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Abstract. The general algebraic features associated to long range dynamics like
the problem of removing the infrared cutoff, the definition of the algebraic
dynamics and the occurrence of variables at infinity, the essential localization
(seizing of the vacuum), the effective dynamics and its covariance group
(dynamical symmetry group), the generalization of Goldstone’s theorem and
the non-trivial Goldstone spectrum, the mass/energy gap generation by the
non-trivial classical motion of the variables at infinity are explicitly shown in
the Kibble model as a prototype of gauge models exhibiting the Higgs
phenomenon. The relation between mass generation in the Higgs phenomenon
and the plasma energy gap is also discussed.

1. Introduction

The general properties of the dynamics of systems with long range interactions
have been discussed in previous papers [ 1-4] with emphasis on the occurrence of
variables at infinity in the time evolution of (quasi) local variables. The evidence
that the above structures are indeed realized has been shown in various cases like a
class of spin models [1], the BCS model [1], the Coulomb gas in uniform
background [5]. From the above examples it appears that the occurrence of
variables at infinity is a generic feature associated to Coulomb like interactions
and therefore present in gauge field theories (in positive gauges). This has been
explicitly shown for the Schwinger model, usually regarded as a prototype of gauge
theories with unbroken gauge symmetry, [6] and the present paper provides a
detailed analysis of the Kibble model, in four dimensions, usually regarded as the
prototype of gauge theories exhibiting the Higgs phenomenon [7-9]. The model
can be obtained from the abelian Higgs-Kibble model by neglecting the quantum
fluctuations of the modulus of the Higgs field y = |y|e'” and by actually freezing ||
to 1. In this case the Higgs-Kibble Lagrangian becomes

&= —3F;,—(0,0—eA,)* + gauge fixing (1.1)
* Work supported in part by INFN, Sezione di Pisa



594 G. Morchio and F. Strocchi

and in the Coulomb gauge the model is described by the following formal
Hamiltonian [7-9]:

H=3[[(Vo)* +n*]1d’x +5 [ d*x d*yr(x)n(y)V(x—y). (1.2)

The interaction term is not as strange as it could appear; it actually occurs also in
the full QED Hamiltonian, provided one realizes the analogy between 7 and the
charge density o(x) [the actual derivation of Eq.(1.2) in the Coulomb gauge
clarifies this point].

The model exhibits also strong analogies with the Coulomb electron gas in
uniform background, with the correspondence n— g(x)— @3, 0(x)=electron den-
sities, ¢z = background density, d,¢p —j,, j =the electric current, and therefore it can
also be considered as a prototype of Coulomb systems in uniform background (see
also Sect. 7 below), showing the deep link between mass generation in the Higgs
effect and the plasmon energy gap.

The model is soluble and apparently simple; however, the standard treatment
[7-9], without a careful handling of the infrared cutoff and its very delicate
removal, misses the basic algebraic structures mentioned above and in any case
leaves many questions of principle open: i) How does it happen that starting from
a symmetric Hamiltonian one ends up with non-symmetric equations of motion?
ii) Which is the basic mechanism by which the conclusions of the Goldstone’s
theorem are evaded? iii) Is there a generalized Goldstone’s theorem by which
spontaneous symmetry breaking entails the existence of generalized Goldstone
bosons with non-trivial energy spectrum, and it actually allows one to predict their
mass?

The general framework discussed in [1-4] allows a full (and rigorous) control
of the model as well as an answer to the above questions. The following treatment
of the model will also provide a non-trivial example in which the variables at
infinity are not obviously present in the starting Hamiltonian (as in mean field
models) but they arise as a result of delicate interplay between the long range 1/r
Coulomb-like interaction and the kinetic term. The model will also shed light on
the general mathematical structures associated to long range dynamics like a) the
weak topology of the physically relevant states which allows the removal of the
infrared cutoff, b) the symmetries of the algebraic dynamics and the occurrence of
variables at infinity, c¢) the algebra of essential localization, d) the effective
dynamics and its covariance group (dynamical symmetry group), e) the mass gap
generation by symmetry breaking and its relation with the “classical motion of the
variables at infinity.”

2. Canonical Field Algebra and Quasi Free States

The basic algebraic setting on which the following discussion is based, is the (local)
algebra .o/ generated by the canonical variables ¢, = smeared with test functions in
F(R3. We denote by W(F) the Weyl operators, F=(f,f,)€eT
=%(R)xS oo(R?) and by <, -> the usual symplectic form on 7,

[2(F), 2(G)]=iKF,G)=i[(f}, 82)— (/2 81)] 2.1)
(for more details see [10, 6]).
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We will consider quasi free states on ./ of the form

wu(W(F)=exp{—4[F,Fly}, (2.2)
where
[F,Gly= izjfd%ﬁ(k)MU(k)g,{k), 23)
with M of the form
()Pt o

a=o(k) real and r(k)> 0 (see [6, Proposition 2.1 and Eq. (2.18)]).
A simple extension of the above family of states is given by

Oy ,(W(F) = 0 (W(E)eH 1@ JeR, (2.5)

which define representations with a non-vanishing expectation value of the field ¢,
{pr=41.

3. Infrared Cutoff Dynamics and its Symmetries

To give a precise meaning to the formal Hamiltonian (1.2) one has to introduce an
infrared regularization and then discuss the removal of the infrared cutoff. We
choose the following regularization:

2
e

V=T =

J(xI/L), (3.1)

where f(x)e 2(R), f(x)=1 for |x|<1, f(x)=0 for |x|>1+a. The results do not
depend on the specific choice of the infrared regularization.

The cutoff Hamiltonian H, defines an infrared cutoff dynamics o} on the local
canonical algebra .«7. In fact, H, gives rise to the following equations of motion:

o f)=nd )+ VL * ),
i f)=@lAf),

Le.
®(F)=d(F,), FeT, (3.2)
where
Fi(k)= Ay (k)F(k), (3.3)
ey coswyt —(k*/w;)sinw, t
Arlb= ((wL/kz) sinw,t cosw,t >’ (34
w,=w (k)= [k*(1+ V(k)]'?, (3.5)

(in the following the subscript L will often be omitted for simplicity of notation).
Furthermore, since the matrix elements of A’ (k) are C®-functions of w?(k), which is
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a C*-function of k by Eq.(3.5) (thanks to the infrared cutoff!), and they are
bounded by polynomials in k, it follows that F; € 7. Finally, it is easy to check that
the linear transformation F—F' preserves the symplectic form and therefore
Eq. (3.2) defines an automorphism o} of o/:

o (W(F)) = W(ALF) (3.6)
(infrared cutoff dynamics ).

An obvious symmetry of the infrared cutoff dynamics is that corresponding to
space-translations

wL,WF)=W(F,), F,(x)=F(x-a). (3.7
It is easy to see that the following transformation
B W(F)»W(F)explid{ fi(x)d*x], JeR, (3.8)

F=(f), f2)€7, (corresponding to ¢— ¢+ A, 1— ) preserves the algebraic rela-
tions and therefore it defines an automorphism of o/ (rigid gauge transfor-
mations ). Furthermore, since

J10)=7,(0), (3.9)
one has
o BAW(F) = * 1Ol W(F) = f*al, W(F), (3.10)

ie. p* defines a symmetry of the infrared cutoff dynamics.
A less obvious symmetry of of is that corresponding to linear gauge
transformations (of the second kind)

BiW(F)=W(F)exp[il{ fi(x)xd’x], (3.11)
corresponding to
p—-@+1x;, wom. (3.12)

As a matter of fact, one easily checks that the transformation (3.11) preserves the
algebraic relations (in k-space it amounts to the multiplication of F(k) by
exp[A4(0,;)(0)]) and therefore it defines an automorphism of .«/; furthermore

Blog =i ft, (3.13)

as a consequence of 9, 14(0)=20,7,(0).
For the following, it is also useful to have the commutation relations between
B% and the space translations

Biog=p o B (3.14)

4. Physically Relevant States and the Removal of the Infrared Cutoff.
Algebraic Dynamics

According to the general approach discussed in [1-3], in order to remove the
infrared cutoff and to define in the limit L— o0 an algebraic dynamics, one has to
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make reference to a family IF of “physically relevant states” with the follow-
ing properties:

1) IF is closed under linear combinations.

ii) IF is norm closed and separating, i.e. ¢(4)=0, V¢ €[F implies 4 =0.

iii) IF is “stable under local operations” in the sense that if ¢ €IF also ¢ 44(-)
=¢(A4 - B), with A, Be.«/, belongs to IF.

Thus, the positive part IF* of IFis a full folium as in [11]. One then discusses the
(ultra) strong convergence of ok, as L— oo, with respect to the topology induced on
o by IF.

As a family TF of physically relevant states we choose that obtained from the
(pure) quasi-free states of Sect. 2 by application of the symmetrics * and . More
explicitly we consider the states associated to the representations of .o/ defined by
the following states:

@, 1,2 (WEF)) = 0 y(B* B B3B3 W(F))
=wyu(W(F))exp [i/lf 10) +;ij(5jf ) (0)} (4.1)

with AeR, LeR3,
op(W(F)=exp(—3[F, Fly) (4.2)

and M satisfying conditions (2.4). In the following, to simplify the notation, the
states @y, ;, Will be denoted by w,, 4={A4;i=1,2,3}, with the index M
understood; similarly f will denote a generic element f*f1' 525

Furthermore we restrict the space of states by the requirement that o(k), r(k) of
Sect. 2 are regular functions for k=0, a(k), r(k), r(k) ! are bounded by polynomials
at infinity and

My (k), k™*M,y(k)eLi,. (4.3)

(We will denote by M the set of M satisfying the above conditions.) By definition, IF
is therefore stable under (8%)* and (8{)*. Since by Egs. (3.3),(3.4) F}, € 7 whenever F
does, the family IF is also stable under (o} )*, (in general, however, there will be only
one Fock vacuum stable under (o})*, depending on L, so that the corresponding
representations will be disjoint for different L’s).

We can now remove the infrared cutoff.

Proposition 4.1. Let IF be a family of states defined above. Then
a) oy (A), A in the norm closure of <, is (ultra) strongly convergent as L— oo
with respect to the topology defined by IF.
b) The (weak) convergence of o} defines a one parameter group of mappings of
IF into itself
(oY =w*-lim (o)*, teR.

L- o

¢) (o"Y* uniquely determines a one-parameter group of automorphisms o, teIR,
of M =<, where the bar denotes the weak closure in the topology induced by IF on
oA, (algebraic dynamics).
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The proof requires some technicality, which sheds light on the problem of
removing the infrared cutoff also in more realistic models (as in the Coulomb gas
with uniform background [5]); for the proof we refer the reader to Appendix A.

5. Algebraic Dynamics. Variables at Infinity

We can now answer some of the questions raised in Sect. 1. Due to the long range
Coulomb type interaction the introduction of an infrared regularization is
necessary and the removal of the infrared cutoff requires special care (see the
previous section). The resulting algebraic dynamics exhibits very peculiar features
(as expected on the basis of the general ideas discussed in [1-3]). The first
interesting property is that o does not converge in norm and the algebraic
dynamics o =w-lima, does not leave the quasi local (canonical) algebra </ stable.
The situation is more delicate than in the Schwinger model [6], where stability
under the algebraic dynamics was obtained by considering the algebra generated
by the quasi local canonical algebra ./ and an algebra at infinity .o/ . Here, the
infrared interaction has stronger effects and the time evolution of local variables
does not only involve variables at infinity but also a substantial delocalization: as
we will see more explicitly below o leaves stable the algebra (o7, Uo7, ) generated
by an algebra of,C M, with trivial center and by an algebra at infinity <7,.

To discuss the above features more explicitly, we start by considering the
following enlargement of the Weyl algebra o/. We extend the Weyl system by
considering Weyl operators W(F) defined for

F=(f,f), fieF(RY), szz(k)ey(R3), (5.1

briefly we will say Fe 7,

One can easily see that the antisymmetric form (-, - is still defined on 7,,, and
therefore the CCR’s [Eq. (2.1)] extend to the enlarged Weyl system. We denote by
oL, the algebra generated by the extended Weyl system W(F), Fe 7, [Eq. (5.1)].
Clearly with respect to the quasilocal canonical algebra o7, generated by W(F),
FeJ =% x% the enlarged algebra ./, has a long range Coulomb type
delocalization. One can easily show that .7, can be identified with a subalgebra of
M W(F),F=(f,, f,) € 7., is identified with the strong limit of W(F,), f,,=f1, k*fa»
converging in & to k2f,. For the following it is convenient to introduce the
following variables at infinity:

i) the variable at infinity ¢ : we start by considering W(sFy), se R, with
Fr=(f1r0), fig satisfying the following conditions

flR(0)=1a (9,']711()(0):07 f1R§0,
|Frlpy—=0 as R-ooo, VMeM.

(5.2)

Then, by using an explicit calculation as in the Appendix Eq. (A.7), we get
Igi_{r(}o wp, AW W(SFR)VVZ):eMSwM,A(VVI Wy). (5.3)

This implies weak convergence of W(sFy) by a density argument and uniform
boundedness of W(sFp).
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Actually, as a consequence of || F|l,,—0 and (0 jfl r) (0)=0, W(sF ) converges
strongly (in each #™4), and we may define
U,(s)=s-1im W(sFg) (5.4)
R—x
(as an element of .#). U(s) is a strongly continuous one parameter group [see
Eq. (5.3)] and we may write
U (s)= e (5.5)
with
Wy, 5.5(U(s) = (5.6)

ii) Similarly, by choosing W(sF%), seR, with Fi=(f/z,0), fire #(R?),
j=1,2,3, satisfying’

1jR0=0: ai 1jR O=.5ij’
() (0.]1r) (0)=i 57)

hm |Filly=0, VYMeM,

we get
llm Oy, AW W(sFRW,) =%y, (W W,).

As above, one can actually show that W(sF%) converges strongly in each #4,
and one may define

Ti(s)=s-lim W(sF), (5.8)

as an element of .Z. T (s) defines a strongly continuous one parameter group and
its generator defines a variable at infinity (0,),,, with w,, ,(e®¥)=)=¢"* the
algebra generated (through norm closures) by U _(s) and T (s) will be denoted by
o . We then have

Proposition 5.1. The algebraic dynamics o' maps the algebra 4(</,0.9/ ), generated
by </, and by the algebra at infinity of,, (through linear combinations and norm
closures ), into itself.

In particular, VF € I ,,,

W)= W(E)expil F,0)~T{0p. ]
[T expild*xx/f ~ £ 0,0).1, (59

where @, and (0,0)., are the variables at infinity corresponding to the fields ¢ and
0, and are invariant under o',

! The above conditions (5.2) (5.7) are fulfilled e.g. by taking f,x(x)=R"*f(|x|/R), f(0)=1, /=0,
and fig=—R"0;/(x|/R)
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Remark. The above proposition provides a rigorous control on the solution of the
field equations: Eq. (5.9) corresponds to

d(p(x)) = Ccosat * @+ [(w/k?) sinwt] * 7
+(1 —coswot)p, + (1 —coswot)x (0;0),, , (5.10)

and it clarifies the occurrence of variables at infinity in the time evolution of the
local variables. Clearly, in representations characterized by a translationally (or
rotationally) invariant ground state, the variable at infinity (0,¢), vanishes and
one is left only with the variable at infinity ¢.

For the proof of Proposition 5.1, see Appendix B.

6. Variables at Infinity and Symmetries

To investigate the symmetries of the algebraic dynamics it is convenient to discuss
how the symmetries f*, AeR, f*, /,eR, and o, xeIR?, defined on the quasilocal
algebra ./, have a unique weakly continuous extension to (the weak closure)
M =/ (see [1-3] for the general strategy).

i) Rigid Gauge Transformations *. Since by definition (8*)* maps Finto IF, f*is
[F-weakly continuous, and therefore

BU (s)= w—}lijrgo B*W(sFp)=e*U (s), (6.1)
ie.
Bleisoe = eis@ot ) (6.2)
Furthermore, by condition (5.7), fiz(0)=0, we have
B T.(s)= w-lim fAW(sFip) = To(s) (6.3)

ii) Linear Gauge Transformations f*. Again, (B*)* leaves IF stable so that f* is
[F-weakly continuous and by Eq. (5.4),

AU (s)=w-lim pHW(sFg)
R—->

= Ilim W(sFg)exp . s4(0:f1z) (0)=U . (s), (6.4).

ie.

Bi(e"0=) =0, (6.5)
Similarly,

AT (5) = w-lim BHW(sF})
R
=w-lim W(sFj)e'*2 = T (s)e™sMov (6.6)

R

ie.

B*(expis(0;p).,) =expis[(0;0), + 12,1 (6.7)
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iii) (Space Translations), o,. We start by showing that IF is stable under (a,)*,
x eR3;in fact, IF is generated from the translationally invariant states w,, through
applications of (8%)* and (*)* and

CRRTEM (TN o5 (8o

(6.8)
A+ 2ax ¥ _
:<ﬂ " > [T(B*) oy
J
The stability of IF implies that o, is [F-weakly continuous and therefore
o U (s)= w-li}r{n a,W(sFr)=U ,(s)[] T(sx,), (6.9)
j
Le.
o, (EXpise ) =expis ((poo + Z(@i(p)wal) ) (6.10)
Similarly, one has
o, T (s) = w-lim o, W(sF) = Ti(s), (6.11)
R
Le.
%,(CXPIS(04P).) = XPIS(04 )., - (6.12)

Using these formulas one can check that the so extended symmetries from .7 to
G(A, 0. ) still obey the original group laws, e.g. Egs. (3.14).

We can also check that the above symmetries 8%, f*, a, are symmetries of the
algebraic dynamics o«'. In fact, we have

B W(F)= BAW(F") explig (f,(0)— F{(0))]
X exp {; (0;0):[0;7) (0= (2,71 (0)]}
= W(E)e MO expli(p, + ) (,(0)—~Fi(0)]
X exp {; (0,0)[(0;7) (0)— (@, (0)]}
=o' W(F)e* O =o' B*W(F).
Similarly, one proves

A Ay —
prol=a'Bh, ool =da,.

It should be noted that the variables at infinity are crucial for the above symmetries
of the dynamics.

7. Effective Dynamics and its Covariance Group

In each factorial representation [T of &/, defined by states of IF, the variables at
infinity get frozen to their expectation values in IT and therefore VA €./, the
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dynamics o' reduces to an effective dynamics of;; symbolically
(A)=F (AL ),

(o (A)) = (e (A) = II(F (21, {1, ) 1) -
From Eq. (5.9) with ¢, and (0,¢),, replaced by their expectation values in I1, it
follows easily that af; leaves </, stable and in fact it defines an automorphism of <Z,.
More explicitly for the field variables, one has, YF e 7,

A D(F) = O(F')+ ¢, [ 11(0) (1 —coswg1)
+K275(0) sinw,t/wo] — 13.(0;0)o [0,71(0) (1 —cosw,t)
J
+(0,(k>72)) (0) sinwo /o] ,

oty ®(F) = O(F)+(f,(0)~F{(0)]1(¢..)
—l?[(5,-71)(0)—(0,-/71‘)(0)]17((0,(/9)@).

(7.1)

It is now obvious that, due to the freezing of the variables at infinity, the
effective dynamics of; is no longer symmetric under f* and p* To investigate the
covariance group of o it is convenient to introduce the following automorphisms
of o,.

Symmetry y*, AeR: VFe 7, we define
Y*W(F)= W(F)expiik2f,)(0). (7.2)
Clearly y* is trivial on .7, but not on .2/,
Symmetry y*, heR3: VFe7,,,, we define
YW(F)=W(F)exp b 2{04k?1,)) (0)

W(F)exp[—1i[Af5(x)h - xdx]. (7.3)

Again, y* is trivial on .« but not on .«Z,. The possibility of introducing the above
symmetries is therefore strictly related to the necessity of extending the quasi-local
algebra o/ in order to get stability under time evolution; in a certain sense the
symmetries y*, y* have a dynamical origin.

It is very simple to check that the symmetries % %, %, y*, all commute, i.e. they
form an abelian group. Furthermore

Vo WF) =y W(F,)=0y*W(F), (7.4)

ie. p* and y* commute with the space translations, whereas y* has the same
commutation as * [Eq. 3.14)]:

P W(EF)=7*W(F,) =a,y" expik - a(k’],) (0)
=o,y*y* 2W(F). (1.5)
With the help of the above symmetries we may now characterize the covariance

group G of the effective dynamics, namely the group generated by *, %, o,,, and o%;.
For simplicity we consider the effective dynamics corresponding to the represen-
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tation IT with I1(¢ ) =0=1I1((0;0).,), so that af; W(F)=W(F"). From Eq. (7.1), we
then get
Broy W(F)= B*W(F')= W(F") expi’f{(0)
= W(F")expii[ f,(0) cos ot — (k2f,) (0) sin gt/ ]

=l eoseuty inotiooly (F) (7.6)
and
Broi W(F) = W(F') expMaf}) (0) = o ooty ~sinotiooy/(F). (7.7)
Similarly,
yorty = ot froosinwaty dcoswat (7.8)
Py =ty ot proosin, (7.9)

The above commutation relations (3.14), (7.4), (7.9) characterize the covariance
group G. In infinitesimal form, by denoting by P, H, G, G, I', I the generator of «,,
o, B4 B*, 9% v*, we have

[G,H]=-T, [I,H]=w}G,
[G,H]=-T, [I,H]=0G, (7.10)
[Gi:Pj]:(sijGa [C)Pi:l:éijr’

and all the other commutators vanish. The above structure shows some
resemblance with that of the jellium model [4] with the canonical field = playing
the role of the net charge density o(x)—gp, —0;¢ playing the role of g5 !j; (j the
electron current) and w, being the plasma frequency. For more details see [5].

Remark. We consider now the general case in which the effective dynamics is
defined with reference to a representation IT’' defined by a state @’ of the form
w4 (see Sect. 4), by definition of the family IF. Then, of, =B~ *B~ %o, f*B* (sce
[2]) and clearly the covariance group of «j;. is isomorphic to that of of;.

The enlargement of the original symmetry group generated by 8%, p*, and ,, to
the covariance group G naturally leads to an enlargement of the family IF of states.
We therefore introduce a new family of states S on o/, obtained from the pure
states w,, (Sect. 2) by application of the covariance group G:

Oy, 20,0 A = Op(B* B (A = w0y (BYN(A),  VAed,. (7.11)

The new states S coincide with the states IF when restricted to the quasi-local
subalgebra .o7; they define a different topology? on .o/, with respect to the
F-topology; in particular the IF-states are not stable under o};, which is therefore
not [F-weakly continuous.

The larger family of states S gives rise to a larger set of variables at infinity. The
construction of the variables at infinity U (s), T%(s) done in Sect. 5 as IF-weak

2 In this topology </ is not dense in o7,
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limits also works in the S topology namely W(aFy), Fr=(f,x,0), satisfying
condition (5.2) and W(sF}), Fi=(f{x,0), satisfying condition (5.7) converge
strongly on the states of the family S, by essentially the same argument.

We have in addition two other variables at infinity corresponding to the labels
vand v of the states S, Eq. (7.11). They can be obtained as S weak limits of elements
of <7, in the following way.

The variable at infinity V_(s), se R, with

wM,l,l,v,v(Voo(S))zeivss (712)
can be obtained by considering
W(SGR) 5 GR =(0’ fR/kZ) >
frx)=Rf(IxI/R), [ f(x)dx=1,

since, as a consequence of property (4.3), || Gg [ ,,—0 as R—co and therefore, on the
states (7.11), W(sG) converges weakly (and actually strongly) to e"*. Thus, we may
put

(7.13)

V(s)= s-gi_{n W(sGpg) (7.14)

and
V. (s)=exp[is(r/k?) ] (7.15)

[since V_(s) is a strongly continuous one parameter group].
Similarly, we can obtain the variable at infinity S* (s), se R, with

Ot 1,3, v,0 (St (8) = €™, (7.16)
by considering the S-weak limit® of
W(sGr),  Gr=(0,R™*0,47'f(IxI/R)),
with [ f(x)dx=1, Ff=k”2]: so that Gke .7, Actually, we can put
Sléo(s)=s',!if; W(sG%) (7.17)

and

Sk (s)=expis <6k <$* n))w. (7.18)

3 One first proves that ||Gg|l,,—0 as R— oo, since
Gl = d*kM (R F(RR)KE /K2,
M ,,(k)/k* is locally integrable for k~0 and k?|f(Rk)|>*—~0 as R—o0. Then, one has
Oy, 12,9 W(SGR) = 0p(W(sGR)) exp[ —ivR ~° [ dx0, f(IxI/R)],
[Texp[—iv,,R™? [ dx x,,0, f(Ix|/R)]

= 0 (W(SGR) eXPI Y. By €XPIY. Dy
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In the analogy with the jellium model the variables at infinity have the
following physical interpretation: ¢ (x) is a gauge parameter, (0;p),, corresponds
to the mean electron current, (n/k?)(x)=((4nr)" ' *n)_(x) to the mean electric
potential and (0{1/4nr) * 1), to the mean electric field. The effective dynamics o,
with reference to w,,, has a non-trivial action on the above variables at infinity;
explicitly one has

1
AP o = P o COSWt + <— * n> o Sinwyt, (7.19)
4nr o
o L>!<7t = —L*n COSWoyt — @, SInWot/w (7.20)
T\ 4mr w \dmr ) 0 * 0vos '
1 .
057(0:00) o, = (0,;00) o, COSW + <6,- dnr * n> o Sinwyt, (7.21)

1 1 .
ah(@iw *n)oo = <8iﬁ *n)w Cos Wt —(0;0) ,, SInwot/wy. (7.22)
The above non-trivial “classical motion” of the variables at infinity will play an
important role in the proof of a generalized Goldstone theorem, (see following
section and [1] for the general strategy).

8. Spontaneous Symmetry Breaking and Mass Gap

We can now give a rigorous discussion of spontaneous symmetry breakings in the
Stiickelberg-Kibble model, by showing that the gauge symmetry p* (as well as %,
7", and y*) is spontaneously broken in the representation IT with translationally
invariant ground state ¥, (corresponding to the state w,,)*, that the conditions of
the generalized Goldstone’s theorem are satisfied and that the corresponding
generalized Goldstone’s bosons have a non-zero mass

m:wozl/Ee (8.1)

(mass generation by variables at infinity).
We start by showing that 8%, f*, y*, and y* are generated by local charges on .7,
in the sense that VA€ .7,

)= |- lim e@xde™10x < | |-lim (), 82)

with
e =W(IGr), Gg=(0, f). (8.3)

4 It follows from Eq. (5.9) that w,,, , is a ground state (i.e. invariant) under time translations and
with positive energy spectrum iff M, =(k*)~!, M,,=k? M,,=0=M,,. The following dis-
cussion can be done for any ground state w,, 4, but for simplicity we consider the case 4=0
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Clearly since the product is norm continuous® it suffices to prove Eq. (8.2) for
the Weyl operators A= W(F), FeJ,, which generate .«,. Then, by using the
CCR’s on ., (see Sect. 5) we have

WAGRW(F)W(—AGg)=W(F)expilF,2Gg> (8.4)
and
Igim (F,AGg>=f(0). (8.4
This shows that Eq. (8.2) holds for any A belonging to the algebra .27, finitely
generated by the Weyl operators W(F), F € 7., Since i is norm preserving, this
also implies Eq. (8.2) for the norm closure of .« i.e. for .«7,.°

Furthermore, Egs. (8.4), (8.4) imply that VA=W(F), FeZ,, the norm
derivative exists

= ‘%ﬁﬁ(z‘lh W(F)i | dxfy(x) fr(x)e <" 2%, (8.5)
and that
| ll-gijn ﬂR(W D=l H ﬁl(W(F) (8.6)

By the norm continuity of the product, Egs. (8.5), (8.6) easily extend to .. Hence,
VAe o/ and on a suitable dense domain in #M

Il —/)”1(/1)— N 11m —ﬁR(A)—lll I-lim [Qp. BAA)]. 8.7
Thus, one of the crucial conditions for the (generalized) Goldstone’s theorem is

satisfied.”
In a similar way one shows that, on .27, y* is generated by the local charge

I'r={dxfr(x)4¢(x), (8.8)
that f* is generated by
Gr=[dxfr(x)xn(x), (8.9)
and that y* is generated by
= [dxfr(x)x;4¢(x), (8.10)
or, equivalently on .<Z,, by
I =3 [ dxfy(x)3 (). (8.11)

SLe AL 4, B———»” ', Bimply 4,8, 4B

¢ In fact, if An——-> A, BR(A) =Bl S 11B3(A,) — BiAA,)] +2] A=A, and the right-hand side
converges to zero as R, R'— o0, and n— o0
7 The above careful analysis shows that some of the rather pathological mechanisms, invoked in

the literature [8] to explain the evasion of Goldstone’s theorem in this model, actually do not
apply
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As a second condition for the generalized Goldstone’s theorem (see [1-4]) we
check that the charge density n(x) associated to Qp is integrable as a commutator
(for more details see again [1, 3]). In fact, on the suitable dense domain in which
(8.7) holds we have YW(F), Fe 7,,,,

[n(x), W(F)]=WI(F)f(x)

which is an integrable function of x. (Clearly this property extends to the dense
subalgebra 27}).

Since the group generated by % AeRR, and of; involves a finite number of
generators (and the same holds for the covariance group of «f; characterized in
Sect. 7), condition ') of [1, 3] is satisfied. This means that only a finite number of
charges Qg(t), t e R associated to the time evolution of Qp, are independent; (the
same property actually holds for the time evolution of Q and G%). An analogous
condition is that the “classical motion” of the variables at infinity ¢, (3,;¢),,
((1/4nr)* 7)), ((0;1/4mr)* ), is a periodic motion (with frequency w0=1/ﬂ e), as
in fact implied by Egs. (7.19)+7.22). In conclusion we have

Theorem 8.1. The spontaneous breaking of the symmetry B* implies the existence of

generalized Goldstone’s bosons with finite mass m=\/4n e (mass gap associated to
gauge symmetry breaking ). The same conclusion holds for the breaking of each of
the symmetries f*, y*, and y*.

Appendix A

Proof of Proposition 4.1. a) Since B*, f* commute with «f, it is enough to discuss
the strong convergence on the states corresponding to A=0=/1,. Then putting
F,=AF,VF, GeJ, we have

I(W(F )= WFL)W(G)PE |

:2{1 “Re[eXP<"%”FL_FL'”M"‘KFL_FL'» Gy— %<FLaFL_FL’>>j|}’ (A1)

where

”FL_FL’HIZ\l:[FL_FL" FL_FL']M (A~2)

and ¥,™ is the Fock state corresponding to w,,.

A necessary and sufficient condition for the vanishing of the right-hand side of
Eq. (A.1) is the conververgence of the sequence F; in the norm defined by M,
[Eq. (A.2)], since the symplectic form is dominated by such a norm. Now, putting

|FL—Fp %= Bi (b k) fod*k, (A.3)

it is enough to prove that: i) Bf*(k) converge to zero pointwise as L, L'— co and ii)
|BE" (k)| is dominated by a locally integrable function of k, which is dominated by a
polynomial at infinity; so that one can apply the Lebesgue dominated convergence
theorem.
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Property i) follows trivially from the pointwise convergence of ¥ (k) to ¥(k),
Vk=+0. For property ii) we get after some (lengthy) calculations

k4
1By, (k)| =C(k),  |By,y(k)I= mrol(k) C(k),
L
k? ~
IBy,(k)| = W Ck),  oik)=k*(1+V,(k),

C(k)=8(1 +a?(k))'/* [r(k)‘ T+ (sgp wi(k)> r(k)/ k“] :

Furthermore, since
Vi(k) 20, (A4)

(this actually holds for a wide class of infrared regularizations), we have (k)= k?
and hence

k? /iILlwa(k)é Ikl

so that it suffices to have the local integrability of C(k). By using that
V,(k)<constlk| 2, for k-0

and that 7 (k) is regular at infinity, the local integrability of C(k) follows from
conditions (2.4), (4.3)%.

Thus, we have the strong convergence of W(F ) on the dense set D} of states of
the form

=Y A W(G)PH.

Since | W(F )| = 1, we easily get the strong convergence on the whole Hilbert space
HM; furthermore we also get the strong convergence of the norm limits

N
Il-lim 3 e W(ALF)
—w =1

as L— o0, i.e. the strong convergence of aj(A4), YA€ .
b) Since o is strongly and therefore weakly convergent (with respect to the IF
topology), the

lim (of)* = (o))* (A.S)
L—
exists and it defines a mapping of IF into .o7’, the dual of .«Z. One can actually show
that IF is (af)* stable. To this purpose we determine the mapping (o)*, by
8 These conditions also imply that M ,,/k? is locally integrable, since in general detM =1 gives
M%Zé‘M§2+1§M11M22a
and therefore M, ,/k* < M1A(M,,/k*)'?
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considering the lim (a})* on the states of the form
L-w

O ()= 0y AW(G )AL W(G)) (A.6)

with G,e 7, §,(k)=k*h,, h, € &, §,(k) € &, §,(0)=0. The linear span of the vectors
W(G)PY* is dense in #MA={FP "}, since the G’s satisfying the above
condition are dense in & in the norm | ||,,. Therefore the (linear combinations
of) states of the form (A.6) are norm dense in the set of states associated to #™-4
and, since (of)* preserves the norm, weak convergence of («})* on states of the
form (A.6) implies weak convergence on all the states of # 7 and therefore on
F.
Now, by simple calculations, VFe .7 one gets

lim @y J(W(G ) (WF)W(G))
=exp{~%llGl +Go+Fy— é(<G1, G2)+<Gy, F) +(F, G2>)}
X exp{iﬂ»ﬁ(OHZ/’»i(@J 1)(0)}, (A7)

where F' is the lirn~it9 of F! in the topology of || ||, ie. for k%0, F'(k) is the
pointwise limit of F%(k),

Fi(k)= A'(k)F(k), (A.8)

e coswt —(k?/w) sinwt
A= ((w/kz) sinwt coswt )’ (A-9)
w=ok)=@re? + k)2, (A.10)

This identifies F* as an element of 7, [its first component at k=0 is defined by
continuity, so that

0 =coseotfi(0)+ fim 1(0)=7,0)).
Furthermore, the above conditions on the G,’s guarantee that Gi=A4'G,e 7
and A' preserves the symplectic form so that
1G1+ G+ Fly=1G"+ Gy +Flye,
M'=(A)MA, (A11)
(G, FYy={(G{,F), etc.
Hence,
(o) pip S2(W(F) = Jim Dt L WIF) =i (W(F)). (A.12)

and the state on the right-hand side is still an element of IF, since one can prove that
M’ satisfies the same conditions (4.3) as M. Therefore, (¢')* maps a dense subset IF,
(that corresponding to the vectors of D) of IF, into F, and since (&/)* is norm

® This follows from Bf(k)—0 pointwise and condition (4.3)
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continuous (and strongly convergent vectors yield norm-convergent states) (o')*
maps IF=the norm closure of IF,, into IF.
c¢) The group properties of (a)* follow easily from the group properties of A’,
for the linear span of the states of the form (4.10), which are norm dense in the set of
states associated to the vectors of #™ 4, Again, since («)* is continuous in norm,
the equation
(o) = (a9

extends to all the states of IF, and («')* defines a one-parameter group of mappings
of IF into FF.

This in turn implies that o =s—lima} defines a one parameter group of
automorphisms of .# = .o/, the weak closure of .«/ with respect to the topology
induced by IF on ./, see [1,3].

Appendix B

Proof of Proposition 5.1. 1) (States on the Extended Algebra). We start by
noticing that the states in IF are automatically states on .«/,C.#, and we have

Wyr, 1, /(W(F)=exp{ —4[F, Fly/} expilfy(0) exp 2 240:11)(0). (B.1)

for any M e M, Fe 7, [the proof uses the remark following Eq. (5.1)].

€

2) (Dynamics on the Extended Algebra). With the help of the algebra o7, and
Eq. (B.1) we can now write the explicit form of ' on the states (A.6); VFe 7,
F'e 7, and Eq. (A.7) can be written as (W,= W(G,), G,e )
Opr, 1, (WG ) (W(F)W(G))
=y, 1,,(W W(F)W,) expil f1(0)—J{(0)] eszxi[(aiﬂ)(O)— 2,10)]. (B.2)
In fact, one can use Eq. (B.1) for the extended Weyl operator W, W(F)W, and
rewrite the right-hand side of Eq. (A.7) in the form (B.2). Alternatively, one can

reduce the discussion of Eq. (B.2) to the states wy, ;= ¢, ;, =0 = @y on which o W(F)
converges simply to W(F'). In fact, putting wy ; ;. =p*wy, 4-c¢=f(0)

—iZli(aiﬂ)(O), and using o 8= fof one has
lim By (Wiai (F)W,)= im @y (BW)oi(W(F)B(W,)) expla -
= [Foy (W, (W(F)W,) expid - ¢
=expli(d - c—A - c]*ou (W, W(F)W,).

Furthermore, Eq. (B.2) holds for W(F), Fe 7, In fact, 7 is dense in J,, in the
topology given by || ||, and therefore if

I 1

Fn:(flaon)—’F(fl’fZ)Eg-exw (B3)

then, by Eq. (B.1), (in each #M:4)
s-lim W(F,) = W(F). (B.4)
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Since o is weakly continuous, the left-hand side of Eq. (B.2) with Fe ., can be
obtained as the limit when F,—F as in (B.3). In the right-hand side, VF e 7, F',
defined by Egs. (A.8), (A.9) (and continuity of f; at k=0), belongs to 7,,,; then,
using (B.1), by explicit computation one can show that the right-hand side can be
obtained as the limit when F,— F (the three terms are not separately continuous
when F,—F!). In conclusion, in the representation given by the states wy, ; ;..
VFeJ,,, one has'®

o (W(F))= W(F)e* @~ T exp y 1,0, ,(0)— 0, 71(0)). (B.5)

3) (Algebraic Dynamics ). With the help of the above results, we can now write the
action of the algebraic dynamics o' with no reference to a specific representation
and obtain Eq. (5.9). Such an equation clearly shows that the algebraic dynamics o
maps <7, into the algebra 4(<+/,u .o/ ) generated by ./, and the variables at infinity
U (), T.(s), through finite linear combinations and norm closures.

Finally, to get the stability of %(<7,u.</ ), under « we have to show that o
maps o/, into itself. In fact, by the weak continuity of «, we have

2'U  (s) =o' I}gl; W(sFg)= lim o' W(sFp)
=lim W(sF R explis . (f(0)—71(0))]
=U (scosmo)U_(s(1 —coswqt)) = U (s). (B.6)
Similarly, by using Egs. (5.7) we have
o« T (s)= Jim o« W(sFyg)
=lim W(sF ) exp [S g (0,9),L0;71)(0) =0, 71" (0)]

=T (scoswot) [ TL(s6;(1 —coswqt)) = Ti(s).
j

In conclusion the algebra at infinity .« generated by U _(s) and T. (s) is pointwise
invariant’! under o".
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