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Some Inequalities for Norm Ideals
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Abstract. Several inequalities for norms of operators are extended to more
operators and/or to more norms. These include results of Halmos and Bouldin
on approximating a normal operator by another with restricted spectrum, the
Powers-St^rmer and the van Hemmen-Ando inequalities for the distance
between the square roots of two positive operators and also some recent
generalisations of these latter results by Kittaneh.

1. Introduction

In this note we obtain extensions of some inequalities for Hubert space operators
which are of importance in some problems of quantum physics and quantum
chemistry.

The first problem we consider is called the spectral approximation problem for
normal operators. Let K be a given closed subset of the complex plane C, and let
Λf(K) denote the set of all normal operators with spectrum contained in K. Given
any normal operator A what element of Λf(K) is nearest to A! Halmos [8] showed
that if F is any Borel measurable distance minimising retract onto K (i.e. a Borel
measurable map from C onto K which satisfies the inequality | z — F(z) \ ̂  | z — w | for
all z in C and w in K) then || A - F(A) \\^ \\A-N\\ for every NεJf(K). This result
was extended by Bouldin [3] who showed that for all Schatten p-norms, p ̂  2, || A —
F(A)\\p^ \\A-N\\p. (This statement is to be interpreted to mean that if there
exists an N in Λf(K) such that A — N is in the Schatten class Cp for some p ̂  2, then
A — F(A) also belongs to this class and the above inequality holds.) We refer the
reader to the bibliography in [3] for the connection between this problem and some
problems arising in molecular orbital calculations in quantum chemistry.

The question for the cases 1 ̂  p < 2 has been left unanswered by Bouldin. We
give below an example to show that the Halmos-Bouldin inequality does not extend
to these cases. We then show that there is an interesting class of norms, which
includes the p-norms for p ̂  2, to which this inequality can be extended. Further, we
show that if the set K is convex then this inequality holds for all unitarily invariant
norms.

After this, we consider the inequality of Powers and St0rmer [14], derived in the
course of their work on free states of the canonical anti-commutation relations. They
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proved that if A, B are positive operators then \\Aί/2 - £1/2||| ̂  \\A -B\\ t.
Recently, Kittaneh [12] has generalised this to show that \\A1/2 - Bil2\\2

2p^
| |4-B| |pfor l^p^oo.

Now note that for any operator T, we have || T\\2

2p = ||T*Γ||P, 1 ̂ p ^ oo. So, this
result of Kittaneh can be restated as \\(A — B)2\\p^ \\A2 — B2\\p for all positive
operators A, B and for all 1 ̂  p ̂  oo. We first show that this inequality is valid for
the larger class of all unitarily invariant norms. Next we show that the same
inequality holds when the exponent 2 is replaced by any power of 2. When
specialised to the p-norms, this gives the following interesting generalisation of the
Powers-St0rmer inequality. We have,

|| Anm _ Bι/m \\™p^\\A-B \\p9 for all integers m of the form 2fc, k = 1,2,....

Another inequality concerning the distance between square roots of positive
operators was proved by van Hemmen and Ando [18]. They showed that if A, B are
positive and if A112 + B112 §: al ^ 0 for some α, then for every unitarily invariant
norm ||| |||, we have a \\\A1/2 - B1I2\\\ ^\\\A- B\\\. Kittaneh [11] proved some related
results, one of which says that if A is any bounded operator with its real part Re
A ̂  al ^ 0, then for all X and for all 1 ̂  p ̂  oo, we have 2a \\ X \\p ̂  \\ AX + XA* \\p.
We show that this inequality is valid, more generally, for all unitarily invariant
norms, ̂ e point out how this and the crucial estimate in van Hemmen and Ando
[18, Lemma 3.1] are related to the classical work of Heinz [9]. Further, these results
are shown to be valid not only for positive (bounded) operators but also for maximal
accretive (unbounded) operators.

2. Norms and Norm Ideals

We quickly sum up some facts which could be found in any of the references [6, 15,
16, 17].

Denote by &($? ) the space of all bounded operators on the Hubert space 2ff . For
any Ae@(3? ) the symbol || A \\ denotes its usual operator bound norm. In addition
there are other interesting norms defined on ideals contained in $(3?}\ Each proper
ideal of &(2tf ) is contained in the ideal of compact operators. For any compact
operator A, denote by s1(A)^s2(A)'^... the singular values of A, i.e. the eigenvalues
of (A*A)lf2. Each "symmetric gauge function" Φ on sequences gives rise to a
symmetric norm or a unitarily invariant norm on operators defined by | |A | | Φ =
Φ({Sj(A)}). We will denote by the symbol ||| ||| any such norm. Each such norm
satisfies the invariance property ||| LMF||| = \\\A\\\ for all A and unitary U, V. With
each such norm is associated a "norm ideal" of &(£? ) on which it is bounded, and
this ideal is closed in the topology generated by this norm.

Two special families of unitarily invariant norms are the Schatten p-norms
/ oo y//>

defined as M|L = ( X Sj(A)p ) , I r g p ^ o o , where by convention H ^ H ^ ^

k

= s1(A)=\\A\\ and the Ky Fan norms defined as | | / l | | f c = £ Sj(A),
j=ι
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This latter family is important because of the following theorem of Fan [5],
(called the Dominance Property in [6, p. 82]). If B belongs to the norm ideal
associated with a unitarily invariant norm ||| ||| and if || A \\k ̂  || B \\k for k = 1,2,...,
then A also belongs to this ideal and \\\A\\\ ^ |||£|||.

We will consider another subclass of unitarily invariant norms which we call the
Q-norms. A norm ||| ||| is a Q-norm if there exists some unitarily invariant norm ||| |||'
such that |||Λ||| = (|MM|||')1/2. Since \\A\\ = \\A*A\\l>2 and \\A\\p = (\\A*A\\p/2)

1/2

for p ̂  2, the Schatten p-norms are all Q-norms for 2 rg p ̂  oo. However, for 1 ̂  p
< 2 they are not Q-norms. The family of Q-norms contains several other norms as
well. For example, for each k = 1,2,... define the "root mean square" of the top k

ί k Y / 2

singular values as || A \\ktSq = I ]Γ s2(A) I .It can be seen that this is a symmetric

gauge function of the Sj(A\ and hence defines a unitarily invariant norm. Also, it is a
Q-norm because it is equal to || A*A\\k

/2

7 where \\A\\k is the Ky Fan norm. We will
use the symbol || ||Q to denote any of these Q-norms.

3. On the Halmos-Bouldin Inequality

The example below shows that the Halmos-Bouldin inequality can not be extended
to Schatten p-norms for 1 g p < 2.

Let ffl be the two-dimensional Hubert space C2 and let K be the closed set
(i, — ί} in the plane, Let A and N be the operators having the matrix representations

A= ° Π " Γ ° 1

Then Ne^(K] and \\A-N^P = 2 for any 1 ̂  p ̂  oo. But if F is any function of the
plane onto X, then || A - F(A) \\p = 21/p+ί/2, for 1 ̂  p ̂  oo. (To see this note that
since A and F(A) commute they can be simultaneously diagonalised.) So for 1 ̂
p < 2, || ^4 — F(A) \\p> \\A — N\\P. Further no function of A can be a best approxi-
mant to A from Jf(K) for these norms. (A "worse" example may be based on [2,
Example 4.2].)

The following theorem says that the Halmos-Bouldin inequality can be
extended to all Q-norms for arbitrary closed sets K and to all unitarily invariant
norms for closed convex sets K.

Theorem 1. LetAe&ffl) be a normal operator. Let Fbea Borel measurable distance
minimising retract onto a given closed subset K of the complex plane. Suppose there
exists an N in the class Jf(K) of all normal operators whose spectrum is contained
in K, such that A — N lies in the norm ideal associated with any Q-norm || ||Q. Then
A — F(A) also belongs to this ideal and

\\A-F(A)\\Q^\\A-N\\Q. (1)

Further, if the set K is convex, then under the above conditions we have

\\\A-F(A)W^\A-N\\\ (2)

for every unitarily invariant norm.
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Proof. If our norm is the operator norm this is exactly the result of Halmos. In the
case of any other norm ideal, A — N is compact. So A and N have the same essential
spectrum, (see [10]), i.e. the part of the spectrum of A which is outside K just consists
of eigenvalues of finite multiplicity. So to prove the inequality we might assume that
A is a compact operator. (See Bouldin [3] who uses the same argument.)

Now, by the definition of a β-norm and by the Fan Dominance Property cited in
Sect. 2, the inequality (1) will be proved if we show that for every k = 1,2,... we have

\\(A-F(A))*(A-F(A))\\k^\\(A-N)*(A-N)\\k. (3)

To prove this, it suffices to prove that if α l 5 α2,...are the eigenvalues of A, each
counted as many times as its multiplicity, then

k k

y ια. _ jpvα. )]2 < y s?(A — N\ (4)
7=1 J 7=1

for any choice of k indices iί9..., ik. To prove (4) we appeal to a minimax principle
of Fan [4], which says

Σ sJ(A - N) = max Σ \\(Λ - N)vj\\2, (5)
7=1 7=1

where the maximum is taken over all possible choices of k orthonormal vectors
vί9..., υk. In particular if βj are the eigenvectors of A such that Aej = α^-, then (5)
gives

k k

7=1 J "7=1 ^ h

But, if α is any complex number and e any unit vector, then || (α — N)e \\ is greater
than the distance of α from the spectrum of N. (See [3] or [8].) Using this fact and the
definition of F, one obtains the inequality (4) from (6).

Now assume that K is a convex set. Once again to prove the inequality (2) we
need to prove it only for the special class of Ky Fan norms, i.e. we need to prove that
for k= 1,2,...we have

k k

y ια. — F(oί }\< y s (A — N) (7)
7=1 ' ~7=1

for any choice of k indices α f l , . . . , αίk. By a theorem of Fan ([4], [6, p. 47]) we have

7=1 ~7=1

for all fc-tuples of orthonormal vectors vl9...,υk. Since N is normal and K is a convex
set containing the spectrum of TV, the points </Yt;J.,ι;J.> all lie in K. (See, e.g. [7].)
Now choose Vj to be the eigenvectors et as before. Then the inequality (7) follows
from (8). Π

4. On the Powers-St^rmer-Kittaneh Inequality

By a modification of the arguments of Kittaneh [12] we can derive the following
generalisation of his Theorems 1 and 2.
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Theorem 2. Let A, Be@(3F) and let X be a self-adjoint element of 38(3?). Let A +
B ̂  + X. Suppose AX + XB belongs to the norm ideal associated with any unitarily
invariant norm ||| |||. Then X2 also belongs to this ideal and

\\\AX + XB\\\^\\\X2\\\. (9)

Proof. For the case of the operator norm this is Kittaneh's Theorem 1 [12]. For the
case of any other norm, A X + XB is compact. Then the assumption A + B ̂  ±X,
together with the operator norm case of this theorem implies that X is compact. (See
[12], Proof of Theorem 2.) Arrange the eigenvalues of X in descending order of
modulus as I /IJ^I^I^ — Then Sj(X) = \λj\. Let e^ be the eigenvectors of X
corresponding to λjt Once again we need to prove (9) only for the special class of Ky
Fan norms. Using, again, the theorem of Fan ([4, 6, p. 47]) we have

\\AX + XB\\k

= £ Sj
j=ι

= Σ
7=1 7=1

^ Σ Sj(X)\<Xej,ej)\ = Σ ή(X)= ll^2 | |k. D
7=1 7=1

Corollary 3. Let A, £e J*pf ) be positive. Suppose A2 — B2 belongs to the norm ideal
associated with any unitarily invariant norm ||| |||. Then (A — B)2 also belongs to this
ideal and

\\\(A-B)2\\\^\\\A2-B2\\\. (10)

Proof. Choose X = A - B in Theorem 2. Π
As explained in the Introduction the Powers-St0rmer inequality and its

generalisation by Kittaneh are special cases of (10) for the p-norms.
Inequality (10) can be further generalised as follows. Let xί ^ x2 ^ ••• ^ xn ̂  0

and yi ^y2 ^ ••• g:yπ^0 be real numbers such that Σ X / ^ Σ ^j f°r ^ =

i=l J=l

 k1, 2, . . . , n. Then by standard results in the theory of majorisation we have Σ x ]

*
Σ y2- (See [1 or 13].) In particular, this implies that if A and B are self-adjoint

Operators with \\A\\k^\\B\\k for fc=l,2,...,n, then \\A2\\k^ \\B2\\k for k =
1, 2, . . . , n. Using this fact together with Fan's Theorem we get from (10) by iteration:

Corollary 4. Let m be any integer of the form m = 2k, k = 1, 2, ____ Then with the same
notation as in the statement of Corollary 3 we have

|||μ-BΓIII^IM"-B"|||. (11)

Next note that if T is self-adjoint and m is any integer, then || Tm \\p = || Γ||*p for
1 ̂  p g QO. So specialising (11) to the case of p-norms we obtain

^Tp^M-BH, (12)
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for a l lm = 2fc, / c = l , 2 , . . . .
A special case of the above inequality (when A ^ B ̂  0) has been proved by

J. Philips (unpublished) using a different argument.

5. On the van Hemmen-Ando-Kittaneh Inequalities

Recall [10] that a closed operator A defined on a dense domain Q)(A) is called
maximal accretive if Re < An, u > ̂  0 for all ue^(A) and if A has no proper extension
to an operator which also satisfies the above condition. Every maximal accretive
operator has a unique maximal accretive square root (and also other roots). For
bounded operators maximal accretiveness just means that Re ^4 = (A + A*)/2 is a
positive operator.

The following theorem, essentially due to Heinz [9], can be found in [2].

Theorem 5. Let A — al and — B — al be maximal accretive operators for some real
a ̂  0. Then for every S belonging to the norm ideal corresponding to any unitarily
invariant norm ||| |||, the equation AX — XB = S has a unique solution X in the same
norm ideal, and

2a\\\X\\\^\\\S\\\.

(Note. The statement about the operator equation above is to be interpreted to
mean that for all ue@(A*) and vε@(B) we have

Corollary 6. Let A — al be maximal accretive for some a^.0. Then for all
and for every unitarily invariant norm we have

2a\\\X\\\£\\\AX + XA*\\\.

One of the main results in Kittaneh [1 1] is a special case of Corollary 6 when A is
bounded and the norm is a Schatten p-norm for 1 ̂  p ̂  oo. Kittaneh's result, in turn,
is an extension of an inequality of van Hemmen and Ando [18, Lemma 3.1] which is
the special case when A = A*.

Using these inequalities and the arguments of van Hemmen- Ando [18] one can
easily extend their results to maximal accretive operators. For example, their
Proposition 3.2 can be generalised as:

Proposition 7. // A, B are maximal accretive operators and if for some a ̂  0, the
operator A1/2 + B112 — al is also maximal accretive, then for every unitarily invariant
norm
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