Hence we have from (3.4) and (3.9-3.11),

Z ngz (o) = Z Z(Qz
1=L
k-1 1\ 32 Z53 (1 + 112
72142 2 11/6y
+ const IZL< < —1-2) + mﬁin{l+%,21/4}>+0(z )

k=1

Using (3.1) we get that Z Z2(I+%)732=0(Z* L™ V?). The remaining sum yields

a term of order Z%%/ 2] Th1s completes the proof. [
Now we consider the electron-electron interaction.

Proposition 3.4.
Tame) 5 Tt (nel(r)
Z (J:g max{rr} dr < Z, gg “max{r ] dr' dr + const Z*1/°,

Proof. We divide the interaction integral into several parts:

To(r) oy (r) (0 ) 1(”)
dr' dr <
ggmax{r r'} rars g o(r)dr (j)

xy (D) x, (1)

S ama T D a g |2 g
0 oy 0 P0) r

% () 50 %) ('

2 a(r) r j o (Y + | 0/(r) g (r,)dr,dr
O 0 X () x, (1) max{r,r}

+xzjg)gl(r)dr { er(r)d + f Q’r(r)d j op (XY dr’

x (D X, () X (D)

+ j Ql()d f oy (rydr' + }0 Ol()dr | oy (rar,

w0 T X (0 () % (0

. . 1 1 .
since we may enlarge either by - or by E Using Lemma C.1 we calculate

1
max {r,r'}

the following estimates:

X
=

0, dr < const Z'/?

O
=

=
N
—

,dr < const Z,

o

=

Ry

— 8
o

,dr < const Z1/2

RallR 1
= =
= =

=

[
=—dr<constZ,

O

S
~:|fb ~

=
S
—

L dr < const Z*/3,

108 Lb8 ipAs s 18

=
S

&dr§ const Z5/¢
;

D18
— 8

l

0 x, (1)
where we used R, (r) = Zr for the fifth integral. This yields the proposed result. [
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Proposition 3.5.

1 L-1 wox K K 1

2,2, g gnzlzﬂ LI(2I+1)<P3,1(V)”,§H9(21/+1)<P§',y("') max{r,r'} dr'dr

L—-—1 o o w K 1
+ P sz (j) g n=;+1 qQI+1) 2 (o, () max (7] dr' dr < const Z11/6
Proof. We use ITL—V—}— < 1, Then we estimate the first integral using the virial
theorem for the hamiltonian of the Bohr atom by
lLlil qQ2I+1)(K—=1) ; q2l' + 1) ~<const ZKL>.
=0 n=0"+1

dr < const Z*3. Hence

O'——ﬁB

In the proof of Proposition 3.4 we showed that Z

we find for the second integral the upper bound

L-1

constZ*? 3 q(2/+1)(K—1)<constZ*? KL*.
1=0

This shows the desired result. [

Proposition 3.6.
o 0y -1 +681‘“3812 281 681 +481 o .
3 < /3
L3 < Nis + N (J; 3 dr < const Z33.

I

Il

4o

Ny, %0

3

Proof. Let g, ,, s= 0,/(q(2/+1)). Then we shall show in the following that

2
s dr < const Z4? k=D
I+3%

, (3.12)

O'——18

and
Ny s Zconst(k—1). (3.13)

This proves the proposition.
We may write:

sz

“0 _ VR (x, () <1_ x; (1) )

co T 2t X (D)? RZ™13
If x;,())SR,Z '? with Ry,<R, then (6l+7)<1 R);(I)B = const. Other-

wise, if x,(I)> R, Z ', then (I+%)=constZ'®> by Lemma C.1. This yields

®I+7) < R); ( 1)/3> = const, too. Hence we have

x,u) %0
s dr<const | o, (dr.
0 x;(0)
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Analogously we find | o}, ,dr=constZ ! 3 3
X () x5 (/)
o ()
| 0w sdr<const | o}, .dr.
X, () x (1)
x (D
To calculate an estimate for | o7,  dr we distinguish two cases:
xy (D)

, and hence

First Case. (I+%) S 3(k +9).

We find
x, (1) ) (Z7r)32 7?2 —?
I olmsdrs | ( r) dr < const <co ntZ4/3( )
w X, () nr (I+73) I+

Second Case. (I+%) = $(k+73).

We remark that there are positive constants R, and R, such that [r;(/),r, (/)]
is contained in [R,Z '3, R,Z '3]. Choose R’,R" with R"<R<R"<W.
For rZ'3 e[R,,R'] or rZ*3 e[R", R,] we find |2 (r)| = const Z*3 > const Z!/?
]/ k+%—A(r) for sufficiently large Z using the scaling property of L}. For
rZ13 e [R R”] we find certain constants ¢, and ¢, with —¢;, Z< A" ()< —¢, Z
using again scaling and sufficiently large Z. Then, by the mean value theorem,
V()| =—|r—RZ YNV (rV=c,Z|r— RZ 3| for re[R,R"]. Moreover
) =k+%+30r—RZ V)2 (r") for r,r" €[R’, R"]. Hence

1
|r—RZ‘”3(=/2k—tz”(i”())_ constZ 12 Y/ k+1—2(r).

Therefore we have for any re[R, Z~ '3, R,Z7113],

|2 (r)] = const ZY2 1/ k+1—A(r). (3.14)

X ()
Now we can estimate | o7, ,dr in the following way:
x1 (D

a0 SV =+ 2002y = (1+ D)
msdr_ - A(r)dr+ A'(r)dr
XJ(‘Z) Ql rl{l) 7T3 r3 l;“ ( )l r}(‘l) TL3 r3 lA' (r)|
k+1/2 27, 1\ 3
<constZ!? | w dx
1+1/2 ]/k+
k+1/2 (] L 1V\3 2
<constZ | w x<constZ4/3(—1).
1+1/2 k+3—x [+5

This proves the inequality (3.12).



Leading Energy Correction for Statistical Model of the Atom 481

Now we estimate N,

l,m,s*

© RZ™ V3 /227N _ (7L 1\2
=fonmdrz | K/—M—Z)— 2 (r)dr.
0

x, () nrLz(r)
First Case. |+3=<3(k+3).
By scaling rLj(r) < constZ'® holds, since xZ’(x) is bounded. Because

VxXE—(+H? zx—3(4+L — L+ 1*x73 for x= 1+ 1, we find by substituting
A(r) = x,

Ny sz constZ ™13 (k— )<§<k+-;—>—§>gconst(k—l).

Second Case. |+ %= 4(k+3).

In this case we know that x, (/) = R, Z /3. We now show in a similar way as in the
proof of (3.14) that 2’ (r) < const Z/? 1/k +4 — A(r). Hence

Rz TN (02
Ny s=constZ™ 1o Mz)

O +3—A@)

Vk [EA0)
> const +f” Vk—1-x*

A(r)dr

= const(k — /) arcsin \/1 — kil = const(k—1)

for T < 1. This shows inequality (3.13) and completes the proof. [

4. Estimate for &' (0”) by the Thomas-Fermi Energy

In this chapter we prove:
Lemma 4.1. Let 9" be defined as in (2.2). Then
&7 (") S EF(2)+0(2°P).

(+ 2)2

First we calculate Z 02 (r) and Z < o) (r) +

idea of Englert and Schwmger [14] using Poisson’s summatlon formula (see e.g.
Bochner [15]) which states

o (r)) following an

Z F(1+2)_ z e~ min Ojc') E’Z"mXF(X)dX,

n=-—aw -0
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482
> Therefore we

( Y a;=lim,, Z

where the sum is meant as principal value

have:
jez’“"" X ]//1. — x%dx,

n= —aoC

o) (= Z(

o' (n= Z (= 1)"

n=—oaw

ZO F= 3 (-1t

29 % o 22
3 3ar? [ e2mimex /22 — x* dx,
0

FMg
+ w‘sz

—~
~ o

jez’”""ﬁ ]/)2—x dx.

N|>-
\_/

i

1
We may combine the terms n and —n. The integrals are then solved after an

integration by parts by Struve functions H, yielding

<i_ H, (2nn/1)>

H _ ~3 ;3
P v Z e
< (o ((+%)?
zgo <§I(Q’H)3+ rzz) QlH)
C2g = 4 H,Qmunid) 8 HyQund)
A+ g <—— nni —1?7?—’— (znd)* )’ “.1)

~ Sard

Next we have a closer look on the functions H, and H;. We state some
properties of these functions which will be needed in the following. Asymptotic
expansions of H, and H; (see e.g. Abramowitz and Stegun [16] formula 12.1.29)

yield
4 H,29 < constx~3/?
3 = b
o X 4.2)
8 HCxy < constx 2
157 = ’

. H H .
Since Zx(x) and ;gx) are entire functions, the bounds (4.2) hold for all x = 0 and
the second inequality implies

8 H;(2x) _3
—_— < 12 4.
157 3 < const x (4.3)
for all x=0.
According to Abramowitz and Stegun (formula 12.1.9) the equalities
4 2H,(x) _2H,(x) 4H,(x)
3n x X x* 7
4.4
8 4H,;(x) 4H;(x) 16H,(x)
1. 2 T2 T 3 e

157 X
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and the recurrence relation (formulae 12.1.9 and 12.1.10)

an(y) _an—l(y) Hn(x)
j“n—-ﬁ—d _j 2nyn dy 2nx"

hold yielding

}(i_zﬂxw>@zzﬂmn,

o \37m y X
(4.5)
}c ir4H3(J’) d _4H, (%)
o \157 »? YT
Using (4.2) and (4.3) we get from (4.1)
Zemn< A%m+c—ﬁ“m
(4.6)

o 2
Z< e+ 2 Ho) B0+ a5 R0,
1=0

for some positive constants ¢, and c,.
Now we are ready for

Proposition 4.1. Let M= {geL’(R" xIN,, du)|o =0, Z ((+9)? f dr < o0,

i To, dr < oo} (domain of the functional &%) where du is the Lebesgue measure in
;/:12 jgl'VSl‘ co-ordinate and the counting measure weighted by v, in the second co-ordinate.
For any positive constant a' holds o" e M and i Ojc Bdr<Z—a' Z'V* for

sufficiently large Z. =00

Proof. The condltlon o e M requires finite kinetic energy and finite particle
number. Since of (r) =0, if ré {r|A(r) =3} =1[r;,r,], we get from (4.6):

s 2 }NS ©
2020, FR00
5n 3 o
5 )‘7/2 © Z, 7/4
i s P @

" 1/(42)

5/3
dr = const | <Q4T;g)> 4nr?dr< oo,

dr=constZ? < o,

't 2q 73 —-1/2 T 1/2
[ = 2Wdr<(—aZ™'?) [ orp(ydr=2Z—aZ'"?,
y 3nr 0

r, 3/2 VAR 34 ©
jdz O gze, TP gre, | (187:) 2 = b2
r

0 zw

where the last equality defines the Z-independent constant b. Here we used (B.2),
(B.4) and 1/4Z < r,, which follows from Lemma C.1. Combining the first two
inequalities and the last two inequalities yields the proposed result, since @ may be
chosen larger than a'+5b. []



484 H. Siedentop and R. Weikard

We are now in a position to show that the density matrix has trace less than Z.
We have

k'—1 x, (1) o0
Y <f o dr+ | oldr><b A

=0 x5 (1)

for some positive b’ where we used Lemma C.1. Therefore we get

L—-1 0
trd, =Y qQRI+1D)(K=D+ Y |[odr
1=0 I=L 0
<qKL*+ Y [oldr+b'Z'"*<Z+ (qd+b —a)Z'*. (4.7)
1=0 0

Thus we obtain

Corollary 4.1. For some sufficiently large a’ (and hence large a) and for sufficiently

large Z
trd, £ 7.

Proof of Lemma 4.1. Because of the previous proposition we may insert our trial
functions into the Hellmann functional. Using (4.1) we may write

©qgl’ Z 2q/13 1"O 2q 22330
H/ Hy _ _Z - S A
62(¢7) = g <5nr3 r 3nr 2 (j) ;E rr'max {r,r'} dr'dr

HL{“? L)
(s namye
—Eé(—ﬂ" <%—%)‘T—: r. (4.8)

The first line yields EZ" (Z) + O (Z*?), the second to the fifth line are terms of order
Z*3 and the sixth line is a term of order Z>/3. This will be shown in the following.

Using the definition of 1 and the scaling property of the Thomas-Fermi
functional we find for the integrals in the first line of (4.8),

EF(Z) (~(1—aZ ') £ 3(1 —aZ ')~ {1 —aZ "))
= EFF(2)(1 + 0(1/2).

The double integral in the second and third line of (4.8) may be enlarged using
the absolute value of the summands, the first of the inequalities (4.2) and
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! ——. This yields the upper bound

max {r, r } 1/”’
1 0 0 qi3/2(r) 2

which follows from inserting 4 and using the scaling property of g g.
Using the Thomas-Fermi equation we find
M Z ®22q M) A2
o= LT 7 =" 01-(1- Z—1/2 —-2/3
r*r o o 3mr'max{r,r'} dr r2( ( . “ )
Y Al L —
o max{r,r'}

Hence we have the following upper bound for the fourth and fifth line of (4.8),
constgA*'*(r)

° T 21F
o 't o max {r,r'}

118

n=1

+ i (—D"(1 — (1 —azZ 1?)=2/3) (f) (3

The first term in this sum is of order Z*3. The second term is similar to the one
which is left in (4.8). They are evaluated after splitting the range of integration at
R, Z~'7 for some positive sufficiently small R,. Upper bounds for the integrals
over (R, Z '1? o0) are obtained by use of scaling and the bounds (4.2) yielding
terms of order Z** and Z°/3, respectively. In order to evaluate the integrals over
(0, R, Z~'*)we carry out the transformation 27nA (r) = y. Moreover, according to
Appendix B,

_H, (2nnl)> gr®
L dr.
nni

5 2
A 272(1—az V)| < const 27 < const 243 Y,
|7 A ‘ n
Hence
® RZP (4 H,Qund)\ i3
1) (1 — -1/2y-2/3 a4 Hhlemna) go”
; D =—-az=5) ) "[ <3n nni > o
 (qZ*|2(4 2H tZ43 8
<constZ 1%y <q p j( ;(y)) dy +~C8£Sn— [y1/2 dy)
n=1 0

0 H B ZS/6B3/2
<y const<Z3/2 1 )+ 3 >=O(Z4/3),
ne1 nB n

and

157 (nnl)?

@ R*Z’”< 8 H3(2nnl)> g’

50 r—sd”\
© qzl B 8 4H3 (y) Z4/3 B
El(ﬁ.f(m =) jo)

o B) Z*3B
; 0nst< 2(2) e > 0(Z°?),

IIA

Il/\
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where B=2nnA (R, Z ). Here we used (4.5), B= 0 (nZ'?) and the facts that

H, (x)

H, (x) as well as are bounded. This is the result which was proposed in

Lemma4.1. [J

We may now collect all the results obtained in this paper. According to our
general strategy they just constitute the proof of Theorem 1.1. We conclude with
the remark that our result also shows that the Hellmann-Weizsicker functional
with the correction term in front of the g?-term and with the first L angular
momentum densities substituted by densities of Bohr orbitals (right hand side of
Eq. (2.3)) is a strict upper bound (no error terms) on the ground state energy of
atoms, and has an infimum with the correct behavior as a function of the particle
number in first and second order.

We conclude with the note that the analogues of (4.6) that would be required for
a lower bound follow from a simple convexity argument instead of the Poisson
summation used here.

Appendix A

3/2
Let ¢ be the solution of the Thomas-Fermi equation (p”=x17 on R with
the boundary conditions ¢ (0) =1 and lim,, , ¢ (x) =0. Now define the function

L(x)= 1/ x@(x). We shall show the following properties of L:

Lemma A.1.

1. L" hasexactly one zero x,,. This is a point of inflexion of L, where the curvature
turns from concave to convex.

2. L' has exactly one zero x,,. This is a maximum of L.

Proof. First we remark that x* ¢ (x) is strictly monotone increasing. This follows
from Theorems 2.8 and 2.10 of Lieb [4], where Lieb’s ¢ is related to ¢ by
2q 2/3
3n

V4
$(r)= - @(br) with b=2'3 <3 . Theorem 2.10 asserts the monotonicity

of x*¢(x), while the real analyticity of ¢ and hence of x°¢(x), stated in
Theorem 2.8, assures the strictness of the monotonicity. Moreover Theorem 2.10
implies that lim__ x> ¢ (x) = 144.

Therefore we have that £(0)=0, lim_, L(x)=0 and that Z(x)>0 for
0 <x<oo. Hence L has at least one point of inflexion, where the curvature
turns from concave to convex, and one maximum. Now we consider the possible
zeros of L”. If L”(x,)) =0, then

2x%0(x,) 97 (x,) = (x,, @' (x,,) = @ (x,,))* .
This yields

L7 (x,)= Bo"(x,) + x, 0" (x,))

1
2V x,0(x,)
320 (8 s
- 4X <3]/—2* Xi,/ Q)/ (xw)>7

w
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using the differential equation. By the above there is exactly one point x, with

8 \* . . "
X3 (xy) = <3%> . At points x,, with x,, < x, the curvature of L turns therefore

from concave to convex and at points x,, with x,, > x, the curvature of  turns from
convex to concave. Hence there can be at most three points with £” (x,,) = 0. One to
the left, one to the right of x, and one at x,. We now exclude the second and third
possibility. The existence of an inflexion point x,, with x,, > x,, is impossible, since L
would then be concave for large x. If L” (x,) =0, i.e. x,, = x,, we find L"(x,) =0
and L% (x,) <0, and therefore x, would be a maximum of Z”. Hence L would be
concave for large x in this case, too. Therefore L” has exactly one zero. This is an
inflexion point of L, where the curvature turns from concave to convex.
Analogously we have for the points x, with L'(x,)=0 the condition

Xm q)/ (xm) =—0Q (xm) yleldlng
San (G e?(x,) =2).

Again there is exactly one point x; with x3 ¢ (x;) =4. If x,, < x;, then there is a
maximum at x,,. If x,, > x;, then there is a minimum at x,,. Again there can be at
most three points with L' (x,,) = 0. Similar arguments as above exclude the cases
x,, = x,. Hence L' has exactly one zero yielding a maximum of £. [

Now we are interested in upper and lower bounds on L. Since ¢ (x) <1 and

p(x)= 1;74 we have immediately
L(x)<}/x and L‘(x)<% (A.1)
For x £ x,, we have ¢ (x) = ¢(x,,), since ¢ is strictly monotone decreasing. Hence
Lx)ZVxp(x,) for 0<x<x,. (A.2)
This lower bound may be strengthened in the following way:
Lz Yx(1+0'(0)x). (A3)

using Taylor’s theorem. By Lieb’s Theorem 2.10 case (iii) we obtain
3
Z(x)gw for x, <x<oo. (A.4)
X
Moreover we give bounds for L.

Evm;%m—uww for  —xo' ()3,

(A.5)

In a similar way as in the proof of de 'Hospital’s rule, we may conclude from
lim,, , xL(x)=12thatlim_,  x*L’(x)= —12 holds. Hence a positive constant A

. A A
exists with L'(x) < -2 for x= x,,.
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Appendix B

We define a function L, by
1/3 2/3
L,(r)=2Z'3 3 L(br) with b=2z'7 29 . (B.1)
2¢q 3n

One easily finds the following relation of L, to the radial Thomas-Fermi density

QTF:

3 1/3
L,(r)= <qr0TF(r)> . (B.2)

Therefore we may write the Thomas-Fermi energy in the following way:
2q T Lz(r> 245200,
0 3o r

[ LZ(V)LZ(’")

E;"(Z2)=

Furthermore we have immediately the following scaling L,(r)= Z3 L, (Z'3r)
yielding the existence of a single maximum of L, at RZ ~!/3 and of a single zero of
Lyat WZ '3 for some Rand Win IR *. Finally we collect some further properties
of L,:

2 (2n—1)/3 R
LY (r) = Zn+ i3 <£> L™ (br),

L,(n<VZr,
L=,
qr
L,N=Ve(x,)Zr for br<x,, (B.4)

I o ) Zﬁ 2/3 U3
L=V Zr (14 ¢'(0) 3 ZV3 ),

Lz(7)>3— Vx3eo(x,) for brzx,,

1
Ly(r) = \[(1+0(z”3 for  brs s o

The point x,, is defined in Appendix A.

Appendix C

In this appendix we deal with important properties of r, ({), r, ({), x, ({) and x, (),
the points that we introduced in the definition of the trial density for the Hellmann-
Weizsidcker functional.
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Lemma C.1. For sufficiently large Z the following holds:

(+3)? (+3° 4
) snmst 0
. 37‘C Vol 367
i) m Vx3¢(xm)§’z(1)§m,

i) x; (()S RZ™ '3 —constZ "2 < RZ '3+ constZ'? < x,(I),

v) R(x;(N)ST(+73),

v) const (Zzé) min {(/+ %)%, Z"?} < R, (x,(])) £ const Z'/3
where 0 <1< k' in 1) and i1) while 0 £ 1< k' — 1 in iil), iv) and v). For abbreviation
we wrote R(r)=[A*(r) — (I+ 1],

Proof. The inequalities 1) and ii) follow immediately from (B.4) and from
(1 —aZ Y313 =1 for sufficiently large Z.

For iii) it is sufficient to consider the case /= k' — 1, since x, (/) < x; (/+ 1) and
x, (1) > x,(/+1). Using the mean value theorem we find

2k — k' +1)
YLTEON

with ' e[r, (k' —1), RZ '3].Since k — k' +1>1and — 2" (+') < const Z, we have

ri(k'—1)< RZ ' — const Z~ /2, The first part of iii) follows then immediately

for large Z. The second part of iii) follows analogously.
To show iv) we remark firstly that (£?)' < 1, and hence (L2)' £ Z holds. Again

(ri (k' —1) = RZ™13)? =

. [+ L .
the mean value theorem yields 22 (x, (1)) £ (I+3)* + T( 2) Z, which is the desired
result.

The second inequality in v) is proven analogously using (L%)’ = —const Z. For

the first inequality of v) we find A(x, (1)) = (I4+3) + (x5 (/) — r, (/) max {1 (x, (1)),
A (ry(1)}. Tt suffices to consider the cases x, (/)< WZ~ 13 and r, ()2 WZ ™',

. . ~ —A
Since we can find a positive constant 4 to bound L’(x) from above by =

for x> x,, (see Appendix A), we have 2’ (r,(/)) £ —const(/+4)? for sufficiently
large Z. Furthermore we find A'(x,(/)) < constZ 121" (r") with r' e[RZ ™13,
RZ '3 4+ constZ '?]. For sufficiently large Z we have A"(+) < —constZ.
Hence A’ (x, (/)) £ —const Z'/? yielding the proposed result. [
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