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Abstract. The compact matrix pseudogroup is a non-commutative compact
space endowed with a group structure. The precise definition is given and a
number of examples is presented. Among them we have compact group of
matrices, duals of discrete groups and twisted (deformed) SU(N) groups. The
representation theory is developed. It turns out that the tensor product of
representations depends essentially on their order. The existence and the
uniqueness of the Haar measure is proved and the orthonormality relations for
matrix elements of irreducible representations are derived. The form of these
relations differs from that in the group case. This is due to the fact that the Haar
measure on pseudogroups is not central in general. The corresponding
modular properties are discussed. The Haar measures on the twisted SU(2)
group and on the finite matrix pseudogroup are found.

0. Introduction

Let G be a Lie group. A family (Gτ)τe[0 ε[ of Lie groups is said to be a deformation of
G if GO = G and Gτ depends continuously on τ. The latter should be understood in a
natural sense. For example one may require that all Gτ are of the same dimensions
and that it is possible to choose bases in gτ (gτ is the Lie algebra of Gτ) such that the
corresponding structure constants depend continuously on τ.

Assume that the group G is involved in a theory (e.g. it is a symmetry group)
describing a physical reality. As we well know any physical theory describes well
only a limited class of phenomena, for the phenomena beyond this class the
theoretical predictions disagree with the experimental results. In order to obtain
the adequate description of a larger class of phenomena one must modify the
theory. In certain cases such a modification although revolutionary from the
conceptual point of view consists in replacing G by one of the group Gτ. Then the
value of τ is one of the fundamental constants (small parameter) of the new, more
general theory. Within this new theory the group G retains its validity only in the
approximate sense (e.g. it describes a broken symmetry). The old theory can be
recovered in the limit τ->0.
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The history of physics provides many examples of developments that fit into
the scheme described above. Births of the special theory of relativity and the
theory of quanta are the most famous. Another example we get by considering the
symmetry group of the flat Minkowski space-time of special theory of relativity, i.e.
the Poincare group. It admits a non-trivial deformation that leads to the theory of
the de Sitter space-time.

The above consideration indicate that studying all possible deformations of a
group involved in a physical theory, one may discover ways leading to more
general theories that might better describe the reality.

This procedure seems to be especially useful if already in the existing theory it is
known that the symmetry described by the considered group is broken. Such
situations are constantly met in elementary particle physics where we mainly deal
with compact semisimple Lie groups. Unfortunately these groups are rigid: they
admit only trivial deformations (a deformation (Gτ)τe[0 ε[ is said to be trivial if all Gτ

are isomorphic to G). If however we extend the notion of compact group including
non-commutative compact spaces (compact pseudospaces in the sense of [17])
endowed with a group structure, then the class of deformations becomes richer and
one can find non-trivial deformations for symmetry groups in elementary particle
physics. For SU(2) such a deformation is described in [18].

Let A be a C*-algebra with unity. If A is commutative, then according to the
Gelfand-Naimark theory A is isomorphic to the algebra of all continuous
complex-valued functions defined on a compact topological space. No corre-
sponding result exists in the non-commutative case (see however [7]). Nevertheless
in the general case it is of great inspirational value to treat elements of A as
"continuous complex-valued functions" defined on a topological space-like object.
The latter is called a non-commutative space or pseudospace. From the formal
point of view one may introduce non-commutative spaces (pseudospaces) as
objects of the category dual to the category of C*-algebras. See [17] for the details.
In the present paper we do not use explicitly the pseudospace language (using
instead C*-algebra language), one should stress however that this concept stays
behind many definitions and considerations presented in the following sections.

The theory of group structures on non-commutative spaces is now more than
20 years old. It was originated in [6] by Kac in an attempt to unify in one category
locally compact groups and group duals and to consider generalized Pontryagin
duality as a contravariant functor acting within this category.

The theory was then developed by Takesaki [11] and Schwartz and Enock [5].
In [17] it was pointed out that the right approach to the theory is the one based on
the C*-algebra language (in earlier works von Neumann algebras were used
instead). In [13] Vallin developed the C*-algebra version of the theory. Entirely
different approaches are contained in recent papers of Ocneanu [10], Drinfeld [4],
and Vaksman and Soibelman [14].

Despite the long history the theory seems to be still in the introductory stage. In
particular the basic notions are not fixed yet. In our opinion this state was caused
by the lack of interesting examples. For a long time the only examples of
pseudogroups were: locally compact groups, group duals, their cartesian products
and crossed products of a group dual by an automorphism group. The first
example of a (not finite) compact pseudogroup of different nature was found in
[18].
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The aim of this paper is to develop the theory of compact pseudogroups in a
way completely analogous to the classical theory of compact groups of matrices. In
particular our main definition says that compact matrix pseudogroup is a compact
pseudospace of TV x N matrices closed under matrix multiplication and under
taking inverses. The examples presented in Sect. 1 show that this definition gives
the direct and natural generalization of the concept of the compact group of
matrices. It also contains the Pontryagin duals of discrete finitely generated
groups. In the world of pseudogroups SU(2) and SU(3) admit non-trivial
deformations. At the end of Sect. 1 we show the existence of the neutral element (it
is represented by *-character e introduced in Proposition 1.8) and prove
elementary properties linking e with other basic notions.

In Sect. 2 we present the representation theory. The standard notions of
intertwining operators, equivalent representations, irreducible representations,
complex conjugate representations, the direct sum and the tensor product of
representations are introduced and investigated. The non-commutativity of the
tensor product turns out to be the property distinguishing pseudogroups from
groups.

Section 3 is devoted to the concept of contragradient representation which is
the main tool of the generalized Peter-Weyl theory presented in Sects. 4 and 5.

The Haar measure is the main subject of Sect. 4. We prove its existence and
uniqueness and derive elementary properties. Using the Haar measure and the
machinery built in Sect. 3 we prove that any smooth representation can be
decomposed into a direct sum of irreducible representations. The limitation to the
smooth representations is forced by the fact that our axiomatic admits cases where
the Haar measure is not faithful. It becomes faithful when restricted to the
subalgebra of smooth functions.

In Sect. 5 we present the Peter-Weyl theory for compact matrix pseudogroups.
We prove that the matrix elements of inequivalent irreducible representations are
orthogonal with respect to the two scalar product induced by the Haar measure. It
turns out that the analogous formulae for matrix elements of the same irreducible
representation are more complicated than in the group case. This is due to the fact
that the Haar measure need not be central. It turns out that the modular properties
of the Haar measure are described by a family (/Jze(C of linear multiplicative
functionals defined on the sublagebra of smooth functions and that the formulae
expressing the orthonormality of matrix elements of each irreducible represen-
tation involve f± and /_ x .

The end of Sect. 5 is devoted to the theory of characters. We prove the basic
properties and show that the character determines the representation up to
equivalence.

In order to limit the volume of the paper we shift two sections devoted to the
Tannaka-Krein duality and to differential calculus on compact matrix pseudo-
groups to separate publications [19,20].

The paper contains two Appendices. In the first one we present the short proof
of the Haar measure formula for SμU(2) given in [18], the second is devoted to
finite matrix pseudogroups.
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1. Definitions and Examples

In this section we introduce the concept of compact matrix pseudogroup and
present several examples. In particular we show that compact subgroups of
GL(./V, (C) and duals of discrete finitely generated groups are compact matrix
pseudogroups. Another example can be obtained by a deformation of compact
subgroups of GL(N, (C). At the end of this section we introduce the convolution
product and derive simple formulae used constantly in the next sections. We start
with the following basic:

Definition 1.1. Let A be a C*-algebra with unity, u be a N x N matrix with entries
belonging to A: u = (ukl)kι = ίt2,...,N> ukiE^ and ^ be the *-subalgebra of A
generated by the entries of u. We say that (A9 u) is a compact matrix pseudogroup if

1) stf is dense in A.
2) There exists a C*-homomorphism

Φ\A-*A®A, (1.1)

such that

Φ(«*/)= Σ "*r®MΓί (1-2)
r= 1

for any fe, ί=l,2, . . . ,JV.
3) There exists a linear antimultiplicative mapping

K :<*/-+<&, (1.3)

such that

φ(α*)*) = α (1.4)

for any a e stf and

N

Σ κ(ukr)url = δkll, (1.5)

e(Mr/) = 3H/, (1.6)

for any k,l=ί,2,...,N.δkl denotes the Kronecker symbol equal to 1 for fc = / and 0
otherwise, / is the unity of the algebra A.

Due to Condition 1 the C*-homomorphism (1.1) is uniquely determined. It will
be called the comultiplication associated with (A, u). Let us notice that the diagram

A > A®A

Φ ΦΘid (1.7)
id®Φ

A® A >A®A®A

is commutative (cf. [6, 11, 5, 13]). Indeed using (1.2), one easily verifies that

(id® Φ)Φ(ukl) = Σ ukr®urs®usl = (Φ®id)ΦK).
r , s
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Therefore (id(x)Φ)Φ(α) = (Φ®id)Φ(β) for any αej/, and taking into account
Condition 1 we obtain the same formula for any aeA.

It follows immediately from (1.2) that

. (1.8)

Equations (1.5) and (1.6) show that u is an invertible element of MN(A) and that

Φw) = «"'«, (1-9)

where u~lu denote the matrix elements of the inverse of u. For any αe^/ we set

α*=φ*). (1.10)

By virtue of Condition 3, # is an antilinear involution acting on s$ and κ(a)* = α*
for any aestf. Applying # to the both sides of (1.5) and (1.6) we obtain

V, (i.ii)

for any fc, / = 1, 2, . . ., Λf. Let ΰ denote the N x N matrix with matrix elements being
the hermitian conjugate of elements of u: w = (wk/)fcί = 1 > 2,. . ., jv and ΰkl = ukl*.
Equations (1.11) and (1.12) show that ΰ is an invertible element oϊMN(A) and that

φw*) = tΓ1

w, (1.13)

where ΰ~l

kl ( fc ,/=l,2, ...,IV) denote the matrix elements of the inverse of ΰ.
Remembering that the algebra stf is generated by ukl and ukl* (fc, /= 1, 2, . . ., N)

and taking into account (1.9) and (1.13) we see that the mapping (1.3) is uniquely
determined. It will be called the coin verse associated with (A, u).

Let σA denote the flip automorphism of A® A:

σA(a®b) = b®a (1.14)

for any a, b e A and A ® symA = {x e A ® A : σA(x) = x}. We say that a pseudogr oup
(A,u) is abelian if Φ(A)cA®symA.

Let (>MM«)fcί = ι,2, . . . ,Λr) and (^ /5(Mfc/)w=ι,2,...,N') be compact matrix pseudo-
groups. We say that they are identical if N' = N, and if there exists a
C*-isomorphism s of A onto A' such that

for fe, /= 1, 2, . . ., N. In that case s is uniquely determined, it maps the *-subalgebra
stf of A generated by matrix elements of u onto the corresponding *-subalgebra stf'
related to (A, u'}. Moreover denoting by Φ, K and Φ', K' the comultiplications and
the coinverses associated with (A, u) and (A, u'} respectively we have the following
commutative diagrams

-̂ -> A® A
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The latter follows immediately from the uniqueness of the comultiplication and the
coinverse maps. From the abstract point of view the identical pseudogroups are
undistinguishable.

Let (Λ(wfcj)/c/ = ι,2,...,τv) be a compact matrix pseudogroup, t = (trs)rs==ίί2,...,N t>e

an invertible matrix with complex entries and

vkl ~ Σ ^ krurstsl
r,s

One can easily check that (A, (^)fcί = i, 2, ...,N) is a compact matrix pseudogroup. The
dense *-subalgebra j/, the comultiplication Φ and the coinverse K are the same for
(A,u) and (A,v). We say that (A,v) is obtained from (A,u) by the similarity
transformation. Two compact matrix pseudogroups (A, u) and (A, u'} are said to be
similar if the pseudogroup obtained from (A, u) by a similarity transformation and
(A', u') are identical.

Examples

L Pseudogroups with Commutative C*-Algebras. Let G be a compact group of
NxN matrices with complex entries: GcM^(C). We denote by C(G) the
commutative C*-algebra of all continuous functions on G. For any g e G and any
k, I = 1 , 2, . . . , N, we denote by wfc/(g) the matrix element of g standing in the feth row
and the /th column:

g = (ww(g))w=ι,2,...,tf (1-15)

Clearly wkl(g) depends continuously on g, i.e. ww are continuous functions defined
on G: wweC(G). Let wG = (ww)w=lί2, ...,N- Then we have

Theorem 1.1. (C(G), WG) is a compact matrix pseudogroup.

Proof. Condition 1 follows immediately from the Stone- Weierstrass theorem [9].
To prove Condition 2 we identify C(G)(g) C(G) with C(G x G). Then

(a®b)(g,g') = a(g)b(g') (1.16)

for any a, b e C(G) and g, g' e G.
According to the wellknown rules of matrix calculus the matrix element of the

product of two matrices g, g' e G standing in fcth row and Ith column equals the
product of the feth row of, g by /th column of g'. It means that

ww(gg')=ΣwJg)wH(g') (1.17)
r

For any a e C(G) and g, g; e G, we set

(Φ(α))(g,gO = fl(gg'). (1.18)

Clearly Φ(α)eC(GxG) and Φ: C(G)->C(G)®C(G) is a homomorphism in the
category of C*-algebras. Moreover taking into account (1.17) and (1.16), we see
that

and Condition 2 of Definition 1.1 is fulfilled.
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For any a ε C(G) and g e G, we set

(φ))(g) = fl(g~1). (1.19)

Clearly κ(a) e C(G) and K; : C(G)-»C(G) is a linear multiplicative (notice that in the
considered commutative case multiplicativity and antimultiplicativity are equiva-
lent) and involutive (i.e. τc2 = id) mapping. Moreover

κ(a*) = κ(s)*. (1.20)

Therefore κ(κ(a*)*) = κ(κ(a)**) = κ(κ(a)) = a for any αeC(G).
Inserting in (1.17) g"1 instead of g' and using (1.15) we obtain (1.6). Similarly

replacing in (1.17) g and g' by g~ 1 and g respectively and taking into account (1.15)
we get (1.5).

To end the proof we have to show that /φ/)θ£/, where «$/ is the *-subalgebra
of C(G) generated by functions wk/ (fe, 1=1,2, ...,7V). It is known [1] that any
representation of a compact group is equivalent to a unitary one. Therefore there
exists a strictly positive matrix m e MN((C) such that g*mg = m for any g e G.
Therefore g~ 1 =m~1g*m for any g e G. Using this relation one easily verifies that

where m~ \r and msl are matrix elements of m" 1 and m respectively. This equation
shows that κ(wkl) e <$# for all fc, / = 1 , 2, . . . , JV, and using the multiplicativity of jc and
(1.20), we get κ(a)Ejtf for any aεji. Q.E.D.

Let us notice that ceC(G)(x)symC(G) if and only if c(g, g') = c(g', g) for any
g, g' EG. Taking into account (1.18) we get

Proposition 1.2. The pseudogroup (C(G), WG) is abelian if ana only if gg' = g'g /

For any g e G and α E C(G) we set χ^(α) = α(g). It is well known that χg is a
character of C(G) and that {χg : g e G} coincides with the set of all characters of
C(G). Let us notice that (χff(ww))w = l t 2 > . . . > Λ r = (ww(g))w=1(2t...>Λr = g for any geG.
Therefore

G = {(χ(ww))w = l f 2 f.. ι > N:^ is a character of C(G)} .

Clearly the right-hand side of the above equation remains unchanged if we
replace (C(G), WG) by a pseudogroup identical with (C(G), WG). Therefore we have

Proposition 1.3. Let G and G' be compact group of matrices. The pseudogroups
(C(G), WG) and (C(G'), WG) are identical if and only if G = G'.

One can also prove the following

Proposition 1.4. Let G and G' be a compact group of N x N matrices. The
pseudogroups (C(G), WG) and (C(G'), WG) are similar if and only if there exists an
invertible matrix ίeMN((C) such that G' = { t ~ 1 g t : g < E G } .

It turns out that the construction described above produces all compact matrix
pseudogroups (A, u] with commutative A. More precisely we have
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Theorem 1.5. Let (A,(ukl)kl = 1^2,...,N) be a compact matrix pseudogroup. Assume that
A is commutative. Then

1) The set

G = {(χ(ukl))kl = l t 2 , . . . , N ' X ίs a character of A} (1.21)

is a compact group of matrices.
2) The pseudogroups (A,u) and (C(G), VVG) (where G is given by (1.21),) are

identical.

Proof. Let A be the set of all characters of A and; be the mapping defined on A with
values in MN(C) such that

for any χeΛ. Clearly [cf. (1.21)] G is thej-image of Λ.
It is obvious that j is continuous with respect to the pointwise convergence

topology on A. On the other hand (cf. the Gelfand-Naimark theory of commuta-
tive C*-algebras [3]) A endowed with this topology is a compact space. It shows
that G is a compact subset of MN((C).

Let χeA. Applying χ to the both sides of (1.5) and (1.6) we see that the matrix
(x°κ(uki))ki=ι,2,...,N coincides with the inverse of j(χ). It shows that all matrices
belonging to G are invertible.

Let χ and χ' be characters of A and χ" = (χ®χ'}Φ. Then χ" is a character of A and
using (1.2) we see that j(χ") = j(χ)j(χf). It shows that the product of two matrices
belonging to G belongs to G.

Let g e G. Then g" e G for any natural n. Since G is compact, one can find a
sequence of natural numbers (n(fe))keN such that n(k+l)>n(k)+l (fc=l,2, ...) and
g"(fc)-+goo when fe-^oo. Then ro(fc) = n(fc + !)-(! + n(k))>l, gm(fc) belongs to G and

lirn ^(fc) — p (g ςr \~ * — ςy~ X

11111 6 ~6oo\66oo/ ~~ό
fc-» oo

It shows that g~ 1 e G. This way Statement 1 is proved.
Let αeC(G). Then α°j is a continuous function on A and according to the

Gelfand-Naimark theory there exists a unique element sa E A such that

(1.23)

for any χeA. Clearly the mapping

(1.24)

is a C*-homomorphism. lisa = 0 then a(j(χ)) = 0 for any χ e A. Therefore a(g) = 0 for
any g e G and a = 0. It shows that (1.24) is an embedding.

Comparing (1.15) and (1 .22) we see that wkι(j(χ)) = χ(ukt) for any χeA. Therefore
[cf. (1.23)]

swkl = ukl (1.25)

for fe, /=1,2, . . . 5 JV. Remembering (Condition 1 of Definition 1.1) that algebraic
combinations of elements ukl form a dense subset of A, we see that (1.24) is onto.
Therefore s is a C*-isomorphism and (1.25) shows that the pseudogroups
(C(G), WG) and (A, u) are identical. Q.E.D.
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//. Abelian Pseudogroups. Let Γ be a (discrete) group generated by a finite subset
{715^25 •••>?#} CΓ and U be a unitary faithful representation of Γ acting on a
Hubert space H. We shall assume that:

ίU®U is contained\

\ in a multiple of U J '

This assumption is obviously fulfilled if U = Uuniv9 where l/univ is the direct sum
of all cyclic representations. It is also satisfied for U = Uτeg, where Ureg is the right
regular representation of Γ (cf. [12]).

Let C*(t7) be the C*-algebra of operators acting on H generated by
{U(y):y<ΞΓ} and u be the N x N matrix having U(y1)9U(y2)9...9U(yN) on the
diagonal and zeroes in all other places. Then we have

Theorem 1.6. (C*(U)9u) is an abelian compact matrix pseudogroup.

Proof. Let j/ be the *-subalgebra of C*(U) generated by matrix elements of u, i.e. by
U ( y ί ) 9 U ( γ 2 ) 9 . . . 9 U ( y N ) . Remembering that U is unitary representation and that
{ y ί 9 y 2 9 >.>9yN} generate Γ, one immediately sees that {U(y):yεΓ}c<$tf. Therefore
j/ is dense in C*(U).

Assumption (1.26) means that there exists a Hubert space K and an isometry
W:H®H^K®H such that

U(y)®U(γ)=W*(IB(K>®U(y))W (1.27)

for any yeΓ. For any aeC*(U)9 we set

Φ(a)=W*(IB(K)®a)W. (1.28)

By virtue of (1.27),

(1.29)

Clearly U(γ)®U(y)eC*(U)®symC*(U). Therefore Φ is a C*-homomorphism
acting from C*(U) into C*(U)®symC*(U). Inserting in (1 .29) y = yl9 y29 . . ., yN, we see
that (1.2) is satisfied.

Any element a e s$ is of the form

a= Σ ayU(i), (1.30)
y e Γ0

where ay are complex coefficients and Γ0 is a finite subset of Γ.
Assume that 0 = 0. Then applying (k — l)-times the mapping Φ to the both sides

of (1.30) we obtain

X ayU(y)®U(y)®...®U(y)=0
veΓo v - v - '

fe-factors

and

for any linear functional λ defined on C*(U) and any number fe. In what follows we
take k = ί,2,...,K, where K = number of elements of Γ0. Since all elements U(y).


