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Abstract. Introducing the Hellmann-Weizsacker functional for large angular
momenta and the orbitals of the Bohr atom for small angular momenta we
obtain an upper bound on the quantum mechanical ground state energy of
atoms that proves Scott's conjecture.

1. Introduction

Let H be the hamiltonian of TV electrons moving in the field of a nucleus of charge Z,
i.e.

N / Z

N

as a self-adjoint realization on Λ (£ 2(IR 3) ® C g). In this paper we show for the
ϊ = l

ground state energy EQ (Z, N) of H:

Theorem 1.1.

^(Z,Z)^Z 7 / 3^T F(l) + f z 2 + o(Z2), (1.1)
o

where Eψ' (N) is the Thomas-Fermi energy of the above hamiltonian.
Combining this result with the reverse of (1.1), an inequality that has been

claimed by Hughes [1], would imply

Eβ(Z,Z) = EΓ(l)ZΊ'3 + | Z2 + o(Z2). (1.2)
o

Scott [2] claimed this result arguing that the leading energy which is given by the
Thomas-Fermi energy (Lieb and Simon [3], Lieb [4], Thirring [5]) should be
corrected in those regions where the assumptions of the statistical theory of the
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atom are not well fulfilled. The leading correction turned out to be generated by the
electrons near the nucleus where the interaction between the electrons is dominated
by the electron-nucleus interaction. Later Scott's conjecture was amended
(Lieb [4]) and further supported by heuristic arguments (Schwinger [6] Englert and
Schwinger [7]; Bander [8]).

The strategy of the proof follows Scott's intuition, at least partially: The
electrons with high angular momentum are treated statistically via the Hellmann-
Weizsacker functional [9,10]. Only the electrons with small angular momentum
whose radial density vanishes only slowly at the origin compared to the bulk of the
electrons are treated by introducing Bohr orbitals i.e. orbitals which describe
electrons interacting with the nucleus only.

The organization of the paper is as follows: In Sect, two we introduce the basic
density matrix and estimate its expectation, in Sect, three we show that we obtain
the Hellmann functional plus the f Z 2 correction, and, finally, in the last section we
show that the Hellmann functional with our trial density may be bounded from
above by the Thomas-Fermi energy.

2. The Basic One-Particle Density Matrix

We choose the following one-particle density matrix

= Σ Σ Σ Σ wnj,rn,sΨnAr) φnJ(n χs(σ) χs(σ') Yhm(ω) Yhm(ω'), (2.1)
n = — o o 1 = 0 m = —I s — 1

where x, x' denote space-spin variables, the weights wnlms are between zero and
one, sum up to at most Z and are independent of m and s, and χs(σ) = δStσ are spin
functions. Now let L be a sequence of integers tending to infinity as Z tends to
infinity. We define L= [Z 1 / 1 2 ] . Then, for / ^ L we choose the orbitals φnJ to be
Macke orbitals. More explicitly we choose

φ Λ > I () 9

where ζι: [0, oo)-> [0,1), monotone increasing, ζz(0) = 0 and ζz(r)-> 1 for r-> oo, i.e.

with nonnegative ρz. Moreover we require ρz(0) = 0. The functions ρ̂  may be
interpreted as radial densities in the angular momentum channel /. They are chosen
as follows

Definition 2.1.

1. For sufficiently large Z, let ρH = (QQ, ρf, ...) be defined by

U , N _ 1 /O J-

λ2(r) - (l + ^ \ . (2.2)
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with λ (r) = (1 — aZ~ 1 / 2 ) 1 / 3 Lz (r)for a certain positive constant a which will be chosen

later and at = 2 -y. The function L z , which is essentially the cubic root of the

Thomas-Fermi density, is defined in Appendix B.
2. Let rγ (/) and r2 (/) be the points where ρf becomes zero. Furthermore let k be

defined by k-\r\ — max [λ (f) \ r e IR + }, and let k' be the greatest integer less than k.
Then we define for sufficiently large Z: For I ̂  k' let ρt (r) = 0. For 0 ^ / ̂  k' — 1, let

q(2l+l)a2r
2r2l + 2

Q?
y 2yr for x (I) ^ r

where the constants α and β are chosen such that ρι becomes continuous at xx (/) and

- πx? + Hl) > P - πx2(l) '

where we introduced the abbreviation Rι(r)= [λ2(r) — (/ + i ) 2 ] + . Furthermore we set

y = Z , X l ( / ) = ; 1 ( / ) + Γ , χ 2 { l ) = r 2 { l ) S Z \

T and S are positive constants. S is arbitrary, while T is in (0,1). For l^k' we set
x1 (/) = χ2 (/) to be an arbitrary constant.

N e x t w e d e f i n e t h e w e i g h t s w n l m s a n d t h e p h a s e f a c t o r s k n l . L e t
oc

Λfj mtS= \oι(r)drl(q(2l+ 1)). If [NUm>s] is odd, we choose kn>ι = 2n, otherwise
o

knl = 2n — \. The weights are chosen as

vn,Lm,s ' Φ = (N,,m,s-[N>,m,sW for \kHtl\ =
0 otherwise.

This defines the orbitals for high angular momentum completely and yields one-
dimensional Thomas-Fermi-Weizsacker functionals in these angular momentum
channels. Our choice of the radial densities reflects the fact that we expect the bulk
of the electron well described by a ''statistical model". Thus we choose them to be
approximate minimizing Hellmann densities [11,10]. However, at places where
these densities become small, i. e. near the origin and near infinity, we cannot expect
this a good approximation. The gradient term would in fact diverge where the radial
densities vanish. Thus we modify them in these regions according to the
asymptotics of the Bohr atom. Up to this point the ansatz for the one-particle
density matrix is exactly the same as in [9]. However, for / < L we choose the φnl to
be the first (weight one) K—l eigenfunction of the radial Schrόdinger equation
in a Coulomb field with point charge Z. We set K= [dZ1/3] with some positive
constant d.
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Thus the electrons near the nucleus are treated without statistical approxi-
mation but with orbitals belonging to non-interacting electrons. For electrons with
/ ̂  L the interaction is taken into account but only within a statistical model.

The ground state energy may be bounded by using the usual Hartree-Fock
functional written as a functional of the one-particle density matrix. Furthermore
we estimate the indirect part of the Coulomb energy by zero (positivity of the
Coulomb kernel). We remark that this density matrix is admissible for this
functional: The weights are given explicitly between zero and one and dί has finite
kinetic energy (see [9] and the proofs of Lemma4.1 and of Proposition 3.3).
Because of Theorem 5.1 of [9] it suffices to show that dί represents Z particles or
less. To show this trace property we need some more results, and thus we shall come
back to this point in chapter four.

Next we calculate the value of this functional explicitly. According to [9] and the
Z 2 1

fact that the energy levels of the Bohr atom are τ in our units, we obtain
4 n1

EQ(Z,Z)

y2 L - l JK Λ

^ Σ ^
n1 = 0

Σ
l = L 0 3

+ \H Σ &(0fc'(O—4—Tvdr'dr (2.3)
z o o I,Γ = L max(r, r j

Ί GO oo / L ~ l K oo

+ Λ ! J μ Σ ?(2/+υ Σ ψl.ι(f) Σ Qv(n
Z 0 0 \ / = 0 n = l + l l'=L

+ V q(2l+l)q(2ί' + l) Σ Σ <ι(r)ψljV)] m a i t !„ rn dr'dr
1,1'=0 n = l + l n'=l' + l J m d X V •> T )

« αf / - i + 6 C | - 3 β f 2βf-6β,2 + 4βΛ<;

l=L J \ Iyl,m,s Iyl,m,s / 0

a result that follows from Theorem 5.1 of [9]. It is based on Lieb's upper bound on
the ground state energy [12].

3. The Hellmann Functional Plus f Z 2 Bounds the Ground State Energy from Above

We begin this chapter with some definitions: Denote by E^z (7VZ) the infimum of the
functional
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taken over the densities with particle number Nt or less. Analogously we define
E(IJ(Nι) as the infimum of

Finally we introduce the functional Sz{σ) to be the sum over all non-negative
Λ 00 OC 00 _ (v\ fx (v!\

integers / of Sfz(σλ plus - Y f dr \dr' — ^——. (For a detailed investigation
^i,i' = o o o maxj r , r )

of these functionals see [9].)
In this chapter we shall prove the

Lemma 3.1. EQ (Z, Z) ^ <£f (ρH) + 1 Z 2 + O ( Z 4 7 / 2 4 ) .

8

To this end we collect some technical results:

Proposition 3.1.
_ 2 " 2 L - l K 1 Q L~1

4 i=o n=l+ίn 8 ί = 0 '

Proof. In order to evaluate the sum over n we use the following asymptotic
expansion as x —• oo of the Riemann zeta function (see Erdelyi et al. [13], formula
1.18(9)):

ζ(s,x)= Σ (« + *) s = — -x s + -x s+0(x s). (3.1)

Rearranging the sums over n and / and using (3.1), we find after some algebra,

Σ Σ 2 l ^ = 2L--+O(L-1), (3.2)

for our choice of L and A:. In [11], Eq. 2.9, we determined Et

H

z(q(2l+l)(K- /))

3 }
2A:+I

The equalities (3.2) and (3.3) yield

Σ J^=-+Σ^τ+o(i-1)

-Z2q
Multiplication with — - — yields the proposed result. D

Proposition 3.2. There exists a positive constant d such that for our choice of K,
namely K= [dZlβ], and for sufficiently large Z
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Proof. Since Et

H

z denotes the infimum of <^H

Z, we have only to prove that

Since λ may be enlarged either by y'Zr or by we find for some positive

constant c

Hence the claim follows, if we choose, for instance, d~ c + 1. G

Proposition 3.3. For sufficiently large Z the following holds:

l=L

Proof. We remark that each Rt has exactly one maximum at RZ~ί/3, since λ has a
single maximum at RZ~1/3, and that λ" has only one zero at WZ~1/3 for some
positive constants R and W. These facts follow from Appendix A. Throughout the
following we need the results of Lemma C1.

By integration we obtain

Next we consider the gradient term in the middle region. First we calculate the

integrand for 0 ̂  / ^ k ' - 1 and xλ(l)^rSx2(I), a n c * get:

Yβi =^ir~ ^τ^-^ττ3-2-

Now we estimate the integrals. Since y'λ2 — (/ + i ) 2 ^ A, we find

The second term of the sum is negative, if re[xi(l), RZ~1/3]. Therefore we
consider only the interval [RZ~1/3, x2 (/)]. Using the substitution λ2 (r) = x we find:

+ 1 N ) < constZ. (3.6)

The first term of the sum may be divided into two parts by splitting the
integration interval at RZ~1/3. Considering the first part yields, using the
substitution λ (r) = x,

RZ-1'3 22}'2 λ(RZ~1'3) rfχ

~ L /2
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since ^rSr By the mean value theorem we get λ'(xί(l))^ι

Z x1 (/) —

Z 2 λ/λ2 (x (/)) — (/ + -)2

Carrying out the integration yields the estimate — - ~ — j - 3 — . Hence
we obtain M ' + ϊ)

RZ~1'3 λ2λ'2 ( 1\~5 / 2

f =. dr< const Z 2 / + - . (3.7)
2* ~ \ V

MO χχ
The integral j — 3 dr remains. We enlarge the integrand using

Rz-^r yλ2-(l + ^)2

λ(f) λ' (r)
^ const Z 4 / 3 , since λ'(r)^ — const Z 2 / 3 holds. Hence

^ const Z 4 / 3 ]

const Z 5 / 3

r

*φ λ2λ'2dr

(3.8)

Combining the results (3.5-3.8) yields

Ψ ,~'2 ( 1
J V Qι dr S const I / + -

V 2

Since for O^

holds, we have

3- ρf + [ ~ ^ ~ j) Qij dr g £*z (ρf) + const Z 2 \l + -J . (3.10)

Moreover for /= fc',

"2j - Qk' (r)dr^ constZ 1 1 / 6 (3.11)

holds.
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Hence we have from (3.4) and (3.9-3.11),

l = L

k'-l / / i \ - 3 / 2

k'-l
72Using (3.1) we get that £ Z 2 (/ + i ) ~ 3 / 2 = O ( Z 2 L " 1 / 2 ) . The remaining sum yields

l=L

a term of order Z 2 3 / 1 2 . This completes the proof, ϋ
Now we consider the electron-electron interaction.

Proposition 3.4.
oo oo oc / \ (rr\ GO coco r,H(r\ nH (r'\

-'} .Γ^ooo max{r,r'}

. We divide the interaction integral into several parts:

) r

+ I e,(r)dr ί ^ J r ' + ί ft(r)* J ^ f 1 * '
0 X l(/') Γ 0 χ2(/') Γ

χ2(0 n (r\ xΛΠ χ2(0 χ2(Π n (rΛ n (r'λ

+ j ^11 dr I ft.(r')Λ ' + j ί &Ar)Q

ς

Λr,'-dr'dr

)

Qv(r')dr'J ρ ί ( ) I
χΛi) xiiΠ r

GO n (r\ χ2{Γ)

βr ( ' ' ) * ' + ί ^ ^ Λ ί Qv(r')dr',
x2(l) V

 Xι(Γ) x2{l) r x2{l')

since we may enlarge -(—-r either by - or by —. Using Lemma C. 1 we calculate
max {r,r} r r

the following estimates:
oo Xl(l)

X j QιdrS const Z 1 / 2 ,
1=0 0

co χ2(l)

Σ ί Qidr^L const Z,

Σ j QidrS const Z 1 / 2 ,
1 = 0 *2 (/)

/ = o o r

CO χ 2 ( / )

Σ \ ~ dr^ const Z 4 / 3 ,

00 00 „

z-ί J — '

where we used Rt (r) ^ Zr for the fifth integral. This yields the proposed result. D
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Proposition 3.5.

VΣIΊ Σ qW+ϊ)φlι{r) Σ g(2/' + l)y,2,r(r') * dr'dr
ZZ,Γ=O 0 0 n = l + l n'=l' + l ΠldX|Γ,rj>

+ ΐ Σ ϊ ί Σ g(2/+l)<,(r)er(O *, , dr'drίcomtZ^.
1 = 0 l'=L 0 0 n = l + l mdX|Γ,Γ J

Proof. We use - r- < —. Then we estimate the first integral using the virial
max {r,r'} ~ r'

theorem for the hamiltonian of the Bohr atom by

Y g(2l+l)(K-l) Σ ?(2/' + l) r ^ g constZtfL3.
l,l'=O n'=l' + l L n

CO 00 „ ίy\

In the proof of Proposition 3.4 we showed that £ j — — dr ̂  const Z 4 / 3 . Hence
1 = 0 0 Γ

we find for the second integral the upper bound,

L - l

constZ 4 / 3

This shows the desired result. D

Proposition 3.6.

α / _ i + 6 e , - 3 e z

2 2εz

3 - 6ε? + 4εΛ

Proof. Let ρ / > W ) S = ρ//(^(2/+ 1)). Then we shall show in the following that

ί ρ;%,s J r ^ const Z 4 ' 3 ^ ^ , (3.12)
0 / " ι 2

and

JVZfm>s^ c o n s t ( k - l ) . (3.13)

This proves the proposition.
We may write:

I

If X^^^RQZ-113 with i ? 0 < ^ , then (6/+ 7) (1 - / ' _ ? / 3 ) ^ const. Other-
\ J

wise, if x 1 ( / ) > ^ 0 Z ~ 1 / 3 , then (/ + i) ̂  const Z 1 / 3 by Lemma C.I. This yields

(6/+ 7) (1 - _^_/ / 3 j ̂  const, too. Hence we have

x,(l) x2(l)

ί Qι,m,sdrύ c o n s t J ρ 3

m , s
0 X l(/)
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xΛl) - I / Λ 3 (X2 (/))
Analogously we find j ρf m sdr ^ const Z ~ 1 / 2 ——^— 3 , and hence

χ2 (/)

ί QΪ,m,sdrS const j ρlm.sdr.
x2(ί) Xl(l)

x2{l)

To calculate an estimate for J ρfm s<ir we distinguish two cases:

Case. (/ +1) ̂  \(k + £).

We find

ί ίf?.,.,*^ ί ( - f ^ Λ ^ const - 1 , - ^ const ^

Second Case. (/ + \) ^ \{k +1).

We remark that there are positive constants Rγ and 7?2 such that [r1(l),r2(l)]
is contained in [ ^ Z " 1 / 3 , i ^ 2 Z " 1 / 3 ] . Choose Λ' ,^" with Rf <R<R" <W.
For r Z 1 / ^ ^ ! , ^ ' ] or r Z 1 / 3 e [ Λ " , ^ ] we find \λ'(r)\ ^ constZ 2 / 3 ^ constZ 1 / 2

] - ^ — λ(r) for sufficiently large Z using the scaling property of L^. For
rZ1/3 e [R\ R"] we find certain constants c1 and c2 with — c1Z^λ"(j)-^ —c2Z
using again scaling and sufficiently large Z. Then, by the mean value theorem,
\λ' (r) I = - I r - RZ~1/31Γ' (r;) ^ c 2 Z | r - RZ~1/31 for r' e [R\ R"]. Moreover
λ(r) = k + i + | ( r - ^ Z ~ 1 / 3 ) 2 λ" (r") for r,r" e[R\R"\ Hence

Therefore we have for any r e\RλZ
 1 / 3, R2Z

 1 / 3 ] ,

' (3.14)

N o w we can estimate J ρ[\m s dr in the following way:

π r μ (r)\ rΛl) π r μ

fc + l/2 - i / r 2 " • 1 ^ 3

ί + 1/2

This proves the inequality (3.12).
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Now we estimate NUms:

Nι,m,s= S Qι,m,sdr^ J ^
0 Xl(l)

First Case. / + i ^ i ( A : + | ) .

By scaling rL'z(r) ^ constZ 1 / 3 holds, since xL'{x) is bounded. Because
2 - ( / + χ)2 i ^ * - 2 ( ^ + 2 ) - 2<7+2) 4 χ ~ 3 for x ^ / + ^, we find by substituting

. / +1 ̂  i(/c + i).

In this case we know that xx (/) ^ Rx Z~1/3. We now show in a similar way as in the

proof of (3.14) that λ'(r) ^ constZ 1 / 2 ]/fe + \ - λ(r). Hence

l/ + ί ^ J ) )

^ const J ]/fe - / - x2 dx

T
^ const (& — /) arcsin /1 ^ const (A: — /)

for T<\. This shows inequality (3.13) and completes the proof. D

4. Estimate for <f# (ρH) by the Thomas-Fermi Energy

In this chapter we prove:

Lemma 4.1. Let QU be defined as in (2.2). Then

First we calculate f ρz

H(r) and f ( ^ (ρf)3(r) + ^ ^ ρf(r)) following an

idea of Englert and Sch winger [14] using Poisson's summation formula (see e.g.
Bochner [15]) which states

00 00 00

= Σ e'πin ί e2πιnxF(x)dx,
n— — oo — 0 0
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/ C O \

where the sum is meant as principal value ( £ a{ = l im^ ^ £ αf I. Therefore we
have: v = -cc i=-» /

1=0

n = - oo

•7(̂ 1 ) (Γ)= L ( - 1 )

πr

Z = 0

oo 9 / 7 Λ

7 T ^

We may combine the terms n and —n. The integrals are then solved after an
integration by parts by Struve functions Hv yielding

,, +
3πr r

πnλ

5πr3

^ 4 H2(2π/7A) 8 H3(2π^Λ)_____ + • (4.1)

Next we have a closer look on the functions H 2 and H 3 . We state some
properties of these functions which will be needed in the following. Asymptotic
expansions of H 2 and H 3 (see e.g. Abramowitz and Stegun [16] formula 12.1.29)
yield

' 4 H 2(2x)

3π x

8 H 3 (2x)

15π

S const x 3 / 2 .

< const x " 2 .

(4.2)

Since
IT / ^ \ ^

and - ^ — are entire functions, the bounds (4.2) hold for all x ^ 0 and
xx x

the second inequality implies

8 H 3 (2x)

15π
< const x 3 / 2 (4.3)

for all x ^ 0.
According to Abramowitz and Stegun (formula 12.1.9) the equalities

4 2 H 2 ( x ) _ 2 H 0 ( x ) 4H 1 (x)

3 2 '

π x x x
8 4H3(x)_4H1(x) 16H2(x)

Ϊ5π x 2 " x 2 x3^ '

(4.4)



Leading Energy Correction for Statistical Model of the Atom 483

and the recurrence relation (formulae 12.1.9 and 12.1.10)

hold yielding

4H 2 (x)

Using (4.2) and (4.3) we get from (4.1)

oo

V nHίr\< ^H I3

x fa (/ + -
V I — (of) 3 (r) -\ ^— n1? (r\ \ <

ι = o
(4.6)

for some positive constants cd and ck.
Now we are ready for

oc oo σ

Proposition 4.1. Let M= {σ eL3(IR+ xIN0, φ ) | σ ^ 0 , Σ (/ + i) 2 J 4 ^ r < °°'
oo oo i = 0 0 Γ

^ j σz dr < oo} (domain of the functional $%) where dμ is the Lebesgue measure in
ι = o o
the first co-ordinate and the counting measure weighted by at in the second co-ordinate.

oo oo

For any positive constant a' holds ρHeM and ^ j ρf dr ^ Z — a' Z 1 / 2 /or

sufficiently large Z. " / = 0 °

/ The condition ρH EM requires finite kinetic energy and finite particle
number. Since ρf (r) = 0, if r φ {r \ λ (r) ^ | } = [rx, r2 ], we get from (4.6):

— - V ^ ^ f , * = const f ^ V 4πr dr <oo,
J 5π r3 - 5 5πr 3 J \ 4πr 2 /

°° (Zr) 7 / 4

^ j -—f- dr = const Z 2 < 00,

χ 0

r2 0 3 / 2 / N Z-w (7r\*l4 00

f c / — ^ ^ c , J ί-^-^ + c, j ^
rγ

 Y 0 r Z^'Λ ϋ J

where the last equality defines the Z-independent constant b. Here we used (B.2),
(B.4) and l / 4 Z ^ r l 5 which follows from Lemma C.I. Combining the first two
inequalities and the last two inequalities yields the proposed result, since a may be
chosen larger than a' + b. D
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We are now in a position to show that the density matrix has trace less than Z.
We have

k'-l /xx{l) oo

Σ ί Qιdr+ J
1=0 \ 0 χ2{l)

for some positive b' where we used Lemma C.I. Therefore we get

/ ) + Σ ]Qιdr
1 = 0 l=L 0

(4-7)

Thus we obtain

Corollary 4.1. For some sufficiently large a' (and hence large a) and for sufficiently
large Z

tr d^Z.

Proof of Lemma 4.1. Because of the previous proposition we may insert our trial
functions into the Hellmann functional. Using (4.1) we may write

dr,drr 3πr J 2 j j Xyπ) rr max{r,r j

+ \_γ 2 A3(r)A3(Q » /4 H2(2π/ιλ(r))

2 Q o rr'max{r,r'} 1~ι \3π πnλ(r) j

3 π πml(/) J

iί2(2πnλ(r))\qλ3(r)

)0 n =

Λ2(r) Z *2q λ3(r') \
+ } dr'\dr

J

7r max{r,r

The first line yields EJF (Z) + O (Z 4 / 3 ) , the second to the fifth line are terms of order
Z 4 / 3 and the sixth line is a term of order Z 5 / 3 . This will be shown in the following.

Using the definition of λ and the scaling property of the Thomas-Fermi
functional we find for the integrals in the first line of (4.8),

The double integral in the second and third line of (4.8) may be enlarged using
the absolute value of the summands, the first of the inequalities (4.2) and
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. This yields the upper bound
max {r,r;} λ/rr>

which follows from inserting A and using the scaling property of ρ T F .
Using the Thomas-Fermi equation we find

λ2 Z *>2q λ3(r')

r2 r o 3π r'max {r,r'}
—

Hence we have the following upper bound for the fourth and fifth line of (4.8),

Σ ί
n = l 0

cons eTF - dr' dr

H2(2πnλ)\qλ5

/
dr.

The first term in this sum is of order Z 4 / 3 . The second term is similar to the one
which is left in (4.8). They are evaluated after splitting the range of integration at
Rx Z~ίβ for some positive sufficiently small Rx. Upper bounds for the integrals
over (R1Z~1/3, oo) are obtained by use of scaling and the bounds (4.2) yielding
terms of order Z 4 / 3 and Z 5 / 3 , respectively. In order to evaluate the integrals over
(0, Rί Z~ 1 / 3 ) we carry out the transformation 2πnλ(r) — y. Moreover, according to
Appendix B,

x4/3

Hence

i const Z -1/2 Σ
πn

< const Z 7 / 3 r < const Z 4 / 3 S-.

y 1 / 3 / 4 U2(2πnλ)\qλ"
J —3- dr
0 \3π nnλ J r

const Z 4 / 3

3π v
+ •

n

and

^
3

πn

8 4H3(j)
\\\5π + const



486 H. Siedentop and R. Weikard

where B^2πnλ{RιZ~113). Here we used (4.5), B=O(nZ1/3) and the facts that
TJ / y\

Hx (x) as well as — are bounded. This is the result which was proposed in
Lemma 4.1. D

We may now collect all the results obtained in this paper. According to our
general strategy they just constitute the proof of Theorem 1.1. We conclude with
the remark that our result also shows that the Hellmann-Weizsacker functional
with the correction term in front of the ρf-term and with the first L angular
momentum densities substituted by densities of Bohr orbitals (right hand side of
Eq. (2.3)) is a strict upper bound (no error terms) on the ground state energy of
atoms, and has an infimum with the correct behavior as a function of the particle
number in first and second order.

We conclude with the note that the analogues of (4.6) that would be required for
a lower bound follow from a simple convexity argument instead of the Poisson
summation used here.

φ3'2

Let φ be the solution of the Thomas-Fermi equation φ" = ^jγ on IR+ with
x

Appendix A

Let φ be th

the boundary conditions φ(0) = 1 and lim^^ ψ(x) = 0. Now define the function

L(x) = ]/xφ(x). We shall show the following properties of L\

Lemma A.I.
1. L" has exactly one zero xw. This is a point of inflexion ofL, where the curvature

turns from concave to convex.
2. U has exactly one zero xm. This is a maximum of L.

Proof. First we remark that x3 φ (x) is strictly monotone increasing. This follows
from Theorems 2.8 and 2.10 of Lieb [4], where Lieb's φ is related to φ by

z
Φ(r) = — φ(br) with b = Z1/3 I —-I . Theorem 2.10 asserts the monotonicity

of x3φ(x), while the real analyticity of φ and hence of x3φ(x), stated in
Theorem 2.8, assures the strictness of the monotonicity. Moreover Theorem 2.10
implies that limx^ ̂  x3 φ (x) = 144.

Therefore we have that £(0) = 0, limx^00L(x) = 0 and that L(x)>0 for
0 < x < oo. Hence L has at least one point of inflexion, where the curvature
turns from concave to convex, and one maximum. Now we consider the possible
zeros of L". If L" ( x j = 0, then

2x^ φ ( x j φ" (xJ = (xw φ' (xJ - φ (xw))2 .

This yields

L"'{xw) = - . (3φ"(xJ + xwφ'"(xj)
2 ( )

3 / 4 1 / 4
w Ψ \Xw)
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using the differential equation. By the above there is exactly one point x0 with
4

xl φ (x0) = ί — — . At points xw with xw < x0 the curvature of L turns therefore
\3y2/

from concave to convex and at points xw with xw > x0 the curvature of L turns from
convex to concave. Hence there can be at most three points with L" (xw) = 0. One to
the left, one to the right of x0 and one at x0. We now exclude the second and third
possibility. The existence of an inflexion point xw with xw > x0 is impossible, since L
would then be concave for large x. If L"(x0) = 0, i.e. xw — xθ9 we find L'" (x0) = 0
and L{ιv)(x0) < 0, and therefore x0 would be a maximum of L". Hence L would be
concave for large x in this case, too. Therefore L" has exactly one zero. This is an
inflexion point of L, where the curvature turns from concave to convex.

Analogously we have for the points xm with £'(xm) = 0 the condition

* m φ ' ( x m ) =-<P(xm) yielding

lj'(χ ) - - ^Xm) (x3/2ω1/2(x )-2)
m

Again there is exactly one point x1 with x\ φ{xι) — 4. If xm < xx, then there is a
maximum at xm. If xm > x1, then there is a minimum at xm. Again there can be at
most three points with Lr (xm) = 0. Similar arguments as above exclude the cases
xm ^ x1. Hence L has exactly one zero yielding a maximum of L. D

Now we are interested in upper and lower bounds on L. Since φ (x) ^ 1 and
144

φ (x) ̂  —3- we have immediately

L(x)^i/x and L ( x ) ^ 1 ^ . (A.I)

For x ^ i m w e have φ(x)^φ(xm), since φ is strictly monotone decreasing. Hence

L(x)^]/xφ(xm) for 0^x^xm. (A.2)

This lower bound may be strengthened in the following way:

L(x)^}/x(l+φ'(0)x), (A3)

using Taylor's theorem. By Lieb's Theorem 2.10 case (iiί) we obtain

x

Moreover we give bounds for L'.

for x m ^ x < o o . (A.4)

L'(x) S -^= (1 - 2xφ'(0)) for -xφ'(Q) ^ ,
2Ί x 2-

\ (A.5)
L \ ) ^ ( lL\x)^=(l

2γx
In a similar way as in the proof of de PHospitaΓs rule, we may conclude from
Umx^ODxL(x) = 12 that limx^O0x

2L'(x) = —12 holds. Hence a positive constant A
A

exists with L' (x) S — 2 ̂ o r x =
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Appendix B

We define a function Lz by

One easily finds the following relation of Lz to the radial Thomas-Fermi density
ρT F:

Therefore we may write the Thomas-Fermi energy in the following way:

r r

2 J

o I \3πJ rr' m a x {r,r'}

Furthermore we have immediately the following scaling Lz(r) = Z 1 / 3 L1(Z1/3r)
yielding the existence of a single maximum of Lz at RZ~1/3 and of a single zero of
L'z at WZ~1/3 for some R and J^in IR + . Finally we collect some further properties
o f L z :

{2n~1)/3

Lz(r)^-\/φ(xm)Zr for br£xm, (B.4)

Lz(r) ^/Z?(l+ φ'φ)

^ yx3

mφ(xm) for br^xm,

* r)) for br ̂  — — — .

The point xm is defined in Appendix A.

Appendix C

In this appendix we deal with important properties of rί (/), r2 (/), x1 (/) and x2 (/),
the points that we introduced in the definition of the trial density for the Hellmann-
Weizsacker functional.
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Lemma C.I. For sufficiently large Z the following holds:

z =' — = z φ(Xmy

iii) xj (/) ^ i?Z"1 / 3 - constZ"1 / 2 ^ ΛZ"1 '3 + constZ1 / 2 g x 2(/),

iv) ^ ( ^ ( / ^

v) const κ —^- min {(/ + ^) 2 , Z 1 / 2 } ^ Rι (x2 (/)) S const Z 1 / 3 ,

where 0 ^ / ̂  k' in i) #ftJ ii) while 0 ^ / ̂  k' — 1 z« iii), iv) α/?<i v). F^r abbreviation

we wrote Rt (r) = [λ2 (r) - (/ + i) 2 ] + .

PΓ6X9/. The inequalities i) and ii) follow immediately from (B.4) and from

(1 - aZ~1/2)1/3 ^\ for sufficiently large Z.

For iii) it is sufficient to consider the case / = k' — 1, since x1 (/) < x1 (/+ 1) and

x 2 ( 0 > x2(l+ 1). Using the mean value theorem we find

with r' G [r! (kf - 1), i^Z~ 1 / 3 ] . Since k - fc; + 1 > 1 and - A" (V) ^ const Z, we have

r^fc' - 1) fg i^Z~ 1 / 3 - const Z ~ 1 / 2 . The first part of iii) follows then immediately

for large Z. The second part of iii) follows analogously.

To show iv) we remark firstly that (L2)' ^ 1, and hence (L | ) ; ^ Z holds. Again

(/ + )
the mean value theorem yields λ2 (.x̂  (/)) ^ (/ + \)2 + Γ ——— Z, which is the desired

result.

The second inequality in v) is proven analogously using {L2

Z)' ^ — const Z. For

the first inequality of v) we find λ (x2 (/)) ^ (/ + 1 ) + (χ2 (I) - r2 (/)) max {λ' (x2 (/)),

λf{r2{l))}. It suffices to consider the cases x2(l) ^ WZ~1/3 and r 2 ( / ) ^ WZ'1/3.

— A
Since we can find a positive constant A to bound L'(x) from above by — -2—

for x>xw (see Appendix A), we have λ'(r2(l))^ — const(/ + ^ ) 2 for sufficiently

large Z. Furthermore we find λ'(x2(l)) ^ c o n s t Z ~ 1 / 2 λ " ( r ' ) with r' e[RZ~1/3,

RZ~1/3 + c o n s t Z ~ 1 / 2 ] . For sufficiently large Z we have /Γ(V) ^ —constZ.

Hence / ! ' (x 2 (0) = — const Z 1 / 2 yielding the proposed result. Π
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