
Communications in
Commun. Math. Phys. Ill, 11-31 (1987) MsthθΓnatiCal

Physics
© Springer-Verlag 1987

Parallel Transport in the Determinant Line Bundle:
The Non-Zero Index Case

S. Delia Pietra1'2* and V. Delia Pietra1**
1 Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA
2 Theory Group, Physics Department, University of Texas, Austin, TX 78712, USA

Abstract. For a product family of Weyl operators of possibly non-zero index
on a compact manifold X, we express parallel transport in the determinant
line bundle in terms of the spectral asymmetry of a Dirac operator on R x X.
This generalizes the results of [7], where we dealt only with invertible operators.

0. Introduction

Let X be a compact spin manifold of even dimension with spin bundle
S=S+®S-.->X and let E-+X be a hermitian vector bundle over X. Let S and
E be the pullbacks of S and E to U x X with the induced inner products and let
V£ be a connection on E. Thus VE = du + θ + Vf.}9 where θeβ^R)® C°°(Z, End E)
and for each yeU, Vy is a connection on E^X. Let dy be the Weyl operators
dy:L

2(X,S+® £)H» L2(X,S_® E) coupled to the connection V^ and the (y-indepen-
dent) metric on X.

The constructions of [5] applied to these data yield a smooth determinant line
bundle 5£ over IR with a natural hermitian metric and compatible connection. If
index dy = 0, <£ has a canonical section. In [8] we assumed that for all y, Ker dy = 0
and Ker <3j = 0, and we gave a formula expressing parallel transport in & in terms
of this section and the spectral asymmetry η(H) of the formally self-adjoint Dirac
operator H on L2(R x X9S®E) coupled to the connection V£ and the product
metric on R x X.

In this paper we investigate parallel transport in the case that index dy is not
necessarily zero. We continue to assume that Ker<9y = 0, but now weaken the
assumption Ker<9j = 0 by assuming only that there exists a F_ c=L2(JΓ, S_ (x)£)
which is a complement to KerdJ for all y. Let VL_ be the orthogonal
complement of F_ viewed as a trivial sub-bundle of the Hubert bundle 3tf _ =
R x L2pΓ,S_ x E), and give K_ the connection induced by orthogonal projection
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from the connection dR + θ on j^_. Let V be the translationally invariant subspace
of L2(R x X, S(x)£) corresponding to V = L2(X, S+ ® E)® F_ and let H\f be the
operator on V obtained by composing H with orthogonal projection onto V.

Since Ker dy = 0, there is a natural isomorphism of DET KER 31" with £*, where
DET denotes the highest exterior power. In addition, orthogonal projection in
Jf_ defines an isomorphism of DETF^ with DET KER d\ Using these
isomorphisms, we will express parallel transport in & in terms of parallel transport
in F1 and the spectral asymmetry η(H\v) of H\v.

The organization of this paper is as follows. In Sect. 1 we clarify the geometric
setting and state our main results. In Sect. 2 we calculate the pull-backs of the
inner product and connection of JSf to VL_. In Sect. 3 we define r\(H\v\ and in
Sect. 4 we give a formula for the variation η(H\v) as H\v is varied. Finally in Sect.
5 we use the results of Sects. 2 and 4 to prove our formulas for the curvature of
3? and parallel transport in JSf.

In Appendix A we investigate the resolvent of H\v and give some details of the
arguments of Sects. 3 and 4. In Appendix B we present our notational conventions.

1. Statement of Results

In this section we state the main results of the paper. We work within the framework
developed by Bismut and Freed [5,6] for studying the determinant line bundle of
a family of Weyl operators.

We are interested in the special case of the Bismut-Freed setting in which the
geometric data have a product structure. The parameter space for our family of
operators is a smooth manifold Y. When we consider parallel transport it will
suffice to let Y be the real line Y=U. Let X be a compact spin manifold of even
dimension, and let Z = Y x X, which we view as fibered over Y with fiber X and
tangent space along the fibers Tv e r tZ= Γ x TX. Put a metric on X and the
corresponding ^-independent inner product on TvertZ. Let S±->Z be the spin
bundles associated to TvertZ, so that S± = Y x S±, where S±-+X are the spin
bundles on X. Let E->Z be a complex vector bundle over Z which is of the form
E=YxEϊorE^Xa vector bundle over X. Put an Hermitian inner product on
E and the corresponding ^-independent inner product on E. Let V£ be a compatible
connection on E. Finally, choose the projection P:TZf-> Tvertz = Y x TX of the
Bismut-Freed data to be given by the product structure.1

The constructions of Bismut and Freed applied to these data now yield a
Hubert bundle f̂ = ̂ f + ®Jf_->7 with natural inner product and natural
connection V^, a bundle map δ jf + h-> jΊf _ which is given by a Weyl operator on
each fiber, and a determinant line bundle J&f -> Y with an inner product and
compatible connection V(^}. If dim Ker dy is a locally constant function on Y, then
KER d and KERd f are finite dimensional subbundles of J^ + and Jf _, and there

1 Note that for arbitrary geometric data as in [5], the space Z and the bundles Tvert Z, S, E are always
products locally over 7. However, our form for the inner product on Γvert Z and the projection P do not
hold in general, even locally
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is a natural isomorphism of the bundles,

Φ:(DET KER<3)*®(DET KERd^)^->£>, (1.1)

where DET denotes the highest exterior power.
In our case we can describe these structures explicitly. Using the product

structure E=YxE, write

V f = dy + θ + Vf ), (1.2)

where ΘeΩ1(Y)®Cco(X,EndE\ and for each yeY,V* is a connection on

± = Y x L2(X,S± <The Hubert bundle 3tf is trivial with $e ± = Y x L2(X,S± <g)E). The inner product
on 2tf is ^-independent and given by the inner product on L2(X9S®E). The
connection V^ on 3? is given by V^ = dγ + θ. The operator dy is identified with
the Weyl operator dy:L

2(X,S+ ®E)-»L2pf,S_ (g)E) coupled to the inner producty

on TX and the connection V . The covariant derivative of d as a section of
_) is given by VUom&+ *-ϊd = dγd + [θ9d']. (Since the metric on X

does not vary with Y,dγd is in fact a zero-th order operator along the fibers:
dγd = c(dγV

E\ where c is induced by Clifford multiplication T*Xh* Horn (S+ , 5_ ).)
Finally, if dim Ker 3y is locally constant, the inner product and connection on

<£ satisfy

φ* vm = v(DETKER5)*Θ(DETKERδt) + co (13)

Φ* II III HI llpETKERamoETKERat) det 3*5, (1.4)
1δtvHom(^-^-^, (1.5)

det d^d = exp - lim-^-Tr (d1 δ)~z. (1.6)
z->o«2

Here the bundles KER d and KERd1 have the inner products they inherit as
sub-bundles of Jf _, and the compatible connections obtained by orthogonal
projection from the connection on ffl _ . The complex powers of d τδ are defined
by contour integration. The notation lim (respectively (f.p.a.z = 0}) is understood

z^O

as the value at z = 0 (respectively the finite part at z = 0) of the meromorphic
continuation of a function which is analytic for Re z » 0. We will give the precise
interpretation of these expressions in the next section.

Let D Jf κ->^f be the family of formally self-adjoint Dirac operator corres-
ponding to d, so that Dy is the operator on L2(X, S®E) which relative to the

decomposition S = S+@S_ is given by Dy = I y j . Then (see Sect. 2) ω can
\Vy )

be written

, σ = {f.p.a.z = 0}iTrs(D2)"z-1/)V/), (1.7)

Here Trs denotes the super-trace given Trs = Tr°Γ", where Γ is the endomorphism
of S with Γ= ±1 on S

±.
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Henceforth assume

la. Ker3y = 0/or all ye Y.
Ib. There exists a closed subspace F_ c:L2(X,S_®E) which is a complement of

Given condition la, condition Ib will always hold locally on Y, since near y0εY
we can take F_=ImδJ o . Let Fi denote the orthogonal complement in
L2(X, 5_ (x) E) of F_ , and, for convenience, let F+ = L2(X, S+ (x) £) and F_ 0 F+ .

We will also denote by F_ and F^ the corresponding trivial sub-bundles of
Iff -. Then Ib is equivalent to tf _ = F_0KER<9 f. We give these bundles the
induced inner products and the compatible connections obtained by orthogonal
projection from the connection on J f _ .

Let D|F:Fh+ F be the family of operators on F induced by PDF, where P is
orthogonal projection in L2 onto F. Conditions la and Ib imply that (D\v)y is
invertible for all y. Define

σo = limiTrs(D|J)-'-1D|FV(i)|F), (1.8)
z->0

where VD|F = P(dγD\v + [0,D|F]).
Let g Fit-^KERc^ be the bundle isomorphism which on the fiber over ye Y

is induced by orthogonal projection in L2(X9S-®E) onto KERδJ. There is a
corresponding isomorphism of line bundles

DET Fi - » DET KER dτ - jg?. (1.9)

Our approach will be to compare Vί'sf) and VDETF~ using this isomorphism. Note that
the connection on DET Fi is just

Our first result is:

Proposition (1.11). Assuming la and Ib,

(Φ °Det 0* Vm - VDETF- + irfln || Det β || 2det 3f3 + σ0,

fe norm o/ DetQ is ίαfcen relative to the induced inner product on
Horn (DET Fi, DET KER Sf).

Using the expression for V(tSf) given in Proposition (1.11) we next verify in our
special case the curvature formula of Bismut and Freed ([15], Theorem 3.5):

Theorem (1.12). Assuming la and Ib, the curvature ofV(^} is given by the two-form
on Y

&* = 2π/[ I A(aβ)ch (^v,)]{twoform} . (1.13)

Here g is the (Y-independent) metric on X,0tg is the curvature of the Levi-Civita
connection of g, and J%£ is the curvature of the connection VE on E. A and ch
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are the polynomials

15

(1.14)

Now suppose Y = IR. Give Y the standard translation invariant metric dy ® dy
and give Z = R x X the product metric. Then S-* Z is identified with the spin
bundle of Z. Let V be the translation invariant subspace of L2(Z, S ® E) determined
by V.

Let H be the formally self-adjoint Dirac operator on L2(Z,S®E] coupled to
the metric on Z and the connection VE on E. In terms of the product structure
S®E=Yx(S®E),

δy - + θ[ —
(1.15)

Let H\y be the operator on Fobtained by composing H with orthogonal projection
onto V.

In addition to la and Ib assume
2. For I j;| > 1, 0 = 0 ami dVE/dy = 0.
Thus for \y\ > 1, H|p is invariant under translations in the R direction.

Define

/2, (1.16)

(1.17)

Here φ is a nonnegative smooth function on R of compact support acting as a
multiplication operator on L2(IR x X,S®E), and the limit φ-+ 1 is taken through
a sequence of such φ increasing pointwise to the constant function 1. We introduce
these cut-off functions in order to obtain trace class operators. The complex powers
of H I \ are defined by contour integration and lim is understood in terms of analytic

z->0

continuation. We will give a precise interpretation of (1.16) and (1.17) in Sect. 4.
Our main result is

Theorem (1.18). Assuming la, Ib, and 2, the parallel transports
and DET V^. respectively from — oo to oo are related by

and

- n

τDETF-eyn — f
e°'"n P J °

modi.

We remark that the isomorphism Detβ enters into Proposition (1.11) and
Theorem (1.18) only through the combination (Det Q)/ 1| Det Q \\ . In fact, as we
indicate at the end of Sect. 2, although there are, in addition to Det Q, various
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other natural isomorphisms of DET Fi with DET 31" determined by the available
data (i.e. the inner product on ffl _), these are all rescalings of Det<2 by positive
functions on Y (see (2.38) below). Thus a different choice of isomorphism will not
affect Theorem (1.18).

2. The Inner Product and Connection on ££

In this section we calculate the pull-backs to DET Fi of the connection and
curvature of JSf, and thus verify Proposition (1.11). We allow the parameter space
Y to be an arbitrary smooth manifold and assume that conditions la and Ib of the
previous section hold.

Let P_ be the orthogonal projection in L2(X, S_ ®E) onto F_ . Let d' = P_ d
and d'1" = 3 fP_ . Let {ψ1} and {χ*}, i — 1, 2, . . . , n = dim Ker d\ be smooth bases for
KER df and Fi respectively.

Define the following functions and one-forms on Y:

det <9fd - exp - lim^Tr (δ^Γ*, (2.1)

ωθ = (f.p.a.z - 0}Ίr(d^dΓz'l^(Vd\ (2.2)

σθ = {f.p.a.z - 0}iTr (d^dΓz~l(S\Vd} - (V<3f)d), (2.3)

σ* - {f.p.a.z = 0}iTr(3't3')~z~1(3/t(V3') - (Vδ'V), (2-4)

Lθ - limTr (dd^~zθ + Tr(l - 3(5T3)- ̂ θ - limTr (d^d)"sθ9 (2.5)
z-+0 z->0

(2.6)

(2.7)

In (2.6) and (2.7) we have suppressed the indices on ψ and χ, so that, for example,
<^,χ> denotes the matrix with entries (ψ,χyij = (lA^7).

The operator complex powers appearing in (2.1)-(2.5) are defined by contour
integration as we now briefly describe (see [13]) using (dyd^~z as an example.
Since dydl is a formally self-adjoint differential operator with strictly positive leading
symbol, and since X is compact, the spectrum of dyd\ consists of isolated points
in [0, oo ). In particular, there is a δ > 0 such that the disk \λ\ < 2δ intersects the
spectrum at most at λ = 0. Let ̂  be the clockwise oriented curve in C which runs
from — oo to —δ directly above the negative real axis, then clockwise around the
circle \λ\ = δ, and then back to — oo directly below the negative real axis. Then
for zeC, Rez > 0, define

(d,dlr'=-S£L.l-'(d,dl-X)-1, (2.8)
cgΔΊll

where λ~z is given in terms of the branch of the logarithm with cut along [0, oo)
and log(l) = 0. It is easy to check that (2.8) is independent of the choice of δ.

We use this definition even though dyd\ is not invertible. Thus the zero
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eigenvalue must be handled separately, and some care is required in formal
manipulations.

Now by the techniques of Seeley [13] as discussed in Appendix C of [8], it
can be seen that in the definitions (2.1)-(2.5), the traces involving the operator
complex powers are well defined and analytic for Re z sufficiently large. Moreover,
these traces extend to meromorphic functions of z for Re z > — 1 whose only
singularities are simple poles at half-integer values of z. We have used the notation
{f.p.a.z = 0} and lim to indicate the finite part at z = 0 of these meromorphic

z-*0

continuations. In particular, {f.p.a.z = 0} means that there is a potential pole at
z = 0, while lim means that there is no pole.

z->0

The remaining operator trace in the definition of Lθ is actually finite dimensional
since 1 —dy(d\dy)~*d\ is the orthogonal projection onto KerdJ.

The main results of this section are following three Propositions.

Proposition (2.9).

2. VΦ = ωθΦ.
3. ||Detβ||2 = /ι0.
4. VDetβ-z^Detβ.

Here we view Det β as a section of Horn (DET Fi, DETKERδ r) and Φ as a
section of Horn (DET KER d\ &\ The notation || || and V without super- or
sub-scripts refers to the induced inner products and connections on these bundles.

Proposition (2.10).

2.
3.
4.

Proposition (2.11).

ir θexp ΐ^|

Here &tg is the curvature of the Levi-Civita connection of the metric g on X9 ^VE
is the curvature of V£, and A and ch are the polynomials given in (1.14).

Proposition (1.11) follows immediately from Propositions (2.9) and (2.10). In
addition, since the connection on DET VL_ is dγ + Tr (1 — P_ )0, it also follows that

- VDETF~ + idln || Det β ||2det d*d + σθ

0

σg=0 + Lβ. (2.12)

We will use this in Sect. 5 to compute the curvature of
We now turn to the proofs of Propositions (2.9)-(2.11).

Proof of Proposition (2. 11). Observe that
1 0 7 0

— λ~zO(λ) - TrJ
2πi ί2πi

Lθ = lim - Trsί — λ~zO(λ) - TrJ — O(λ\ 0(λ) - (D2 - λ)~lDΘ. (2.13)



18 S. Delia Pietra and V. Delia Pietra

Thus by the results of Appendix C of [8], Lθ is expressible as an integral over X
of a density which in any local coordinate system is given by a universal
polynomial in the components of the complete symbol of 0(λ). The evaluation of
this density, which is in any case well known, was discussed iL the proof of
Proposition (4.12) in [8], Π

Proposition (2.9) and the first three statements of Proposition (2.10) are
straightforward, so it remains to prove statement (2.10.4). We first prove

Lemma (2.14)

tr(<^χ>-χVιA,*>-<^rXV^^

Corollary (2.15)

Note that the traces appearing on the right-hand sides of these expressions are
actually finite dimensional. In fact ((^P.^Γ^P. -(δjdy)"1^) vanishes
on Imdy while P _ ( V P _ ) = (VP_)(1 -P_) vanishes on ImP_, and both these
spaces have finite codimension in L2(X,S_ (x)£).

Proof of Lemma (2.14). We use the trick of varying both sides with respect to P_ .
Fix yεY and let v be a tangent vector to Y at y. Let P_(ί), ίe[0, 1], be a smooth
family of orthogonal projections on L2(X,S_ (χ)£) such that KerP_(0) = Kerdy,
P_(l) = P_, and for all ίe[0, 1], KerP_(ί) is a complement of Ker^J. Let (f (ί)},
i=l ,2, . . . ,dim Ker δj, ίe[0, 1], be a smooth family of frames in L2(X,S_ ® E) such
that {χl(t)} is a basis for KerP_(t) Consider the functions of t

<^,^>-1<V^>,>), (2.16)

B(t) = Tr ((5jP_ (t)dyΓ
 l SIP. (t) - (dldyΓ

ldl}Δvd. (2.17)

Clearly ^4(0) = B(ϋ) = 0, while the assertion of the Proposition is equivalent to
A(ί) = β(l). Thus it suffices to check that dA/dt = dB/dt.

For £e[0, 1] let Pd(t) be the (non-orthogonal) projection operator on L2(X,S_ (χ)£)
with kernel KerP_(ί) and image Im^. Thus

Pd(t) = dy(dlP-(t)dyridlP-(t)=l-^ (2.18)
u

and for any linear operator A on L2(X,S_

(2.19)

Observe that

(2.20)
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at

at

f] i
13ί — (1 -Pa)Vvd. (2.21)

On the other hand,

) = Q, (2.22)

+ (1 - Pa) = 0, (2.23)
ΛP-

- V 4 - Π — P.,
'at

which follow by applying VB and (d/dt) respectively to the equations 8*ψ = 0 and
~>_χ = 0. Using (2.22), (2.23), in (2.20) we obtain

) ^7 V
y j+ X*

- 1 ~

(2.24)

which by (2.19) equals the right-hand side (2.21). Π

Proof of Statement (2.10.4). We use the previous corollary and Proposition (C6)
of Appendix C of [8].

To prove the first equality, observe that

σg - σ" = Im {f.p.a.z = 0}Tr((δ'fδ')"z" ̂ (Vtf) - (θta)-z-1δt(V3)), (2.25)

= Im (f.p.a z = 0}Tr((δ'tδ')"z~1θ't - (d*dΓz~ 1 δ f )Vδ

+ Im {f.p.a.z = 0}Tr (dήd'Γz~ 1 δ' f(VP_ )d, (2.26)

- Im (f.p.a.z = 0}Tr j / Γ 2 0 2 ( / l ) , (2.27)

(2.28)

(2.29)

where we have used P_ Vθ' = P_(VP_)δ + P_(V5). On the other hand, by
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Corollary (2.15),

;02(A), (2.30)

where G is the small counterclockwise circle [\λ\ = δ} contained in <β.
Now since dy and d'y = P-8y differ by an operator of infinite negative order,

0±(λ) and 02(λ) have vanishing homogeneous symbol expansions. Hence by
Proposition (C.6) of Appendix C of [8],

(f.p.a.z = 0}Tr A-*Ot.(l) + Tr ̂ Ot(λ) = 0. (2.31)
(j^ZTUl φLTll

The first equality of (2.10.4). Follows from (2.27), (2.30), and (2.31). To prove
the second equality, observe that

(2.32)

], (2.33)

(2.34)

(2.35)

z-*0

and so

Since 03(/l) has a vanishing homogeneous, symbol expansion,

7 η 7 2

-

(2.36)

Combining (2.34) and (2.36), we obtain the desired

(2.37)

D

We close this section with a simple observation. In addition to β there are
several other natural bundle maps from VL_ to KERd1 determined by the
available data (i.e. the inner product on 3tf _). For example, let β' KERδ1-*^
denote the bundle map which on the fiber over yeY is induced by orthogonal
projection in L2(Jί,5_ ®E) onto VL_. Then β, (βt)~1,(β/)~1 are all isomorphisms
from VL_ to KER d\ (Here f denotes the adjoint with respect to the induced inner
products on VL_ and KER <3T.) However, it is easy to check that β' = Qf and
UDetβpDetΐβ1")"1 — Detβ. In particular,

Detβ = Det(βt)"1

 = Det(^)f

 = Det(β/)~1

||Detβ|| \\ΌQt(Q^Γ1\\ HDetίβ')1!! \\Vεϊ(Q'Γl I I '

Thus Theorem (1.18) is unchanged if Q is replaced by (βt)"1,(Q/)~1 or (Q'}\



Determinant Line Bundle 21

3. The Eta Invariant of H\v

In this section we explain definition (1.16) of the ^-invariant of H \v. We now assume
that Ύ — R and that the geometric data satisfy conditions la, Ib, and 2 of Sect. 1.

Our definition of the ^-invariant is modelled on the definition given in [8]. In
that paper we defined η(H) by an expression involving the complex powers of H2.
These complex powers were defined by contour integration as in the definitions
(2.1)-(2.5) of the previous section, and an important fact was that the essential
spectrum of H2 was contained in [A0, oo), where λ0 > 0 was a lower bound on the
spectra of D2

±m. In the setting of this paper, D2

±ao may have zero eigenvalues
(if Ker δf

±00 ̂  0) and so the essential spectrum of H2 extends down to 0. Thus the
definition of the complex powers of H2 is problematic. On the other hand, D±00\v

are invertible and hence the essential spectrum of H\% on V is bounded away
from 0 (see Proposition (A.2) of Appendix A). It is thus possible to define η(H\v)
by the procedure we used in [8] to define η(H).

Specifically, there is a <5>0 sufficiently small such that the disk { |Λ,(<2<5}
intersects the spectrum of H\γ in only a finite number of eigenvalues of finite
multiplicity, and is disjoint from the spectra of D±00|^. As in the previous section,
let ̂  be the contour in C which goes from — oo to — δ directly above the negative
real axis, then clockwise around the circle |λ| = <5, then back to — oo directly below
the negative real axis. In analogy to the definitions in [8] define

~λ-z-1/2H\y(H\2

v-λΓ\Rez>0, (3.1)
2πι

(3.2)

£ sign(A)Trβλ, (3.3)
0<μ|<δ

). (3.4)

In (3.1) φ is a non-negative smooth function on (R of compact support, acting as
a multiplication operator on L2(ίR x X,S®E) and in (1.2) the limit φ-> 1 is taken
through a sequence of such φ increasing pointwise to the constant function 1. As
in [8], the reason for introducing these cut-off functions is that in general the
operator H\v(H\γ)~z~1/2 is not trace class. In (3.3) lim is understood in terms of

z-+0

analytic continuation as explained in Proposition (3.5) below. Qλ is the orthogonal
projection onto the (finite dimensional) eigenspace of H\γ corresponding to λ,
and sign (λ) equals — 1 if λ < 0 and 4- 1 otherwise.

We will prove the following analog of Proposition (3.6) of [8].

Proposition (3.5)

1. ηφ(H\y)(z) extends to an analytic function of z for Rez> — %.
2. As φ-+!9 ηφ(H\y)(z) converge uniformly on compact sets to an analytic function

3. ηδ(H)(z) depends smoothly on H\v and z for R e z > — \ ana sufficiently small
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variations ofH\y. η(H\y) mod 1 and ξ(H\y) mod 1 are independent ofδ and depend
smoothly on H.

Since the proof of the Proposition is modelled on the proof of Proposition (3.6)
of [8] we will only sketch the main points. Further details are contained in
Appendix A.

The idea is to investigate the resolvent of H\$ on V using the pseudo-
differential operators which approximate the parametrix of H2 — λ on all of
Lg(R x X,S®E\ For this we extend the resolvent of H\$ to L2(R x X,S®E)
by defining, for λφSpecHfy

«»-ΓV" «'4
so that on C$(R x X9S®E)9

((H)2 - λ) R(λ) = R(λ)o((H)2 -λ) = P. (3.7)

Let B(λ) be a λ dependent inverse to H2 — λ up to terms of order —N—l,
N > dim (IR x X)9 constructed from the complete symbol of H2 as in [13, 14].

By comparing R(λ) and B(λ) we can show (Proposition (A.2.3)) that R(λ) has
order — 2 as a operator between Sobolev spaces, and that its norm as a bounded
operator on L2 (IR x X, S® E) decays as | λ \~ 1 for large | λ \ . In particular, the contour
integral in (3.1) makes sense for Rez > 0 and defines a bounded operator on V. It
also follows that the kernel of R(λ) on L2 is smooth off the diagonal of Z x Z, and
for sufficiently large positive integers n, the kernel of HR(λ)n in continuous
everywhere.

In addition, D±^\y are invertible, it follows that \R(λ)(y9x;yf

9x')\ decays
exponentially in \y — y'\9 uniformly in λ (Proposition (A.2.4)).

Combining these observations, we can show as in Proposition (3.7) of [8] that
for sufficiently large RQz,φH\y(H\f)~z~i/2 is trace class and ηφ(H\y) is
analytic in z with

η*φ(H\y)(z)= J dy\dx-Sλ-*-V2φHR(λ),χ 9 y 9 x ) . (3.8)
R x Λ Γ L %ZTCl J

To investigate the analytic continuation of ηφ(H\y)(z)9 we write

η'φ(H\y)(z)= f

(3.9)

The singularities of each of the terms K{(z) is analyzed in detail in Proposition (A.2)
of Appendix A, so here we only summarize the results. First, the singularities in
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the kernel of K1(z) are given by the same local expressions in the complete symbol
of H which arise for the ^-invariant for a Dirac operator on a compact manifold.
A well-known argument using invariance theory then shows that in fact tτK1

(z y, x, y, x) is analytic for Rez > — \. Next the singularities of the kernel of K2(z)
can be analyzed in the R and X directions separately, and we show in Proposition.
(A.2) that this kernel is continuous in y, x and analytic in z for Re z > — \. Finally,
although the kernels of K$(z) and K4(z) are analytic only for Re z > \, by using an
explicit approximation (A.4) for B(λ) we show in Lemma (A.2) that in fact the local
traces tr K3 (z; y, x, y, x) and tr K4(z; y, x, y, x) are analytic all the way to Re z > — |.

These observations complete the proof of (3.5.1). To prove (3.5.2) we proceed
as in the proof of Proposition (3.6) of [8]. First, if H \vis invariant under translations
in the R direction, then R(λ) can be given explicitly (Proposition (A. 1.5)). A
calculation analogous to that of Lemma (3.13) of [8] then shows that in this case
ηφ(H\γ)(z) vanishes. Next, for arbitrary H\y,H\v(H\^— λ)~l can be compared
with the translation invariant operators (H±OQ\y)((H|±00|p)2 -Ί)"1, where H±00 =
ίΓ(d/dy) + D±00. The exponential decay in \y — y\ of R(λ)(y,x;y',xf) allows us to
bound the difference of the kernels of these operators as in Lemma (3.19) of [8],
and then reasoning as in Propositions (3.6) of [8] we can show that the limit φ -> 1
in (1.2) exists uniformly on compact sets for Rez > — \.

Statement (3.5.2) follows. Finally (3.5.3) is proved as in Proposition (3.6) of [8].

4. The Variation of η(H\y)

We next investigate the variation of η(H\y) as H is varied. Let T= R and let {V*},
te T be a smooth family of connections on E -> Z parametrized by T, and satisfying
conditions la, Ib, and 2 for all t. We then obtain a one parameter family {H1}, teT
of operators on C°°(R x X,S_®E\ a two parameter family (Vj,},(ί,j;)eT x Y, of
connections on E->X with Ψ = dy(d/dy) + θ* + V[.}, and a two parameter family
{D^}, (t,y)eT x Y of Dirac operators on C°°(X,5(χ)E) coupled to VJ.

Since ξ(H\p) modi depends smoothly on H\v, the assignment t-+ξ(H\t

v)
defines a smooth map TH> R/Z. With a little abuse of notation, let (dξ/dt)dt denote
the pullback by this map of the unit normalized volume one-form on

We will prove the following analog of Proposition (4.1) of [8].

Proposition (4.1). As one-forms on T,

1

dt\^^ 2πi
dt - ξ(H\y) - — ί Trs(l - P)θ = , w + w t a part

We have used the notation

(4.2)
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where Trs denotes the super-trace. It is part of the Proposition that these expressions
make sense for A = D\v and v = dD\v/dt. &g is the Levi-Cevita curvature of the
metric g on X, and ̂ ^/aί)+v *s ̂ e curvature oϊdt(d/dt) + V viewed as a connection
on the pull-back of E to the bundle T x E over T x Z. A and ch are the polynomials
given in (1.14).

Since the proof of Proposition (4.1) is modelled on the proof of Proposition
(4.1) of [8] we only sketch the main points. Further details may be found in
Appendix A.

As in [8], we first show that for δ > 0 and Rez sufficiently large,

), (4.3)
Ui \ Ui J \ UL /

where

(4.4)

. (4.5)

We proved a similar formula for the variation of η(H) in Proposition (4.6) of [8],
and the arguments given there apply in the current situation with only minor
modifications. Here the relevant technical points are handled using the properties
of R(λ) given in Proposition (A.I) of Appendix A. For example, since R(λ) has order
— 2 and its kernel decays exponentially in \y — y'\, it follows as in Proposition (3.7)
of [8] that φR(λ)n is trace class for sufficiently large integers n. Then φ(H\^-λ)~M

is also trace class, and so as in the proof of (4.6) of [8], an integration by parts in
λ shows that in deriving (4.3) we are allowed to cyclically permute operators under
trace.

We next show that Ί^δ

φ(H\γ,(dH\y/dt))(z) extends to an analytic function for
Re z > —\ with

^ (4.6)

For this we proceed as in the proof of Proposition (3.5) of the previous section by
writing, for Re z large,

= z ί dy\dx\φ(y)( £ Kfoytwx)}, (4.7)
UxX \ i = l /

where K'^z) is defined by submitting dH/dt for H in the expression (4.9) defining
Kt(z). The contribution of each of the terms K'^z) is analyzed in detail in Proposition
(A.2) of Appendix A, so here we only summarize the results. First, the singularities
in the kernel of K\ (z) are given by the same local expressions in the complete
symbols of H and dH/dt which arise for the variation of the ^/-invariant on a
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compact manifold. It then follow as usual (see Sect. 4 of [8] ) that z tr K\ (z, y, x, y, x)
extends to an analytic function of z for Re z > — ̂  with

form part. (4.8)
z->0

Next, the singularities in the kernel of K'2(z) can be analyzed in the R and X
directions separately, and we show in Proposition (A.2) that this kernel is analytic
for R e z > — %9 so that limztr£'2(z;j;,x,j;,x) = 0. Finally, by using an explicit

z-»0

approximation (A.4) for B(λ) we show in Proposition (A.2) that ztrK'3(z 9y9x9y9x)
and z tr K'4 (z; y, x, y9 x) are analytic for Re z > — \ with

lim-zK'3(z;y,x,j;,x)J Γ~ί ^-}(l - P) (χ,χ), ]ίmzKf

4(z;y9x9y9x) = 0.
Z-+Q L dt\oyj J 2-»o

(4.9)

These observations prove (4.6).
Continuing as in Proposition (4.6) of [8], we next calculate that if If is invariant

under translations in the Y direction, then for Re z sufficiently large,

) (410)

In fact, the calculation of [8] applies here if we now use the expression (3.6) for R(λ).
Next σ(dD\v/dt9D\v)(z) can be expressed as a trace over all of L2(Jf,S® E) if

we substitute PDF for D\v. As in Sect. 2 of [8], we may then apply standard
pseudo-differential operator methods to show that the resulting expression extends
to a meromorphic function of z for Re z > — \ with possible simple poles whose
residues are determined by the complete symbol of PDF. Using the generalized
Gilkey Theorem as in Proposition (B.I) of [8] we can show that these residues
vanish. Hence σ(D\v,(dD\v/dt))(z) extends to an analytic function for Rez > — |.

Finally, as in Proposition (4.6) of [8], the proof of Proposition (4. 1) is completed
by taking the limit φ -> 1 in (2.3). Specifically, the exponential decay in \y — y' \ of
R(λ)(y9x;y'9x') allows us to take the limit in (4.3) to deduce

at
(4.11)

Here φ = φ+ + φ_ with φ+ supported in [0, oo) and φ_ supported in ( — oo,0].
Proposition (4.1) now follows from (4.6), (4.10), and (4.11).

5. Parallel Transport and Curvature of

In this section we prove Theorems (1.11) and (1.12). These theorems are generali-
zations of Theorems (1.6) and (1.11) of our paper [8], and using the machinery we
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now developed, the proofs given there require only minor enhancements. Whereas
in [8] the basic ingredient was Proposition (4.1) of that paper, we now use the
corresponding generalization, Proposition (4.1).

We begin with Theorem (1.11). Thus let Y = R , let VE be a connection on
E-» Yx X, and assume that the geometric data satisfies conditions la, Ib, and 2
of Sect. 1. The first statement of the theorem follows immediately from the
expression for the pull-back of V(^ given in Proposition (1.11), so it remains to
prove

) modi. (5.1)

Following the proof of (1.11) in [8], we_integrate the formula of Theorem (4.1)
over a suitable family of connections on E interpolating from dy(d/dy) + VE- ̂  to
dy(d/dy) + Vf } to VE = dy(d/dy) + θ + Vf.}. The only new feature is the presence of
the term d/dtΊτsθ(ΐ - P), but this is easily handled. We obtain

The integrand on the right-hand side of (5.2) is σo=0(V£), while by Proposition
(4.11) the integrand in brackets on the right-hand side of (5.3) is LΘ(VE). (The
notation is meant to indicate that these quantities are to be computed in terms of
the original connection VE on E). Now by Proposition (4.10.4), σθ

0 = σθ

0

=0 + Lθ —
Trθ(l-P_). Thus by adding (5.2) and (5.3), and observing that Trs0(l-P) =
-Tr 0(1 -P_) we obtain (5.1).

We next indicate the proof of Theorem (1.12). We allow the parameter manifold
Y to arbitrary, but continue to assume that conditions la and Ib hold. By (4.12)

(φoDet β)* Vm - VΌEΊV- + σθ

Q + {exact} (5.4)

- dγ + σ£= ° + Lθ + {exact}, (5.5)

and so the curvature of V(J?) is the two-form dγ(σθ

0

=0 + Lθ).
By Proposition (4.11)

dγL
θ = - dγ$A(@g)tr θexp i^v/2π. (5.6)

x

On the other hand, as in the proof of Theorem (1.6) of [8], we can use Proposition
(4.1) to show

dγσ
θ

0= ° = 2πi[ If ̂ (Λβ)ch(^y+v)]{two.foιm}. (5.7)

In particular, the additional term dτ JTrs#(l - P) in the formula of Theorem (4.1)
y

is exact and hence it does not affect the argument. The sum of the right-hand sides
of (5.6) and (5.7) is precisely the desired expression for the curvature, as we verified
in the proof of Theorem (1.6) of [8].
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A. Spectrum and Resolvent of H\p. Technical Details of Sects. 3 and 4

The main results of this Appendix are the following two propositions which
are needed in the proofs of Theorems (1.5) and (2.1). We use the notation of the
body of the paper, Appendix B, and Appendix D of [8].

Proposition (A.I).

1. (H \y)2 is self-adjoint on LQ\V.
2. The essential spectrum of(H\y)2 is contained in [/10, oo), where λ0 > 0 is a lower

bound for the spectra of(PD±aΰP)2 on LQ\V.
3. Let y be any closed sector not intersecting the positive real axis, and let

&" = &v{λeC:\λ\<l}. For any fceZ, (α,/)eZ xZ, jeZ, (j8,m)εRxZ, with 0^
j ̂  2, 0 ̂  β + m ̂  2, β, m ̂  0, and α and I of the same sign, the following statements
hold:
a. For any compact OF c C\Spec((H|^)2) there exists ac>Q such that for

\\R(λ)\\k+M<c

b. There exist c,r > 0 such that if λe^ and \λ\ ̂  r, then λφSpec((H\y)2), and

\\R(λ)\\k+Jtk<c(l + \λ\rl+JI2 | |Λ(A)|| ( β f 0 + W f m ) i ( β f I )<c(l + |A|)-1 +^+ w>/^

c. For any closed ̂  c &"\SpQc((H |̂ )2), there exists ac>Q such that for λe^,

\\R(λ)-PB(λ)P\\M + (β,N]:M

In particular, R(λ) extends to a map from L2,^ to L?.^ and R(λ)\v is the resolvent
of(H\f)

2onL2\v.
4. For any closed 3F c= {/l:Re/l</l0}\Sρec((H|p>)2), there exist constants p 0 >0

and c>0 such that for \p\ < p0,λe^,\y - y'\ > I,X,X'GX,

5. If H is invariant under translations o/R, then for Ae[/I0, oo), y9y
reR9x,x'eX,

00 dE -
,x;y',x')= f —

Here Λ(A) is the resolvent of H\f extended to Q?(ίR x X,S®E) as in (3.6) and B(λ)
is a A-dependent inverse for H2 — λ up to terms of order —N — 19N> dim (R x X).
The ordinary and "mixed" Sobolev norms in (A.I) are defined in Appendix B.
(A. 1.3) can be proved using the methods of [13]. (A.I.I) then follows from the
existence of R(λ) for \λ\ large. (A. 1.2) and (A. 1.4) are consequences of the invertibility
of D+QO\y> and can be proved using the methods of the proofs of Propositions (A.2)
and (A.6) respectively of Appendix A of [8]. (A.I. 5) is obvious.

Proposition (A.2). trKi(z;y9x9y9x) and ztrK'i(z;y9x9y9x) extend to analytic functions
for Re z > — % which are continuous in y and x and

1. lim - ztrKf

1(z;y,x)y,x)dt = A(@g)ch(^dt(d/dt)+^oneίoτmpaτί,
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2. lim - z tr K'2 (z; y, x, y, x) = 0,

1 Γ~ J / Λ \I a I d \
3. lim — ztr-K'3(z;j;,x,y,x) = —tr jΓ—-Θl — (1—P)

z->o 2πz [_ A \dy/

z->0

The operators Kt(z) and ^(z) have been defined in (3.8) and (4.7).
To prove Proposition (A.2) we need an explicit approximation to B(λ). Choose

fc"weC°°(R x R xC)®C00(X9Eτίd(S®E))9 n = 2,3 such that for £2 + |λ |>l ,

b^2(y,E;λ) = (E2 — A)"1, b®_3(y,E',λ)= — 2ίθE(E2 — λ)~2. (A.3)

Define operators B^_2(λ) and Bu_3(λ) on CCO(1R x X,S®£) by

/777

-^'/(/) (A.4)

for /eC^(R, C°°pf,,S(8) E)). These operators can be interpreted as resulting from
a formal application of Seeley's construction of a λ dependent parametrix to the
operator H2 viewed as a differential operator on the infinite dimensional bundle
C^(R x X,S ®£) over R. The following Lemma, which can be proved using the
methods of [13], shows that they are useful approximations to B(λ).

Lemma (A.5). B^n(λ) extend to operators on L2_00(IR x X,S®E) and for all fceZ,
(α, ί)εZ x Z, βeR wiί/z α αnrf / of the same sign and ΰ^β^2, there exists c> 0 .
MeZ SMC/I ί/iαί

2. | | 5μ)-^μ)-^μ) | | α + 2 + M α / <φ + μi)-^
Using Lemma (A. 5) we can give the

Proof of Proposition (A.2\ We have already studied the operators K^z) and K\(z)
in our analysis of η(H) and dη/dt(H) in Sects. 3 and 4 of [8]. There we showed
that trK^z y.x.y.x) and tr K\ (z; y, x, y, x) extend to meromorphic functions of z
for Re z > — \ with possible poles at half integer values of z whose residues are
expressible in terms of local expressions in the complete symbols of H and dH/dt.
By invariance arguments and Gilkey's theorem we then showed that the residues
of tΐK1 vanish for Rez> —\ while those of trKΊ vanish for z>0. Finally, we
showed that the residue of tr K\ at z = 0 must agree with the well known formula
(A.2.1) for the variation of the ^-invariant for the Dirac operator over a compact
manifold. These observations establish the claims concerning K± and K'±.

We next investigate K2 and K'2. First note that from (A.1.2.c), there exists a
c> 0 such that for all (α, /),/? as in Proposition (A. 1.2), and

M<c(ί + \λ\Γ3/2+β/2 (A.6)

Consequently, since N has been chosen such that N > dim(R x X\ Lemma (B.3)
of Appendix B implies that H(R(λ)- PB(λ)P) has a continuous kernel and that
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there exists a c> 0 such that for λetf, ε > 0, and y, x, y', x',

\H(R(λ)-PB(λ)P)(y,x;y',x')\<c(l + \λ\Γ1+ε. (A.7)

It follows that K2(z) has a continuous kernel which is analytic for Rez >^. By a
similar argument, the identical result holds for K'2(z). The claims concerning
K2 (z; y, x, y, x) and K'2 (z; y, x, y, x) follow.

To investigate K3(z), write.

z), (A.8.a)

+ B^(λ)\ (A.8.C)

The bounds (A.5.2) imply that for (α,ί), jS as in (A.5) and λe<β,

\\H(l - P)(B(λ) - Bu

2(λ) - ^3(A))||(α,0+(MimX + 1),(α,0 < c(l 4- μ|Γ3'2+"2, (A.9)

and thus Lx(z) has a continuous kernel which is analytic for Rez > — \. On the
other hand, for Re z large,

+ Dί - P}(b\(λ y,E) + 6^)(A;y,£)(x,x). (A. 10)

The singularities of the continuation to z = 0 arise only from the terms Dy(i — P)fe_2,
— ΓE(\ — P)b_3 and iΓΘ(l — P)fr_3 and only from the integration region E2 -f
|λ| §; 1. Using the explicit expressions (A. 3) for fc_2 and fc_3 we see that the local
trace of the first of these terms vanishes since tr[(l — P)D](x,x) = 0, while the
singularities in the local traces of the second and third terms cancel. (This
cancellation is precisely the cancellation responsible for the finiteness at z = 0 of
the η invariant of the Dirac operator on S1.)

By a similar argument we can show that ztτK'3(z;y,x,y,x) is analytic for
Re z > — \, and moreover

(A u)
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To get the last equality, note that dH/dt = iΓ(d/dt)θ(d/dy) + (dD/dt) and use
tτ(dD/dt)(l - P) = 0. This proves (A.2.3).

The operators K4 and K'4 can be investigated in a similar manner. In particular,
we observe that limzK'4(z) can be calculated by replacing B(λ) by B^_2(λ\ but

z->0 _ _

this substitution leads to the operator PB®_2(λ)(l - P) = 0.
This completes the proof of (A.2). Π

B. Notational Conventions

Let W = X and F = S® E or W= R x X and F = S®E. Put a metric on W and
a fiberwise hermitian inner product and compatible connection on F. For
W = R x X we will impose the additional requirement that the connections and
inner products be invariant under translations in the U direction. This is a
reasonable condition since we are assuming that our operators H are translation
invariant for large |y |,yeR.

For integer k, let || || k denote the k — th Sobolev norms on CQ (W, F) determined
by the metric, inner product and connection [13], and let Ll(W9F) denote the
Sobolev spaces obtained by completing C%(W,F) relative to these norms. Set

L2^(W9F)^\JI^(W9F).
keZ

In the case W = U x X, we define "mixed" Sobolev norms on sections of F as
follows. For fceZ, αeR, and /eQ^P^F) define the (α,/c) Sobolev norm of / by

= ί (1 + ̂ 2)a I I /(ω, •) \\l /(ω, x) = \dyf(y9 x)*toy, (B.I)

where || ||fc denotes the fc-th Sobolev norm on CCO(X,F).
As with the usual Sobolev norms, the norms || ||(α,/c) extended real valued

functions \\-\\M):L
2-n(W9F)-+[Q, oo]. For a linear operator O lA^W F)-*

and j,keZ, oc,βeR we set

. (B.2)
)

We will use these mixed Sobolev norms to measure the singularities in kernels
of operators whose order in the R and X directions are different.

Lemma (B.3). Let 0:L2Lαo(W,F)H>L2LσQ(W,F). Suppose there exists k>^dimX,
α>^, and c>0 such that | |0 | | ( α f e ) j (_α _ f c ) <c. Then as a bounded operator on
L^(W9F\ 0 has a continuous kernel and \0(y, x;/, x')\ < cc'(X\ where c'(X)>0
depends on X but not 0.
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