
Communications in
Commun. Math. Phys. 112, 385-408 (1987) Mathematical

Physics
© Springer-Verlag 1987

Fermions and Octonions

P. Goddard1, W. Nahm2, D.I. Olive3, H. Ruegg4, and A. Schwimmer5

1 DAMTP, University of Cambridge, Silver Street, Cambridge CB3 9EW, United Kingdom
2 Institute for Theoretical Physics, SUNY at Stony Brook, NY 11794, USA
3 The Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ,
United Kingdom
4 Departement de Physique Theorique, University of Geneva, Switzerland
5 Department of Physics, Weizmann Institute, Rehovot, Israel

Abstract. We analyse further the algebraic structure of dependent fermions,
namely ones interrelated by the vertex operator construction. They are
associated with special sorts of lattice systems which are introduced and
discussed. The explicit evaluation of the relevant cocycles leads to the result that
the operator product expansion of the fermions is related in a precise way to one
or another of the division algebras given by complex numbers, quaternions or
octonions. The latter case is seen to be realised in the light cone formalism of
superstring theory.

1. Introduction

It has emerged that free massless Majorana fermions in a two-dimensional
spacetime play an important role in various problems in theoretical physics
controlled by conformal symmetry. In the fermionic string theory [1], multiplets of
such fields occur which transform vectorially either under the Lorentz group
SO(9,1) or its light cone restriction SO(8). In the heterotic string theory [2] there
are fermion fields forming linear or non-linear representations of the gauge group
[3]. In statistical physics, such fermions give a convenient description of certain two-
dimensional models [4]. The Ising model can be discussed in terms of one such field
[5]. Fermion fields also arise in the theory of solitons [6, 7].

The simplest situation occurs when the various real component fermi fields ψi
are "independent" in that they anticommute when their suffices differ. This
statement can be expressed via the operator product expansion as

^ | z |> |£ | , (1.1)

using notation common in string theory (see the review [8]). This framework is
insufficiently general to encompass all situations of physical interest. For example,
when Green and Schwarz [9] reformulated superstring theory [10] so as to render
manifest the space-time supersymmetry, at least in the light cone gauge, they
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introduced fermi fields carrying an 5*0(8) spinor index. Although satisfying (1.1)
amongst themselves, these fields neither commuted nor anticommuted with the
familiar Ramond-Neveu-Schwarz fields mentioned above as carrying a vector
index. Thus the spinorial fields are not "independent" of the vector fields but
"dependent" on them. Similar dependent fermi fields arise in the fermionic
description of the E8 x E8 gauge group of the heterotic string [3] and in statistical
physics when "spin operators" occur [4].

The vertex operator construction of complex fermi fields, originally due to
Skyrme [6,11], furnishes a concrete way of understanding the possibilities and
in particular the nature of this dependence. The clearest formulation is in terms
of the Fubini-Veneziano field which describes the motions of a free bosonic string
theory [12]:

Qj(z) = qj-ίpjlnz + ί £ — z"n , (1.2)
nΦO n

yielding the "vertex operator",

φω(z)=zω2'2:eίω Q^:cω , (1.3)

which satisfies the hermiticity property

Ψω(z) = ψ-M/Z*) (1.4)

The vertex operator (1.3) provides a complex fermi field when [13,14]

ω2 = l . (1.5)

The real and imaginary parts of (1.3) yield two independent fermi fields satisfying
(1.1). cω is the generalised "Klein transformation" [15] constructed out of pj in
(1.2) needed in general to correct certain signs.

In order to obtain 2r independent real fermi fields one considers r mutually
perpendicular unit vectors ω1,ω2, . ., ω r and their negatives. These 2r unit vectors
form the short roots of the Lie algebra so (2r + \) = Br, while sums of perpendicular
pairs form the long roots.

Two complex "dependent" fermions are each obtained from expression (1.3)
with ω given by unit vectors ω1 and ω2. By the standard product identity of vertex
operators [14] we find

ψωί(z1)ψωM) = ε(ωi,ω2)(l-z2/zir
i'ωΠΨωί + ω2(zi) + O(z1-z2)] , zx>z2 ,

(1.6)

where ε denotes a cocycle (a complex number of unit modulus depending on ω t and
ω2). As zγ tends to z2, this vanishes if ωγ ω2 > 0, but if ωλ ω2 < 0 it defines a new
field φωi + ω2 If this new field is to be fermionic, ω1 + ω2 must be a unit vector (1.5).
Thus

ω i ω2= -1/2 . (1.7)

It is easy to see that the six fermion fields ψ±ωi,ψ±ω2 and φ + ( ω i + ω2) form a closed set
under the operator product expansion (1.6).
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One can now seek to add fermi fields independent of φωι but not of φω2. By the
above discussion such a field will be associated with a unit vector orthogonal to ω1

but not ω2. Repeating this we build up what we shall call an "orbit" of
perpendicular unit vectors and their negatives including ω± with associated
independent fermi fields. The same can be done for ω2 and so on.

In a previous paper [16], of which this can be regarded as a continuation, we saw
how to construct such "orbits" as subsets of the short roots of a simple Lie algebra g.
g could have short roots of unit length and long roots of length j/2, i.e. could be Br,
Cr or F4. Alternatively g could have all roots of equal length, all regarded as short,
i.e. of unit length. These constructions were used to construct level one repre-
sentations of Br, CV, and F4, the associated affine Kac-Moody algebras [16,17].

Part of the purpose of this paper is first to redevelop the results in a more
systematic way, starting with the concept of a " Z 2 lattice pair" explained in Sect. 2.
Families of independent fermions correspond to "orbits" of unit vectors. If there is
more than one orbit each orbit can possess only 2, 4 or 8 elements suggesting a
connection with the division algebras formed by complex numbers, quaternions
and octonions respectively.

The main result of this paper is the construction of a relation between the
operator product (1.6) and the product laws of these algebras, as explained in
Sect. 5. The principal difficulty in this demonstration is the evaluation of the cocycle
ε (cθ!, ω2) occurring in (1.6) and is solved in Sect. 4 making use of a special symmetric
"gauge choice" for the cocycles, proven in Appendix B. This evaluation depends in
turn on general results about the structure of the orbits and their interrelationships
found in Sect. 3.

Thus we have related three apparently different concepts, dependent fermions,
Z 2 lattice pairs and division algebras. There are also hints, mentioned in the
conclusion, Sect. 6, of the relevance of Jordan algebras.

We have already mentioned the example of the superstring, when orbits with 8
elements enter. The exploitation of our discovery of the role played by octonions
must surely further clarify our understanding of that theory which is the most
attractive candidate for unifying particle interactions.

2. Z2 Lattice Pairs and Dependent Fermions

Dependent fermions appeared naturally in the recently found construction of level
one representations of affine untwisted Kac-Moody algebras g for which g is simple

and has roots oftwo distinct lengths in the ratio j/2 : l,i.e.2? r, CrOτF^ [16,17]. Two
sorts of dependent fermion could occur, ones associated with what we called
"orbits" (certain subsets of short roots) and ones associated with the individual
elements of these orbits. A unifying point of view was found for these constructions
based on the following concept which we adopt here as our starting point [16]. We
call ΛoczΛ a " Z 2 lattice" pair if

Λo and \/lA are even lattices (2.1a)

A a Λ$ (the dual of Λo) (2.1b)

Λ/Λo is isomorphic to (Z2)
n for some n . (2.1c)
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It is easy to find examples of lattice pairs AocA satisfying any two of the three

conditions (2.1) but not the third; thus the conditions are independent. Condition

(2.1a) implies that Ao and j/2Λ. are integral lattices but A need not be.
We denote by Λa, (0 ̂ a ^ 2 " -1) , the 2" cosets of A by Ao, implied by (2.1c). We

can write

Aa = λa + A0 , (2.2)

where λa is a fixed element of Aa. It follows from (2.1a) and (2.1b) that λ2 is an
integer which is either odd or even independently of the choice of the representative
λa. Accordingly we say that Aa is "odd" or "even".

Λa is itself a lattice only if a = 0 but Λo u Aa is always a lattice and further-
more integral. [Condition (2.1c) implies that Ao + AocAo, A0-\-AaczAa and
Aa + Aa<=iA0; thus AouAa is a lattice while integrality follows from (2.1a)
and (2.1b).]

There are two Lie algebras associated with a Z 2 lattice pair. We denote by Aa)

the set of vectors of length 1 in A and by A^ those of length j/2 in Λo :

A{1) = {OCEA,(X2 = 1} A^2) = {(xeAo,oc2 = 2} . (2.3)

Using properties (2.1) it is easy to verify that the sets A{1) KJA{Q] and A^2) each satisfy
the axioms of a root system. They therefore define Lie algebras g(A, Ao) and g(A0)
respectively, both of rank equal to the dimension of A, dim A. Further

g(A0)^g(AA0)Lczg(A,A0) , (2.4)

where gL denotes the subalgebra of g of the same rank defined by the long roots of g.
If 4 2 ) is empty, g(A0)^u(l)dιmΛ, while if A{1) is empty, g(Λ0)^g(Λ, Ao). Z 2 lattice
pairs exist such that g(A,A0) is any given simple Lie algebra except G2 [16].

Since the dependent fermions are to be related to the points of A{1\ we ignore the
possibility that it be empty and divide it between the cosets Aa by defining

, a>0 . (2.5)

If Ωa is not empty we call it an "orbit". By (2.1c), Aa= —Aa, and so, by (2.3),

Ωa=-Ωa . (2.6)

So any point of Ωa can be paired with its negative. Thus Ωa comprises pairs of
opposite unit vectors and these are mutually orthogonal (because if ω and ω'eΩa,
ω ω' eZ, as Ao u Aa is integral, and being unit vectors, ω ω' = 0 or ± 1 with ω =
±ωf in the latter case).

We shall henceforth assume that g(A, Ao) is simple (and that Aa) is non-empty).
Then, we show, the orbits are isomorphic and contain two elements if and only if
A{Q] is empty.

For, if A{Q] is non-empty, g (Ao) has a Weyl group which is an invariant subgroup
of that of g(A0, A) by (2.4) [16]. These orbits are indeed the orbits of the short roots
ofg(A, Ao) under the action of the Weyl group of g(A0) and necessarily have four or
more elements.
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If Λ{Q] is empty, each orbit can only have two elements. For if not, we can find
two orthogonal elements whose sum is automatically in Λff\ contradicting the
supposition that it is empty.

Because each orbit consists of |Ω| unit vectors occurring in orthogonal pairs, we
can construct |Ω| independent real fermion fields for each orbit by the vertex
operator construction (1.3). Whether or not fermions defined on different orbits are
dependent or independent depends on the following relationship between the orbits.
If Ωa and Ωb are distinct orbits (i. e. non-empty), Aa and Ab are "odd". lfΛa + Λb = Λc

is also odd, Ωc must be an orbit, i.e. non-empty as 2 \ω ω'\ must be odd, and hence
one if ωeΩa and ω' eΩb. Hence either ω + ω' or ω—ω' has length one and lies in Ωc

which cannot then be empty. If Λa + Λb is "even" then ω ω' vanishes.

If g(A,A0) = Br, there is just one orbit and 2r independent real fermions, a
well understood situation which we shall henceforth ignore. We are left with
g(A,A0) = F4, Cr or a simply laced algebra all of whose roots are considered as
"short", that is of unit length. The number of elements in each orbit, | β | , is 8, 4, and
2, respectively, numbers reminiscent of the division algebras formed by octonions,
quaternions and complex numbers, respectively. This observation is enhanced by
the construction of part of Freudenthal's magic square referring to the multipli-
cation table of the aforementioned division algebras as follows. We say that two Z 2

lattice systems (possibly of different dimensions) "match" if they share a common
value of n, (2.1c), so that the cosets can be put into one-to-one correspondence
Λa+-*Λά and that this correspondence can be chosen so that (a) it respects the (Z2)π

group properties, (b) it respects the even-oddness properties, and (c) such that Ωa

and Ω'a are either both orbits or both empty.

Let us consider concrete cases: suppose we define

Λ =

= ΛR

ΛR(g) ,

(gW2 ,

Λ0 = ΛR (.90 , '

2ΛR(g) ,

{g = Br,Cr,

(g=Ar,

FA)

Er) .

(2.7a)

(2.7b)

Then (A, Ao) is a Z 2 lattice pair (2.1) in each case with n equalling the number of
short simple roots of g, i.e.

n = l,r-l,2 for Br,Cr,F4 , (2.8a)

= r for Ar,Dr,Er . (2.8b)

It is understood that AR(g) denotes the root lattice of g with the long roots of g

normalised to have length j/2. Because of the j/2 divisor in A given by (2.7b), the

simply laced g are thought of as having only short roots (of unit length).
Of the above Z 2 lattice pairs there are three for n = 2 which match, namely those

with g = A2, C 3, and F 4 . For higher n those with g = An and Cn + x match. Since those
for g = Dr or Er match only themselves we discard them henceforth.

Given a pair of matching Z 2 lattice pairs it is possible to construct an even lattice
whose dimension is the sum of the dimensions of the Z 2 lattice pairs:

(Λ,Λo)x(A',Ai)= Σ Aa®A'a . (2.9)
a=0
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The points of length λ/l define a simply-laced algebra. Thus we can compile a
multiplication table of Lie algebras. A simple calculation yields the following:

« = 2) A2 C3 F4

= N-1>2)

A2

c3

A2xA2 A5

Λ5

Eβ

su(N)

sp(N)

Eη

su(N)

su(N)x

su(2N)

E6

Eη

E*

su(N)

sp(N)

su(2N)

so(4N)

As pointed out in our previous paper [16], these tables reproduce part of
FreudenthaΓs "magic square" associated with multiplying complex numbers C,
quaternions H and octonions Θ. This tallies with the fact that the orbits have order
2,4, and 8 for g = An, Cn +1, and F4 respectively. We shall understand the basis of this
coincidence better in what follows and also see how to incorporate the reals.

3. Triality and Orbit Triples

The division algebras furnished by the complex numbers, quaternions and
octonions will be realised by assigning fermionic vertex operators to the points of
the orbits of order 2, 4 or 8 mentioned above in connection with g(A,A0) = An,
Cn + 1, and F4 respectively, and considering what we shall call a "triple of orbits", i. e.
three orbits Ωu Ω2, and Ω3, say, lying in odd cosets related by

Λ1+Λ2+ΛZ = ΛQ . (3.1)

(Thus Ai + Aί + 1=Ai+2, with / defined mod 3.) The operator product expansion
(1.6) for the multiplication of two vertex operators associated with two of these
orbits will define a vertex operator associated with the third orbit of the triple. If we
can construct a satisfactory identification between the points of the three orbits we
shall have effectively defined a multiplication law on each orbit itself, which will
turn out to relate to the expected division algebra.

In this section we construct this identification, which we call "triality" and
discuss its implications for the further structure of the individual orbits.

We expect this triality, τ, to be a linear map, of order 3, preserving A and Ao and
cyclically permuting jQ1? Ω2, and Ω3, i.e.

τ(Λ) = Λ , τ(A0) = A0 , τ3 = l , τ(Oi) = Ωi + i , /mod 3 . (3.2)

In particular τ is an automorphism of the root lattice of g(A0) but not in its Weyl
group. It must correspond, therefore, to an automorphism of the Dynkin diagram
of g(A0) if that group is not abelian [18]. When g(A,A0)=F4, g{A0) = DAr and its
Dynkin diagram has a symmetry of order three cyclically permuting the three equal
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legs. Indeed this is often called triality. When g(Λ, Λ0) = Cr, g(Λ0) = (A1)
r and its

Dynkin diagram consists of r points, the cyclic permutation of three of which gives
again an order three symmetry. If g(Λ, Λ0) = Ari g(Λ0) is abelian and so has no
Dynkin diagram.

We now give a general construction of τ, showing how it relates to the above
diagram automorphisms in Appendix A. Let ω1 e Ωx and ω2 e Ω2 with the sign of ω2

chosen so that ωx ω2 equals —1/2. Then ω 3 = - ω 1 - ω 2 e Ω 3 and ωt' CDJ= —1/2,
i+j. We define τ e W(g(Λ,Λ0)), the Weyl group of g(Λ, Λo), by

τ = σ ω i σ ω 2 , (3.3)

where σω is the Weyl reflection in ω. Whenever ω e Λ{1\ σω preserves both A and Ao

by (2.1). So therefore does τ by (3.3). Hence τ permutes the cosets Λa. (In fact it
permutes the odd ones amongst themselves and the even ones amongst themselves.)
It is easy to check that τ (ωf) = ωi + ι with i defined mod 3. From this follows the last
property (3.2). τ is actually a rotation through 2π/3 in the plane containing the ω t

and so has order 3 and satisfies (3.2).
We shall want τ to satisfy an additional property to (3.2), namely that it leave

fixed a Weyl chamber, C, say, of g(A0) when that algebra is not abelian, i.e.

τ(C) = C . (3.4)

We now show that τ given by (3.3) can be modified to satisfy both (3.2) and (3.4). If τ
does not already satisfy (3.4), let σ be the unique element of W(g(A0)) for which
σ(C) = τ~1(C). Then τ' = τσ obviously satisfies (3.2) and (3.4) except possibly the
condition (τ')3 = l. Since τWigiAo))^1 = W(g(A0)), ( τ ' )

3 = τ V = σ'e W(g(A0)).
But, by (3.4), σ'(C) = C, which implies that σ' = l, thereby establishing the result.
We henceforth call τ',τ and will show that it can also be written in the form (3.3) for
suitable ω1 and ω2.

Let us choose C, the Weyl chamber of g (Λo) fixed by τ, (3.4), as the positive one.
Then if ρL is the half sum of positive roots of g(Λ0)9

QL=Σ * / 2 > ( 3 5 )
α>0

it is left invariant by τ, because of (3.4); that is,

τ(QL) = QL (3.6)

We call x ρL the height of x, generalising the usual notion for the root system of

height x = ρL-χ . (3.7)

By (3.6), x and τ(x) have the same height.
We now prove the result: each of the orbits Ω1, Ω2, and Ω3 consist of two

elements of zero height, summing to zero, and one and only one element of each
height ± 1 , ± 2 , . . . ,( |Ω|-2)/2. Further, if ω e Ω l 9

ω - τ(ω) = —1/2 if ω has zero height, (3.8a)

= 1/2 if ω has non-zero height. (3.8b)
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The proof is in stages first, two distinct elements of one orbit Ωt have the same
height (3.7) only if that height is zero and they sum to zero. For, if ω, ω' e Ωt, ω + ω',
either ω ω' = 0 o r ω + ω' = 0 by a previous result. In the former case, ω— ω' eΛtf\
and so is a root of g(Λ0) whose height in the usual sense of g(Λ0), ρL (ω — ω'),
vanishes if height ω equals height ω'. Asg(Λ0) has no roots of zero height, we must
have ω + ω' = 0 which implies the common height is zero.

Now, if ω e Ω l 5 ω τ(ω) = l/2 or -1/2 only. But [ω + τ(ω) + τ2(ω)]2

= 6(ω τ(ω) + 1/2). So if ω τ(ω) = -1/2,

ω + τ(ω) + τ2(ω) = 0 , (3.9)

which implies that ω has zero height as each term has the same height.
If ω τ(ω) = 1/2, ω—τ(ω) e Ω3 and has height zero (thereby establishing that Ω1

certainly has elements of zero height, ±e, say). Thus

ω-τ(ω)=±τz(e) . (3.10)

If ω = e, this contradicts τ3 = l, showing that ω has non-zero height, thereby
establishing (3.8).

We now see that the elements of Ωf must have integer heights since roots oίg(Λ0)
do. For, if eeΩi has zero height and ω e Ω x has non-zero height, e ω = 0, and
soe + coe /LQ2) and is a root ofg(Λ0) with the same height as ω. Also, if α is a simple
root of g(Λ0) (and so has unit height) and is not orthogonal to e, e α= ± 1. So
σα(e) = e + α is an element of Ω1 with height + 1 . Repeating this argument we
complete the proof of the announced result.

As a consequence there is a striking geometrical structure to the orbits Ωl9Ω2,
and Ω3, common to the three values of |Ω|. If we henceforth let e denote one of the
two elements of Ωi with zero height, we see that e, τ(e) and τ2(e) are coplanar, (3.9),
and make angles 2 π/3 with each other. If/e Ωx has non-zero height,/, τ(/) and τ 2(/)
are not coplanar but they subtend the same angles 2π/6 with each other irrespective
of their common height.

In particular, τ is given by (3.3) with ω1=e,ω2 = τ(e). These results are crucial to
obtaining the division algebra structures. Besides (3.9) satisfied by e and (3.10),
there are other linear relations between Ω l 5 Ω2, and Ω3 arising when |Ω| = 8, and
hence needed for the octonion analysis.

In this case there are 8 vectors in Ωx, denoted ±e, ±fι, + f2, and ± f3 with the
height of/„ being n. As/3 + τ(fί) has height 4, f3 τ(/1) = l/2, since ifit was —1/2 we
would have an element of Ω3 with height 4, contradicting the structural result above.
Therefore/3 —τ(/i)eΩ3 = τ2(Ω1), and has height 2. Hence

(3.11)
Likewise

(3.12)

again using the "height conserving" property.
Choosing ω=fn in (3.10),

ξnτ\e) , Λ = l,2,3 , (3.13)

where ξi,ξ2, and ξ3 take values + 1 . We choose the sign oίe so that ξx = 1. Applying
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1 — τ to (3.11) and using (3.13) we obtain ξ3τ
2(e) —e = ξ2τ(e). Comparing with (3.9)

satisfied b y ω ^ e , we obtain

ξi=ξ2=-ξ3 = l (3.14)

This completes the list of linear relations.
In Appendix A we give explicit constructions of Ωx, Ω2, and Ω3 for the three

cases.

4. Evaluation of Cocycles Occurring in the Fermionic OPE

We assign vertex operators

ψω(z) = ̂ :eiω ^:cω (4.1)

to each element ω of Ωί9 Ω2, and Ω3. cω is a generalised "Klein transformation"
[15]. Since Ωa= — Ωα, (2.6), there is also a vertex operator ψ-ω which we take to be
hermitian conjugate to φω :

ψ-ω(z) = ΦM/z*Ϋ • (4.2)

The presence of cω ensures that the ψω9 ωe£2 1 ? say, define |Ω| real independent
fermion fields (i.e. mutually anticommuting) (see [8]). We have shown [16] that cω

can be constructed for any ωeΛ satisfying:

eiaqcae
iβqcβ = S(θiJ)eiβqcβe

ia qca = ε((xJ)ei{a + β)-qc. + β , (4.3)

for any α, βeΛ. S(a, β) is called the "symmetry factor" and ε(α, β) the "cocycle".
Both are of unit modulus, and possibly complex. The associativity of the
multiplication in (4.3) implies certain consistency conditions to be satisfied by the
symmetry factors and cocycles;

5(α,α) = l , S(ocJ)S(β,oc) = l , (4.4a)

= S(a,β)S(x,γ) , (4.4b)

S(μ9β)ε(β9*) , (4.5a)

y) = ε(oc,β)ε(<x + β,y) . (4.5b)

Once ^(α, β) is assigned for all α, βeΛ the cocycle is unique up to a "gauge freedom"
involving a discrete gauge transformation at each point of A:

(4.6)

where η(oί) is a phase factor. We can use this gauge freedom to ensure that:

ε(α,0) = β(0,α) = ε ( α , - α ) = l , (4.7)

thereby guaranteeing (4.2). We then find, quite generally, from the cocycle
condition (4.5b), that the cocycle satisfies the cyclic symmetry property

e(α,j8) = e(j8,y) = ε(y,α) when <x + β + y = 0 , (4.8)
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and the hermiticity property

ε(α,j5) = ε(- j8,-α) . (4.9)

For any lattice A satisfying (2.1) a consistent assignment of symmetry factors
was given in our previous paper [16]. If α and β are in the same lattice ΛouΛa,

S(a,β) = (-iyβ+a2β\ a,βeΛovΛa , α = l,2,. . . 2n~ι . (4.10)

This ensures that the vertex operators (4.1), ωeΩa, indeed define |Ω| independent
real fermion fields.

If α and β lie in distinct cosets Λa and Λb, a φ b + 0, it follows from (4.4), (2.1), and
(4.10) that

2 (-ί?a'β . (4.11)

Thus if one or all three oΐΛa, Λb,Λa + Λb are odd, S(<x,β) is imaginary. In particular,
S(oc, β) is imaginary if α and β lie in two distinct elements of the triple (3.1).

The operator product expansion (1.6) for ω1eΩ1 and ω2eΩ2, say, has a
singularity like (zγ —z2)~1/2 if ωί+ω2eΩ3 and its coefficient is proportional to
Ψon + ωj This defines the multiplication law we want to study and part of the
structure constant is the cocycle ε(ω1, ω2). This section is devoted to showing that
there exists a particularly convenient gauge choice (4.6) in which we can evaluate all
the cocycles entering the fermion operator product expansion.

The basic idea involved in this choice is to observe that the symmetry factors
inherit certain symmetry properties of the lattice A, namely

S(-α, -β) = S(*,β) OCJEA (4.12a)

, (4.12b)

by virtue of (4.4), where τ is the triality of the previous section. It is shown in
Appendix B that it is possible to find a gauge (4.6) in which the cocycles also inherit
the same symmetries in addition to (4.7),

ε(-α, -β) = ε(0L,β) , ocJeA ; (4.13a)

ε(τ(α),τ(j8)) = ε(α,)8) , oc,βeAouAί KJA2KJA3 . (4.13b)

Property (4.12a) follows immediately from (4.4) while (4.12b) follows from (4.10)
and the cyclic symmetry property of S corresponding to (4.8).

Let us note an immediate consequence of the gauge choice (4.13a) with (4.9) and
(4.5a):

ε(x,β)2 = S(aJ) . (4.14)

This means that the remaining gauge ambiguity (4.6) in the cocycle is a sign which
can be further chosen to satisfy (4.13b), as shown in Appendix B. It also shows that
when A satisfies (2.1) the values taken by the cocycle in the gauge (4.13a) are + 1 , ± i

and (±l±0/]/2.
The cocycles needed for the operator product expansion of fermions are of the

form ε(ω, τ(ω')), where ω, ω\ and ω" are all elements of Ωι and

/) + τ2(ω//) = 0 . (4.15)
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The linear relation (4.15) implies further linear relations between Ω l 9 Ω2, and Ω3

(possibly the same), namely

+ τ2(ω') = 0 . (4.16)

By the cyclic symmetry property (4.8) and the invariant gauge choice (4.13) we have

ε(ω, τ(ω')) = ε(ω', τ(ω")) = ε(ω", τ(ω))

= ε ( - ω , -τ(ω')) = ε ( - ω ' , -τ(ω")) = ε ( - ω " , -τ(ω)) . (4.17)

Thus six of the cocycles we are interested in are equal.
We have already found all linear relations of this type in the previous section.

For example, we had from (3.9)

e) = 0 . (4.18)

Hence, by (4.17)

ε(e,τ(e)) = ε(-e9 -τ(e)) = ε0 , (4.19)

say, as (4.18) is τ invariant, If |Ω |^4, (3.13) and (4.17) yield

ξnτ(e)) = ε(ξHe9 -τ(fn)) = εn , (4.20)

say. Of course « = 1 if |Ω| = 4 and 1, 2 or 3 if |Ω| = 8. We now relate (4.19) and (4.20)
by showing that

εn=-ε0, n = \ or Λ = 1, 2 o r 3 . (4.21)

In the cocycle condition (4.5b) insert oc = ξne, β = ξnτ(e) and y=fn so that
a + β= -ξnτ

2(e) and β + y = τ2(fn) to get, using (4.13b), (4.19), and (4.20),

which, by (4.5a),

Finally, by (4.11), this equals - ε 2 , which establishes (4.21).
Thus, if |Ω I = 2 or 4 there is only one independent cocycle in the fermion operator

product expansion between Ω1 and Ω2. When |Ω| = 8, so that octonions will be
involved, there are two further linear relations, namely (3.11) and (3.12). By the
same method we find one further independent cocycle, ε', associated with them so
that

= - ε ( / 1 ? - τ ( / 3 ) ) = - ε ( - / 3 , τ(/2))

(4.22)
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That there are relations between the cocycles as above could have been
anticipated by observing that the ratios of such cocycles are invariant with respect to
the gauge transformations (4.6) when η(oc)2 = 1 by virtue of the gauge choice (4.13).

5. Division Algebras and the Fermionic Operator Product Expansion

We consider the division algebras formed by the complex numbers, quaternions and
octonions respectively [19]. Elements are real linear combinations of the unit,
w0, and the imaginary units ux (complex numbers), uγ, u2, and w4 (quaternions) and
Hi, u2, u3, w4, u5, u6, and uΊ (octonions). Thus

*a* , (5.1)

where / denotes the relevant set of imaginary units and the coefficients a are real
numbers. This reality property is preserved under multiplication defined by

ul = u0 , uauβ=-uoδaβ+faβγuy , (5.2a)

ua , (5.2b)

since the structure constants are real./α/?y is totally antisymmetric and real. Its non-
zero elements are specified by

Thus, for complex numbers, / vanishes, while for quaternions, it is the su(2)
structure constant. The multiplication defined by (5.2) and (5.3) fails to be
associative only for octonions.

Given the reality of the coefficients a there is a complex conjugation operation
defined by

according to which the imaginary units justify their name.
Because/is antisymmetric, we see from (5.2) that

z1z2=z2z1 . (5.5)

Our aim is to demonstrate a sense in which these properties (5.1)—(5.5) can be
realised by the fermionic vertex operators (4.1) defined on the three orbits Ω1,Ω2,
and Ω3 with \Ω | = 2, 4 or 8. The first step is to identify the reality property preserved
by the operator product expansion, ω1eΩι, ω2eΩ2,

(5.6)
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The snag is that the cocycle ε(ω1, ω2) is, as we have seen, necessarily complex. The
most general linear combination of fermionic vertex operators associated with the
orbit Ωγ is

Σ A1(ω)ψω(z) , (5.7)
ωeΩi

where the coefficients Aγ{ω) are complex numbers. The reality condition analogous
to the reality of the coefficients a in (5.1) is

A1(ω)*=A1(-ω) . (5.8)

This makes sense because Ωx= — Ω± by (2.6). By (5.6), the most singular part of
the operator product expansion of two expressions (5.7) defined on Ω1 and Ω2 is
given by

ω2eΩ2

(5.9)

Thus the operator product expansion has defined a third expression of the type (5.7)
on Ω3 and we have to check that there is a choice of the phase φ introduced in (5.9)
such that the reality condition is preserved. Comparing (5.7) and (5.9) the new
coefficients inside the square brackets on the right of (5.9) are

A3(ω3) = e~ίφ Σ ε(ωί,ω2)A1(ω1)A2(ω2) . (5.10)

Complex conjugating this expression (5.10), assuming the reality condition (5.8)
for Aγ and A2, we find

A3(-ω3)* = eiφ Σ ε ( - ω 1 ? - ω 2 ) * ^ 1 ( ω 1 ) Λ ( ω 2 ) .

This equals A3(ω3), (5.10), providing

e~iφε(ω1,ω2) = eiφε(-ωί9 ~ω2)* = eίφε(ω2iω1) , (5.11)

using (4.9). This has to hold for all ω1 and ω2 occurring in the sum (5.10). But, by
(4.5a), (5.11) equals

eιφS(ω2,ω1)ε(ω1,ω2) ,

so that the requirement is, using (4.4), that

e2ίφ = S(ωuω2) . (5.12)

This can be satisfied as S(ωx, ω2) is indeed independent of the choice of a>ι and ω2 in
the sum (5.10), by the properties (4.4) and (4.10). Thus, if we choose the phase φ in
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(5.10) to be given by (5.12), the product defined by (5.10) does preserve the reality
condition (5.8).

So far we have taken no advantage of the symmetric gauge choice (4.13) for the
cocycles. We shall adopt this choice (4.13) henceforth and note that, by virtue of
(4.14) and (5.12), the quantities (5.11) take values + 1 or - 1 only. We therefore
define

η(ωuω2) = e-iφε(ωuω2) , (5.13)

taking values + 1 when ωίeΩ1, ω2eΩ2 and ω1+ω2eΩ3.
It is now useful to make some changes in notation. We shall define a new

product, denoted 'Ό" 5 as the most singular part of the operator product expansion
(5.6) or (5.9), but incorporating the phase e~ιφ. Thus, for ω1eΩ1 and ω2eΩ2, (5.6)
now reads

ω2)ψωι + ω2 , if ω1+ω2eΩ3 , (5.14a)

= 0 otherwise . (5.14b)

We further redefine ψω = ψ(ω) in the left-hand factor of the o product and ψω

= (/^(τ~1(ω)) in the right-hand factor of the ° product. Finally, in the overall result
on the right-hand side of (5.14) we define φω = φ(τ~2(ω)). Thus we reexpress (5.14)
in terms of vectors ω, ω', and ω" all in the same orbit Ωx:

ω'') , if ω + τ(ω')eΩ 3 (5.15a)

= 0 if ω + τ(ω')φΩ3 , (5.15b)

ω" is defined by the linear relation (4.15).

The quantities ψ are not real according to our definition (5.8), and so we
introduce real linear combinations of them:

V+(ω) = ψ(ω) + ψ(-ω)=V+(-ω) , (5.16a)

K_(ω) = / ( ι A ( ω ) - ι A ( - ω ) ) = - F _ ( - ω ) , (5.16b)

essentially twice the cosine and sine of ω Q respectively.
Whether Ωι has 2,4 or 8 elements, it possesses two of zero height, ±e. Using the

linear relation (4.18), e + τ(e) + τ2(e) = 0, and choosing the phase, φ, so that

ηo^e-iφεo = l , (5.17)

we find, from (5.15) and (5.16) that

V+(e)oV+(e)=V+(e) , (5.18a)

V+(e)oV_(e)=V-(e)oV+(e)= -V-(e) , (5.18b)

V-(e)o V-(e) =-V+(e) . (5.18c)

Since this is a two dimensional algebra, we expect it to relate to the algebra of
complex numbers generated by u0 and uγ satisfying (5.1), (5.2), and (5.3). Equation
(5.18a) indicates that V+(e) is a unit element, and (5.18c) that V-(e) is an imaginary
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unit. This suggests that we identify

V+(e)~u0 , (5.19a)

V-(e)<r+ux . (5.19b)

However there is then a wrong sign on the right-hand side of (5.18b). As this is the
only occurrence of the imaginary unit on the right-hand side of (5.18) this sign can
be rectified by introducing the complex conjugation (5.4). Thus we find that with the
correspondence (5.19)

uλ°uμ = uλuμ , (5.20)

at least for λ, μ = 0,1. This relation between the operator product "o" and the
division algebra product (5.2) will be our main result when we have extended the
correspondence (5.19) to all elements of Ω when there are four or eight of them.

The three products in (5.18b) and (5.18c) are related in that the structure
constant is cyclically symmetric in the sense that if a ° b = ηc, then b °c = ηa and
coa = ηb. This is a general feature of the 'Ό" product as we now check by considering
the general linear relation (4.15) and its corollaries (4.16).

l{η = e~iφε(ω,τ(ωf)), we find, using (5.15) and (5.16)

In addition we also find

Further

Finally,

V+{ω)oV+(ω') = ηVί{ω") ,

V+(ω')oV+(ω") = ηV+(ω) ,

V+(ω")oV+(ω) = ηV+(ω') .

V.(ω)oV-(ω')=-ηV+(ω") ,

V-(ω')o F+(ω")= -ηV-(ω) ,

V+ (ω") °V-(ω)=-ηV-(ωr) .

V+(ω)°V-(ω')=-ηV-.(ω") ,

V-(ω')o V-(ω")= -ηV+(ω) ,

V-(ω")oV+(ω)= -ηV-iω') .

V-(ω)o V+(ω')= -ηV.(ω") ,

V+(ω')°V-(ω")=-ηV-(ω) ,

V-(ω")°V-(ω)=-ηV+(ω') .

(5.21a)

(5.21b)

(5.21c)

(5.22a)

(5.22b)

(5.22c)

(5.23a)

(5.23b)

(5.23c)

(5.24a)

(5.24b)

(5.24c)

This exhausts the possible "o" products associated with the linear relation (4.15).
We see that they fall into groups of three related by the cyclic symmetry mentioned
above. These results will facilitate our verification that the operator product
denoted "o" relates to the division algebras (5.2) via (5.20).

We now replace the general linear relation (4.15) by the special cases (3.13) and
(3.14) involving elements ±fn of Ωx with height ±n, and e. Equations (5.21) and
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(5.22) yield respectively

V+ (/„) o V+ (fn) =-V+ (e) and cyclic permutations , (5.25)

V- (/„) ° V- (/„) = - V+ (e) and cyclic permutations . (5.26)

The structure constant in all these equations is e~iφεn, which by (4.21) and our
choice oΐφ, is equal to —e~ιφε0= — 1, as quoted. Thus V+(fn) and V-(fn) both have
square — V+(e) and hence behave like imaginary units. Equations (5.23) and (5.24)
further yield

V+ (fn) ° V-(/„) =-ξnV-(e) and cyclic permutations , (5.27)

V-(/„)o V+ (/„) =-ξnV-(e) and cyclic permutations , (5.28)

where ξn is the sign specified by (3.14). Thus the structure constant for V+(fn),
V-(fn) and V-{e) is totally antisymmetric. If we identify

(5-29)

(5.30)

and extend (5.20), we find that (w0, Mi, w2»
W4)? (

wo > ^ , w3, M7) and (M0 , wt, w5, M6) each
furnish sets of quaternions as /i24=/i37:=/i56 = l ? i n agreement with (5.3). In
particular, if the orbit Ωί possesses four elements, they must be ±e and +fγ and
we have, by (5.29), recovered the quaternions (u0, uu u2, u4).

When Ωι possesses 8 elements, there remain two more linear relations (3.11) and
(3.12), with associated cocycles (4.22). Applying (5.21), (5.22), (5.23), and (5.24) and
the identifications (5.29) and (5.30) to (3.11) we find that the following structure
constants are cyclically symmetric and take the values below:

/346 =/457 =/267 =/235 = - έ ? ~ f V = -ϊ\' .

Repeating the analysis for (3.12), we find that these structure constants are totally
antisymmetric. We have enough gauge freedom (4.6) left to choose — η' = 1, so that
(5.3) is satisfied. Thus the fermionic vertex operators relate to octonions via (5.20)
and the correspondence (5.19), (5.29), and (5.30).

6. Discussion and Conclusion

We have considered the fermionic vertex operators associated with a triple of orbits
as defined in Sects. 2 and 3 and have shown that there is a relation between the most
singular part of their operator product expansion which defines a product denoted
"°", (5.15), and the division algebras whose dimension is the order | β | of these
orbits. This connection is expressed via

z1oz2=^z2 , (6.1)

and the identifications (5.19), (5.29), and (5.30). Equation (6.1) is our main result
and most of the work of this paper concerned the determination of the cocycles
arising on the left-hand side and the demonstration that they correctly related to the
structure constants of the division algebras via (6.1).
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We want to make several comments of a mathematical nature about the result
(6.1). The elements z of a division algebra possess a norm \\z\\ which is the same for z
and z. It follows from (6.1) that the quantities (5.7) possess a norm which is
multiplicative under (5.10). This is

I Σ Mω)2 . (6.2)
V ωeΩ

The multiplicative property of (6.2) can be checked directly before deriving
(6.1), but we omit this analysis here. Notice that the "o" algebra never possesses a
unit element nor is it alternative. The lack of unit element follows from (6.1) and the
fact that the division algebras possess a unit element which is real.

The results just discussed depend on the reality condition (5.8). If it is relaxed, we
presumably obtain a split version of the "o" algebra. Then non-zero elements can
multiply to zero, witness (5.14b).

The product rule 'Ό" in (6.1) arises naturally in another context which therefore
appears to have many links with the present work, namely the theory of Jordan
algebras [19]. Let JN(K) denote the algebra of NxN hermitian matrices with
entries which are real (IK = IR), complex (K = (C), quaternionic (K = H), or
octonionic (IK = Θ). Hermitian conjugation means transposition followed by (5.4).
With respect to the product A xB = (AB + BA)/2, the JNQK) are Jordan algebras
unless K = 0 and 7V>3. Consider as an example the exceptional Jordan algebra
/ 3(Θ) and the multiplication rules for the following special elements A, B, and C
(which each form 8-dimensional vector spaces):

(6.3)

\a 0 θ/ \θ 0 θ/ \θ c θ/

Then

AxB = C if c=bά = ab=a°b ,

CxA=B if b = άc=7a=c °a ,

BxC=A if a = cb = bc=b°c .

Moreover the derivation algebra of /3((D) is F 4 whose orbits of short roots were
the starting point for our fermionic vertex operators related to octonions.

Equation (6.3) can be extended to the other cases. FreudenthaΓs magic square is
usually constructed by means of these Jordan algebras [20] and it turns out to be a
general feature that N, the dimension of the matrix in the Jordan algebra, equals
n + 1 where n is defined by (2.1).

So far we have omitted mention of the division algebra formed by the reals but
we now see that it is generated by the vertex operator V+(e) proportional to
: cos e - Q: corresponding to the unit element. This is actually the real fermion
previously associated with each orbit in the general construction of level one
representations of non-simply laced algebras [16,17]. With it we can add one
further row and column to the magic squares of Sect. 2 to construct the full square,
as in [16].
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Finally we want to mention that our octonion result has an important physical
application in the formulation of the superstring theory of particle interactions. The
fermionic vertex operators related to octonions are associated with the short roots
of F4 and fall into three orbits under the action of the Weyl group of D4, the
subalgebra of F4 defined by its long roots. D4 = so(8) is the residue of the Lorentz
invariance group of the superstring in the light cone gauge. In superstring theory the
fermionic vertex operators are familiar and important constructs. For points of the
orbit constituting vector weights of D4 they are Ramond/Neveu-Schwarz fields. For
one of the other two orbits, comprising spinor or conjugate spinor weights, they are
the fermion emission-absorption vertices [3]. Thus the algebra of these quantities
which is essential to the evaluation of superstring scattering amplitudes appears to
be related to the algebra of octonions or, by a previous comment, to the exceptional
Jordan algebra /3(<D). This is another idea we wish to pursue further.

It has long been a dream that octonions or exceptional Jordan algebras should
play a role in fundamental physical theories. One context proposed was the theory
of quark confinement [21] but it now seems that the more natural arena is, as we
have suggested, the theory of superstrings.

Appendix A

Here we give a concrete treatment of the "orbit triples" and "triality" maps, τ, of
Sect. 3 for the lattices A = ΛR(An)/γ2, ΛR(Cn + ί) and ΛR(F4). Except for AR(A2)/γ~2
which has no non-zero τ-invariant points, we construct bases for these lattices which
are permuted by τ, a result needed in Appendix B and used below to establish that
the τ invariance of the symmetry factor on Ao u Λλ u A2 u A3, (4.13b), can be
extended to all of A by a judicious choice of some of the undetermined signs in the
symmetry factor.

Wheng = An,(n^2), is regarded as having short roots only, the simple roots are

*j = (ej-eJ+1)/]/2 , 7 = 1 . . . n , (Al)

and generate AR(An)/]/2. Since A^] is empty, QL = u(X)n, so that ρL vanishes. The
orbits each contain two elements and we take as a "triple" of orbits:

Ω3 = {±(e1-e2)/]/2} , Ω1 = {±(e2-e3)/γ2]
and

Ω2 = {±(e3-ei)l\/2} . (A2)
If we choose

e= - ( * i ~e2)l]/2 , τ(e)= -(e2 -e3)/γ2 , (A3)

we find that τ = σeστ(e) maps e1->e2-^e3-^e1 and leaves fixed βj,j^.4.

AR(A2)/γ2 possesses no non-zero points which are τ invariant and so, being of

dimension 2, cannot have a basis permuted by τ. On the other hand, for n^3,

has a basis {wf} given by

, (e2 -έ?4)/l/2, (έ?3 -e4)/]/2, α4, α 5 , . . ., απ} . (A4)
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τ cyclically permutes uuu2, and u3 and leaves invariant the remaining ut. That (A4)
is an integer basis will follow from a special case of the argument for ΛR(Cn + 1)
below.

The simple roots of g = Cn+χ are taken as

<*i=(ei-e2)/]/2 , oc2 = (e2 -e3)/\/29. . . ,an = (en-en

gL is (^i)"4"1 with simple roots {|/2^, γ2e2,.. ., γ2en + 1} and hence has a Dynkin
diagram consisting of n 4-1 unconnected points, three of which τ cyclically permutes
as above. Hence also

ρL = "Σ e /j/2 . (A6)
i = i

The «(« + l)/2 orbits Ωo each contain four elements, having the form

ί2y = {(±^±^)/l/2} > *=K/ (A7)

We choose as the triple Ω1=Ω23, Ω2 = Ω3U and Ω3 = Ω12. Then

fi=(ei +e2)lγ2 , e= -fe -e2)/γ2 , (A8)

in the notation of Sect. 3.
The quantities {ux,u2,u3},

{ { (A9)

form an integral basis for ΛR(C3) as {αf} does and the matrix of coefficients has
integral entries and unit determinant.

For ΛR(Cn + 1), «^3, we consider instead {MJ given by

{(^ -έ?4)/|/2, fe-e4)/|/2, fe-^)/l/2, α 4 , α 5 , . . . , α π + 1} . (AlO)

As uγ = αx + α2 + α3, u2 = α2 + α3, and w3 = α3 and the matrix of coefficients is again
integral and of unit determinant, (AlO) constitutes an integer basis of ΛR(Cn + 1) in
which ux, u2, and w3 are cyclically permuted by τ (as el9 e2, and e3 are) and the
remaining ut are left invariant. This construction also applies to ΛR(An)/]/2 omitting
an + 1 and un + 1.

The simple roots of F4 are taken as

(χ1=e2-e3 , cc2=e3-e4 , oc3=e4 and α4 = ( ^ - ^ 2 - e 3 - ^ 4 ) / 2 .

(All)

Then gL = D4 with simple roots eγ — e2, e2 — e3, e3 — e4, and e3 + ̂ 4. The three orbits
each contain 8 elements which are weights of D4 irreps. Thus

Ω1=Ωv = {±ei} , Ω2 = Ωs = {(±e1±e2±e3±e4)/2} ,

Ω3 = ΩF={(±e1±e2±ee±e4)/2} , (A12)

with an even and odd number of minus signs respectively. We find

ρL = 3e1+2e2+e3 , (A13)
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and hence

e = e* , fi=e3 , fi = e2 , f3 = e1 . (A 14)
Further

TfaHfa+έ?2+6?3+έ?4)/2 ,

τ(e2) = (e1+e2-e3-e4)/2 ,
( A 1 5 )

We deduce that τ cyclically permutes the simple roots e1—e2,e3—e4., and e3 + e 4

of Z)4, leaving e2 —e3 invariant. This corresponds to the order three symmetry of the
Dynkίn diagram of Z>4 permuting the three equal legs.

We now check that [ux,u2,u3,u4} given by

), τ 2(/ 2), e2-e3) (A16)

provides a basis for A = AR{FA) which is permuted by τ. We find u1=f2=e2

= αx + α2 + 2α3 + α4, and w4 = e2 — e3 = ax. Again the matrix of coefficients has
integer entries and unit determinant and the result follows.

In Sect. 4, we showed by general arguments that, for any choice of the n(n —1)/2
arbitrary signs in the choice of symmetry factor, that factor was triality invariant on
ΛouΛ1uΛ2uΛ3. This coincides with A if A = ΛR (A2)/l/2, AR(C3) or A^F^) i.e.
n = 2. For A = AR(Cn + ι) and ΛR(An)/γ/2, « ^ 3 , we now show that the extension of
the triality symmetry to A depends on a judicious choice of the n(n—\)β signs
of the quantities S(oii,aίj) = Sij when αf, ccj are distinct short simple roots. As
S(u1,u2) = Sί2Sί3, S(u2,u3) = S23, S(u3,u1) = S31S32 with {wj given by the basis
(A 10) for AR(Cn + ι) for n ^ 3, the triality invariance of the symmetry factor requires
S 1 3 = - l , S 1 2 = - S 2 3 Further, S(u1,uj) = S(u2,uj) = S(u3,Uj), y'^4, providing
Slj = S2j = 1, which is automatic when/ = n + 1 and otherwise a legitimate choice. By
the multiplicative property (4.4b), S is then τ symmetric on all of A with these
choices. This argument applies to An by omitting αn + 1 and un + ί from consideration.

Appendix B. Symmetric Cocycles

Suppose that S(α, β) is a symmetry factor associated with a lattice Γ, that is S
satisfies the conditions (4.4) for on.βeΓ and takes values in Z, some finite subgroup
of the group of complex numbers of unit modulus. An associated cocycle ε(α, β) is a
function defined for α, β e Γ , taking values in Z and satisfying Eqs. (4.5). Such a
cocycle always exists and further is unique up to a "gauge transformation". (A
general construction and proof of this is given in Sect. 5 of [16].) Now suppose
further that S is symmetric with respect to some automorphism, τ, of Γ of order 3,

(Bl)

with τ 3 = 1. We wish to show that it is possible to choose the cocycle ε so that it also



Fermions and Octonions 405

possesses this symmetry,

fi(τ(α), τ(β)) = ε ( a , β ) , a,βeΓ. (B2)

Any cocycle ε(α, β) associated with an S satisfying (Bl) has the property that
ε(τ(α), τ(β)) is also a possible cocycle and so related to it by a gauge transformation,
u, say,

e(τ(α),τ(j5)) u(α)u(/ϊ)

ε(a,β)
(B3)

We seek another gauge transformation (4.6) which changes ε into a symmetric
cocycle ε'. It then follows from ε'(τ(α), τ(β)) = ε'(<x,β), that

^ < « ) (B4)

is a trivial gauge transformation,

φ(oc + β) = φ(a)φ(β) . (B5)

Now in fact w(α) is ambiguous up to a factor of such a homomorphism 0 (α) that is
we could replace w(α) in (B3) by u(oc)/φ(cή, and then (B4) would hold with φ(oc) = 1,

= ί/(α)/ί/(τ(α)) . (B6)

Since τ3 = 1, the consistency of (B6) demands

u(φ(τ(ot))u(τ2(oc)) = l , αφτ(α) , (B7a)

M(α) = l , α = τ(α) . (B7b)

Thus we have established that, if it is possible to symmetrise ε by a gauge
transformation η, it must be possible to choose the gauge transformation as in (B3)
so that (B7) holds. The converse is also true. If we can take the u in (B3) to satisfy
(B7), we can choose η(&0) arbitrarily (in Z) for one α0 point in each orbit of τ. Such
orbits either consist of a single point, or of three distinct points α0, τ(αo), τ2(α0). We
then define

(B8a)

(B8b)

The gauge transformation (4.6) then provides a symmetric cocycle.
To complete our proof, it remains to construct for S a cocycle ε and gauge

transformation satisfying (B3) and (B7). A general method of constructing cocycles
was given in Ref. 16. We take a basis {w,} for Γ and introduce generalised y matrices
{yj} satisfying

JiJj^Sijyjyi , (B9)

where Sij = S(Ui,Uj). Then, for x = YjxjujeΛ, we define

yx = 7Ϊ1"'7ίn (BIO)

and obtain a cocycle from the equation,

yxγy = ε(x,y)γx + y , (Bll)
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satisfying (4.5). Now, in the case where S has the symmetry (Bl),

y^βi=y^ (Bi2)

defines an automorphism of the y matrix algebra as then βiβj = Sijβjβi. We can use

βx = βϊι .βϊn (B13)

to obtain the gauge transformation u(x) of (B3). Because of the isomorphism (B12),
we also have

βxβy = ε(x,y)βx + y . (B14)
But

(B15)

for some function u(x), which, from (Bll) and (B14), satisfies (B3).
It remains to show that we can arrange that the u(x) of (B15) satisfy (B7). Firstly

if v(oc) = u(φ(τ(oc))u(τ2(a)l

βr(«)βτHz)βa = v((χ)y*ymyτ2ia) . (B16)

But the left-hand side of this equation can be written as βaβτ(a)βτ2ia), because the
factor introduced by this reordering is S(τ2(α), α)S(τ(α), α) and

α),α) . (B17)

Now the isomorphism of the β and y matrices implies that

βy = v(oc)yy . (B18)

where jμ = α + τ(α) + τ2(α). Hence v(oc) = u(y), where τ(y)=y, and we have reduced
(B7a) to (B7b).

This second condition will follow provided that the basis {uj} of Γ that we are
using is permuted by τ and we order the basis with elements in the same orbit
adjacent. Then, using again (B17), we deduce that w(α) = 1 if τ(α) = α. This completes
our proof under the assumption that our lattice has a basis permuted by τ, proven in
Appendix A for the lattices of interest except for ΛR(A2)/y2, which has no points
satisfying (B7b).

The cocycle s(x,y) defined by (Bll) has the property

ε(x,y) = ε(-x,-y) . (B19)

The symmetrised cocycle obtained from (4.6) will inherit this property provided that
η (x) = η (— x) and η (0) = 1. In our construction we were free to choose η at one point
on each orbit. We can ensure η(x) = η(—x), provided that we correlate the choice on
diametrically opposite orbits {αo,τ(αo),τ2(α0)} and {— α0, — τ(αo), — τ2(αo)} by
choosing η (α0) = η (— α0). Finally, we also wish to ensure that the symmetric cocycle
ε' satisfies

ε'(x9 -χ) = \ . (B20)

This will follow if

O ; - α 0 ) . (B21)

This may mean that ε' takes values in Z 1 / 2 = {z:z2eZ} rather than in Z.
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For simplicity we have written our argument out for the specific case at hand of
an automorphism of order 3. Various aspects of our discussion immediately
generalise to automorphisms of arbitrary finite order but others become more
subtle.
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