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Abstract. The general algebraic features associated to long range dynamics like
the problem of removing the infrared cutoff, the definition of the algebraic
dynamics and the occurrence of variables at infinity, the essential localization
(seizing of the vacuum), the effective dynamics and its covariance group
(dynamical symmetry group), the generalization of Goldstone's theorem and
the non-trivial Goldstone spectrum, the mass/energy gap generation by the
non-trivial classical motion of the variables at infinity are explicitly shown in
the Kibble model as a prototype of gauge models exhibiting the Higgs
phenomenon. The relation between mass generation in the Higgs phenomenon
and the plasma energy gap is also discussed.

1. Introduction

The general properties of the dynamics of systems with long range interactions
have been discussed in previous papers [1-4] with emphasis on the occurrence of
variables at infinity in the time evolution of (quasi) local variables. The evidence
that the above structures are indeed realized has been shown in various cases like a
class of spin models [1], the BCS model [1], the Coulomb gas in uniform
background [5]. From the above examples it appears that the occurrence of
variables at infinity is a generic feature associated to Coulomb like interactions
and therefore present in gauge field theories (in positive gauges). This has been
explicitly shown for the Sch winger model, usually regarded as a prototype of gauge
theories with unbroken gauge symmetry, [6] and the present paper provides a
detailed analysis of the Kibble model, in four dimensions, usually regarded as the
prototype of gauge theories exhibiting the Higgs phenomenon [7-9]. The model
can be obtained from the abelian Higgs-Kibble model by neglecting the quantum
fluctuations of the modulus of the Higgs field χ = \χ\eiφ and by actually freezing \χ\
to 1. In this case the Higgs-Kibble Lagrangian becomes

¥= -ΪF2

μv-(dμφ-eAμ)
2 + gauge fixing (1.1)
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and in the Coulomb gauge the model is described by the following formal
Hamiltonian [7-9]:

H=^[_(yφ)2 + π2']d3x + ̂ d3xd3yπ(x)π(y)V(x-y). (1.2)

The interaction term is not as strange as it could appear; it actually occurs also in
the full QED Hamiltonian, provided one realizes the analogy between π and the
charge density ρ(x) [the actual derivation of Eq. (1.2) in the Coulomb gauge
clarifies this point].

The model exhibits also strong analogies with the Coulomb electron gas in
uniform background, with the correspondence π-»ρ(x) — ρ& ρ(x) = electron den-
sities, ρB = background density, dtφ -+jbj = the electric current, and therefore it can
also be considered as a prototype of Coulomb systems in uniform background (see
also Sect. 7 below), showing the deep link between mass generation in the Higgs
effect and the plasmon energy gap.

The model is soluble and apparently simple; however, the standard treatment
[7-9], without a careful handling of the infrared cutoff and its very delicate
removal, misses the basic algebraic structures mentioned above and in any case
leaves many questions of principle open: i) How does it happen that starting from
a symmetric Hamiltonian one ends up with non-symmetric equations of motion?
ii) Which is the basic mechanism by which the conclusions of the Goldstone's
theorem are evaded? iii) Is there a generalized Goldstone's theorem by which
spontaneous symmetry breaking entails the existence of generalized Goldstone
bosons with non-trivial energy spectrum, and it actually allows one to predict their
mass?

The general framework discussed in [1-4] allows a full (and rigorous) control
of the model as well as an answer to the above questions. The following treatment
of the model will also provide a non-trivial example in which the variables at
infinity are not obviously present in the starting Hamiltonian (as in mean field
models) but they arise as a result of delicate interplay between the long range 1/r
Coulomb-like interaction and the kinetic term. The model will also shed light on
the general mathematical structures associated to long range dynamics like a) the
weak topology of the physically relevant states which allows the removal of the
infrared cutoff, b) the symmetries of the algebraic dynamics and the occurrence of
variables at infinity, c) the algebra of essential localization, d) the effective
dynamics and its covariance group (dynamical symmetry group), e) the mass gap
generation by symmetry breaking and its relation with the "classical motion of the
variables at infinity."

2. Canonical Field Algebra and Quasi Free States

The basic algebraic setting on which the following discussion is based, is the (local)
algebra si generated by the canonical variables φ, π smeared with test functions in

We denote by W(F) the Weyl operators, F = (fί,f2)e&'
i(^3) and by < , •> the usual symplectίc form on ̂ ,

), Φ(G)] = i<F, G> = ϊ[(Λ, g2) - (/2, gl)] (2.1)

(for more details see [10, 6]).
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We will consider quasi free states on jtf of the form

ωM(^(F)) = exp{-i[T,F]M}, (2.2)

where

with M of the form

]M = Σ ί d3kj(k)M^k)g^k) , (2.3)
l.J

3 , (2.4)
α (l+α2)1 / 2r

α = α(fe) real and r(/c)>0 (see [6, Proposition 2.1 and Eq. (2.18)]).
A simple extension of the above family of states is given by

ωM, λ(W(F)) = ωM(W(F))eiλ~f^, λ e R, (2.5)

which define representations with a non-vanishing expectation value of the field φ,

3. Infrared Cutoff Dynamics and its Symmetries

To give a precise meaning to the formal Hamiltonian (1.2) one has to introduce an
infrared regularization and then discuss the removal of the infrared cutoff. We
choose the following regularization:

V(x)^VL(x)=^f(\x\/L)9 (3.1)

where /(x)E^(tf1), /(x)=l for x |<l, /(x) = 0 for |x |>l +a. The results do not
depend on the specific choice of the infrared regularization.

The cutoff Hamiltonian HL defines an infrared cutoff dynamics ofL on the local
canonical algebra si. In fact, HL gives rise to the following equations of motion:

πKf) = φj(Af),

i.e.

Φt(F) = Φ(Ft

L), Fε3~, (3.2)

where

Ft

L(k) = Άt

L(k)F(k), (3.3)

cosωLί — (k2/ω
- / ι 2 Λ - / ' (3 4)cojk ) sin ωLί cos ωLί /

ωL = ωL(fc) = [fe2(l + FL(fe))]1/2, (3.5)

(in the following the subscript L will often be omitted for simplicity of notation).
Furthermore, since the matrix elements oίA^k) are C°°-functions of ω£(fc), which is
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a C°° -function of k by Eq. (3.5) (thanks to the infrared cutoff!), and they are
bounded by polynomials in fc, it follows that F*L e ST. Finally, it is easy to check that
the linear transformation F-^F* preserves the symplectic form and therefore
Eq. (3.2) defines an automorphism α^ of j / :

afL(W(F))=W(At

LF) (3.6)

(infrared cutoff dynamics).
An obvious symmetry of the infrared cutoff dynamics is that corresponding to

space-translations

) = W(FJ , Fa(x) EE F(χ - a) . (3.7)

It is easy to see that the following transformation

βλ: W(F)^W(F)Q\p[iλίfί(x)d3x]9 λeJBL, (3.8)

F = (fl9 f2)E&~, (corresponding to φ-*φ + λ, π->π) preserves the algebraic rela-
tions and therefore it defines an automorphism of jtf (rigid gauge transfor-
mations). Furthermore, since

7ί(0)=7ι(0), (3.9)

one has

ofLβλW(F) = el^l(0)ofLW(F) = βλafLW(F) , (3.10)

i.e. βλ defines a symmetry of the infrared cutoff dynamics.
A less obvious symmetry of α^ is that corresponding to linear gauge

transformations (of the second kind)

] , (3.11)

corresponding to

(3.12)

As a matter of fact, one easily checks that the transformation (3.11) preserves the
algebraic relations (in /c-space it amounts to the multiplication of F(k) by
exp[A(δI-/1)(0)]) and therefore it defines an automorphism of s$\ furthermore

#< = <#, (3.13)

as a consequence of djl(ty = dij
<

ί(ty.
For the following, it is also useful to have the commutation relations between

βf and the space translations

#a. = J»*X#. (3.14)

4. Physically Relevant States and the Removal of the Infrared Cutoff.
Algebraic Dynamics

According to the general approach discussed in [1-3], in order to remove the
infrared cutoff and to define in the limit L—>oo an algebraic dynamics, one has to
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make reference to a family F of "physically relevant states" with the follow-
ing properties:

i) F is closed under linear combinations.
ii) F is norm closed and separating, i.e. φ(A) = 0, V0 e F implies A = 0.

iii) F is "stable under local operations" in the sense that if φ eF also φAB( )
= φ(A - B\ with A,Bεjtf9 belongs to F.

Thus, the positive part F+ of Fis a full folium as in [1 1]. One then discusses the
(ultra) strong convergence of ofF, as L-* oo, with respect to the topology induced on
j / b y F .

As a family F of physically relevant states we choose that obtained from the
(pure) quasi-free states of Sect. 2 by application of the symmetries βλ and /Jf. More
explicitly we consider the states associated to the representations of s$ defined by
the following states:

= ωM(W(F)) exp ΓU/^O) + £ λjidj) (0)1 , (4.1)

with /leR, λeR3,

i[F,F]M) (4.2)

and M satisfying conditions (2.4). In the following, to simplify the notation, the
states ωM > λ > λ will be denoted by ωΛ, Λ = {λ9λι'9 z = l,2,3}5 with the index M
understood; similarly βA will denote a generic element βλβ^βi2βi3.

Furthermore we restrict the space of states by the requirement that α(fe), r(k) of
Sect. 2 are regular functions for fc φ 0, α(fc), r(fc), r(fe) ~ 1 are bounded by polynomials
at infinity and

M l t(/c), /c-4M22(fc)eL}oc. (4.3)

(We will denote by Mthe set of M satisfying the above conditions.) By definition, F
is therefore stable under (βA)* and (βf)*. Since by Eqs. (3.3), (3.4) F*L e 9~ whenever F
does, the family F is also stable under (α^) *, (in general, however, there will be only
one Fock vacuum stable under (α'J*, depending on L, so that the corresponding
representations will be disjoint for different L's).

We can now remove the infrared cutoff.

Proposition 4.1. Let F be a family of states defined above. Then
a) ofL(A), A in the norm closure of jtf, is (ultra) strongly convergent as L-»oo

with respect to the topology defined by F.
b) The (weak) convergence of o?L defines a one parameter group of mappings of

F into itself

(αί)* = w*-lim«)*, ίeR.
L-»oo

c) (αf)* uniquely determines a one-parameter group of automorphisms a\ ίelR,
of Jt = s$ , where the bar denotes the weak closure in the topology induced by F on
j/, (algebraic dynamics).
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The proof requires some technicality, which sheds light on the problem of
removing the infrared cutoff also in more realistic models (as in the Coulomb gas
with uniform background [5]); for the proof we refer the reader to Appendix A.

5. Algebraic Dynamics. Variables at Infinity

We can now answer some of the questions raised in Sect. 1. Due to the long range
Coulomb type interaction the introduction of an infrared regularization is
necessary and the removal of the infrared cutoff requires special care (see the
previous section). The resulting algebraic dynamics exhibits very peculiar features
(as expected on the basis of the general ideas discussed in [1-3]). The first
interesting property is that α^ does not converge in norm and the algebraic
dynamics αr = w-limα^ does not leave the quasi local (canonical) algebra s$ stable.
The situation is more delicate than in the Schwinger model [6], where stability
under the algebraic dynamics was obtained by considering the algebra generated
by the quasi local canonical algebra j/ and an algebra at infinity j/^. Here, the
infrared interaction has stronger effects and the time evolution of local variables
does not only involve variables at infinity but also a substantial delocalization: as
we will see more explicitly below αf leaves stable the algebra ^(j^u j^) generated
by an algebra s^^Jί, with trivial center and by an algebra at infinity j/^.

To discuss the above features more explicitly, we start by considering the
following enlargement of the Weyl algebra stf. We extend the Weyl system by
considering Weyl operators W(F) defined for

briefly we will say Fe<^xt.
One can easily see that the antisymmetric form <•, •> is still defined on ̂ ext, and

therefore the CCR's [Eq. (2.1)] extend to the enlarged Weyl system. We denote by
s$f the algebra generated by the extended Weyl system W(F\ Fe^xt [Eq. (5.1)].
Clearly with respect to the quasilocal canonical algebra j/, generated by W(F\
F e ZΓ = ίf x ̂  the enlarged algebra X, has a long range Coulomb type
delocalization. One can easily show that ̂  can be identified with a subalgebra of
Jί\ W(F\ F = (/15 /2) E ,Text is identified with the strong limit of W(Fn), fin =/l5 k2f2n

converging in ̂  to /c2/2. For the following it is convenient to introduce the
following variables at infinity:

i) the variable at infinity φ^: we start by considering W(sFR), seIR, with
FR = (fiR>ty> f i R satisfying the following conditions

7ι*(θ)=ι, (3J /1Λ)(θ)=o, Λ^o,
(5.2

\\FR\\M^Q as tf^oo, VMeM.

Then, by using an explicit calculation as in the Appendix Eq. (A.7), we get

This implies weak convergence of W(sFR) by a density argument and uniform
boundedness of W(sFR).
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Actually, as a consequence of ||̂  HM"^ and (δ/7ικ)(0) = 0, W(sFR) converges
strongly (in each JjfM'Λ), and we may define

l/JsjΞΞs-lim W(sFR) (5.4)

(as an element of Jt\ U(s) is a strongly continuous one parameter group [see
Eq. (5.3)] and we may write

E/JsjΞEβ"*- (5.5)

with

e™. (5.6)

ii) Similarly, by choosing W(sFj

R), seR, with Fj

R = (f{R90)9 fίRe^(R3)9

7 = 1,2,3, satisfying1

(5.7)

lim ||Fi||M = 0, VMeM,

we get

lim ωM A(V

As above, one can actually show that W(sFi

R) converges strongly in each 3tfMtΛ,
and one may define

Γi(s) = s-lim W(sFί

R)9 (5.8)

as an element of Jί. T^(s) defines a strongly continuous one parameter group and
its generator defines a variable at infinity (d^)^ with ωM^Λ(eis(diφ)co) = eisλί; the
algebra generated (through norm closures) by U^(s) and T^(s) will be denoted by
j/_. We then have

Proposition 5.1. The algebraic dynamics of maps the algebra ^(j/^uj/^), generated
by s$e ana by the algebra at infinity stf ^ (through linear combinations and norm
closures), into itself.

In particular, VF e ̂ ext,

«' W(F) = W(F) exp /[(/! (0) -7ί(0))φ „]

i[(f d3x xjU^ -//) (3/p),,] , (5.9)

where φ^ and (d^)^ are the variables at infinity corresponding to the fields φ and
diψ and are invariant under α'.

1 The above conditions (5.2) (5.7) are fulfilled e.g. by taking f1R(x) = R~*f(\x\/R), /(0) = 1, /^O,
andflR=-R-3djf(\X\/R)
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Remark. The above proposition provides a rigorous control on the solution of the
field equations: Eq. (5.9) corresponds to

at(φ(x)) = cos ωt*φ + \_(ω/k2} sin ωf\ * π

+ (1 -cosωoOφoo +(1 -cosω00x/(d/<p)oo > (5.10)

and it clarifies the occurrence of variables at infinity in the time evolution of the
local variables. Clearly, in representations characterized by a translationally (or
rotationally) invariant ground state, the variable at infinity (3,-φ)^ vanishes and
one is left only with the variable at infinity φ^.

For the proof of Proposition 5.1, see Appendix B.

6. Variables at Infinity and Symmetries

To investigate the symmetries of the algebraic dynamics it is convenient to discuss
how the symmetries βλ, AeR, βλ\ ^elR, and αx, xeR3, defined on the quasilocal
algebra j/, have a unique weakly continuous extension to (the weak closure)
Jl = s$ (see [1-3] for the general strategy).

i) Rigid Gauge Transformations βλ. Since by definition (βλ)* maps F into F, βλ is
F-weakly continuous, and therefore

j8AC700(s) = w-lim βλW(sFR) = eίλsU^(s), (6.1)
R^oo

i.e.

Furthermore, by condition (5.7), 7ιΛ(0) = 0, we have

βλT^(s) = w- lim β^sF^ = Γί(5) . (6.3)

ii) Linear Gauge Transformations βλ. Again, (^λ)* leaves F stable so that βλ is
F-weakly continuous and by Eq. (5.4),

lim W(sFR) exp Σ sλMj (0) = I/Js) , (6.4)
R-+CG i

.e.

Similarly,

= w-lim W(sFj

R)eiλ^s = T^(s)eisλ^ , (6.6)
R

i.e.

djφ)oΰ + δijλj'] . (6.7)
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iii) (Space Translations), αx. We start by showing that F is stable under (αx)*,
x e R3 in fact, F is generated from the translationally invariant states ωM through
applications of (βλ)* and (βλί)* and

(6'8)

The stability of F implies that αx is F-weakly continuous and therefore

αxί/00(s) = w-lim «xW(sFR) = 17 Js) Π T^sxj) , (6.9)
R J

i.e.

(6 10)

Similarly, one has

αX(s) = w-lim αaMsή) = T&s) , (6.1

i.e.

kφ)oΰ . (6.12)

Using these formulas one can check that the so extended symmetries from ̂  to
^(J^UΛ/^) still obey the original group laws, e.g. Eqs. (3.14).

We can also check that the above symmetries βλ, βλ\ αa are symmetries of the
algebraic dynamics αr. In fact, we have

βλvtW(F) = βλ(W(F<) exp [iφ J/^O) -//(O))]

x exp

exp [ifoco + A) (^(0) -//(O))]

x exp JΣ (5 )̂, [(5/J (0) - (d/l) (0)] J

Similarly, one proves

It should be noted that the variables at infinity are crucial for the above symmetries
of the dynamics.

7. Effective Dynamics and its Covariance Group

In each factorial representation Π of j/, defined by states of F, the variables at
infinity get frozen to their expectation values in Π and therefore Vv4e^ the



602 G. Morchio and F. Strocchi

dynamics αr reduces to an effective dynamics ofπ; symbolically

Qf(A) = F^^J9

Π(af(A)) = n(ofn(A)) = Π(Ft(j*,, «, >π) .

From Eq. (5.9) with φ^ and (djφ)^ replaced by their expectation values in 77, it
follows easily that ofπ leaves s$e stable and in fact it defines an automorphism of j^.
More explicitly for the field variables, one has,

α'Φ(F) = Φ(Ft) + ̂ [£(0) (1 - cosω0ί)

+ k272(0)sinω0ί/ω0]-/X(δjφ)00[δ/1(0)(l-cosω0ί)
j

+ (aj.(k272))(0)sinω0/ω0],

afπΦ(F) = Φ(F') + (£(0) -//(0)]Π(φJ

It is now obvious that, due to the freezing of the variables at infinity, the
effective dynamics ofπ is no longer symmetric under βλ and βλ. To investigate the
co variance group of ofπ it is convenient to introduce the following automorphisms
of jtff.

Symmetry yλ, Λ,eR: VFe^ext we define

y

λW(F) = W(F) exp U(k2/2) (0) . (7.2)

Clearly yλ is trivial on j/, but not on j^.

Symmetry yλ, λeR3: VFe^ext, we define

ŷ (F) = W(F) exp Σ ̂ (^(k2/^) (0)
i

- Py(F) exp [ - i J Af2(x)λ xdx] . (7.3)

Again, yλ is trivial on j/ but not on j^. The possibility of introducing the above
symmetries is therefore strictly related to the necessity of extending the quasi-local
algebra j/ in order to get stability under time evolution; in a certain sense the
symmetries yλ, yλ have a dynamical origin.

It is very simple to check that the symmetries βλ, βλ, yμ, yμ, all commute, i.e. they
form an abelian group. Furthermore

) = yλW(FΆ) = ocay
λW(F) , (7.4)

i.e. βλ and yλ commute with the space translations, whereas yλ has the same
commutation as βλ [Eq. 3.14)]:

γ* <*ΛW(F) = yλW(FJ = αa/ exp iλ a(k2/2) (0)

(7.5)

With the help of the above symmetries we may now characterize the covariance
group G of the effective dynamics, namely the group generated by βλ, βλ, αa, and ofπ.
For simplicity we consider the effective dynamics corresponding to the represen-
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tation Π with Π(φJ = Q = Π((dj<p)J9 so that ofπW(F)= W(Ft). From Eq. (7.1), we
then get

βλofπW(F) = β^F*} = W(Ft) exp α//(0)

- W(Fr) exp UC/^O) cos ω0t - (k2/2) (0) sin ω0ί/ω0]

= (yt gλcosω 0f,y-λsinωof/ωoj^/p\ (76)

and

Similarly,

7 Vπ - α^ωosinωofyλ cosω0ί ? ^

yVtf =r βί^λcosωofβλωosinωoί ^ (-79)

The above commutation relations (3.14), (7.4), (7.9) characterize the covariance
group G. In infinitesimal form, by denoting by P, //, G, G, Γ, Γ the generator of αfl,
αjj, j8Λ, βλ, yλ, yλ, we have

[G,ff]=-Γ, [Γ,H]

[G,//] = -Γ, [Γ,/Γ|=ω§G, (7.10)

and all the other commutators vanish. The above structure shows some
resemblance with that of the jellium model [4] with the canonical field π playing
the role of the net charge density ρ(x) — ρB, — dtφ playing the role of ρ^ 1ji (j the
electron current) and ω0 being the plasma frequency. For more details see [5].

Remark. We consider now the general case in which the effective dynamics is
defined with reference to a representation Π' defined by a state ω' of the form
ωM^Λ (see Sect. 4), by definition of the family IF. Then, oct

πf = β~λβ~λoct

πβ
λβλ (see

[2]) and clearly the covariance group of ofπ, is isomorphic to that of ofπ.
The enlargement of the original symmetry group generated by βλ, βλ, and αa, to

the covariance group G naturally leads to an enlargement of the family F of states.
We therefore introduce a new family of states S on s$e, obtained from the pure
states ωM (Sect. 2) by application of the covariance group G:

= ωM(βΛ yN(A)) , VΛ e ̂  . (7.11)

The new states § coincide with the states IF when restricted to the quasi-local
subalgebra j/; they define a different topology2 on ̂  with respect to the
F-topology; in particular the F-states are not stable under ofπ, which is therefore
not F-weakly continuous.

The larger family of states § gives rise to a larger set of variables at infinity. The
construction of the variables at infinity U^s), T£(S) done in Sect. 5 as F-weak

' In this topology s# is not dense in
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limits also works in the § topology namely W(%FR\ FR = (f}R,Q), satisfying
condition (5.2) and W(sFj

R\ FJ

R = (f{R,ty, satisfying condition (5.7) converge
strongly on the states of the family S, by essentially the same argument.

We have in addition two other variables at infinity corresponding to the labels
v and v of the states S, Eq. (7.1 1). They can be obtained as § weak limits of elements
of X, in the following way.

The variable at infinity V^s), seR, with

ωM,A,λ,v,v(Us))^vs, (7.12)

can be obtained by considering

W(sGR), GR = (θJR/k2),

fR(x) = R-3f(\x\/R), Sf(x)dx = ί ,

since, as a consequence of property (4.3), || GR \\ M -»0 as R -» oo and therefore, on the
states (7.1 1), W(sGR) converges weakly (and actually strongly) to e'vs. Thus, we may
put

Vm(s) = s-\im W(sGR) (7.14)
R-*ao

and

k2^] (7.15)

[since V^s) is a strongly continuous one parameter group].
Similarly, we can obtain the variable at infinity S (̂s), seR, with

^M,λ,^,v(Sk

β(s}) = e^^ (7.16)

by considering the S-weak limit3 of

W(sGk

R) , Gk

R = (0, R - 3dkA - lf(\x\/R)) ,

with \f(x)dx = \, Δ 1f=k 2J, so that GRe5"ext. Actually, we can put

Sk

00(s) = s-\im^W(SG
k

R) (7.17)

and

/ / 1 \\
(7.18)

One first proves that ||GyM-»0 as R-^co, since

M22(k)/k4 is locally integrable for /c-0 and /ct

2|/(K/c)|2->0 as R^oo. Then, one has

[ - ivR ~ 3 j dxdkf(\x\/Rf] ,

- coM(W(sGl

R)) exp i X δimvm > exp i £ δimvm
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In the analogy with the jellium model the variables at infinity have the
following physical interpretation: φ^x) is a gauge parameter, (d^)^ corresponds
to the mean electron current, (π/fe2)00(x) = ((4πr)~1 *π)00(x) to the mean electric
potential and (d^l/^πr) * π)^ to the mean electric field. The effective dynamics α ,̂
with reference to ωM, has a non-trivial action on the above variables at infinity;
explicitly one has

*π ωosinω0ί, (7.19)
Λ4πr

fπ\- — * π ) =(- — *7r) cosω0ί-φ^sinω0ί/ω0, (7.20)
\4πr J^ \4πr J ̂

*π ω0sinω0ί, (7.21)

/ω0. (7.22)
J QQ

The above non-trivial "classical motion" of the variables at infinity will play an
important role in the proof of a generalized Goldstone theorem, (see following
section and [1] for the general strategy).

8. Spontaneous Symmetry Breaking and Mass Gap

We can now give a rigorous discussion of spontaneous symmetry breakings in the
Stϋckelberg-Kibble model, by showing that the gauge symmetry βλ (as well as βλ,
yv, and yλ) is spontaneously broken in the representation Π with translationally
invariant ground state Ψ09 (corresponding to the state ωM)4, that the conditions of
the generalized Goldstone's theorem are satisfied and that the corresponding
generalized Goldstone's bosons have a non-zero mass

m = ωQ = \/ϊκe (8.1)

(mass generation by variables at infinity).
We start by showing that βλ, βλ, yμ, and yμ are generated by local charges on ̂

in the sense that MA e j^,

βλ(A) HI I I - urn eiQκλAe ~ίQnλ = \\ \\ -lim βλ

R(A), (8.2)

with

eίQRλ=W(λGR), GR = (0,/Λ). (8.3)

4 It follows from Eq. (5.9) that ωM>Λ is a ground state (i.e. invariant) under time translations and
with positive energy spectrum iff M 1 1=(fc 2)~ 1, M22 = k2, M12 = 0 = M21. The following dis-
cussion can be done for any ground state ωMtΛ, but for simplicity we consider the case Λ=Q
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Clearly since the product is norm continuous5 it suffices to prove Eq. (8.2) for
the Weyl operators A = W(F\ F e ̂ ext, which generate si€. Then, by using the
CCR's on s$£ (see Sect. 5) we have

W(λGR)W(F)W(-λGR)= W(F)Qxpi(F,λGRy (8.4)

and

lim (F,λGRy = λ?i(Q). (8.4')
R->ao

This shows that Eq. (8.2) holds for any A belonging to the algebra X?, finitely
generated by the Weyl operators W(F\ F e ̂ ext. Since βR is norm preserving, this
also implies Eq. (8.2) for the norm closure of s$® i.e. for ̂ .6

Furthermore, Eqs. (8.4), (8.4') imply that VA=W(F), Fe^exV the norm
derivative exists

II I I - ^λβ
λ

R(A}=W(F)i\dxf1(x)fR(x)eί<F'λG^, (8.5)

and that

|| | |-lim —-β λ

R (W(F))=\\ \\ -jτβλ(W(F)). (8.6)
κ->oo dλ dλ

By the norm continuity of the product, Eqs. (8.5), (8.6) easily extend to s$®. Hence,
VA e j/° and on a suitable dense domain in fflu

|| \\—βλ(A)=\\ | |-lim — βλ

R(A) = i\\ | |-lim IQR,βλ(AJ]. (8.7)

Thus, one of the crucial conditions for the (generalized) Goldstone's theorem is
satisfied.7

In a similar way one shows that, on J/Λ yμ is generated by the local charge

ΓR = SdxfR(x)Aφ(x)9 (8.8)

that βλl is generated by

Gi =\dxf (xbc π(x), (8.9)

and that γμι is generated by

ΓR = ίdxfR(x)xtAφ(x)9 (8.10)

or, equivalently on j/^, by

(8.11)

5 Le> An^>A, Bn^>B imply AJ^AB
6 In fact, ]SAn-^>A, \\βi(A)-βλ

R,(A)\\ ^ \\βi(AJ-βλ

R,(An)\\ +2\\A-An\\ and the right-hand side
converges to zero as R, R' +co, and n-^ co
1 The above careful analysis shows that some of the rather pathological mechanisms, invoked in
the literature [8] to explain the evasion of Goldstone's theorem in this model, actually do not
apply
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As a second condition for the generalized Goldstone's theorem (see [1-4]) we
check that the charge density π(x) associated to QR is integrable as a commutator
(for more details see again [1, 3]). In fact, on the suitable dense domain in which
(8.7) holds we have MW(F),

which is an integrable function of x. (Clearly this property extends to the dense
subalgebra X?).

Since the group generated by βλ, /lelR, and ofn involves a finite number of
generators (and the same holds for the co variance group of ofn characterized in
Sect. 7), condition /?') of [1, 3] is satisfied. This means that only a finite number of
charges QR(t), ίeR associated to the time evolution of QR, are independent; (the
same property actually holds for the time evolution of QR and GR) . An analogous
condition is that the "classical motion" of the variables at infinity φ^, (3^)^,

((l/4πr)* π)^, ((δfl/^πr)* π)^ is a periodic motion (with frequency ω0 = ]/4π e\ as
in fact implied by Eqs. (7.19H7-22). In conclusion we have

Theorem 8.1. The spontaneous breaking of the symmetry βλ implies the existence of

generalized Goldstone's bosons with finite mass m = ]/4π" e (mass gap associated to
gauge symmetry breaking). The same conclusion holds for the breaking of each of
the symmetries βλ, yμ, and γμ.

Appendix A

Proof of Proposition 4.1. a) Since βλ, βλl commute with o4, it is enough to discuss
the strong convergence on the states corresponding to λ = Q = λί. Then putting
FLΞΞA^F, VF, Ge^, we have

\\(W(FI)-W(FL.))W(G)Ψ^\\

-i||FL-FL^ (A.I)

where

\\FL-FL'\\M = \:FL-FL>, FL~FL^M (A.2)

and Ψ0

M is the Fock state corresponding to ωM.
A necessary and sufficient condition for the vanishing of the right-hand side of

Eq. (A.I) is the conververgence of the sequence FL in the norm defined by M,
[Eq. (A.2)], since the symplectic form is dominated by such a norm. Now, putting

\\FL-FL,\\2

M = S B^\k)?i(k)fj(k)d*k, (A.3)

it is enough to prove that: i) B^'(k) converge to zero pointwise as L, L'-> co and ii)
\B^jL\k)\ is dominated by a locally integrable function of/c, which is dominated by a
polynomial at infinity; so that one can apply the Lebesgue dominated convergence
theorem.
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Property i) follows trivially from the pointwise convergence of VL(k) to V(k\
Vfe Φ 0. For property ii) we get after some (lengthy) calculations

\B12(k)\ £ - C(k) , ωl(k) = k\\ + VL(k)) ,

C(k) = 8(1 + α W/2 Γr(fc) ~ 1 + f sup ω2

L(k)\ r(k)/k4! .
L V L ) \

Furthermore, since

(A.4)

(this actually holds for a wide class of infrared regularizations), we have ωj(fc) ̂  /c2

and hence

L

so that it suffices to have the local integrability of C(fe). By using that

VL(k)^ const |/cΓ2, for fc->0

and that VL(k) is regular at infinity, the local integrability of C(k) follows from
conditions (2.4), (4.3)8.

Thus, we have the strong convergence of W(FL) on the dense set D™ of states of
the form

Since || PΓ(FL)|| = 1, we easily get the strong convergence on the whole Hubert space
Jίf M; furthermore we also get the strong convergence of the norm limits

as L-κx), i.e. the strong convergence of ofL(A\
b) Since vtL is strongly and therefore weakly convergent (with respect to the IF

topology), the

lim«)*Ξ(αί)* (A.5)
L-> oo

exists and it defines a mapping of F into jtf', the dual of stf. One can actually show
that IF is (of)* stable. To this purpose we determine the mapping (αr)*, by

8 These conditions also imply that M12/k2 is locally integrable, since in general detM^ 1 gives

M?2^

and therefore Mί2/k2^M\(2(M22/k4Y'2
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considering the lim (αr

L)* on the states of the form
L-> oo

} (A.6)

with GJ e^~,g1(k) = fe2/21? h1e^, g2(k) e £f, g2(0) = 0. The linear span of the vectors
W(G)Ψ%>Λ is dense in JifM'Λ = {jtfΨ%'A}, since the G's satisfying the above
condition are dense in 3F in the norm || ||M. Therefore the (linear combinations
of) states of the form (A.6) are norm dense in the set of states associated to 3fM'Λ

and, since (α^)* preserves the norm, weak convergence of (o£)* on states of the
form (A.6) implies weak convergence on all the states of 3fM'π, and therefore on
F.

Now, by simple calculations, VF e ^Γ one gets

lim ωi
L->oo

jiVl/ΛOί + Σ Wι)(0)j, (A.7)

where F' is the limit9 of F'L in the topology of || ||M, i.e. for /cφO, F\k) is the
pointwise limit of F'L(k),

F'(k) = Ά'(k)F(k), (A.8)

cosωt -(/c»sinωΛ

(ω/k2)smωt cosωt
2 ' (

This identifies F1 as an element of ^"ext fits first component at k = 0 is defined by
continuity, so that L

7/(0) = cosω0ί7ι(0)* lim 7ίL(0)=/1(0)l.
L-» oo J

Furthermore, the above conditions on the G/s guarantee that G\ = A1G{ e SΓ
and A1 preserves the symplectic form so that

<G1,F> = <GΓ t,F>, etc.

Hence,

and the state on the right-hand side is still an element of F, since one can prove that
Mr satisfies the same conditions (4.3) as M. Therefore, (of)* maps a dense subset F0

(that corresponding to the vectors of D) of F, into F, and since (αf)* is norm

This follows from £^-(/e)->>0 pointwise and condition (4.3)
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continuous (and strongly convergent vectors yield norm-convergent states) (αr)*
maps F = the norm closure of F0, into F.

c) The group properties of (α')* follow easily from the group properties of A\
for the linear span of the states of the form (4.10), which are norm dense in the set of
states associated to the vectors of JfM?yl. Again, since (of)* is continuous in norm,
the equation

(αr)*(<)* = (αί+s)*

extends to all the states of F, and (of)* defines a one-parameter group of mappings
of F into F.

This in turn implies that α' = s — limα^ defines a one parameter group of
automorphisms of Ji = sϋ, the weak closure of $0 with respect to the topology
induced by F on j/, see [1,3].

Appendix B

Proof of Proposition 5.1. 1) (States on the Extended Algebra). We start by
noticing that the states in F are automatically states on ja/^C^, and we have

(B.I)

for any MeM, Fe^~ext [the proof uses the remark following Eq. (5.1)].

2) (Dynamics on the Extended Algebra). With the help of the algebra j^ and
Eq. (B.I) we can now write the explicit form of of on the states (A.6);

ext and Eq. (A.7) can be written as (Wi=W(Gi\

. (B.2)
i

In fact, one can use Eq. (B.I) for the extended Weyl operator W1W(Ft)W2 and
rewrite the right-hand side of Eq. (A.7) in the form (B.2). Alternatively, one can
reduce the discussion of Eq. (B.2) to the states o}Mtλ = Q j λ ι = 0 = ωM on which ofLW(F)
converges simply to W(F*). In fact, putting a)Mtλtλ. = β*ωM, Λ c=7ι(0)

\ and using ofLβ = βofL one has
i

lim β*ωM(W1a'L(F)W2)= lim
L-> 00 L-> 00

= β*ωM(Wίβ-ί(W(Ft))W2)e\piΛ c

= exp [i(A c-A cί])8*ωM(^1 W(Ft)W2) .

Furthermore, Eq. (B.2) holds for W(F\ Fe^ext. In fact, 9~ is dense in ̂ ext in the
topology given by || ||M, and therefore if

2)ε^«, (B.3)

then, by Eq. (B.I), (in each «^M>/1)

s-\imW(Fn)=W(F). (B.4)
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Since of is weakly continuous, the left-hand side of Eq. (B.2) with F e ^~ext can be
obtained as the limit when Fn^F as in (B.3). In the right-hand side, VFe^^F^
defined by Eqs. (A.8), (A.9) (and continuity of Jv at /c = 0), belongs to ^"ext; then,
using (B.I), by explicit computation one can show that the right-hand side can be
obtained as the limit when Fn-+F (the three terms are not separately continuous
when Fn-+Fl). In conclusion, in the representation given by the states ωM λ A.,
VFe«rext, one has10

af(W(F)) = W(Ft)eiλ(~f^}-~flm exp £ λ^dJ^O) - Sjί(0)) . (B.5)

3) (Algebraic Dynamics). With the help of the above results, we can now write the
action of the algebraic dynamics of with no reference to a specific representation
and obtain Eq. (5.9). Such an equation clearly shows that the algebraic dynamics α?

maps j^ into the algebra ^(j/^uj/^) generated by j^ and the variables at infinity
t/oo(α), 7^(5), through finite linear combinations and norm closures.

Finally, to get the stability of ^(j/^uj/^), under αr we have to show that a*
maps stf^ into itself. In fact, by the weak continuity of αr, we have

ofUao(s) = of lim W(sFR)= lim ofW(sFR)
K->oo K->oo

= lim W(sF'R) exp [isφJ/ΛO) -//(O))]
R

= t/Js cosω0t)U x(s(ί - cosω0t)) = Un(s) . (B.6)

Similarly, by using Eqs. (5.7) we have

α s = l i m α

= lim W(sFX) exp Γs ̂  (d^Kd/ί) (0) - (θ// ') (0)1

- cosω00) = Γi(s)

In conclusion the algebra at infinity j/^ generated by U^s) and Γ^(s) is pointwise
invariant11 under αf.
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