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Abstract. The compact matrix pseudogroup is a non-commutative compact
space endowed with a group structure. The precise definition is given and a
number of examples is presented. Among them we have compact group of
matrices, duals of discrete groups and twisted (deformed) SU(N) groups. The
representation theory is developed. It turns out that the tensor product of
representations depends essentially on their order. The existence and the
uniqueness of the Haar measure is proved and the orthonormality relations for
matrix elements of irreducible representations are derived. The form of these
relations differs from that in the group case. This is due to the fact that the Haar
measure on pseudogroups is not central in general. The corresponding
modular properties are discussed. The Haar measures on the twisted SU(2)
group and on the finite matrix pseudogroup are found.

0. Introduction

Let G be a Lie group. A family (Gτ)τe[0 ε[ of Lie groups is said to be a deformation of
G if GO = G and Gτ depends continuously on τ. The latter should be understood in a
natural sense. For example one may require that all Gτ are of the same dimensions
and that it is possible to choose bases in gτ (gτ is the Lie algebra of Gτ) such that the
corresponding structure constants depend continuously on τ.

Assume that the group G is involved in a theory (e.g. it is a symmetry group)
describing a physical reality. As we well know any physical theory describes well
only a limited class of phenomena, for the phenomena beyond this class the
theoretical predictions disagree with the experimental results. In order to obtain
the adequate description of a larger class of phenomena one must modify the
theory. In certain cases such a modification although revolutionary from the
conceptual point of view consists in replacing G by one of the group Gτ. Then the
value of τ is one of the fundamental constants (small parameter) of the new, more
general theory. Within this new theory the group G retains its validity only in the
approximate sense (e.g. it describes a broken symmetry). The old theory can be
recovered in the limit τ->0.
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The history of physics provides many examples of developments that fit into
the scheme described above. Births of the special theory of relativity and the
theory of quanta are the most famous. Another example we get by considering the
symmetry group of the flat Minkowski space-time of special theory of relativity, i.e.
the Poincare group. It admits a non-trivial deformation that leads to the theory of
the de Sitter space-time.

The above consideration indicate that studying all possible deformations of a
group involved in a physical theory, one may discover ways leading to more
general theories that might better describe the reality.

This procedure seems to be especially useful if already in the existing theory it is
known that the symmetry described by the considered group is broken. Such
situations are constantly met in elementary particle physics where we mainly deal
with compact semisimple Lie groups. Unfortunately these groups are rigid: they
admit only trivial deformations (a deformation (Gτ)τe[0 ε[ is said to be trivial if all Gτ

are isomorphic to G). If however we extend the notion of compact group including
non-commutative compact spaces (compact pseudospaces in the sense of [17])
endowed with a group structure, then the class of deformations becomes richer and
one can find non-trivial deformations for symmetry groups in elementary particle
physics. For SU(2) such a deformation is described in [18].

Let A be a C*-algebra with unity. If A is commutative, then according to the
Gelfand-Naimark theory A is isomorphic to the algebra of all continuous
complex-valued functions defined on a compact topological space. No corre-
sponding result exists in the non-commutative case (see however [7]). Nevertheless
in the general case it is of great inspirational value to treat elements of A as
"continuous complex-valued functions" defined on a topological space-like object.
The latter is called a non-commutative space or pseudospace. From the formal
point of view one may introduce non-commutative spaces (pseudospaces) as
objects of the category dual to the category of C*-algebras. See [17] for the details.
In the present paper we do not use explicitly the pseudospace language (using
instead C*-algebra language), one should stress however that this concept stays
behind many definitions and considerations presented in the following sections.

The theory of group structures on non-commutative spaces is now more than
20 years old. It was originated in [6] by Kac in an attempt to unify in one category
locally compact groups and group duals and to consider generalized Pontryagin
duality as a contravariant functor acting within this category.

The theory was then developed by Takesaki [11] and Schwartz and Enock [5].
In [17] it was pointed out that the right approach to the theory is the one based on
the C*-algebra language (in earlier works von Neumann algebras were used
instead). In [13] Vallin developed the C*-algebra version of the theory. Entirely
different approaches are contained in recent papers of Ocneanu [10], Drinfeld [4],
and Vaksman and Soibelman [14].

Despite the long history the theory seems to be still in the introductory stage. In
particular the basic notions are not fixed yet. In our opinion this state was caused
by the lack of interesting examples. For a long time the only examples of
pseudogroups were: locally compact groups, group duals, their cartesian products
and crossed products of a group dual by an automorphism group. The first
example of a (not finite) compact pseudogroup of different nature was found in
[18].
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The aim of this paper is to develop the theory of compact pseudogroups in a
way completely analogous to the classical theory of compact groups of matrices. In
particular our main definition says that compact matrix pseudogroup is a compact
pseudospace of TV x N matrices closed under matrix multiplication and under
taking inverses. The examples presented in Sect. 1 show that this definition gives
the direct and natural generalization of the concept of the compact group of
matrices. It also contains the Pontryagin duals of discrete finitely generated
groups. In the world of pseudogroups SU(2) and SU(3) admit non-trivial
deformations. At the end of Sect. 1 we show the existence of the neutral element (it
is represented by *-character e introduced in Proposition 1.8) and prove
elementary properties linking e with other basic notions.

In Sect. 2 we present the representation theory. The standard notions of
intertwining operators, equivalent representations, irreducible representations,
complex conjugate representations, the direct sum and the tensor product of
representations are introduced and investigated. The non-commutativity of the
tensor product turns out to be the property distinguishing pseudogroups from
groups.

Section 3 is devoted to the concept of contragradient representation which is
the main tool of the generalized Peter-Weyl theory presented in Sects. 4 and 5.

The Haar measure is the main subject of Sect. 4. We prove its existence and
uniqueness and derive elementary properties. Using the Haar measure and the
machinery built in Sect. 3 we prove that any smooth representation can be
decomposed into a direct sum of irreducible representations. The limitation to the
smooth representations is forced by the fact that our axiomatic admits cases where
the Haar measure is not faithful. It becomes faithful when restricted to the
subalgebra of smooth functions.

In Sect. 5 we present the Peter-Weyl theory for compact matrix pseudogroups.
We prove that the matrix elements of inequivalent irreducible representations are
orthogonal with respect to the two scalar product induced by the Haar measure. It
turns out that the analogous formulae for matrix elements of the same irreducible
representation are more complicated than in the group case. This is due to the fact
that the Haar measure need not be central. It turns out that the modular properties
of the Haar measure are described by a family (/Jze(C of linear multiplicative
functionals defined on the sublagebra of smooth functions and that the formulae
expressing the orthonormality of matrix elements of each irreducible represen-
tation involve f± and /_ x .

The end of Sect. 5 is devoted to the theory of characters. We prove the basic
properties and show that the character determines the representation up to
equivalence.

In order to limit the volume of the paper we shift two sections devoted to the
Tannaka-Krein duality and to differential calculus on compact matrix pseudo-
groups to separate publications [19,20].

The paper contains two Appendices. In the first one we present the short proof
of the Haar measure formula for SμU(2) given in [18], the second is devoted to
finite matrix pseudogroups.
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1. Definitions and Examples

In this section we introduce the concept of compact matrix pseudogroup and
present several examples. In particular we show that compact subgroups of
GL(./V, (C) and duals of discrete finitely generated groups are compact matrix
pseudogroups. Another example can be obtained by a deformation of compact
subgroups of GL(N, (C). At the end of this section we introduce the convolution
product and derive simple formulae used constantly in the next sections. We start
with the following basic:

Definition 1.1. Let A be a C*-algebra with unity, u be a N x N matrix with entries
belonging to A: u = (ukl)kι = ίt2,...,N> ukiE^ and ^ be the *-subalgebra of A
generated by the entries of u. We say that (A9 u) is a compact matrix pseudogroup if

1) stf is dense in A.
2) There exists a C*-homomorphism

Φ\A-*A®A, (1.1)

such that

Φ(«*/)= Σ "*r®MΓί (1-2)
r= 1

for any fe, ί=l,2, . . . ,JV.
3) There exists a linear antimultiplicative mapping

K :<*/-+<&, (1.3)

such that

φ(α*)*) = α (1.4)

for any a e stf and

N

Σ κ(ukr)url = δkll, (1.5)

e(Mr/) = 3H/, (1.6)

for any k,l=ί,2,...,N.δkl denotes the Kronecker symbol equal to 1 for fc = / and 0
otherwise, / is the unity of the algebra A.

Due to Condition 1 the C*-homomorphism (1.1) is uniquely determined. It will
be called the comultiplication associated with (A, u). Let us notice that the diagram

A > A®A

Φ ΦΘid (1.7)
id®Φ

A® A >A®A®A

is commutative (cf. [6, 11, 5, 13]). Indeed using (1.2), one easily verifies that

(id® Φ)Φ(ukl) = Σ ukr®urs®usl = (Φ®id)ΦK).
r , s
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Therefore (id(x)Φ)Φ(α) = (Φ®id)Φ(β) for any αej/, and taking into account
Condition 1 we obtain the same formula for any aeA.

It follows immediately from (1.2) that

. (1.8)

Equations (1.5) and (1.6) show that u is an invertible element of MN(A) and that

Φw) = «"'«, (1-9)

where u~lu denote the matrix elements of the inverse of u. For any αe^/ we set

α*=φ*). (1.10)

By virtue of Condition 3, # is an antilinear involution acting on s$ and κ(a)* = α*
for any aestf. Applying # to the both sides of (1.5) and (1.6) we obtain

V, (i.ii)

for any fc, / = 1, 2, . . ., Λf. Let ΰ denote the N x N matrix with matrix elements being
the hermitian conjugate of elements of u: w = (wk/)fcί = 1 > 2,. . ., jv and ΰkl = ukl*.
Equations (1.11) and (1.12) show that ΰ is an invertible element oϊMN(A) and that

φw*) = tΓ1

w, (1.13)

where ΰ~l

kl ( fc ,/=l,2, ...,IV) denote the matrix elements of the inverse of ΰ.
Remembering that the algebra stf is generated by ukl and ukl* (fc, /= 1, 2, . . ., N)

and taking into account (1.9) and (1.13) we see that the mapping (1.3) is uniquely
determined. It will be called the coin verse associated with (A, u).

Let σA denote the flip automorphism of A® A:

σA(a®b) = b®a (1.14)

for any a, b e A and A ® symA = {x e A ® A : σA(x) = x}. We say that a pseudogr oup
(A,u) is abelian if Φ(A)cA®symA.

Let (>MM«)fcί = ι,2, . . . ,Λr) and (^ /5(Mfc/)w=ι,2,...,N') be compact matrix pseudo-
groups. We say that they are identical if N' = N, and if there exists a
C*-isomorphism s of A onto A' such that

for fe, /= 1, 2, . . ., N. In that case s is uniquely determined, it maps the *-subalgebra
stf of A generated by matrix elements of u onto the corresponding *-subalgebra stf'
related to (A, u'}. Moreover denoting by Φ, K and Φ', K' the comultiplications and
the coinverses associated with (A, u) and (A, u'} respectively we have the following
commutative diagrams

-̂ -> A® A
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The latter follows immediately from the uniqueness of the comultiplication and the
coinverse maps. From the abstract point of view the identical pseudogroups are
undistinguishable.

Let (Λ(wfcj)/c/ = ι,2,...,τv) be a compact matrix pseudogroup, t = (trs)rs==ίί2,...,N t>e

an invertible matrix with complex entries and

vkl ~ Σ ^ krurstsl
r,s

One can easily check that (A, (^)fcί = i, 2, ...,N) is a compact matrix pseudogroup. The
dense *-subalgebra j/, the comultiplication Φ and the coinverse K are the same for
(A,u) and (A,v). We say that (A,v) is obtained from (A,u) by the similarity
transformation. Two compact matrix pseudogroups (A, u) and (A, u'} are said to be
similar if the pseudogroup obtained from (A, u) by a similarity transformation and
(A', u') are identical.

Examples

L Pseudogroups with Commutative C*-Algebras. Let G be a compact group of
NxN matrices with complex entries: GcM^(C). We denote by C(G) the
commutative C*-algebra of all continuous functions on G. For any g e G and any
k, I = 1 , 2, . . . , N, we denote by wfc/(g) the matrix element of g standing in the feth row
and the /th column:

g = (ww(g))w=ι,2,...,tf (1-15)

Clearly wkl(g) depends continuously on g, i.e. ww are continuous functions defined
on G: wweC(G). Let wG = (ww)w=lί2, ...,N- Then we have

Theorem 1.1. (C(G), WG) is a compact matrix pseudogroup.

Proof. Condition 1 follows immediately from the Stone- Weierstrass theorem [9].
To prove Condition 2 we identify C(G)(g) C(G) with C(G x G). Then

(a®b)(g,g') = a(g)b(g') (1.16)

for any a, b e C(G) and g, g' e G.
According to the wellknown rules of matrix calculus the matrix element of the

product of two matrices g, g' e G standing in fcth row and Ith column equals the
product of the feth row of, g by /th column of g'. It means that

ww(gg')=ΣwJg)wH(g') (1.17)
r

For any a e C(G) and g, g; e G, we set

(Φ(α))(g,gO = fl(gg'). (1.18)

Clearly Φ(α)eC(GxG) and Φ: C(G)->C(G)®C(G) is a homomorphism in the
category of C*-algebras. Moreover taking into account (1.17) and (1.16), we see
that

and Condition 2 of Definition 1.1 is fulfilled.
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For any a ε C(G) and g e G, we set

(φ))(g) = fl(g~1). (1.19)

Clearly κ(a) e C(G) and K; : C(G)-»C(G) is a linear multiplicative (notice that in the
considered commutative case multiplicativity and antimultiplicativity are equiva-
lent) and involutive (i.e. τc2 = id) mapping. Moreover

κ(a*) = κ(s)*. (1.20)

Therefore κ(κ(a*)*) = κ(κ(a)**) = κ(κ(a)) = a for any αeC(G).
Inserting in (1.17) g"1 instead of g' and using (1.15) we obtain (1.6). Similarly

replacing in (1.17) g and g' by g~ 1 and g respectively and taking into account (1.15)
we get (1.5).

To end the proof we have to show that /φ/)θ£/, where «$/ is the *-subalgebra
of C(G) generated by functions wk/ (fe, 1=1,2, ...,7V). It is known [1] that any
representation of a compact group is equivalent to a unitary one. Therefore there
exists a strictly positive matrix m e MN((C) such that g*mg = m for any g e G.
Therefore g~ 1 =m~1g*m for any g e G. Using this relation one easily verifies that

where m~ \r and msl are matrix elements of m" 1 and m respectively. This equation
shows that κ(wkl) e <$# for all fc, / = 1 , 2, . . . , JV, and using the multiplicativity of jc and
(1.20), we get κ(a)Ejtf for any aεji. Q.E.D.

Let us notice that ceC(G)(x)symC(G) if and only if c(g, g') = c(g', g) for any
g, g' EG. Taking into account (1.18) we get

Proposition 1.2. The pseudogroup (C(G), WG) is abelian if ana only if gg' = g'g /

For any g e G and α E C(G) we set χ^(α) = α(g). It is well known that χg is a
character of C(G) and that {χg : g e G} coincides with the set of all characters of
C(G). Let us notice that (χff(ww))w = l t 2 > . . . > Λ r = (ww(g))w=1(2t...>Λr = g for any geG.
Therefore

G = {(χ(ww))w = l f 2 f.. ι > N:^ is a character of C(G)} .

Clearly the right-hand side of the above equation remains unchanged if we
replace (C(G), WG) by a pseudogroup identical with (C(G), WG). Therefore we have

Proposition 1.3. Let G and G' be compact group of matrices. The pseudogroups
(C(G), WG) and (C(G'), WG) are identical if and only if G = G'.

One can also prove the following

Proposition 1.4. Let G and G' be a compact group of N x N matrices. The
pseudogroups (C(G), WG) and (C(G'), WG) are similar if and only if there exists an
invertible matrix ίeMN((C) such that G' = { t ~ 1 g t : g < E G } .

It turns out that the construction described above produces all compact matrix
pseudogroups (A, u] with commutative A. More precisely we have
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Theorem 1.5. Let (A,(ukl)kl = 1^2,...,N) be a compact matrix pseudogroup. Assume that
A is commutative. Then

1) The set

G = {(χ(ukl))kl = l t 2 , . . . , N ' X ίs a character of A} (1.21)

is a compact group of matrices.
2) The pseudogroups (A,u) and (C(G), VVG) (where G is given by (1.21),) are

identical.

Proof. Let A be the set of all characters of A and; be the mapping defined on A with
values in MN(C) such that

for any χeΛ. Clearly [cf. (1.21)] G is thej-image of Λ.
It is obvious that j is continuous with respect to the pointwise convergence

topology on A. On the other hand (cf. the Gelfand-Naimark theory of commuta-
tive C*-algebras [3]) A endowed with this topology is a compact space. It shows
that G is a compact subset of MN((C).

Let χeA. Applying χ to the both sides of (1.5) and (1.6) we see that the matrix
(x°κ(uki))ki=ι,2,...,N coincides with the inverse of j(χ). It shows that all matrices
belonging to G are invertible.

Let χ and χ' be characters of A and χ" = (χ®χ'}Φ. Then χ" is a character of A and
using (1.2) we see that j(χ") = j(χ)j(χf). It shows that the product of two matrices
belonging to G belongs to G.

Let g e G. Then g" e G for any natural n. Since G is compact, one can find a
sequence of natural numbers (n(fe))keN such that n(k+l)>n(k)+l (fc=l,2, ...) and
g"(fc)-+goo when fe-^oo. Then ro(fc) = n(fc + !)-(! + n(k))>l, gm(fc) belongs to G and

lirn ^(fc) — p (g ςr \~ * — ςy~ X

11111 6 ~6oo\66oo/ ~~ό
fc-» oo

It shows that g~ 1 e G. This way Statement 1 is proved.
Let αeC(G). Then α°j is a continuous function on A and according to the

Gelfand-Naimark theory there exists a unique element sa E A such that

(1.23)

for any χeA. Clearly the mapping

(1.24)

is a C*-homomorphism. lisa = 0 then a(j(χ)) = 0 for any χ e A. Therefore a(g) = 0 for
any g e G and a = 0. It shows that (1.24) is an embedding.

Comparing (1.15) and (1 .22) we see that wkι(j(χ)) = χ(ukt) for any χeA. Therefore
[cf. (1.23)]

swkl = ukl (1.25)

for fe, /=1,2, . . . 5 JV. Remembering (Condition 1 of Definition 1.1) that algebraic
combinations of elements ukl form a dense subset of A, we see that (1.24) is onto.
Therefore s is a C*-isomorphism and (1.25) shows that the pseudogroups
(C(G), WG) and (A, u) are identical. Q.E.D.
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//. Abelian Pseudogroups. Let Γ be a (discrete) group generated by a finite subset
{715^25 •••>?#} CΓ and U be a unitary faithful representation of Γ acting on a
Hubert space H. We shall assume that:

ίU®U is contained\

\ in a multiple of U J '

This assumption is obviously fulfilled if U = Uuniv9 where l/univ is the direct sum
of all cyclic representations. It is also satisfied for U = Uτeg, where Ureg is the right
regular representation of Γ (cf. [12]).

Let C*(t7) be the C*-algebra of operators acting on H generated by
{U(y):y<ΞΓ} and u be the N x N matrix having U(y1)9U(y2)9...9U(yN) on the
diagonal and zeroes in all other places. Then we have

Theorem 1.6. (C*(U)9u) is an abelian compact matrix pseudogroup.

Proof. Let j/ be the *-subalgebra of C*(U) generated by matrix elements of u, i.e. by
U ( y ί ) 9 U ( γ 2 ) 9 . . . 9 U ( y N ) . Remembering that U is unitary representation and that
{ y ί 9 y 2 9 >.>9yN} generate Γ, one immediately sees that {U(y):yεΓ}c<$tf. Therefore
j/ is dense in C*(U).

Assumption (1.26) means that there exists a Hubert space K and an isometry
W:H®H^K®H such that

U(y)®U(γ)=W*(IB(K>®U(y))W (1.27)

for any yeΓ. For any aeC*(U)9 we set

Φ(a)=W*(IB(K)®a)W. (1.28)

By virtue of (1.27),

(1.29)

Clearly U(γ)®U(y)eC*(U)®symC*(U). Therefore Φ is a C*-homomorphism
acting from C*(U) into C*(U)®symC*(U). Inserting in (1 .29) y = yl9 y29 . . ., yN, we see
that (1.2) is satisfied.

Any element a e s$ is of the form

a= Σ ayU(i), (1.30)
y e Γ0

where ay are complex coefficients and Γ0 is a finite subset of Γ.
Assume that 0 = 0. Then applying (k — l)-times the mapping Φ to the both sides

of (1.30) we obtain

X ayU(y)®U(y)®...®U(y)=0
veΓo v - v - '

fe-factors

and

for any linear functional λ defined on C*(U) and any number fe. In what follows we
take k = ί,2,...,K, where K = number of elements of Γ0. Since all elements U(y).
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(y e Γ0) are different (representation U is faithful) and nonvanishing, one can find λ
such that all λ(U(y)) (y eΓ0) are nonvanishing and different. We know that in this
case the Vandermonde determinant nonvanishes and (1.31) implies that all ay = 0.
It shows that coefficients ay in (1.30) are uniquely determined by a.

Using this result one can easily show that there exists a linear map κ\s$-*s$
such that

κ(U(y))=U(y~l) (1.32)

for any y. Clearly K is antimultiplicative and κ(κ(a*)*) = a for any a e j t f . Inserting in
(1.32) y = yι,y2>' >yN> we see tnat (1-5) and (1.6) are satisfied. Q.E.D.

If l/=l/u n i v (=^reg respectively) then the pseudogroup (C*(U),u) is called
universal (regular respectively) dual of Γ. If Γ is amenable then the two duals are
identical. If Γ is abelian then C*(ί/reg) is commutative. In this case (cf. Theorem 1.6
and Proposition 1.2) the dual of Γ is identical with (C(G), WG), where G is an abelian
compact group of matrices. Then G is Pontryagin dual of Γ.

It turns out that the construction described above produces all (up to a
similarity) abelian compact matrix pseudogroups. In Sect. 4 we prove the
following

Theorem 1.7. Let (A,(ukl)kl = ^ ί 2 t . , , t N ) be an abelian compact matrix pseudogroup.
Then there exists a (discrete) group Γ generated by N elements 71 ?72 ? •••>}'# ana a

faithful representation U of Γ satisfying condition (1.26) such that the pseudogroups

C4(w*/)fci = ι ,2, . . . ,Λr) and (c*(U),(U(yk)δkl)kl=ίt2,...,N) are similar.

Proof. See the text following the proof of Theorem 4.5.

The group Γ is called the dual of (A, u). If A is commutative then (A, u) is
identical with (C(G), WG), where G is an abelian compact group of matrices. In this
case Γ is the Pontryagin dual of G.

///. Twisted SU(N) Groups. A. Let μ be a nonzero real number in the interval
[ — 1,1] and A be the C*-algebra generated by two elements α and y satisfying the
following relations:

(1.33)

We consider 2 x 2 matrix

α, -μv*

Then (A,u) is a compact matrix pseudogroup (see [18] for details and proofs). If
μ = 1 then A is commutative and (A, u) is identical with (C(G), VVG), where G = SU(2).
In the general case (4, u) is called the twisted S17(2) group and denoted by SμU(2).

B. Let μe]0,1]. We introduce a 27 element array (Eklm\ where fc, / ,w=l,2,3:

77 4 Γ _ _ ,,3
^123 — 1 ? ^321 — A*
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All other elements Eklm vanish.
Let A be the C*-algebra generated by 9 elements ukl (k, 1= 1, 2, 3) satisfying the

following relations

Σ UkpUlqUmrEpqr = Eklml ,
pqr

for any fc,/,m=l,2, 3.
Then 04,(MfcZ)w = ι,2,3) is a compact matrix pseudogroup. It will be denoted by

SμC/(3). If μ= 1, then the algebra Λ. is commutative and SμU(3) is identical with
(C(Sl/(3)),wsc,(3)). See [2] for details and proofs.

C. The general definition of twisted SU(N) group will be given in [19].
We end this section with elementary consequences of Conditions 1-3 of

Definition 1.1. In the following propositions (A,u) is a compact matrix pseudo-
group, sί is the dense *-subalgebra of A generated by matrix elements of M, Φ, and K
denote comultiplication and coinverse associated with (A, u).

We shall also use the linear map

j2/->«β/, (1.35)

such that m(a®b) = ab for any α, b e j t f .

Proposition 1.8. There exists one and only one ^-character,

e:j/->(C, (1.36)

such that for all fc, / = 1 , 2, . . ., N we have

e(ukl} = δkl. (1.37)

Moreover for any aestf we have

m(κ®\ά}Φ(a] = e(d)I, (1.38)

m(\ά®κ)Φ(a) = e(ά)I. (1.39)

Remark. Due to (1.8) the left-hand sides of (1.38) and (1.39) are well defined.

Remark. Often e is norm continuous and then it can be extended to the whole A.
This is the case for (C(G), WG) [then e(d) is the value of a at the neutrale element of
G], (C*(l/univ), M), SμU(2\ and Sμl/(3). If Γ is not amenable then for the (C*(l/reg), u)
case e is not continuous.

Proof. Since j/ is a *-algebra generated by ukί (fe, / = 1 , 2, . . ., N), any *-character on
<£/ is determined by the values it assumes on ukl. This remark proves the uniqueness
of e.

Let

{ There exists a complex number e(a]\
ae^\ such that m(κ®iά)Φ(a) = e(ά)I \

and m(\ά®κ)Φ(a) = e(ά)I ]
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Clearly j/0 is a linear subset of stf and e is a linear functional defined on ^/0.
Taking into account (1.2), (1.5), and (1.6), we have

m(κ®\ά)Φ(ukl] = Σ Φ kr)urι = δkll,
r

m(id ® κ)Φ(wJ - £ wkrκ;(MrZ) - <5W/.
r

Therefore

ukl££/Q and \
e(ukl) = δkl for . (1.40)

We shall show that

( j2/0 is *-invariant^
and e(a*) = e(a) ). (1.41)
for any α e ̂ /0

Let α e j/ and

where fi£, a"e^, r = 1, 2, . . ., R. Assume that a e j/0. Then

X 4κ:«) = m(id ® κ )Φ(α) = β(α)/ .
r

Applying to both sides of these relations the antilinear multiplicative involution #
introduced by (1.10), we obtain

Therefore

m(κ® id)Φ(α*) - m(κ® id) X «;* ® <*
r

=ΣΦ;*H"* = Φ)Λ
r

m(id® κ)Φ(a*} = m(ιά®κ) Σ a'*® a"*

These relations show that α*e^0 and e(α*) = e(α). Statement (1.41) is proved.
We shall show that

/j/o is a subalgebra of j/\
and the functional e . (1.42)

\ is multiplicative /
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Let a,be<$/ and

where a'r, a", b's, b^erf, r= 1,2, ...,#, s=l,2, ...,S. Assume that α, foej/0. Then

X - m(/c(χ)id)Φ(α) - φ)/ , (1 .43)

(1.44)
S

Σ a'rκ(a") = m(id (x) /c)Φ(α) = e(α)/ , (1 .45)
r

Σ bXίO = m(id (x) κ)Φ(fe) = e(ft)/ . (1 .46)
s

We compute

r,s

Using the antimultiplicativity of K, (1.43) and (1.44) we get

Similarly using the antimultiplicativity of K, (1.45) and (1.46) we obtain

m(id® κ)Φ(ab) = e(a)e(b)I .

The last two relations show that ab e j/0 and that e(ab) = e(a}e(b). Statement (1.42)
is proved.

According to (1.41), (1.42), and (1.40), Λ/O is a *-subalgebra of s/ containing all
matrix elements of u. Therefore £#$ = £0. Moreover e is a ^-character on j/,
e(ukl) = δkl ( f e , / = l , 2 , . . . 9 Λ O , and relations (1.38) and (1.39) are satisfied for all

. Q.E.D.

Proposition 1.9. For any aerf,

Φ(κ(a)} = σA(κ®κ)Φ(ά) , (1 .47)

Proof. Let us notice that Φ°κ and σ^o(/c®/c)oφ are linear antimultiplicative
mappings defined on rf. Therefore it is sufficient to prove (1.47) for a = ukl and

α = M w * ( f c , / = l , 2 , . . . , Λ O .
Applying Φ to both sides of (1.5) and using (1.2), we obtain

Multiplying both sides from the right by Σκ(unm)®κ(uin)> summing over / and
n

using twice (1.6), we get

Φ(Φ*J) = Σ K(Unm) ® ΦJ
n

= σA(κ®κ) Σ ukn® unm = σA(κ®κ]Φ(ukm] .
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Similarly applying Φ to both sides of (1.12) and using (1.2), we obtain

Multiplying both sides from the right by ΣΦwn*)®Φin*)ί summing over / and
using twice (1.11), we get "

= σA(κ®κ) Σ uk*®unm* = σA(κ®κ}Φ(ukm*) . Q.E.D.
n

Now we have to introduce convolution products. Let ξ and ξ' be continuous
linear functionals on A and at A. Then we set:

ξ*a = (id®ξ)Φ(a), (1.48)

a*ξ' = (ξ'®id)Φ(a), (1.49)

ξ'*ξ = (ξ'®ξ)oφ. (1.50)

Clearly ξ * a and a * ξ' belong to A; ξ' * ξ is a continuous linear functional on A.
The commutativity of the diagram (1.7) implies the associativity of the convolution
product. Moreover we have

(ξ'*ξ)(a) = ξ(<**ξ') = ξ'(ξ*<>). (1-51)

Due to (1.8) the right-hand sides of (1.48)-(1.50) are meaningful for any linear
functionals ξ, ξ' defined on j/ and any aejtf.In. this case ξ * α, α * ξ' e j/, and ξ' * ξ
is a linear functional defined on j/.

The convolution product is commutative if and only if the pseudogroup is
abelian.

Let e be the functional on &tf introduced in Proposition 1.8. Then

a*e = a (1.52)

for any a e d. Indeed mappings,

a-+a *e = (e®id)Φ(a) ,

are linear, multiplicative and commute with the hermitian conjugation. Therefore
it is sufficient to check (1.52) for a = ukl (k, 1= 1,2, ...,7V). Using (1.2) and (1.37), we
get

Let ρ be a linear functional on si. Then using (1.52) and (1.51) we get
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for any a ε j t f . Therefore

ρ*e = e*ρ = ρ. (1.53)

In particular

e*e = e. (1.54)

2. Elements of the Theory of Representations

Let G be a compact group, K be a finite-dimensional complex vector space and v be
a representation of G acting on K. The latter means that v is a continuous map

and

(2.1)

for any g, g' e G. Identifying the space of all continuous functions defined on G
taking values in B(K) with B(K)®C(G\ we have

In the general case a representation of a compact matrix pseudogroup
G = (A,u) acting on K is an element vεB(K)®A satisfying a certain condition
replacing (2.1). In order to formulate this condition we shall use a bilinear
multiplication 0 defined on B(K)®A. It is introduced in the following way.

Let A be a C*-algebra and K be a/-d.c. vector space. For any v,wEB(K)®A,
we set

(2.2)

where mhnjEB(K); vi9 WjEA are such that v = ̂ mί®vi and w = ̂ n j ®w j . Clearly
* J

t φw is well defined [right-hand side of (2.2) is independent of the choice of mί? υb nj9

and Wj] element of B(K}®A®A and

is a bilinear map.
Let

i:B(K)®A-+B(K)®A®A

be an algebraic homomorphism such that i(m®ά) = m®I®a for any m e B(K) and
αeA One can easily check that

ι;φw = (ι?(g)/)i(w) (2.3)

for any t;, weβ(X)®yl. If K is a Hubert space, then B(K), B(K}®A and
JB(X)® ̂ 4® ̂ 4 are C*-algebras, i is a C*-homomorphism and (2.3) shows that i φ w
is unitary if v and w are unitary elements of B(K)®A.
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I Ϊ A = C(G), then identifying B(K)®A and B(K)®A®A with C(G,B(K)) and
C(G x G, B(K)) respectively, we have (for any g, g' e G)

(t>φw)(g,g')=Σ.«i

Therefore (2.1) can be rewritten in the following "algebraic" form:

where Φ is the C*-homomorphism C(G)->C(G)(g)C(G) introduced by (1.18).
We turn back to the general case.

Definition 2.1. Let G = (A,u) be a compact matrix pseudogroup, Φ be the
comultiplication associated with G, K be a finite-dimensional complex vector
space and veB(K)®A. We say that v is a representation of G acting on K if

ϋφί; = (id(8)Φ)t;. (2.4)

Let G = (A,u), where u = (ukl)kl=ίt2ί...,N
EMN(A) be a compact matrix pseudo-

group. Identifying MN(A) with MN(x)y4 we have

N

u= Σ mik®ukl, (2.5)
k l = l

where (mlk)lk=1^2, ...,# *s Λe system of matrix units: m/fc is the N x N matrix having 1
on the corssing of /cth row and /th column and zeroes in all other places. Using the
well known rules of matrix calculus (mlkmsr = δlrmsk for any fc, /, r, s = 1,2,..., TV), and
taking into account (1.2), we have

u®u= X mlkmsr®ukl®urs
klrs

= Σ ™Sk®ukr®urs = (id®Φ)w.
krs

It shows that M is a representation of G acting on <CN [remember that
MN = B((CN}]. It is called the fundamental representation of G.

In many cases it is more convenient to work with the linear mapping
v:K-^K®A corresponding to veB(K)®A than with v itself. B(K,K®A) and
B(K)®A are canonically isomorphic: If an element veB(K)®A is given by

υ= Σ mr®υr, (2.6)
r = l

wherem l 5 w2, ...,mReB(K) and ι;l51;2,...,%e^, then the action of ΰon an element
x E K is defined by

R
(2.7)

Assume that (2.4) is satisfied. Then [cf. (2.2) and (2.6)]

Σ mrmr' ®vr®vr/ = Σmr® Φ(vr),
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and for any x E K we have

(v®id)vx = Σ ϋmr>x®vr>

= £ mrx ® Φ(vr) = (id ® Φ)vx .
r

It shows that the diagram

K — — » K®A
id

id®Φ
K®A - >K®A®A

is commutative.
Conversely let v:K-*K®A be a linear map such that the diagram (2.8) is

commutative and v be the element of B(K)®A corresponding to v. Then v is a
representation of G acting on K. The simple proof of this fact is left to the reader.

Let v e B(K)®A and A' be the space of all continuous linear functionals defined
on A. For any ρ E A', we set

υe = (id®ρ)υ (2.9)

Then vρ is an operator acting on K. It depends linearly on ρ. Taking into account
the definition (2.2) we get immediately

On the other hand using the convolution product introduced by (1.50) we have:

(id® ρ® ρ') (id® Φ)v = v^,.

Therefore (2.4) is equivalent to the relation

/Forany ρ , ρ 'eΛ'γ

V *w=w /
In the representation theory an important role is played by intertwining

operators.

Definition 2.2. Let v and w be representations of a compact matrix pseudogroup
G = (A, u) acting on a f-d.c. vector spaces Kv and Kw respectively. We say that an
operator 5 e B(KV, Kw) intertwines v and w if

/C/O\ A,, Λλi(c>{v\ J\ C~) λ λ\\S(X)1)V — W^5Q9ιJ. ^Z. l l j

The set of all operators intertwining v and w will be denoted by Mor(ι;, w). Clearly
Mor (v, w) is a linear subspace in B(KV, Kw). If w = v, then Mor (ι;, w) is a subalgebra
oϊB(Kΰ).

One can easily prove

Proposition 2.1. Let v, w be representations of G. Then the following three
statements are equivalent:
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1) seMor(t;,w).
2) The diagram

V

K,,—

Kw - >

is commutative.
3) SVQ = wρs for any ρ e A'.
Let G = (A, u) be a compact matrix pseudogroup. We say that two represen-

tations v and w of G are equivalent if there exists an invertible operator
intertwining v and w.

Let v be a representation of G acting on a /-d.c. vector space K and L be a
subspace of K. We say that L is i -invariant if ί(L)cL®A Then the element
ϋ|L e J3(L)(x),4 corresponding to the restriction ϋ\L : L^L®A is a representation of
G acting on L and the embedding L-+K intertwins v\L and ι;. υ\L is called a
subrepresentation of v.

Let t; be a representation of G acting on a /-d.c. vector space K. One can easily
check that the subspaces

are i -invariant and v\Ko = 0, v\K.nv = IB(K.nv}@A. The representation v is called non-
degenerate (completely degenerate respectively) if K0 = {0} (K0 = K respectively).
An element x e K is said to be a ^-invariant element if x e Kίnv. One can easily check
that x is a i -in variant element if and only if vρx = ρ(I)x for any ρeA'. v is called
trivial if v = IB(K)®I. Then K[nv = K.

Let / be a linear functional defined on K. We say that / is a ί -invariant
functional if /e Mor (ι;, 1), where 1 denotes the trivial representation of G acting on
C. Using Proposition 2.1 one can check that / is a i -in variant functional if and
only ίϊ fovρ = ρ(I)f for any ρ e A'.

Let t; be a representation of G acting on a /-d.c. vector space K. Clearly the
whole K and the zero-dimensional subspace {0}cK are ^-invariant. These
subspaces are called trivial. The representation v is called irreducible if there exists
no non-trivial i -invariant subspace.

If v and w are representations of G and seMor(ι;, w), then the kernel of s is
i -in variant and the image of s is w-invariant. Using this remark we get immediately

Proposition 2.2. Let v be an irreducible representation of G. Then Mor(ι;5ι;)
= {λ!:λe(C}.

Proposition 2.3. Let v, w be irreducible representations of G. Then either Mor(t;, w)
= {0} and v is not equivalent to w, or Mor(t;, w) = {λF:Λ,e<C} where F is invertible
and v is equivalent to w.

For any finite-dimensional complex vector space K, the complex conjugate
vector space will be denoted by K. It means that K is the set of symbols x, where x
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runs over K with the complex vector space structure introduced by the formulae
x + y = x + y_ and λx = λx (x, y e K, λ e (C). We shall identify the second complex
conjugate K with K. Then the map

is an antilinear involution. For any a e B(K, L) (where K and L are /-d.c. vector
spaces) we consider the operator a e B(K, L) introduced by the formula άx = άx
(x E K). Evidently

is_an antilinear involution. In the particular case L = K this map is multiplicative:
ab = άb for any a, be B(K).

We know that the tensor product of antilinear maps is a well defined antilinear
map. For any veB(K)®A we denote by v the element of B(K)®A obtained by
applying'®* to ι;:ϋ=ιΓ®*.

Assume that v is a representation of a compact matrix pseudogroup G = (A, u)
acting on K. Then v is a representation of G acting on K. It is called complex
conjugate to v. For instance [cf. (2.5)]

ύ=Σήik®Uki* (2.12)
fc.Z

is the representation complex conjugate to the fundamental one.
Let v and w be representations of G and seMor(ι;, w). Then seMor(i;, w). In

particular i; and w are equivalent if and only if v and w are equivalent.
Let Kί and K2 be /-d.c. vector spaces and

be canonical embeddings and projections. For any v^eB^Jt&A and
v2eB(K2)®A, we set

Clearly v^Vz
Assume that v± and v2 are representations of a compact matrix pseudogroup

G = (A,u) acting on Kl and K2 respectively. Then vί®v2 is a representation of G
acting on Kί®K2 and

ϊΊ e Moφl5 ϋ j 0ι;2) , πί e Mor^! 0t;2, t;^ ,

i2 e Mor(t;2, ̂ ! 0t;2) , π2 e Mor^! 0ι;2, ι;2) .

The representation v1®v2 is called the direct sum oϊvί and v2. In the similar way
one can introduce the direct sum of any finite number of representations.

Let V1,v2,wί,w2 be representations of G. Assume that

wJ and s2eMor(ι;2 jw2).

Then S!0s2 intertwines vίφv2 with w^Qw^ In particular if v{ is equivalent to \v1

and v2 is equivalent to w2, then t;^^ is equivalent to w1φw2.
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Let K, L be /-d.c. vector spaces, v e B(K)®A and w e B(L)® A. Then there exist
m1 ?m2, ...,mΛe j5(K), nl,n2, . ..,nse£(L) and vl7v2, ...,^κ, wι? W2> ...,w se>l such
that

ϋ = ΣmΓ<8>t; r, (2.13)

(2.14)
S

We set

v®w = Σmr®ns®vrws. (2.15)
r,s

Clearly i φw is a well defined [right-hand side of (2.15) depends only on v and w, it
is independent of the particular choice of wr, vr, ns9 ws entering (2.13) and (2.14)]
element of B(K)®B(L)®A and identifying B(K)®B(L) with B(K®L\ we intro-
duce bilinear map

φ : (B(K}®A) x (B(L)®A)^B(K®L}®A .

Let meB(K) and neB(L). Using definition (2.15), one can immediately check
that

(2.16)

. (2.17)

Let us notice that for any υ,vΈB(K)®A and w,w'eB(L)®A, we have

(2.18)

Indeed in the simplest case ι; = m1®ί; l J v' = m\®υ\, w = n 1(g)w l J w^nΊ^wΊ
[where m^m^e^K), nl9n\EB(L\ v^v'^w^w^EA^ we have

t-φί ^mimΊ®!;!®!;7! , w®\v' = nίriί

and

On the other hand

and (2.18) follows. Moreover taking into account (2.15) and multiplicativity of Φ,
one can easily check that

(id(g)Φ)(t;©w) = (id(8)Φ)t;©(id(8)Φ)w. (2.19)

Assume now that v and w are representations of a compact matrix pseudo-
group G = (A, u) acting on K and L respectively. It follows immediately from (2. 1 8)
and (2.19) that i φw is a representation of G acting on K®L. This representation is
called the tensor product of v and w.

Let v, v', w, w' be representations of G, s e Mor(t;, v') and r e Mor(w, w'). Using
(2.16) and (2.17) one can easily check that s(x)reMor(i;©w, i/φw'). In particular
the equivalence class of i φw depends only on equivalence classes of v and w.
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Let ι;l5 v2, v^ be representations of G acting on /-d.c. vector spaces K^ K2, K^
respectively. Identifying (Kl®K2)®K3 with K1®(K2®K?>) and using (2.15), one
easily verifies the associativity law:

(ι>ι Φv2)®v3 = ̂ i ©(^2 ©^3) - (2 2°)

In the group theory the tensor product of representations is commutative.
Identifying K®L with L®K we had i φ w = w©t; for any representations i; and w
acting on K and L respectively. For pseudogroups this is no longer the case.

Let v and w be representations of a compact matrix pseudogroup G acting on
/-d.c. vector spaces K and L respectively. We say that v commutes with w if the
operator σKL interchanging K and L (σKL :K®L-+L®K and σKL(x® y) = y®x for
any xe^ and yeL) intertwines i φw with w®v. We have the following

Proposition 2.4. Lei G = (^4, (w w )kz=ι,2, ...,#) be a compact matrix pseudogroup. The
following three conditions are equivalent:

1. A is commutative. [In this case G is a usual compact group of matrices (cf.
Theorem 1.5).]

2. The fundamental representation u commutes with u and ΰ.
3. Any two representations of G commute.

Proof. We shall use the following obvious formula:

L (2.21)

for any n e B(K) and m e J5(L).
Assume that veB(K)®A and wεB(L)®A given by (2.13) and (2.14) are

representations of G. Then

(ι;© w) (σKL®I) = Y (mr®ns)σKL®vrws ,
r,s

(σKL (x) /) ( w φ v) = X σ^L(ns (x) mr) ® wsί;r

The representation i; commutes with w if and only if the two expressions coincide,
i.e. if and only if

Σ (mr<g)w>XL® [>r, wj =0 . (2.22)
r,s

lίA is commutative, then (2.22) is fulfilled and v commutes with w. This way we
proved that 1 => 3. Implication 3 => 2 is obvious.

Assume now that u commutes with u and ΰ. Using condition (2.22) we obtain
[cf. (2.5) and (2.12)].

Σ (rorr, ® mss)σκκ ® \ur,r, us,^ = 0 ,
rr'
ss'

Σ (mrr,®mss)σκίi®[ur,r, us,*] = 0 ,
rr'
ss'

where now K = CN is the carrier vector space of the fundamental representation.
Since the matrices mrr/ (r, rr = l,2, ...,N) are linearly independent, the above
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equations mean that

for all r', r, s', 5=1,2, ..., N. Therefore the *-algebra s# (generated by matrix
elements of M) is commutative and (cf. Condition 1 of Definition 1.1) Statement 1
follows. Q.E.D.

Let 3tG be the smallest class of representations of G containing the fundamental
representation and closed under direct sums, tensor products, complex conjug-
ation and passing to a subrepresentation and to an equivalent representation. It
turns out that the class $G is rich in the following sense

Proposition 2.5. Let G = (A, u) be a compact matrix pseudogroup and s$ be the
*-subalgebra of A generated by matrix elements of u. Then any element aestf can be
written in the form

α = (τ<g)id)ι;, (2.23)

where v e &G, v acts on a /-d.c. vector space K and τ is a linear functional defined on
B(K).

Proof. Let j^ be the set of all elements a E <$# which can be written in the form
(2.23). We have to show that j^ = j/. Setting v = u we see that all matrix elements
of u belong to j^. Therefore it is sufficient to show that ̂ ί is a *-subalgebra of A.
The latter follows immediately from the following obvious formulae:

(τ ® iφ + (τ' ® id)ι/ = ((τ 0 τ') ® id) (t; 0 1/) ,

[(τ ® id)t;] [(τ' ® id)*/] = (τ ® τ' ® id) (t; @ v'} ,

[(τ<8>id)ιΓ|* = (

where λ e (C; v and v' are representations of G acting on K and L respectively; τ and
τ' are linear functionals defined on B(K) and B(L) respectively; τ©τ' is the linear
functional defined on B(K@L) such that (τ0τ')(m0w') = τ(w) + τ'(w') for any
m E B(K) and m' e B(L) and finally τ is a linear functional defined on B(K) such that
τ(m) = φF) (m e B(K)). Q.E.D.

Let (0n)weN be a sequence of elements of a topological vector space. We say that
the sequence converges in the Cesaro sense and that g is the Cesaro limit of

( a n ) : g = C-liman if the sequence (fen)πeN of arithmetic means \bn=- £ a
n-+cc \ n k= 1

converges to g in the usual sense.
We shall use the following

Lemma 2.6. Let K be a /-d.c. vector space and t e B(K). Assume that the sequence of
iterations (ίπ)πeN is bounded. Then there exists the Cesaro limit

t^ = C-lim tn

n~* oo

and t^ is a projection onto {xeK:tx = x}.
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Proof. Using if necessary Jordan decomposition one may assume that
t = λIB(K} + N, where A e C and N is nilpotent. The sequence (ί")MeN is bounded in
the following two cases:

I. μ|<l.Then C-limί"
II. μ| = l and JV = 0. Then

0 otherwise. Q.E.D.

For any state ρ [i.e. positive linear functional such that ρ(/) = 1] defined on A
we denote ρ*" = ρ * ρ *... * ρ (^-factors) the nih convolution power of ρ. Clearly ρ*"
is a state of A. We shall prove

Proposition 2.7. For any aeA and any state ρ of A there exists the Cesaro limit,

(a). (2.24)

hρ is a state of A. Moreover we have

(2.25)

Proof. The sequence of states (ρ*M) is norm bounded and ̂  is dense in A. Therefore
it is sufficient to prove the existence of limit (2.24) for all a e jtf. By virtue of
Proposition 2.5 one may assume that a is of the form (2.23). Then using the
notation introduced by (2.9) we have [cf. (2.10)]

and the existence of the Cesaro limit (2.24) follows immediately from Lemma 2.6
[sequence (ρ*w)weN is norm bounded and ι̂  = (id(x)ρ*")ι;]. Clearly the linear
functional hρ introduced by (2.24) is positive and normalized. In order to prove
(2.25) it is sufficient to set ft->oo in the following relation

= ρ*n*ρ = ρ *(π+i) ι Q.E.D.

3. Contragradient Representations

This section is devoted to the concept of the representation contragradient to a
given one. As we shall see later this concept plays the fundamental role in our
approach to pseudogroups.

Throughout this section G = (A, u) is a compact matrix pseudogroup, Φ is the
comultiplication and K is the coinverse associated with G, $/ is the *-subalgebra of
A generated by matrix elements of u and e: ^/->(C is the *-character introduced in
Proposition 1.8.

In the theory of groups the definition of the representation contragradient to a
given one involves the involution g-»g ~ 1 . Unfortunately the algebraic counterpart
of this involution, i.e. the coinverse map K is not defined on the whole A. Therefore
we have to limit our considerations to the representations with "matrix elements"
belonging to ̂ . Such representations are called smooth.
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It turns out that the class of smooth representations is sufficiently large. In fact
the representations which are not smooth (if they exist) have pathological
properties. See the last sections for the details.

Let K be a finite dimensional complex vector space and veB(K}®A be a
representation of G acting on K. We say that v is a smooth representation if

According to (2.5) the fundamental representation is smooth. One can easily
check that complex conjugation, direct sum and tensor product applied to smooth
representations produce smooth representations. Moreover any subrepresen-
tation of a smooth representation is smooth. Therefore all representations in &G

are smooth.
If υ is a smooth representation then (2.9) is meaningful for any linear functional

ρ defined on j/. Moreover in this case the product formula (2.10) holds for all linear
functional ρ, ρ' defined on ̂  [cf. the remark after formula (1.51)]. No continuity
assumption is required

Proposition 3.1. Let vbea smooth representation of G acting on a finite dimensional
complex vector space K. Then

K = K0®K,, (3.1)

where K0 and Kv are v-invariant subspaces, V\KO is completely degenerate
representation and v\Kί is nondegenerate.

Proof. We use the functional e introduced in Proposition 1.8. Let ve = (id®e)v [cf.
(2.9)]. By virtue of (1.54) and (2.10) v2

e=ve, i.e. ve is a projection acting on K.
Therefore

where X0 = kerι;β and Kί = τangeυe. It follows immediately from (1.53) and (2.10)
that vevρ = vρve for any ρ E A'. Therefore (cf. Proposition 2Λ)υee Moφ, υ) and K0

and Ki are ί -invariant.
Assume that a vector x e K is killed by the representation v. It means that

ϋx = 0. Then υρx = 0 for any ρ e <$#'. In particular vex = 0 and x e K0. Conversely if
xeK0 then using (1.53) and (2.10) we have vρx = vρ4ιex = vρvex = 0ϊθΐ any ρeA'. It
means that ϋx = 0. This way we proved that K0 is the space of all vectors killed by v.
Therefore v restricted to K0 is completely degenerate and v restricted to K{ is non-
degenerate (no non-zero vector belonging to Kί is killed by ι;). Q.E.D.

The following proposition gives nice criteria distinguishing non-degenerate
representations.

Proposition 3.2. Let v be a smooth representation of G acting on K. Then the
following four conditions are equivalent:

1. v is non-degenerate,
2 ve = IB(K},
3. v is an invertible element of B(K)®A and

v-
l=(\ά®κ)v, (3.2)

4. v has a left inverse in B(K)®A.



Compact Matrix Pseudogroups 637

Proof. 1 => 2. If ί; is non-degenerate then KQin the decomposition (3.1) vanishes. It
means that kQrve = {0} and vex = x for any

2 => 3. Let

where mr e #(K), tfr e J/ and r = 1, 2, . . ., β. Then ι;e = £ mre(vr). Formula (2.4) means
that

Σmr®Φ(vr) = Σmrms®vr(S)vs. (3.4)
r r,s

Applying to the both sides of the above equation the mapping id® m(κ® id) [where
m is the multiplication map (1.35)] and using (1.38) we obtain

£ mr®e(vr)I = Σ mrms®κ(vr)vs .
r r,s

By virtue of (3.3) this formula can be rewritten in the following compact way

Similarly applying to the both sides of (3.4) the mapping id®w(id®κ;) and using
(1.39) we get

Now the implication 2 => 3 is trivial
3 => 4. Obvious.
4 => 1. Let t/ be a left inverse of ι;: v'v = IB(K}@A. Then using the obvious action

of elements of B(K)®A on K®,4, we have v'vx = x®I for any xeK. Therefore
vx = 0 implies x = 0 and v is non-degenerate. Q.E.D.

We know that e is a *-character. Using this fact one can easily prove that
(v®w)e = ve@we, (v®w)e = ve(S)we and ve = (ve)~. Therefore direct sum, tensor
product and complex conjugation applied to smooth non-degenerate represen-
tations produce nondegenerate representations. Formula (1.37) shows that the
fundamental representation is non-degenerate. It proves that all representations in
&G are non-degenerate.

For any finite-dimensional complex vector space K the space dual to K (i.e. the
space of all linear functionals defined on K) will be denoted by K'. For any x e K
and x' E K' the value of the functional x' at the point x will be denoted by <x', x>.
Setting <x,x'> = <X,x> we identify the second dual K" with K.

For any a e B(K, L) (where K, L are finite-dimensional complex vector spaces)
we consider the transposed linear mapping aτeB(L,K') such that <αr/,x>
= <j/,αx> for all /eL' and xεK. The transposition

is a linear involution. Moreover

(ab)τ = bτaτ (3.5)

for any a e B(K, L) and b e B(H, K) (H, K, L are /-d.c. vector spaces).
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For any yΈL and xΈK', /®x' will denote the linear functional defined on
K®L such that

</®x',x®)>> = <x',x></,j>> (3.6)

for any XEK and yeL. In other words we identify L®K' with (K®L)'. Let us
notice that

(a®b)τ = bτ®aτ (3.7)

for any a E B(K) and b E B(L). Indeed for any y' E L, x' e K', x e K, and y E L we have

<(α® ft)V® x'), x®yy = </® x', (α® b) (x

= </ ®x', axφbyy = <x', αx> </, fcy> = <αrx', x> (bτy'9

= (bτy'®aτxf, x® y> = <(fcr® aτ) (/® x'), x® y> .

Let K and L be /-d.c. vector spaces. For any yt E L, xj e X' (where / = 1, 2, . . ., S)
and any x e K we set

This way we identify L®K' with B(K,L). Let us notice that

(n®mτ)a = nam (3.9)

for any nEB(L\ mEB(K\ and aEB(K,L). Indeed if α = X^/®xί , then
i

(n®mτ)a =

and for any x e K, we have
r)α)x - Σ <mτx'b x}ny{ = X (xj,

= n

Let K and L be /-d.c. vector spaces. We have the chain of natural
identifications :

Using (3.6) and (3.8) on can easily check that the duality between B(L,K] and
B(K, L) is given by the formula

<5,α> = Tr£α (3.10)

for any b E B(L, K) and a E B(K, L).
Now let j/ be a *-subalgebra of A generated by matrix elements of u and

K'.stf^stf be the coinverse associated with G. For any veB(K,L)®jtf (K,L are
/-d.c. vector spaces) we consider an element vcEB(L,K'}®^ introduced by the
formula

υc = (T®κ)v. (3.11)
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Taking into account (3.5) one can easily check that

(3.12)

(3.13)

for any vEB(K)®jtf, we£(L)(x)j/ and SEB(K,L). Moreover using (3.7) and the
antimultiplicativity of K we see that

(υφ^γ = v^φυc (3.14)

for any υeB(K)®jtf and w

Proposition 3.3. Let υbea smooth representation of G acting on a /-d.c. vector space
K. Then vc is a representation of G acting on K' .

Proof. Using (1.47) we compute

c = (T(g)Φoφ = (T(8)σ

= (T®σA(κ®κ))υ®v

where σ A denotes the flip automorphism of A® A and the last but one equality
follows easily from (3.5) and (2.2). Q.E.D.

The representation vc is said to be contragradient to the representation v.
Clearly vc is smooth.

Let v and w be representations of G and seMor(ι;, w). Then using (3.12) and
(3.13) one can easily show that s reMor(wc, vc). In particular υc and wc are
equivalent if and only if v and w are equivalent. Moreover vc is irreducible if and
only if v is irreducible.

Let v be a smooth representation of G acting on a /-d.c. vector space K and
x' E K'. One can easily verify that x' is a ί -invariant functional if and only if x' is a
^-invariant element.

The Haar measure (cf. Proposition 4.3) will provide us with a powerful tool for
the investigation of ί -invariant elements and functionals. The following propo-
sition shows that the same techniques can be used for the investigation of
intertwining operators. It uses many of the identifications described above: In
Statement 1 B(K9L) = L®K', in Statement 2 B(L,K) = (L®K')\ in Statement 3

and finally in Statement 4 B(K',E) = (

Proposition 3.4. Let v and w be representation of G acting on /-d.c. vector spaces K
and L respectively, a e B(K, L) and b E B(L, K). Assume that v is smooth and non-
degenerate. Then

1. 0eMor(ι;, w) if and only if a is a (wφvc}-invariant element of L®Kf,
2. foeMor(w, vcc) if and only if b is a (w®vc)-ίnvariant functional on L®K',
3. αeMor(ι;cc, w) if and only if aτ is a (vcφw)-invariant element of K'®L,
4. beMor(w, v) if and only if bτ is a (vc(£)w)-invariant functional on K'®L.
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Proof. Let

i J

where m^e^^Γ), v t e j t f , ΠjεB(L\ and w7 e A Then

and for any ρ e A' we have

( w © uc)ρ = Σ nj® miQ(Wjκ(vi)}

Let aeB(K,L). Then using (3.9) and (3.2) we get

(w® ι/%β - X n/ίm^W φ;)) - (id® ρ)w(α® /)ιΓ * . (3.15)
ij

This formula shows that α is (wφι;c)-in variant element if and only if w(0®/)ι;~ *
= a®L The latter is equivalent to w(α®/) = (α®/)ι; and Statement 1 follows.

Let beB(L,K). Then

(3.16)

Indeed for any α e B(L, K)' = B(K, L) we have [cf. (3.9) and (3.10)]

and (3.16) follows. Therefore

(w©ϋc)ρ

τb = Σ mfbn ρCWj φi)) - (id® ρ)
i,J

and b is a (w®t;c)-invariant functional if and only if

(3.17)

Applying to both sides the mapping T® id and remembering that T is antimulti-
plicative, we see that the latter is equivalent to

[(Γ® id)w] (bτ®I)vc = bτ®I . (3.1 8)

Inserting in (3.2) υc instead of v we get (υc)~ 1 =(T®id)ι;cc. Therefore (3.18) can be
rewritten in the following form

[(T®id)w] (bτ®I) = (bτ®I) [(Γ®id)ιΛ] ,

and using again the mapping T®id we finally see that (3.17) is equivalent to the
relation (b®I}w = vcc(b®I). Statement 2 follows.

With the same techniques one can prove Statements 3 and 4. The details can be
checked by the reader. Q.E.D.

Let υ' = (T®κ~l)υ. Repeating the proof of Proposition 3.3 one can check that
v' is a smooth non-degenerate representation. Note that v'c = v. Replacing in
Proposition 3.4.3 v by v1 and using Proposition 2.3 we get
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Theorem 3.5. Let v and w be irreducible representations of G. Assume that v is smooth
and non-degenerate. Then

w is equi-

valent to vc

There exists a non-zero \

(v®w)-invariant element

In the next sections we shall prove that for any smooth representation v the
representations complex conjugate to v and contragradient to v are equivalent and
that the second contragradient vcc is equivalent to v (note that the second complex
conjugate v — v).

4. The Haar Measure

It is difficult to overestimate the role of the Haar measure in the theory of compact
groups. The averaging over compact groups is the main tool of the representation
theory and is constantly used in the applications. For this reason the theorem
stating the existence and the uniqueness of the Haar measure should be considered
as the central theorem in the theory of compact groups.

In our theory the algebra of continuous functions on a compact group is
replaced by a (in general) non-commutative C*-algebra A. Therefore instead with
measures we deal with states on A.

In this section the existence and the uniqueness of the state invariant under left
(and simultaneously right) shifts will be established for an arbitrary compact
matrix pseudogroup. For obvious reason this state is called the Haar measure.

We shall prove that also in the theory of compact matrix pseudogroups the
Haar measure has all the properties that are relevant for the representation theory
and other applications. In particular we shall use the Haar measure to show that
any smooth representation of a compact matrix pseudogroup can be decomposed
into the direct sum of irreducible representations.

Let G = (A, u) be a compact matrix pseudogroup. We know that A is finitely
generated (by matrix elements of w). Therefore A is separable and the set of faithful
states is not empty. All the results obtained in this section are based on the
following.

Proposition 4.1. Let ρbea faithful state defined on A and hρ be the Cesaro limit of the
sequence (£?*")„ = 1,2,... (cf Proposition 2.7). Then for any ηεA' (A1 is the set of all
continuous linear functίonals defined on A) we have

hρ*η = η*hρ = η(I)hρ. (4.1)

Proof. All the linear functionals entering (4.1) are continuous. We shall use
notation (2.9). By virtue of Proposition 2.5 it is sufficient to show that

vhQ*η = vη*hβ = n(I}vhβ (4 2)

for any representation v of G belonging to the class 0tG.
Let K be the /-d.c. vector space on which v acts and ( | )κ be a non-degenerate

positive sesquilinear form on K. Then K becomes a Hubert space and B(K\
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B(K)®A, and B(K}®B(K)®A become C*-algebras. According to Proposi-
tion 3.2, υ is an invertible element of B(K)®A. Therefore there exists a strictly
positive number c ε R such that

(4 3)

(4 4)

Let

x="- iBOK)®A- (4.5)

At first we shall prove some estimates. Let

i:B(K)®A->B(K)®A®A

be the C*-algebra homomorphism considered in Sect. 2. We remind that ί(m®a)
= m®I®a for any meB(K) and aεA. Therefore

(id®η®id)i(q) = q (4.6)

for any q ε B(K)®A and any linear functional η defined on A such that η(I) = 1 . By
virtue of (2.3)

Taking into account (4.3) and (4.4) we have

ci(x*x)^(vφx)*(v®x), (4.7)

c(x®/)(x®/)*^(xφt;)(x©ι;)*. (4.8)

Applying the positivity preserving map id®/ιρ®ρ to both sides of (4.7) and
using (4.6) we get

(4.9)

Similarly, applying id®ρ®Λρ to both sides of (4.8) we obtain

c(id®ρ)(xx*)^(id®ρ®Λρ)[(x0t;)(x©t;)*]. (4.10)

We compute the right-hand side of (4.9). Remembering that v is a represen-
tation, we have [cf. (4.5)]

v®x = υ®v-v®IB(K)®A = (id®Φ)v-υ®I.

Therefore

(rφx)*(t;Qx) = (id®Φ)(t;*t;)-2Re[(t;*®/)(ι;φί;)] + t;*t;®/, (4.11)

where Re [a] denotes the hermitian part of a: Re[α] =^(a + a*). By virtue of (1.50)
and (2.25) we have

= (id®Λρ)(t;*t;).

The same result we get computing the contribution coming from the last term of
(4.11):

(id®/ιρ®ρ)(t;*t;®/) = (i
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Moreover using the notation (2.9) we have (id®id®ρ)(ι;©ι;) = ι;(t;ρ®/). Therefore

(id(S)hρ®ρ)l(v*®I)(v®v)-]=(id®hρ)(v*v)vρ.

The above computations show that the right-hand side of (4.9) equals to

2(id® Λρ) (υ*v) - 2 Re [(id® Λρ) (ι>*φρ] = 2 Re[T(/B(K) - ϋρ)] ,

where T=(id®ftρ)(t;*ι;). This way we proved that

)-ί;ρ)] . (4.12)

Using the same techniques one can compute the right-hand side of (4.10).
Inserting the result into (4.10), we get

c(id® ρ) (xx*) g 2 Re [_(IB(K} - ϋρ)T'] , (4.1 3)

where T' = (id®hρ)(vv*).
By virtue of (2. 1 0) and (2.25) we have (IB(K) — vρ)vhe = vhe — vhg = 0, and similarly

vhβ(IB(H) — ve) = 0. Therefore multiplying both sides of (4.12) by vhβ from the right
and by v% from the left (clearly this operation preserves the inequality relation) we
obtain zero on the right-hand side:

Remembering that ρ is faithful we see that

and

x(ι;Λβ®/) = 0. (4.14)

Similarly multiplying both sides of (4.1 3) by vh from the left and by v% from the
right and repeating the arguments used above we obtain

(υhe®I)x = Q. (4.15)

Replacing in (4.14) and (4.15) x by the right-hand side of (4.5) and comparing
the two relations, we see that

K,®/)ϋ = φΛβ®/) = ι\,®/. (4.16)

Applying (id®?/) to all segments of this equation we get vhvη = vηvhs = η(I)vh and
[cf. (2.10)] relation (4.2) follows. Q.E.D.

Let h' be a normalized (i.e. h'(I) = I) continuous linear functional on A such that
for any η e A', we have

h'^η:=η^hf = η(I)hf. (4.17)

For example h' = hρ,, where ρ' is another faithful state on A. Then inserting η = h' in
(4.1) and η = hρ in (4.17) and comparing the two relations we get h' = hρ. In
particular hρ> = hρ for any faithful state ρ' on A. This way we proved that for all
faithful states ρ on A the Cesaro limit (2.24) is the same. This common limit will be
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denoted by h:h = hρ for any faithful state ρ on A. Moreover we have

h*η = η *h = η(I)h

for any η e A'.
Let aeA. Then

and using (1.51) we obtain

η(h * a) = η(a * ft) = η(h(a)I)

for any η e A. Therefore

h*a = a*h = h(a)I

for any aεA. If h is a state of A such that

ft' * α = a * ft' = ft'(0)/

for any α e ^4, then

ft'(β)/ = h'(ά)I*h = h *a*h = h *h(a)I = h(a)I

and ft'= ft.
This way we proved the first three properties listed in the following theorem

Theorem 4.2. Let G = (A, u) be a compact matrix pseudogroup, jtf be the *-subalgebra
of A generated by matrix elements of u and K : j/->j/ be the coinverse associated
with G. Then there exists a state h on A such that

1. h(a) = C-limρ*n(a) (4.18)
Λ-* GO

for any faithful state ρ on A and any aeA.

2. η*h = h*η = η(I)h (4.19)

for any continuous functional η defined on A.

3. α* ft = ft * a = h(a)I (4.20)

for any aeA.
4. For any a e j t f ,

h(κ(a)) = h(a). (4.21)

5. For any ae&f,

a>Q

Each of the property 1-3 determines the state h uniquely.

Proof of Property 4. The compositions ftojc"1 and h°κ are linear functional
defined on xf assuming value 1 at /. Let a e j/. Then using (1.51) and (4.20) we have

(h * (h o K~ *)) (φ)) = (h°κ~l) (φ) * ft) = (ft o K ~ J ) (ft(φ))/)- ft(φ)).
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On the other hand using (1.50), (1.47), (1.51), and (4.20), we compute

(h * (h o κ~ l}}(κ(a}) = (h®(h o κ~l})Φ(κ(a})

= (h®(h o κ~
 l}}σA(κ®κ)Φ(ά)

= ((h°κ~l}®h)(κ(S)κ)Φ(a)

= (h®(h° κ)}Φ(a) = (h*(ho κ)) (a)

= (hoK)(a*h) = (ho K) (h(a)I) = h(a) ,

and formula (4.21) holds. Q.E.D.

The proof of the last property [implication (4.22)] will be given later.
In our theory the algebra A plays the role of the algebra of all continuous

functions on a compact group. Therefore the states of A correspond to normalized
positive measures on the group. Properties 2, 3, and 4 are characteristic for a left
and right invariant Haar measure. Therefore in our theory the state h plays the role
of the Haar measure and in the following it will be called the Haar measure.

The proof of the existence of the Haar measure should be considered as an
essential achievement of our approach. In the earlier theories [6, 11, 5, 13] the
existence of the Haar measure was stated by an axiom with the great methodolog-
ical disaccord with the theory of (locally) compact groups, where the proof of
existence of the Haar measure is highly non-trivial.

The following statement shows how the Haar measure can be used to the
investigation of invariant elements and functionals:

Proposition 4.3. Let v be a representation of G acting on a /-d.c. vector space K and
E = vh = (id®h)v. Then

1. EeMoφ,ι;).
2. E is a projection onto the space of all v-invariant elements.
3. Eτ is a projection onto the space of all v-invariant functionals.
4. For any non-zero v-invariant element xeK one can find a v-invariant

functional xΈK' such that <V, x> is strictly positive.

Proof. By virtue of (4.19) and (2.10) we have

for any ηeA1. The first equality shows that EeMoφ,ι;) (cf. Proposition 2.1).
Moreover inserting η = hwe get E2 = E, i.e. E is a projection. Consequently Eτ is a
projection.

Assume that x e range E. Then Ex = x and the above formula shows that vηx
= η(I)x for any ηeA'. Therefore x is a ί -invariant element. Conversely if x<=K is
v -invariant then vηx = η(I)x for any ηεA' and setting η = h we get Ex = x.
Statement 2 is proved.
Assume that x'e range Eτ. Then χΌE = xr, and the above formula shows that
x' o vη = η(I)x' for any η e A ' . Therefore x' is a z -invariant functional. Conversely if
x' e K' is i -invariant then x! o vη = η(I)x' for any η E A' and setting η = h we get
χΌE = x'. Therefore Eτx' = xf. Statement 3 is proved.
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Let x be a non-zero i -invariant element of K. Then there exists / e K' such that
</, x> > 0. Let x7 = Eτy'. Then x' is a t -invariant functional and <x', x> = (Eτyf, x>

Q.E.D.

In many interesting cases the space of all i -invariant elements is one-
dimensional. Then the space of all t -invariant functionals is also one-dimensional
(always dim£K==dim£ΓK') and choosing a non-zero ^-invariant element xeK
and a non-zero ^-invariant functional x' e K', we have

(4-23)

for any yeK. Indeed the operator E introduced by (4.23) is the only projection
such that range E = (Cx and range Eτ = (Cx'.

We shall use the last statement of Proposition 4.3 with v replaced by w®vc.
According to Proposition 3.4 the set of all (w®ι;c)-in variant elements coincides
with Mor(u,w) and the set of all (w©z;c)-invariant functionals coincides with
Mor(w, ι;cc). Taking into account (3.10) we get

Proposition 4.4. Let v and w be finite-dimensional representations of G. Assume that
v is smooth and non-degenerate. Then for any non-zero a e Mor(ι;, w), there exists
6eMor(w, ιΛ) such that

Now we can prove the following fundamental

Theorem 4.5. Any finite-dimensional smooth representation of a compact matrix
pseudogroup is equivalent to a direct sum of irreducible representations.

Proof. By virtue of Proposition 3.1 we may restrict our considerations to non-
degenerate representations. Then the theorem follows immediately from the
following.

Proposition 4.6. Let w be a representation of G acting on a f-d.c. vector space L,
K C L be a w-invariant subspace and v be the restriction ofw to K. We assume that v is
smooth, non-degenerate and irreducible. Then K has a w-invariant complement.

Proof. The embedding a:K^L belongs to Mor(u,w). According to Proposit-
ion 4.4 one can find b:L^K intertwining w with vcc such that Ύrba>0. Let
L^kerfc. Then Ll is w-invariant.

Clearly dimL1 + dimK ^ dimL. Assume that L φ L^ ®K. Then L t r\K is a non-
zero ί -invariant subspace of K. Remembering that v is irreducible we get
L^r\K = K. Consequently KcL1 and ba = b\κ — 0, which is in contradiction with
Ύrba>0. Therefore L = 1^0 £ and Lj is a w-invariant complement of K. Q.E.D.

This ends the proof of Theorem 4.5. Q.E.D.

Assume for the moment that G is abelian. Then the convolution product is
commutative and taking into account formula (2.10) and Proposition 2.2 one can
easily show that all irreducible representations of G are one-dimensional. Using
Theorem 4.5 we can decompose the fundamental representation of G into a direct
sum of one-dimensional representations. In other words there exists an invertible
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matrix teMN((C) such that the matrix u' = (t~l®I)u(t®I) is diagonal. Then
G' = (A,u'} is a compact matrix pseudogroup obtained from G by a similarity
transformation. Let y l 5 y 2 > •••?7̂  be diagonal elements of w'. By virtue of (1.2), (1.5),
and (1.6),

$(yn)=yn®yn, (4.24)

for rc = 1, 2, . . ., N. Computing the norm of both sides of (4.24) we get \\yn \\2=\\ Φ(γn) \\
:g \\γn\\ and \\γn\\ ^ 1. Taking the inverses of both sides of (4.24) and using the same
trick we get H y " 1 ! ! ^ ! . Therefore all γn are unitary. Let Γ be the subgroup of
unitaries of A generated by yί9γ2, •••>?#• Clearly Φ(y) = y®y for any yeΓ.

Let π be the universal representation of A (i.e. the direct sum of all cyclic
representations). Then any representation of A is contained in a multiple of π. Let
U = π\Γ. Then U is a unitary representation of Γ satisfying condition (1.26) [Indeed
U(S)U = (π®π)oφ\Γ and (π(8)π)°φ is contained in a multiple of π.] and G' is
identical with the pseudogroup (C*(U\u) described in Sect. 1. This proves
Theorem 1.7.

We turn back to the general case. Let G be the set of all equivalency classes of
irreducible representations of G belonging to 0tG. For any α e G we choose a
representation ua e α. Let Ka be the /-d.c. vector space on which UΛ acts, dα = dimKα,
(e£:fc = l,2,...,dα) be a basis in Xα and (m^e5(Kα):/c,/=l,2, ...,dα) be the
corresponding system of matrix units: mj^ejί = (5fcref (fe, /, r=l,2, ..., dα). Then

"α= Σ <«>ί4, (4-25)

where M?k e j/ (fe, /= 1 , 2, . . ., dα). Using the well known algebraic properties of the
system of matrix units one can easily check that formula (id®Φ)(z/) = wα@wα

means that
ΦK/) = Σ«2r®«,V (4-26)

r

Similarly using Proposition 3.2.3 we get

ΣΦ2X/ = <5W/, (4.27)
r

X<rκ(^) = ̂ /. (4.28)
r

Proposition 4.7. Γfte system (u^ : α e G, fe, / = 1 , 2, . . . , da) is a basis in the vector space

j/.

Proof. By virtue of Proposition 2.5 and Theorem 4.5 any element of j/ can be
written as a finite linear combination of elements u^. We have to show that these
elements are linearly independent. This fact follows immediately from the
following

Lemma 4.8. Let F be a finite subset of G and λuE<Cfork,l=\92,..., da, aeF. Then
there exists a continuous linear functional ρ on A such that

ρ(u«kl) = λ«kl (4.29)

for all kj= 1,2, . . . ,rf α and αeF.
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Proof of the lemma. Let A be the set of all continuous linear functionals defined on
A. We shall use notation (2.9). In the algebra

αef

we consider the subset

By virtue of (2.10) Bv is a subalgebra of B. For any βeF the map

(4 3°)
αeF

is an irreducible representation of B{ (a subspace invariant under all u% is
ι/-invariant). Proposition 2.1 shows that the representations (4.30) are pairwise
inequivalent. Therefore using the Burnside theorem (e.g. [8]) and Theorem 2.5.A
of [15] we obtain B^=B. It means that for any sequence (ία e B(Ka) : α e F) there
exists QeA' such that ία = u* for all α e F. Taking ία = £ m^/l^ (summation over
M=l,2, ...,dα) and using (4.25) we obtain (4.29). Q.E.D.

This ends the proof of Proposition 4.7. Q.E.D.

Let αej/. Then

«= Σ Σ βM> (4 31)
αeF fc/=l

where F is a finite subset of G, aklE<C ( fe ,/=l ,2 5 ...,dα; αeF). By virtue of
Lemma 4.8 one can find ρfs e >4' (r, 5 = 1, 2, . . ., dβ; β e F) such that Q?S(UU) = δβaδrkδsl.
Using (1.49) and (4.26) we get

a*Qβ

rs= Σ <*M,
1=1

and taking into account (4.27) we obtain

Σ φto(a*Qti = aξkI (4.32)
s = l

for allr9k = l,2,...,dβ and^eF.
Now we can complete the proof of Theorem 4.2.

Proof of the Implication (4.22). Assume that a given by (4.31) is positive and
h(a) = 0. Then for any state ρ of A, a * ρ is positive and [cf. (1.51) and (4.19)] h(a * ρ)
= (ρ*h)(a) = h(a) = Q. It means that (α*ρ)1 / 2 belongs to the left ideal
J = {a E A : h(a*ά) = 0}. Therefore a*ρeJ. Since any continuous linear functional
on A is a linear combination of states, the latter holds for any ρ e A'. Formula (4.32)
shows now that aβ

rk!eJ and aβ

rk = Q for all r,k = l,2,...9dβ and βeF. Therefore
α = 0. Q.E.D.

At the end of this section we consider certain mappings acting on ̂ ®alg^ that
play an important role in the differential calculus on pseudogroups (cf. [18,20]).
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Let r, r', s, sf be linear transformations acting on j/®algj/ such that for any a, b

Theorem 4.9. The linear transformations r, r', 5, and s' are bijections of j/(x) alrs/ orcίo
/! 7/zβ inverse transformations are given by the formulae

) = (α®/)(κ:(8)id)Φ(fe), (4.33)

(4.34)

(4.35)

s'- *(α® fe) - [(id® κ)Φ(α)] (/® 6) , (4.36)

for any a, b e j/. Moreover for any

/. We have to check that the linear mappings introduced by the formulae
(4.33)-{4.36) are really the inverses of r, r', s, and s' respectively. To this end one may
use formulae derived in Sect. 1. However it is simpler to use formulae (4.26)-(4.28).
By virtue of Proposition 4.7 it is sufficient to perform computations for a = u^ and
b = uβ

rs (where α,βe<5; fc,/=l,2, ...,dα and r,s=l,2,...,dβ). For example we
compute

= Σ «HΦf>L®< = α®^
nm= 1

Therefore r o r ~ 1 = i d . In the similar way one can check that r"1 o r = id, r' or '" 1

= r'~1°r' = id, s^s~1 = s~l o S = ίd, and sΌs'"1 =s / - 1 os 7 = id (where
id-id^ΘalgJ. Finally we have [cf. (1.47)] :

)= Σ ^(ΦL)®O
m=l

= Σ ΦIΦ
m= 1

= Σ (Φ
nm= 1

= /®φ^) = /®φ). Q.E.D.
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5. Unitary Representations, Characters, and Modular Properties

In the theory of representations of compact groups an important role is played by
unitary representations. There is a theorem saying that any finite-dimensional
representation is equivalent to a unitary one. Analogous results can be obtained in
our theory. As in the previous sections G = (A, u) is a compact matrix pseudogroup,
Φ and K are comultiplication and coinverse associated with G and si is the dense
*-subalgebra generated by matrix elements of u. We start with the following
definition:

Let K be a finite dimensional Hubert space. Then B(K) and B(K)®A are
C*-algebras. We say that a representation v of G acting on K is unitary if v is a
unitary element of B(K)®A.

One can easily check that the direct sum, the tensor product and the complex
conjugation applied to the unitary representations produce a unitary represen-
tation. Moreover if v and w are unitary representations acting on a f-d. Hubert
spaces K and L respectively and αeMor(X w), then <2*eMor(w, v). Indeed if
(0®/)ι; = w(α®/), then ι;*(0*®/) = (0*®/)w* and multiplying both sides from the
left by v and from the right by w we get (0*®/)w = ι;(0*®/).

It is not easy to show that any subrepresentation of a unitary representation w
is unitary and that the orthogonal complement of a w-invariant subspace is
w-invariant. In order to prove these facts one has to use in an essential way the
results contained in Sect. 4. At this moment we shall prove only the following
simple statement:

Proposition 5.1. Let wbea unitary representation of G acting on a f-d. Hubert space
L,vbea subrepresentation of w acting on a w-invariant subspace KcL and K^ be the
orthogonal complement of K. Assume that v is an invertible element of B(K)®A.
Then υ is unitary; KL is w-invariant and w|κι is unitary.

Proof. Let P be the orthogonal projection onto K. Then the restriction of w to K is
given by the formula

(5.1)

Let us notice that P (P®I respectively) can be identified with IB(K} (IB(K}@A

respectively). Remembering that w is unitary we have

v*v = (P® /)w*w(P(x) /) = P® I . (5.2)

We assumed that v is invertible. (5.2) shows that the inverse oft; coincides with v*,
i.e. v is unitary. Therefore vυ* = IB(K)®A = P®I. Taking into account Eq. (5.1), we
get w(P® /)w* = P® /, and finally w(P® /) - (P® 7)w. It means that P e Mor(w, w).
Therefore K1 = kerP is w-invariant.

Let PL = IB(L) — P be the orthogonal projection onto Kλ. Then P1®/
commutes with w and w1 = w(P±®/) is the restriction of w to K. Repeating
computation (5.2) we get

wfw^P1®/.

On the other hand

W i w? = wΐP1®/^* - (P1® /)ww* - P1®/ .

The last two formulae show that w t is a unitary element of B(K-L)®A. Q.E.D.
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Let K be a /-d. Hubert space. According to the Frechet-Riesz theorem one may
identify K with K' in such a way that (x\y) = <x, y > for any x, y e K. Let ϋ be a non-
degenerate smooth representation of G acting on K. One can easily check that v is
unitary if and only if vc = v.

Theorem 5.2. Let vbea representation of G acting on a /-d.c. vector space K. Assume
that v is an invertible element of B(K}®A. Then there exists a scalar product on K,
providing K a Hilbert space structure such that v becomes a unitary representation.

Proof. It is sufficient to show that v is equivalent to a unitary representation.
We endow K with a strictly positive sesquilinear form ( | •). Then (K, ( | •)) is a

Hilbert space and B(K) and B(K)®A become C*-algebras. Since v is invertible,
there exists a positive constant c such that cIB(K)^A^v*v. Therefore

Q = (id®h)(υ*v)

is a positive invertible operator acting on K. We claim that

υ*(Q®I)υ = Q®I. (5.3)

Indeed assuming that v = ̂ jmr®vr [where mr e B(K), vreA,r=ί,2,...,K]wQ have

(id® Φ)v = v®v = Σ mrms®vr®vs ,
r,s

(id ®Φ)(v*v) = Σ ms*mr*mr,ms, ® υr*vr, ® vs*vs> . (5.4)
rr'
ss'

Applying (id®ft®id) to the right-hand side of (5.4) we get

Σ ms* (Σ m*mr,h(v*vr>)\ ms,®v*vs,
ss' \rr' )

— Σ ms*Qms'®vs*vsf = v*(Q®I)v .
ss'

On the other hand (ft® id)Φ(α) = a*h = h(a)I. Therefore applying (id® ft® id) to the
left-hand side of (5.4), we get (id®ft)(ι;*ι;)®/ = β®/5 and formula (5.3) follows.

Let w = (β1/2®/X<2~1/2®/). Then w is a representation of G equivalent to v
(Q1/2 E Mor(z;5 w)), w is an invertible element of B(K)®A and formula (5.3) shows
that w*w = /. Hence w is unitary. Q.E.D.

In particular for any α 6 G, representation ua considered in Sect. 4 can be made
unitary by a suitable choice of scalar product in KΛ. In what follows we shall
assume that the basis (el : k = 1, 2, . . ., dΛ) is orthonormal with respect to this scalar
product. Then matrix (M^)k j Z = 1 >2,...,d a is unitary and using (4.27) we get

Φ2,) = ι4* (5.5)

for any α e G and fc, ί=l,2, ...,dα. The contragradient representation can be now
written in the form
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Combining Proposition 4.3.2 and 3 with Proposition 3.4.1 and 4 we immedi-
ately get

Theorem 5.3. Let v and w be f-ά. representations of G. Assume that v is smooth and
non-degenerate.

1. //Moφ,w) = {0}, then

®O = 0. (5.7)

2. //Mor(w,t;) = {0}, then

(id®/z)(ι;c©w) = 0. (5.8)

Let α, β e G and α φ β. Then representations ua and uβ are not equivalent and
using Proposition 2.3 we have Mor(wα,t/) = {0} and Mor(t/,Mα) = {0}. Inserting
v = u* and w = uβ in (5.7) and (5.8) we obtain [cf. (2.15), (4.25), and (5.6)]

Λ("&t&,*) = 0, (5.9)

h(u«mMι) = 0, (5.10)

for any fc,/=l,2, ...̂  and w,n=l,2, ...,dα.
In order to derive the corresponding formulae for β = α we have to prove a

result corresponding to Theorem 5.3. In the formulation of the following theorem
we use the identifications described in Sect. 3.

Theorem 5.4. Let v be a smooth non-degenerate irreducible representation of G
acting on a /-d.c. vector space K. Then there exists one and only one invertible
operator FeB(K) such that TrF = TrF- 1 >0 and

(5.11)

2. For any aeB(K) =

(id®h)(v®vc)a=Ύ*^-IB(K). (5.12)
LTΓ

3. For any bεB(K') = K'®K9

(id®h)(υc®v)b=™_l(F-ί)τ. (5.13)

If K is a Hilbert space and v is unitary, then F is a strictly positive element of the
C*-algebra B(K).

Proof. According to Proposition 4.4 (with w = v and a = IB(K}) there exists
Fe Mor(t;, vcc) such that TrF>0. Invertibility of F and (5.1 1) follows directly from
Proposition 2.3.

By virtue of Proposition 2.2 and Proposition 3.4.1, IB(K) is the only up to a
numerical factor (ι;@ι;c)-in variant element. Similarly (5.11) and Proposition 3.4.2
show that F is the only up to a numerical factor (t;@ι;c)-in variant functional. Now
formula (5.12) follows from Proposition 4.3 applied to the representation v®vc.
Indeed inserting in (4.23) /β(X), F and a instead of x, x' and y respectively and taking
into account (3.10) we obtain (5.12).
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We know that FeMoφ,ι;cc). Consequently F~l eMor(ιΛ,t;), and using
Proposition 2.3 and Proposition 3.4.3 we see that (F-1)τ is the only up to a
numerical factor (vc® ^-invariant element. Similarly Proposition 2.2 and Pro-
position 3.4.4 show that IB(K} is the only up to a numerical factor (vc©v)-invariant
functional. Formula (4.23) can be applied again. Replacing x9 x

f and y by (F"1)7,
IBM and b respectively and taking into account (3.10) we obtain (5.13).

By virtue of Proposition 5.2 we may assume that K is a Hubert space and that v
is unitary. Then replacing in (3.15) v~1 by v* we see that (5.12) is positive for any
positive a e B(K). Therefore F > 0, F~1 > 0, and Tr(F~ l ) > 0. Up to this moment F
was defined uniquely up to a positive factor. We use this freedom in order to have
Tr(F-1) = TrF. Clearly this condition fixes F completely. Q.E.D.

For any α e G the operator F related to representation ua will be denoted by Fα.
Inserting in (5.12) and (5.13) ua given by (4.25), u«c given by (5.6), a = πflk and
b = (mc!nn)

τ and performing the necessary computation, we obtain for any α e G and
k,l,m9n = l,2,...,da the following relations

fe), (5.14)

'my, (5.15)
Mα

where M^TrF^Tr^'1)-
The Haar measure need not to be central. We are going to describe the modular

properties of the Haar measure. In this description we use a certain class of
holomorphic functions. We say that an entire function / is of exponential growth
on the right half-plane if there exist constants M>0 and τ real such that \f(z)\
<Mexp(τRez) for any z in the right half-plane. The following lemma is well
known (cf. [16, p. 228]).

Lemma 5.5. Let f± and f2 be entire functions of exponential growth on the right half-
plane. Assume that fι(z)=f2(z) for z = 2,4,6,.... Then fι(z)=f2(z) for all ze(C.

Now we can formulate the main result of this section:

Theorem 5.6. There exists one and only one family (fz)ze<c of linear multiplicative
functional defined on ̂  such that

1. For any atstf, the mapping

is an entire function of exponential growth on the right half-plane
2. /z(/) = l for αHzeC.

3. f , * f z = fx + Z' (5.16)

for any z, z' e (C. Moreover f0 = e.
4. For any z e (C ami any a e j/,

/z(φ))=/_z(a), (5.17)

/z(a*H/^) (5.18)

7n particular for purely imaginary z,/2 is a *-character defined on j/.



654 S. L. Woronowicz

5. For any

. (5.19)

6. For any αe^/ and bεA,

ι)) (5.20)

Proof. We know that the operators Fα are positive. For any z we set
F* = exp(zlogFα). By virtue of Proposition 4.7 there exists a linear functional

/Z:^C, (5.21)

such that

z) (5.22)

for any α e G and k,l=l,2,...,dΛ. We shall prove that the family of functionals
(/z)zec introduced by (5.22) satisfies all the requirements listed in Theorem 5.6.

Statement 1 follows immediately from (5.22) and Proposition 4.7. To prove
Statement 2 it is sufficient to insert in (5.22) α = the class of trivial representation.

Comparing (5.22) with (4.25) we see that

= Fί (5.23)

for any αeG. Clearly (5.23) is equivalent to (5.22) and defines functionals fz

uniquely. Inserting in (5.23) z = 0 and using Proposition 3.2.2 we get fQ = e.
Moreover by virtue of (2.10),

[ω®(/2VΛ>β = (id®^^^

and (5.16) follows. This way Statement 3 is proved.
According to (5.22) (fz(ul$ktι = ι,2,...,dα is

 tne matrix representing Fz

a in the basis
(e%:k=l,2, ...,dΛ). We know that Fz

aF~z = IB(Kχ}. We shall use the corresponding
matrix equation

Σfz(<r)f-z(ιO = δma. (5.24)
r

Taking into account (5.22) we may rewrite relations (5.14) and (5.15) in the
following way

^-^/i(«HJ9 (5-25)

τ^^/-ιK). (5-26)
-^α

We shall prove Statement 6. Let

a = u«mk and b = uβ

nl*9 (5.27)

where α,βeG; m,fc=l,2, . . . ,d α and n,l=l,2,...9dβ. Then [cf. (4.26)]

/i *fl*/ι =
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By virtue of (5.9) and (5.10) both sides of (5.20) vanish for βΦα. Therefore it is
sufficient to consider the case β = a. Using (5.26) and (5.24) with z= 1 we compute

i * α */ι))= Σ /ι(OMt4XJ/ι04)

In the last step we used (5.25). This way we proved (5.20) for a and b given by (5.27).
By linearity (5.20) is satisfied for any a.besέ and remembering that s$ is dense in A
we get (5.20) in full generality. Statement 6 is proved.

It follows easily from (5.20) and (4.22) that the mapping

is multiplicative. By iteration the mappings

<β/9αh->/ z *α*

are multiplicative for z = l,2, ... . Using (1.51), (1.53), and (5.16) we get

</;***/J=/2z(β) (5-28)

Remembering that e is multiplicative we see that

fz(ab)=fz(a)fz(b) (5.29)

for any a,be^ and z = 2, 4, 6, .... By virtue of Lemma 5.5 (5.29) holds for any z e (C,
i.e. all functional (5.21) are multiplicative.

Applying fz to both sides of (4.28) and comparing with (5.24) we get fz(κ(u^n))
=f-z(uΐn) for any α e G and r,n=l,2, ...,<iα. Formula (5.17) follows.

We know that Fα is positive selfadjoint. Therefore F~Z = (F~*)*. Writing the
corresponding matrix equation we get /-Z(M^) =f-z(u*k). Now using (5.5) and (5.17)
we have

and (5.18) follows. Statement 4 is proved.
We know that FαeMor(t/α, uacc). By virtue of (3.11) the second contragradient

u«cc = (id®κ2}ua. Therefore

(id® κ2K - (Fa®I}u\F- 1 (x)/) .

Writing the corresponding matrix equation we get

r,s

On the other hand using (4.26) one can easily check that
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This proves (5.19) for a = ua

kl (αeG, fe, /=1,2, ...,dα) and (cf. Proposition 4.7)
Statement 5 follows.

Let (/z')zec be another family of linear functional on jtf such that Statements 1,
3, and 6 (with fz replaced by fz) are satisfied. Then using (5.20) and the
corresponding formula for fz and taking into account implication (4.22) one can
easily check that // * a */! =// * a *// for any a e s t f . Iterating we get fz * α */z

=fz*a*fz and [ςf. (5.28)] /2z(α)=/2z(α) for any αe^ and z = l,2,. . . . Now
Lemma 5.5 shows that f z = f z for any ze(C. Q.E.D.

The Haar measure need not to be faithful. The implication (4.22) means only
that the intersection of si with the left ideal

is trivial. However using the last statement of Theorem 5.6 one can easily show
that J is a two-sided ideal. Let π be the canonical projection of A onto A/J and
ur = (ιά®π)u. Then Gr = (A/J,ur) is a compact matrix pseudogroup and the Haar
measure on Gr is faithful.

For the reader's convenience and for future reference we collect all important
properties of the basis (u^ : a e G, fc, / = 1, 2, . . ., da)

Theorems.?. Let {wα}αe(~ be the complete family of mutually non-equivalent
irreducible unitary representations of G belonging to the class &G and u^ (where
k,l=l,2,...,dΛ,dΛ = dimKα, Ka is the carrier Hilbert space of u*, ueGJbe the matrix
elements of ua with respect to an orthonormal basis in KΆ. Then

1. (UM : α e (3, k, 1= 1, 2, . . ., dΛ) is a basis in the vector space $# .
2. For any α e G the matrix ( W f c / ) f c / = l ϊ 2 , . . . , d α

 ί5 unitary.
3. For any αeG and k, 1=1, 2, ...,dα,

*(**/)= Σ C®^,
r= 1

^Λ yα \ _ ίvα *
κ\ukl) — Ulk '

4. For any α,j8eG; m,fe = l,2, ...,

Λ "For any α 6 G we set

*.= Σ «4 (5-30)
k = l

Then Mα=/1(χα)=/_1(χα). χα is said to be the character of wα. Let us notice that

(5.31)
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This fact corresponds to the well known property of characters in the standard
group representation theory saying that they are invariant under inner automor-
phisms. (5.31) implies that

Q*X* = Xa*Q (5.32)

for any ρeA'. Using Theorem 5.7 and Theorem 5.6 one can easily verify the
following relations:

Hχ.χβ*)=h(x*χf) = δ^, (5.33)

- V-« ' (5.34)

for any α,βeG and n,/=l,2, ..^d^.
Let ρα = Mα/z(/1 * χα)* be the continuous linear functional on ,4 such that

(5.36)

for any aeA (cf. [3]). Then formula (5.35) shows that

(5.37)

In general the character χv of any finite-dimensional representation v of G is
introduced by the formula

One can easily check that the characters of equivalent representations are
equal. Moreover the character of the direct sum of two representations is the sum
of the corresponding characters. Similarly the character of the tensor product of
two representations is the product of the corresponding characters (taken in the
same order). The character of the complex conjugate representation is the
hermitian conjugation of the character of the original representation.

At the end we would like to show that the class of representations &G that we
mainly dealt with is rich. In particular it contains all finite-dimensional unitary
representations. This fact follows immediately from

Theorem 5.8. Let w be a unitary representation ofG acting on a f-d. Hilbert space L.
Then L is the orthogonal direct sum

L=Σ®K< (5-38)
teT

of ^-invariant subspaces such that for any t the restriction of w to Kt is equivalent to
u" for some α e G. Let TΛ be the set of all teT such that w\Kt is equivalent to ua and na

be the number of elements of Ta (α e G). Then

*w = Σ»α;tα, (5-39)
α

«.=Mx.*χJ (5.40)

Moreover for any αe G, (id(x)ρα)w is the orthogonal projection onto ^® Kt.
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Proof. Assume that for some α e G there exists a non-zero operator intertwining u*
with w. Then w has a subrepresentation equivalent to u*. By virtue of Proposi-
tion 5.1 we have orthogonal decomposition L = Kί@Ll9 where K^ and L x are
w-invariant, w\Kl is equivalent to u* and w|Ll is unitary. Repeating this procedure as
many times as possible we arrive at the orthogonal decomposition

L=Z*Kt&L, (5.41)
ίeT

where Kt (t e T) and 'L are w-invariant subspaces, for any t e T the representation
w|Xt is equivalent to u" for some α e G and i; = w|,L is a unitary representation such
that Moφα,ι;) = {0} for any αeG.

Using Theorem 5.3.1 we get

Q (5.42)

for any αeG. Let

r = ΣX<8)ι?r, (5.43)
r

where m 1 ?m 2, ...,mκ are linearly independent elements of £('L) and u re^4
(r=l,2, ...,#). Relation (5.42) means that h(vru*kl*) = 0 for any αeG; & , / = 1,2, ..., dα

and r = 1 , 2, . . ., #. Taking into account Proposition 4.7 and remembering that <$# is
dense in A we see that h(vra*) = 0 for any a e A In particular /ι(ι;rιv*) = 0 f°r anY r? r/

= 1,2, ...,.R. Now we have

(id®h)vv* = Σ mrmr*h(vrvr*) = 0 .

On the other hand vυ* = IB(,L}®l and (id®/ι)ι;ι;* = /β(>L). This contradiction shows
that dim'L = 0 and (5.41) reduces to (5.38).

Remembering that the character of the direct sum of representations is the sum
of characters we get (5.39). Formula (5.40) follows immediately from (5.39) [cf.
(5.33)]. The last remark is implied by (5.37). Q.E.D.

Corollary 5.9. Two unitary representations having the same character are equivalent.

Using (5.39) and (5.33) one can easily check that

Corollary 5.10. A unitary representation w is irreducible if and only if its character
χw satisfies the relation h(χw*χw) = ί.

Let

^central = #~ '(^Sym^) ?

^central = ̂ centralΠj^

Using Proposition 4.7 and formula (4.26) one can easily check that a e ̂ central if
and only if α is a finite linear combination of characters χa (α e G). Taking into
account Corollary 5.9 and remembering that the character of the tensor product of
representations is the product of the corresponding characters, we get
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Proposition 5.11. The algebra ^/centraι is commutative if and only if for any two
unitary representations v and w of G, vφw is equivalent to

Let us notice that this is the case for G = SμU(2) and G = SμU(3).
Clearly ^4centrai *s a C*-subalgebra of A. Elements of ,4central are called central.
Let us end this paper with the following question:

IS Central dense ill Central?

If G is a group then the answer is positive.

Appendices

Al . Haar Measure on SμU(2)

In [18] we presented the formula describing the Haar measure on the twisted
SU(2) group. Here we shall prove this formula.

In this Appendix G = SμU(2), where |μ|<l, μφO. Consequently A is the
C*-algebra generated by two elements α and y satisfying the relations (1.33). The
comultiplication and the coinverse act on generators of A in the following way (cf.
[18]):

Φ(α) = α® α — μy* (x)y ,

φ(γ*) = y*(x)α* + α® y* ,

κ;(α) = α* 3 κ(γ*)= — μ~ly* ,
(A 1.2)

-μy> Φ*)=α.
The fundamental representation w and its second contragradient represent-

ation ucc are given by

The first formula coincides with (1.34), the second can be immediately checked by
direct computation using (A 1.2) (remember that ucc = (\ά®κ2}ύ).

Let us notice that the operator F (cf. Theorem 5.4) associated with the
fundamental representation u is given by the formula

0, \μ\

Indeed TrF^TrF"1 = \μ + μ~l >0 and the elementary computation shows that
(Fu®I}u = ucc(Fu®I] [the latter means that FMeMor(u,ucc)].

Using (5.22) one can compute the functionals (5.21) for SμU(2). We have



660 S. L. Woronowicz

Now taking into account (A 1.1) we easily obtain the following convolution
product formulae

(A 1.3)

In particular /x *α*/ 1=μ~~ 2α. Therefore [cf. (5.20)]

h(κb) = μ-2h(ba) (A 1.4)

for any b e A.
For any fc= ..., — 2, — 1,0, 1,2, ... n,m = Q, 1,2, ..., we set

Y for /c^O

for ( }

It is known that the family of all elements (A 1.5) forms a basis in the vector
space s0 (cf. [1 8, Theorem 1 .2]). Taking into account (A 1 .3) and remembering that
functionals fz (z e <C) are multiplicative, we get

fz*akmn = \μΓk-n + m}zakmn, (A 1.6)

akmn*fz = \μΓk + n-m)zakmn, (A 1/7)

for all fc,m,«. On the other hand /z(/)=l. Therefore according to (4.19) / z*/ι
= h*fz = h, and using (1.51) we see that h(α*fz) = h(fz*ά) = h(α) for any αej^.
Combining this result with (A 1.6) and (A 1.7) we get

h(αkmn) = 0 (A 1.8)

for all fc, m, n except the cases when fc = 0 and m = n. Let fcm = α0mm = (y*y)m, where
m = 0, 1, 2, .... In order to compute the remaining value of (A 1.8) we set b = α*bm in
(A 1.4):

Using commutation relations (1.33) one can easily check that αα*fom = bm — μ2bm +1

and (y*bmvί = μ~2m(bm — bm+i). Inserting these data into the above formula we get
after simple transformations

h(bm+1) (1-μ2^4)-1

h(bm) (\-μ2^

Therefore
, / 7 λ const

where the constant can be computed by setting m = 0: b0 = /, h(I) = 1. Hence const
= 1 — μ2. Finally we have

h((y*y)m) = (l-μ2m+2)
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for m = 0,1,2,.... Solving the corresponding problem of moments we get for any
function X continuous on the spectrum of y*y,

OHΛΓ1 £ μ2kX(μ2k),

where N= £ μ2k = (l—μ2)~1 is the normalization factor.
fc = 0

Let H be a Hubert space with an orthonormal basis (φnk:n = Q, 1,2, ...
fc-integer) and π be the representation of the C*-algebra A acting on H such that (cf.
[18]):

We claim that

for any a e A. One can prove this formula by checking that it gives the right values
for a = akmn. The details are left to the reader.

Let dn be the (2n + l)-dimensional representation of SμU(2). We shall compute
the character χn of dn. For n = Q,dn is the one-dimensional trivial representation and
χ0 = L For n=^5 dί/2 is the fundamental representation and [cf. (1.34)]
χ1/2 = α + α*. Let n^ We know (cf. [18, Theorem 5.11]) that dn®d1/2 is
equivalent to the direct sum dn^1/2®dn+1/2. Therefore

Xn + l/2 = XnXl/2 ~ Xn - 1/2

Solving this recursive equation we get

where t = 2 arccos I

Let us notice that the functions (A 1.9) form an orthonormal sequence on the

interval [0,2π] with respect to the measure — (sin^t)2dt. Therefore for any
7e C(Spectrum t\ π

π o

Taking into account the definition of t and substituting x = cos^τ we get

for any ZeC([-l,l]).
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A 2. Finite Matrix Pseudogroups

Let G = (A, u) be a compact matrix pseudogroup. We say that G is finite if
dimv4< oo. In this Appendix we show that many formulae derived in this paper
may be essentially simplified if the considered pseudogroup is finite. In particular
we find the simple formula defining the Haar measure on finite matrix
pseudogroups.

Any finite-dimensional C*-algebra is a direct sum of full matrix algebras.
Having this fact in mind one can easily prove

Proposition A2.1. Let A be a C*-algebra and Z(A) be the center of A:

Z(A) = {aeA\ab = ba for any b6A}.

Assume that A is finite-dimensional. Then
1. For any linear multiplicative functional f defined on A there exists a unique

minimal projection fAεA such that fAa = afA=f(a)fA. IH particular the number of
linear multiplicative functional on A is finite.

2. There exists a unique positive linear functional Tr on A such that Tr P = 1 for
any minimal projection PeA. This functional is central: Ύr(ab) = Ύr(ba) for any
a, be A.

3. Any central linear functional τ on A is of the form

τ(a}= £ cPTr(Pα), (A2.1)
PeC

where C is the set of all minimal projections in Z(A) and cp (P E C) are complex
constants.

4. dim,4= £ (TrP)2. (A 2.2)
PeC

Let G = (A, u) be a finite matrix pseudogroup. Then the dense *-subalgebra j/
generated by matrix elements of u coincides with A and the functional e and fz

introduced in Proposition 1.8 and Theorem 5.6 are defined on the whole A. It
follows immediately from Proposition A 2.1.1 that fz does not depend on z.
Therefore fz =/0 = e for any z e (C. This fact simplifies many formulae of Sect. 5. In
particular using (1.52), Theorem 5.6.5 and 6 taking into account (1.4) we obtain

Proposition A 2.2. 1. The Haar measure h on G is central: h(ab) = h(ba) for any
a, be A.

2. The coinverse K associated with G is an involutive C*-antiisomorphism of A:
κ(κ(a)) = a and κ(a*} = κ(a)* for any a^A.

In particular Tr is κ>invariant:

Tr(φ)) = Tφ) (A 2.3)

for any a e A.
Let Φ be the comultiplication associated with G and eAeA be the minimal

projection corresponding to the linear multiplicative functional e (cf.
Proposition A 2.1.1)

eAa = aeA = e(a)eA (A 2.4)
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for any aeA. We shall prove that

(I®a}Φ(eA] = (κ(a}®I}Φ(eA} (A 2.5)

for any a e A. Indeed by virtue of Theorem 4.9 one may find bm, cmeA
(m = l,29...,M) such that

) , (A 2.6)

(A2.7)
m

Applying (e(g)id) to both sides of (A 2.7) and using (1.52) we get

Now (A 2.5) can be checked by direct computation. Using (A 2.6), (A 2.4) and the
last formula we have

(l®ά)Φ(eA] = Σ (bm®I)Φ(cmeA) = Σ (bm® I}e(cm}Φ(eA) = (κ(ά)®I)Φ(eA) .
m m

Let R be the minimal projection in Z(A) (center of A) and ER = (R®I)Φ(eA).
Clearly ER is a projection and using Theorem 4.9 we see that E^ΦO.

Let Q be a minimal projection in A® A such that Q^ER. Then Q^Φ(eA),
Q = Φ(eA)Q, and using (A 2.5) we have

(l®d)Q = (κ(ά)®I}Q (A 2.8)

for any αe A Computing the hermitian conjugation of both sides of this relation,
replacing α* by a and taking into account Proposition A 2.2.2 we get

(A 2.9)

for any aeA. Let a, be A. Using the last two formulae we have

= Q(I®ab)Q .

This relation shows that the linear functional

A3CH-+ (Tr®Tr) ((I®a)Q)

is central. Therefore (cf. Proposition A 2.1. 3)

(Tr(g)Tr)((/<8>fl)β)= Σ cPTφP), (A 2.10)
PeC

where C is the set of all minimal projections in Z(A) and the constants cp (P e C) are
independent of a eA.

We know that Q^ER<^R®L Therefore (R®I}Q = Q, and using (A 2.8) we have
(I®κ(R))Q = Q (κ~1 = κ). Replacing in (A 2.10) a by aκ(R\ we get

(Tr® Tr) ((/®α)β) = cκ(R} Ύr(aκ(R)) . (A 2.1 1)

We know that Q is a minimal projection in A® A. Therefore (Tr(x)Tr)(<2) = 1 and
inserting in (A2.ll) a = I we see that cκ(R)Ύr(κ(R)) = l and [cf. (A 2.3)] cκ(R)
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Now using (A 2.8) and (A 2.11) we obtain

(Tr® Tr) ((6® a)Q) = (Tr® Tr) ((I®aκ(b))Q)

_ Ύτ(aκ(b)κ(R))

~~ ΎrR

for any a, be A. Clearly this formula determines Q uniquely. Therefore there exists
only one minimal projection in A® A majorized by ER. In other words ER is
minimal, Q = ER = (R®I)Φ(eA) and

Multiplying both sides by ΎτR and summing over ReC we get

(Tr® Tr) ((bT® a)Φ(e A)) = Ίr(aκ(b)) ,

where

T= X (ΎΐR)R (A 2. 12)
ReC

and a, be A. Using the freedom of a we obtain

(Tr® id) ((bT®I)Φ(eA)) = κ(b) .

Let h be the Haar measure on G. Applying h to both sides of the above relation
and using (4.21) we get

) = (Ύr®h)((bT®I)Φ(eA)}.

On the other hand according to (4.20) (id®h)Φ(eA) = h*eA = h(eA)I and

) = Ύr(bT)h(eA).

By virtue of (A 2.2) TrT= £ (ΎrR)2 = dim A Therefore the normalization
ReC

h(I) = 1 implies that h(eA) = ~ — - and finally we have
dim A

where be A and T is given by (A 2. 12).
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