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Abstract. The functional determinant of an eigenvalue sequence, as defined
by zeta regularization, can be simply evaluated by quadratures. We apply this
procedure to the Selberg trace formula for a compact Riemann surface to find
a factorization of the Selberg zeta function into two functional determinants,
respectively related to the Laplacian on the compact surface itself, and on the
sphere. We also apply our formalism to various explicit eigenvalue sequences,
reproducing in a simpler way classical results about the gamma function and
the Barnes G-function. Concerning the latter, our method explains its connec-
tion to the Selberg zeta function and evaluates the related Glaisher—Kinkelin
constant A.

Introduction

This note studies from a general and systematic point of view certain spectral
functions, especially determinants and generalized zeta functions, which can be
associated with a numerical sequence {/,} (typically the spectrum of a certain
differential operator). In particular we reduce to elementary manipulations the
evaluation of certain functional determinants which find applications in high energy
physics (string theory, see [1] and references therein) and in differential geometry
(analytic torsion, see [2,3] and references therein). Our main result (Sect. 7) is
actually an explicit factorization of the Selberg zeta function into two functional
determinants, one of which is expressible in terms of the Barnes G-function; some
recently published formulae involving the Selberg zeta function [1, 3] follow from
ours by specializing the value of the spectral variable.

Our formalism itself is developed in Sect. 2 to 4; its connection to asymptotic
(semi-classical) expansions is demonstrated in Sect. 5, and Sect. 6 is devoted to
examples drawn from number theory (the Euler gamma function and the Barnes
G-function) and from quantum mechanics (homogeneous Schrodinger operators
like the quartic oscillator).

* Member of CNRS
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While the underlying ideas are certainly not new, they are very scattered in
the literature, hence we hope that this condensed and systematic presentation (in
which, however, we make no pretence of rigour) can give new, simpler viewpoints
on the subject. The references given are those which were of direct use to us, and
they are not supposed to reflect accurately all original contributions.

1. Sequences and Associated Functions

The present work studies several functions which can be conveniently associated
with suitable numerical sequences {4,}. The eigenvalues of certain interesting
operators are the most natural and typical candidates to form admissible sequences
{A}; the associated functions are then spectral functions (functions of the spectrum).
However, the general theory of those functions only relies on a limited set of
properties to be satisfied by the sequence {A,}; it is therefore convenient to view
the eigenvalue sequence as an abstract sequence of numbers {1} restricted by a
basic set of requirements, which are the following:

1) O<dosAy =45 AT+ (L.1)

(strict positivity is crucial at some stages, but zero modes can easily be “removed by
hand” when necessary; eigenvalues are to be repeated according to their multipli-
cities);

2) the following series converges for all Re t > 0, defining the partition function,

o) = i e he (1.2)

k=0

another basic assumption is that @(t) admits for t >0 a full asymptotic expansion
(i.e. to all orders in t),

o) ~ i c; b (1.3)
n=0

for a suitable increasing sequence of (real) exponents {i,}, with {i,} 1+ oo and
io <0. The coefficients ¢; are taken here as known quantities; c;, is positive by
necessity. It will prove useful to define, by convention,

¢, =0 for any real number « not in the sequence {i,}. (1.4)
The divergent leading term ¢, t® in Eq. (1.3) implies that the sequence {4}

satisfies the Weyl estimate

cio )
W(A)Nﬁl—_gi , (1.5

where A"(A) = (number of 4, < 1) is the counting function, or cumulative distri-
bution, of the sequence. (This follows from Karamata’s Tauberian theorem [4]

applied to the formula O(t) = | e~**d.A"(4)). We now introduce a special name for
(4]

the positive exponent ( — iy) occurring in the estimate (1.5); we call it the order of
the sequence, = —iy.
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In the present work we shall not be concerned with rigorous proofs, which
certainly imply additional regularity properties for the sequence {1,}.

This level of generality, where the sequence {4,} is only specified by a few
abstract properties, will allow for a great variety of concrete applications,
encompassing many fields of interest. The spectral functions of several simple
numerical sequences reproduce classical functions of analysis. As the next example
of interest, the eigenvalues of an elliptic (pseudo-) differential operator of order m
on a d-dimensional compact {(or bounded) manifold form an admissible sequence,
of order u=d/m [5]. The spectrum of the Schrodinger operator with a positive
polynomial potential is another example [6].

In this work we shall mainly be concerned with the following two types of
spectral functions and their mutual relationships:
the Fredholm determinant,

AG) = f:[u — i), (1.6)

and the zeta function,
Z(s) = ix,:s (1)
1_( i f o)L dt. (1.8)

These formal definitions are too restricted in scope, however. The infinite
product (1.6) only converges for sequences with u < 1; while both definitions of
the zeta function make no restriction on u, they require that Re s> u. (In this
region the equivalence of formulae (1.7) and (1.8) follows from the definition (1.2)
of O(t).)

For the simpler case u < 1 we refer to our previous works [6, 7], while here we
emphasize the treatment of an arbitrary order u. Therefore, two technical
digressions are in order at this stage, one on Weierstrass canonical products, and
the other on the analytical continuation of Mellin transforms; both consists of
standard material and are only presented for completeness.

2. Regularization Techniques for Infinite Products and Mellin Transforms
a) Canonical Regularization of Infinite Products [8]. The infinite product
AG) =TT =4/ @1

has the same convergence properties as the infinite series
o d
R(%) = 08 A = D=2 22

(this is the trace of the resolvent (i.e. of Green’s function) if {4,} are eigenvalues).
Convergence is achieved if u <1 and A(1) is then an entire function of order p,
being specified by its Weierstrass canonical product over the zeros and by the
normalization condition A(0) = 1.



442 A. Voros

When p > 1 the analogous Weierstrass product is given by

A =TT =/i ho# s 3
()=kl;] (11— /k)eXP</1 2/1k+ +W>a (2.3)

where [1] denotes the integer part of u. This is the unique entire function of order
p having the zeros {4,} and subjected to the normalization conditions

d [1]
log A(0) = 710 g A(0) = = log A(0) = (2.4)
This is equivalent to defining at first the [u] ™" derivative of R(A) as
ROP(Z) = Ryy(A) = [T (e — )70, (25)
which converges, and then defining backwards

A
R,_ () =[Ry(X)dA,...,.logA(}) = — jRO(A/)dl’ (2.6)

0

The choice of 4 =0 as the lower integration bound at every stage amounts to
the normalization conditions (2.4). The choice of a different normalization point

A= —a (with a = — A, to avoid ambiguities) can be reduced to a global shift of
the sequence, {4} — {4, + a}. Setting indeed
o y Y Alul
o[- (G g @
we have
Jim+1
W( —logA, (%)= R (A—a),

and by integrating backwards we get

[x)
—logA,(A)= —logA(A—a)— Z Z?i;"—[ —log A(A—a)],=oA"/m!
or, using (2.6),
lfl Ry (— a)A™/m!

A()=em=1 A — a)/A(— a). (2.8)

This formula can also be viewed as expressing the Hadamard factorization
property for entire functions of order u [8].

b) Mellin Transforms [9,10]. If a function @(t) defined on 0 <t < oo satisfies the
estimates

D) =0(°) for t— +0 (ig< + o), 2.9)
D) =0(°) for t— 400 (—o0=jy), (2.10)

and if
io <io, @.11)
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then @(t) admits a Mellin transform .4 ®(s) in the vertical strip — i, <Res < — j,
MD(s)= | O(t)r™ dr. (2.12)

0

A standard problem is how to continue .# @(s) analytically to a wider strip.
Since

— M D(—5)= | D) dr, (2.13)
[
0

this problem has a left-right symmetry in s, hence we may restrict the problem to
the analytical continuation of .# @(s) towards the left, say. If —i,= — co the
problem is solved, otherwise the obstruction to a straightforward continuation of
Eq. (2.12) to Re s <, is the singularity of the integrand at t =0. We may resolve
this singularity if we assume a more precise estimate than (2.9), namely

O(t) =c;, t° 4+ 0(t'") for some i, >iy, t— +0. (2.14)
We may then integrate (2.12) by parts to obtain
MD(s)= — Ti(t"")d)(t)) e dt (2.15)
T ddt S+ip '

This new expression converges in a wider strip, —i, <Res< — j,, where it
defines a meromorphic function with one simple pole, s= —i,, and residue
Clo. . . .

If now @(t) admits a full asymptotic expansion as t — + 0,

D)~ et (i) + o, (2.16)
0

then repeated integration by parts shows that .# @(s) has a meromorphic
continuation to the whole half-plane Res < j,, with a sequence of simple poles

s= —i,(} —o0), with: Residue=c;,. (2.17)
[By the symmetry relation (2.13), if
O(t)y~Y bt (t—>+ ), {j.}l— o0, (2.18)
0

then . ®(s) extends likewise to Res = — j, with the sequence of simple poles

s= — j,(T+00), with: Residue= —b; .] (2.19)

3. Application to the Zeta Functions
The ordinary zeta function of the sequence {4,} is, by Eq. (1.8),
Z(s)=T(s)" i Os), (3.1)

where @(1)=Y e "** is the partition function (1.2). Since 4, >0, @(r) decreases
0
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exponentially for t > + oo, while it has precisely an expansion like (2.16) for t > + 0,
by our basic assumption (1.3). It then follows that Z(s) = I'(s) ™! .# ©(s) is analytic
for Res> —i,( = p), and meromorphic in the whole s plane with the poles

s= —1i,, Residue=c¢; /I'(—1i,). (3.2)

The negative or zero integers s = — m are always regular values of Z(s), because
1/T'(s) vanishes there, and

Z(—m)=(—l"mlc_,,. (3.3)

These closed expressions form the trace identities; the convention (1.4) for ¢_,,
applies here [11].

It is however more convenient to introduce a two parameter spectral function,
or generalized zeta function,

Z(s.a) = 2 U+ )™ (34)

=T(s)"' [ O@@)e~ " 1ds. (3.5)

Ot=— §

Strictly speaking, these formulae make sense for Res> u and a = — 4,5, and
should be analytically continued elsewhere.
It is convenient to use the auxiliary functions

n(s,a)= MM D,(s), @, (t)=O(t)e (3.6)
so that
Z(s,a) = T'(s)~ ! (s, a). (3.7)

This single function Z(s, a) has the virtue of generating many other useful spectral
functions,

— the ordinary zeta function Z(s) = Z(s,0); (3.8)
— the trace of the resolvent R(1)=Z(1, — 4), (3.9)
(with — o0 < A < A), or rather its n-th derivative
d"R(4
dl(n)=n!Z(n+1,—/t)=17(n+1,—/l), (3.10)

which makes sense for n =[], where Eq. (3.4) actually converges.

Our next purpose is to give an explicit formula by which Z(s, a) will also generate
the determinant function A(1) of Eq. (2.3). This will make use of the following
properties of Z(s,a) and #(s, a).

For fixed a, Z(s, a) and #(s, a) are meromorphic functions in the complex s plane,
by the Mellin transform theory applied to @,(t) = @(t)e” . Their poles and residues
are encoded in the expansion of @,(t) for t » + 0 as explained in Eq. (2.17),

(Da(t)~< iocinti"> < 3 (_“)mz'") 3.11)

m=0 m!

The trace identities state that s= — n are regular points for Z(s,a), and that
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(= 1)" Z(—n,a)/n! is the coefficient of " in the expansion (3.11); in particular,

[u]
7(0,a) = Zocn;—,’" —a (3.12)

is a polynomial of degree [1] with respect to a.
Concerning now the variable a, we have an obvious functional relation

aZ(sa)— Z(s+1,a) 0 = 1 3.13
aa > = SLAS ,a Q%’?(S, a) - ﬂ(s + 1, a)’ ( . )
and an asymptotic expansion for a— + co, which is obtained (when Res > ) by
substituting the small ¢ expansion @(t) ~ Y ¢, t™ into Eq. (3.5) and integrating term
by term:

0
nis,a)~ Y, [ s tem e dt,
d

n(s, a) ~ ZO ¢, T(s+i)a™ "™ (Res>iy). (3.14)
Zs,a)~T(s)"'a™ Y ¢, T(s+i)a ™ (Res>iy). (3.15)
n=0

A crucial fact for our purposes is that this same expansion formula actually
extends to the whole s plane. Indeed, if we had substituted O(t) ~ Y c; t™ directly
into the modified formula (2.15) for .#®,(s) instead of the defining formula
(2.12), we would have found an asymptotic expansion of the same form as (3.14),
but now valid further to the left. Since the two expansions coincide in their common
region Res > i,, they have to be identical. Hence we have extended the domain
of validity of the expansion (3.14) to reach the next singularity of (s, a) left of
(—ip); we may then repeat the argument indefinitely. Q.E.D.

4. Zeta Functions and Functional Determinants

We shall establish the connection of Z(s, a) to the canonical product determinant
A(4) in two stages. We shall first justify the definition of the functional determinant
D(4) by the zeta regularization formula [1-3], where ' denotes d/ds,

D(A) =exp[-Z'(0, = 1)) (4.1)

then we shall find that it only differs by a computable, non-constant factor from
the original determinant A(4) given by the canonical Weierstrass product
Formally indeed, Z'(0, — A) = Zlog (A4 — 4), hence D()L)—H(/lk ) looks

like a characteristic polynomial of 1nf1n1te degree; but both formulae are divergent.
However, Eq. (4.1) defines a finite regularization of the product, since s=0 is a
point where the function Z(s, a) is analytic (thanks to the cancellation of the poles
of #(s,a) and T'(s), as we saw in Eq. (3.12)).

We now verify that D(1) is indeed a determinant, more precisely that the ratio
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D(4)/A(4) is a nonvanishing elementary function. We have seen previously in
Eq. (2.6) that

A ul+1
—log A(A) = [j ] RUD(R), 4.2)
0

the [u + 1]-st primitive of the convergent expression (2.5).
But R™P(2) = y([u] + 1, — A), and we may use the functional relation (3.13) in
the form

{n(s+1, — HdA=n(s, — 1) 4.3)

to evaluate the successive primitives of n(s, — 1), provided s does not encounter
poles of n(s, — 1) in the process. We can thus integrate R*! at most p times, using
the boundary conditions (2.4) at 4 =0, to get

A7) da" A
Ro(/l)=|:£] n(u]+1, = =n(1, — 1) — Z <d/1m|’1 On(t, — )>;17?

Ro() =n(1, —4)— Z n(1+m0)A"‘/m' (4.4)

Z(1, — ) — Z Z 1+ m)A™ 4.5)

(we have used the functional relation (3.13) again).

However, we cannot integrate once more to attain — log A(4) because this step
always produces singular quantities like #(0, — A) = I'(s)Z(s, — 4)|;=o. We then have
to understand at first how to use Eq. (4.3) when poles are encountered. The simplest
extension uses derivatives of continuous order [9]. We extend the definitions (2.5)
and (3.10) as

RO =T+ (=4 =nls+1, =2 (>p—1).
Then Ry(4) =1limR,(4), with
e—=0
[e=1]
R =nl+e —A— Y n(l+m+e0)A"/m!. (4.6)
m=0

In the limit ¢—0, the pole terms have to cancel out in the right-hand side,
hence we are left with

[u=1]
Ro(A)=FPy(1l, =) — >, FPy(1 +m,00A"/m!, 4.7
m=0
where the finite part prescription is applied as usual,
FP f(s)= f(s), if 5 is not a pole 8)
FP f(s)=1im f(s + &) — (Residue/e), if s is a simple pole. '
e—~0

Thus, the prescription for any formula like (4.4) is to replace y(s,a) by its finite
part whenever it has a simple pole. Caution: taking finite parts directly upon Z(s, a)
in formulae like (4.5) can produce different (hence wrong) results.
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Now we can perform the last integration step upon (4.7), to get
(n]
—log A(A) = FPy(0, —A)— Y, FPn(m,0)A"/m!. 4.9)
m=0

There remains to express this result in terms of Z(s,a) in analogy with
Eq. (4.5), since we seek a relation between A and Z'. We use n(im+¢ —A) =
I'(m + ¢) Z(m + &, — 1) to compute the finite parts.

At s=0,I(s) is singular and Z(s) is regular,

1
nie, — A1) = |:; -7+ O(a):I[Z(O, — A +¢eZ' (0, — A) + 0(e2)]
(y is the Euler constant), hence
FPn(0, — =270, — 1) —9yZ(0, — A). 4.10)
At s=m#0, I'(s) is regular but Z(s) may have a pole according to (3.2),

(c-m/T(m))
&

n(m+ ¢,0) = [T (m) + el (m) + 0(?)] [ + FPZ(m) + O(s)],

hence
FPn(m,0) =T (m)FPZ(m) + c_,y(m),

with ¢ =T"/T.
Equation (4.9) thus becomes a formula in which there finally appears the
logarithm of the functional determinant D(4) defined by (4.1),

—log A(A) = Z/(0, ~ }) — Z'(0) — % FPZ(m)A™/m

—WZO. =D =ZO) = ), e (m)ijm. (4.11)

HME X

[u]
The second line can be still simplified, using Z(0, —4)= Y c_,A"/m!
m=0

m—1
(Eq. 3.12)) and y(m)= —y + Z r~'; we write our final result in exponentiated
r=1

form,

{ul (]
-Z0)~ Y FPZm"m ~ % r_m(1+ e L

D(})=e " e "2 AQ). (4.12)

We have thus expressed the ratio D/A as the exponential of a polynomial of
degree [1] with known coefficients.

Remark. 1f we had blindly integrated Eq. (4.5) and used the finite part prescription
upon Z(s, — 1), we would have obtained only the first exponential prefactor.
However this error is quite subtle as it can only be detected with sequences of order
two at least.
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5. Semiclassical Properties of the Functional Determinant D(1)

In this section we show that it is the determinant D(/) defined by zeta regularization
which has the most natural asymptotic properties for A— — co. As a consequence
of the previous formula for D(4)/A(4), this implies an asymptotic expansion for
A(A) itself, a kind of generalized Stirling formula.

The asymptotic expansion for —log D(1) = Z'(0, — A) is found by differentiating
the expansion (3.15) for Z(s,a) at s =0,

—logD() ~ ) ¢ T@)(=4""= ) C—m[log(—l)—

m Am
Yrotles 6
A= —0inF—m m=0 =1 m‘
the first sum involves all exponents i, except negative integers or zero, these
constituting the second sum (with the convention (1.4) used throughout). We now
analyze the structure of Eq. (5.1) in more detail.

We recall that (—logD) and (—logA) have the same [u + 1]-st derivative,
(—log D))" 1V = (—log A()) ™"V = y([p] + 1, — 2). (52)

This in turn admits the asymptotic expansion, drawn from Eq. (3.14),

RN =[]+ 1L, =)~ Y ¢, T+ [u]+ (=4~ l-1, (53)
n=0
We now exhibit a standard integration procedure which, applied [u + 1] times
to the asymptotic expansion (5.3), produces precisely the asymptotic expansion
(5.1) for —log D(4). The idea is to choose A = — oo as the lower integration bound,
which is indeed the only place where those asymptotic expansions are relevant.
We have for instance

A __ N1l-s
| (— i) i =" sil—)l , (5.4)

A
but only for s> 1. We then define the operator f in general as given by the
analytical continuation of Eq. (5.4) in s, supplemented by finite part extractions
whenever necessary. We thus obtain the set of rules

2 A B (_ /1)1_3

j 0di =0, f (= A)%dl = — (s#1), (5.5)
_ 1-s

jw(—/l’)‘ldlelilj[( sf)l jl= —log(—4) (5.6)

A , , A A N1 1) (_/1)2—3
_fwlog(—i)dl = - _joo _foo(_/l) di =P_‘£[(—1——S)(‘2_——s)]=l(10g(_l)_l)’
(5.7)

and likewise

(_f >mlog( — =%|:log( — 1) — (1 F o +%>] (5.8)
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s
The so defined symbolic integration operator | assigns a well specified primitive

—

A
to any function f(4) such that the divergent part of f f(A)dA as A— — oo has an

expansion in terms of the quantities listed in Egs. (5.5) to (5.8). (Of course, j has

the usual meaning if the integral converges.) Similar integration procedures are well
known for functions singular at a finite point [9].

Now we observe that, in order to reach —log D(4) by successive quadratures,
we inverted the functional relation (3.13) but were unable to specify the integration
constant in the resulting formula (4.3). With out new notation this ambiguity is
automatically removed; indeed,

A
ns, — A= [ nis+1, —A)dx, (5.9
because this relation is strictly true for s> p, hence it extends by analytical
continuation elsewhere.
It is therefore not surprising to find, and to confirm by inspection, that

A

—1ogD(z)=< f >MHIRM(),), (5.10)

—

to be compared with Eq. (4.2),
A\ [e+1]
—log A(%) = ( j) RUD(R).
0

We stress that Eq. (5.10) gives an effective way to compute — log D(1). One
simply extracts from R“!(1) enough leading expansion terms from Eq. (5.3) so that
the remainder gives a convergent contribution to the integral (5.10), then one adds
the contributions from the leading terms computed according to the special rules
(5.5-5.8).

Equation (5.10) completely determines the expansion for D(1) at A= — o0 in
terms of the expansion for R™P(1). The latter in turn has a purely semiclassical
character if {4, } are quantum-mechanical eigenvalues; then indeed, the coefficients
c; are derivable by asymptotic expansion methods which become exact when
A— — oo (or t =0 in the case of the partition function @(t)). In fact, the numbers
¢;, can often be computed in closed form [35, 6, 10].

Thus, Eq. (5.10) means that logD(1) is normalized at 1= — co through a
standard specification for its semi-classical expansion coefficients. By contrast,
log A(A) is normalized at the finite point A=0 by Eq. (4.2); the difference
(logD(4) —log A(4)), a polynomial of degree [u], has coefficients (integration
constants) which involve the values Z(1 + m) as in Eq. (4.12). These constants cannot
have a semiclassical character as their computation would involve integrations over

a wide range of values of A (typically _f dA); in all solvable examples, those numbers
0

Z(1+m) tend to be highly transcendental indeed. Consequently, the large A
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expansion of log A(2) results by combining the purely semiclassical expansion (5.1)
and the exact but transcendental identity (4.12).

For all those reasons, and also because 4 = — oo is the only translation-invariant
normalization point, we should consider D(1) as a more fundamental spectral
function than A(4). Note that under a global shift of the sequence {/,} — {4, + a},
the determinant D(4) becomes, by its definition (4.1),

D,(1) =D — a), (5.11)
a much simpler result than the analogous transformation rule (2.8) for A(A).

Remark. In the light of Eq. (5.10), formula (4.12) can also be viewed as resulting
from an appropriate limiting procedure a— + oo, applied to Eq. (2.8) which
expresses a finite shift of the normalization point for the determinants.

We end this section by a important word of caution. When the integration

i
operator | dA’is used in its symbolic extension, it does not transform as a usual

e8]
integral under a change of variable; “anomalous” terms arise whenever finite parts
are extracted, and indeed the canonical forms of the logarithmic terms (5.6), (5.8),
are not invariant. Those correction terms are absent only for a translation of the
variable, ' > A’ + a.

6. Some Examples

The output of our formalism consists essentially of two general formulae, Eq. (4.12)
which relates the two determinants A(4) and D(4), and Eq. (5.1) which gives the
semiclassical (i.e. A— — o0) expansion of D(1), and thereby of A(4).

We shall apply those formulae to a variety of examples. All the spectral
sequences to be considered below have order u <1, hence our more restrictive
formulae from [6, 7] might suffice. Still, we shall later use one basic example with
order u =2, corresponding to an exotic special function known as the Barnes
G-function, or double-gamma function [12, 13]; however, the details of this case have
been separated to form the Appendix.

The cases with p <1 are simpler since the infinite product A(A) =[](1 — 4/4,)
and the series R(4) =) (4, — A)~! both converge without need for regularization.
A trivial example of this class is the spectrum of the operator (— d?/d6?) on the
unit circle; the eigenvalue sequence is then {4, = k*} and is of order u = 1/2. A less
trivial example [6, 7] is the spectrum of the one-dimensional Schrédinger operator
(—d?/dx? + x*M) (M =2,3,4...) which has order u= (M + 1)/2M.

There are many interesting examples with u=1. An important case is the
sequence of integers, {4, =k}; the spectral functions are then the basic special
functions I'(a),{(s)...; our treatment reproduces standard techniques and results
of (elementary) analytic number theory. More interesting for us is the spectrum
of the Laplace—Beltrami operator on a compact surface. Precisely, we take a surface
with a Riemannian metric, denote generically by L the corresponding Laplacian
and focus on the spectrum of the positive operator (— L). In principle our formulae
applies in full generality (to operators of degree m in any dimension d, adjusting
the order as u = d/m, and to cases with boundary), but any actual computation is
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very lengthy (see for instance [5]). We prefer to treat in detail simple but far
reaching special cases. Our first case will be the ordinary two-dimensional sphere;
we shall connect this problem with the Barnes G-function and give the value of the
related Glaisher constant in the process (see Appendix).

The other important case of interest to us, the case of compact surfaces of
constant negative curvature, will be treated separately in the following section;
there the formalism generates a transformation of the Selberg trace formula, which
could be interesting for its own sake.

a) The Case {4, =k*}. As explained initially, we must delete the zero mode, hence
we start the indexing at k = 1; the order of the sequence is u=1/2.
The partition function is related to a Jacobi theta function,

@(t)-—Ze"kz <@3<0 %)—1)/2. 6.1)
Jacobi’s identity

O5(z|t) =(—it) " 2e”/int O, < ‘ 1)

T

([13], §21.51) then implies
Ot)=c_ypt™ P +co+0(™ ™), t—>+0 (6.2)

with the only nonvanishing expansion coefficients ¢_, , = ﬁ/Z, Co= —13.
We can also readily identify

w© sin(w
H=T] (1 _ﬁ> sin(ry/2) (6.3)
k=1 Y f
We note that this determinant can be written as a product of two “simpler”
functions. Set 1= — k2, and note that (1 + x2/k?) = (1 — ix/k)e™*(1 + ix/k)e /¥,
then use the Weierstrass product formula for the gamma function as in Example c)
below, to obtain
1 1
A(A) = : . 6.4
) I'(l —ix) T'(1 +ik) 64
This factorization thus amounts to the reflection formula for I'(z).
Finally,

Z(s) = z k™2 ={(2s), (6.5)

where {(s) is the Riemann zeta function.

b) The Spectrum of Homogeneous Schrédinger Operators. We consider the one-
dimensional Schrodinger equation

P2
I l/; +x*Myy =y (M integer = 2); (6.6)

the functions @, A, Z... associated to its eigenvalue sequence {4, }, which has order
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u=(M + 1)/2M, do not reduce to known functions. The determinant D(A),
normalized in [6] with respect to the transmission coefficient of a certain scattering
problem, does coincide with the determinant D(4) used in this work. Our formalism
produces the specific main results

o) = Zocinti" with i,=(2n— ), (6.7)

AR =T](1 - H/4), D@R)=e Z@AQ). 6.8)
0

However, more explicit results can be obtained for those functions by entirely
different techniques [7]. For instance, Z(1), Z(2), Z'(0) (= logsin (n/(2M + 2))) are
explicitly computable; the determinant D(/) satisfies a functional equation leading
to remarkable identities between the values Z(n),n=1,2,...; many asymptotic
expansions can be computed, such as those for Z(s) (s > — o), ¢; (n— + o0),....

¢) The Sequence of Integers {4, =k}. Again we index k from 1 to delete the zero
mode; this sequence has order u=1. A related sequence is the spectrum of the
quantum harmonic oscillator, Eq. (6.6) with M =1:{4, =2k +1} (k=0,1,...),
which we discard here (cf. [6,7]).

In this case all spectral functions are classical special functions:

1 & Bn+1 .

o®) = ; e = I =n=z_1c,,t”, c,,=(n+ ik (6.9)
© y) 0 e)’l .
A(/l)=k;1<1 ~~]E>e’1’ —-m, (610)
Zs,a)= 5 (k+a)*=Lsa; (and Z(s) = (), 6.11)
k=1
ZIN, @)= (— DWV(N = DN D1 +a) (N=2,3...) (6.12)

with standard notations [14]. The function R,(4) corresponds to the case N =1,
where a regularization is needed according to Eq. (4.7),

Ro(d)= —y(1 —2)—. (6.13)
As for the functional determinant D(4), Eq. (4.12) yields
D(4) =exp [ — {'(0)— FP{(1)A]A(A). (6.14)
Given that FP{(1) =y and {'(0)= — }log2n, we deduce from Eq. (6.10) that
D(4) = \/2n/T (1 — 4). (6.15)

Taking the coefficients ¢, from Eq. (6.9), we finally recognize the asymptotic
expansion (5.1) for D(— a) (a— + oo) as the Stirling formula,

I'(l+a) Biiy
log ~a(loga— 1)+ 3loga + Z a™". (6.16)
/27 nn+1)

We have thus recovered classical results as special cases of a general theory.
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d) The Laplacian on the Two-Dimensional Sphere. 1t is well known from the theory
of spherical harmonics that the spectrum of the operator ( — L) on the sphere is
the sequence (of order u=1),

{I(l + 1) with multiplicity 2 + 1)} 1=0,1,2... . (6.17)

The only spectral function which is readily identifiable is

N & 1 .
Z<s,z) = L@ Vg = @ - 61y

This suggests taking as fundamental sequence the spectrum shifted by + 3,
{4} ={(+1/2)* with multiplicity (2! + 1)}. (6.19)

(it is then not necessary to remove the zero mode /= 0). The previous spectral
function becomes the standard zeta function for this new sequence

Z(s) = (2% — 2){(2s — 1), (6.20)

and it has a unique pole at s = 1 with residue 1.
The determinant A(4) is then given by the canonical product

A =TT | (1=t Yeruan [ 621)
=0 (I+1/2)? ' '

Our main results are again the relation (4.12) of A(A) to the other determinant
D(4), and a standard semiclassical expansion at A = — oo for D(4). In this case we
know Z(s) from Eq. (6.20);

Z0)=2log2{(—-1)-2{(~1= —Log—zwmf’(— 1), (6.22)
FPZ(1) =2y + 4log?2, (6.23)

hence
D(A) =exp[ — Z'(0) — FPZ(1)A]A(R) = 211628 (- D =20+ 2102 A A7) (6.24)

(Note that by Riemann’s functional equation for {(s) we also have

‘2 1
(—1)= sztz) + E(log (2m) + 7)) (6.25)

Now, to write the asymptotic expansion (5.1) for D(1) we need the expansion
coefficients ¢; for @(t). Here we do not know @(t), but we may use a Mellin
transform argument in reverse: since I'(s)Z(s) = .# O(s), the coefficients ¢; must
be the residues at s = — i, of the function I'(s)Z(s) = I'(s)(22* — 2){(2s — 1); hence
{i,}=n—1, and

(_ 1)"‘1

o @A) (=120, (626)

C__.1=1, Ch1 =
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which can also be put together as

— 1)y
oot =(—n'—)(21-2"— 1)B,, (n=0,1,2,...). (6.27)

The desired expansion then reads as
logD(4) ~c_; Alog(— A) — 1) + colog(— Z oo Tn—=1(=A""  (6.28)

Next, we discuss the possible factorization of A(J) into more elementary
functions, in analogy with Eq. (6.4), which decomposed (sin nx/7k) into a product
of gamma functions. The role of the gamma function is now played by a special
function whose zeros have a linearly increasing multiplicity, like the eigenvalues of
the Laplacian. One such elementary function is known as ([12,13])

Gl +2) = O e- VA2 A TT (1 np-tz2m (6.9
0 +2) G(1 +z)=(2n)""e nll[( + z/n)'e 1 (629

(respectively called the double gamma function and the Barnes G-function). In the
Appendix we have collected the classical properties of this function and put them
in perspective with the present formalism. It is clear however that Eq. (6.21) will
rather factorize through a determinant for the sequence of half-integers. The simplest
choice is to select the positive frequency part of the wave operator as with Eq.

(6.4), i.e. the eigenvalues of +./— L+ 1/4. These form a sequence of order 2,
{l+% with multiplicity 2/ + 1)}, 1=0,1,2..., (6.30)

and we may consider the associated determinant A*,

N © z z 22 21+1
A(Z)=zl=_[o[<1_l+1/2>eXp(l+1/2+2(l+1/2)2)] - (63D

On the one hand, the desired factorization is immediate,
AQ)= AT (AT (—ix), (A= —xK?). (6.32)

On the other hand, A*(z) can be further decomposed to exhibit the Barnes
G-function, or rather the shifted Barnes determinant,

v Bz z 2 l 6.33
—1/2(2)—11:[1|:< —m)eXP l_l/2+2(l—-1/2)2>:|’ (633

where we apply the notation (2.7) to the definition (A.19). We have indeed

e , & z z z?
AT@ =A%) /ZDO[<17+1/2>CXP<1+1/2+2(1+1/2)2>J‘ (6.34)

Now, the shift equation (2.8) applied to the determinant (6.10) with a = —1/2 and
u=1 yields the classical result

11 ( T /2> oD = gl 2D (1T} — 2) (635)

=0
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and since ) (I+ 1/2)"% =n?/2, we obtain
1=0 5
A* (D)= n~ 12 02T LA AR o2, (6.36)

We may then express A% | ,(z) in terms of A®(z) using Eq. (2.8) again, now with
n=2,

A% (z)=exp [RB(I/ZM + (RB)’(I/Z)%Z]%, (6.37)
and A® itself in terms of G using Eq. (A.19), to obtain finally
At (z2)=n" 12 Q2n)Pet t7 282 (L — ) G(% — 2)?/G(1/2)?, (6.38)
where
G(1/2) = 3¢~ Vizg—1/4p1/24 (6.39)

from Egs. (A.8), (A.11). More will be said about A* (z) in the next section on the
Selberg trace formula.

To summarize, A(1) admits the following factorizations with A = — x?,
AQ)=A"(iK)A*(—ix) (Eq. (6.32)),
en2x2/2 ) )
A = (A2 (A2 o (= i) (6.40)
(by substituting (6.36) into (6.32)), and finally
P 1
Ay =e 20 ryFlos__— G+ ik)GE — ix)]% 6.41)

coshmrx G(1/2)*

This result directly compares with the reflection formula (6.4) for I' ™ 1(z), with
sin (n\/;l)/nﬂ (the determinant on the circle) replaced by the determinant A(4)
on the sphere. However, G(z) also admits another reflection formula with a more
elementary expression, but which involves the ratio G(: + z)/G(; — z) rather than
the product; see Egs. (A.5).

7. The Selberg Trace Formula

In this section we take for {4,} the sequence of eigenvalues of the operator
(— Laplacian) on a compact surface of constant negative curvature (— 1). By Weyl’s
theorem this sequence is of order u= 1.

Many properties of this sequence can be explicitly computed by virtue of the
Selberg trace formula, which is a remarkable summation formula relating the value
of an even function h(p) at the points p, = (4, — 1/4)*/2 to the values of its Fourier

transform fz(t) =(Q2n)~! f h(p)e'™dp at the lengths of the periodic geodesics on the

surface [15,16]. Specifically, if p runs over all distinct primitive, oriented, periodic
geodesics and if 7(p) denotes the positive length of p, then every even function h(p)
analytic in |Im p| £ + ¢, and such that |h(p)| £0(|p] 27°) for p—» + oo satisfies
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the summation formula

& dh dt ®
L Moy =lg—1) 'fw<_ag>_~sinhr/2+{p},,; -

n_r£p_) ——__h(n(p)). (7.1)
2

Here g is the genus of the surface, whose area is 47(g — 1) by the Gauss—Bonnet
theorem. This particular form is slightly at variance with the usual trace formula,

where the integral term is (g — 1) j p tanh ph(p)dp (the equality of the two integrals

is simply Parseval’s theorem apphed to the two functions (ph(p))" = idh/dt and
(tanh np)" = (2in sinh 7/2) !

It must be noted that the lowest eigenvalue is 4, = 0 corresponding to a constant
eigenfunction (and p, = =+ i/2); the specific computations to be carried out here are
insensitive to the presence of this zero mode, however.

The most convenient starting point is to choose

hip)=G+p> =) 2=(p* +x*) 72 (7.2)
with
A=1/4—xk*<0, x>1/2, (7.3)
so that, in the notation (2.5) with italics to distinguish from previous cases,
;hl(pk) =Y. (=72 =RD(). (7.4)

With this choice of h,(p), no regularization is needed as (7.4) converges, and
the Selberg trace formula becomes ([17], Eq. (VIIL. 20))

1 1 0 1 8 \e *m»
R Kl)ﬂ(g‘”(ﬂ 61c> <2 ) >3 ()<2x ax> e

=1 h

Since 4 = % — x2, the differentiation operator (1/2k) (0/6;c) coincides with — /04
An equivalent regularization of the trace formula is given in [16], Eq. (7.15).
In the right-hand side of Eq. (7.5) we transform the following sums

© —nt(p)k ka1 —t(p)(x+k+ 1/2)
= nt K +
T(p) z Z z e X / = T(p) Z —r(p)(x+k+ 1/2)
"=128inh m(p) n=1k=0
2
i 0 log(l '-t(p)(K+k+ 1/2))' (76)
K=o 0K

All sums involved precisely converge for Re x > 1/2; this is a consequence of
the explicit formulae expressing the exponential proliferation of periodic orbits
with increasing lengths [18].

This motivates the introduction of the Selberg zeta function [15].

ZE=T[[] (1 —e@6+9) (s> 1) (7.7)

{py k=0
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We emphasize that this function is not the zeta function of any sequence in
the sense of Eq. (1.7); in the present context it will turn out to behave like a
functional determinant.

The infinite product (7.7) converges for Res > 1. When s— + oo it shows that
Z(s) tends exponentially fast to 1.

With the help of the Selberg zeta function and thanks to Eq. (7.6), the trace
formula (7.5) reads as

2
RV(1) =2(g - 1)<21 >¢(2 + 1K)+ (2— ;) [—logZG+r)] (78
We shall now integrate this twice with respect to 4, noting that {dA = — {2k dk +
const. The structure of the final result can be immediately described by a heuristic
computation. The second primitive of R™M(1) is given by Eq. (2.6), since p=1 in
the present case, [dA[dAR™M (1) = —log A(1), where A(4) is the determinant of the
eigenvalue sequence {4,}. Hence we must find ultimately

—log A(4)=2(g — 1)[ 2xdicy(3 + ) —log Z (5 + 1) + Cx* + C,

where C,C' are the integration constants arising from the quadrature operation
(fd2)*. Equivalently,

A(Q) =e " C F(E + k)/%(K)?0 D, (7.9)

where %(k) is a function having logarithmic derivative 2ki(} + k). Now, ¢ can be
easily expressed in terms of the Barnes G-function studied in the Appendix, and
the only serious problem is to identify the integration constants C, C'; we therefore
have to perform the two integration steps with more care. )

The crucial remark here is that the formalism developed in Sect. 5 is particularly
well suited for integrating the Selberg trace formula. In this case indeed, the optimal
choice of integration bound is k = 4 oo (or A = — o), precisely because

+ o + o 2
| 2r'dr j 2x”d1c”l:<211€,, %) (—logi“’(%-l—;c”))]: —log Z( + K);
(7.10)

this is due to the exponential decrease of —log #(} + ) for k —» + 0. On the other
hand we obtain, using Eq. (5.10),

A A
[ ax [ d2RM()dA" = —log D(A), (7.11)
where D(4) denotes the zeta-regularized determinant of the eigenvalue sequence

{Ae}-

There remains to integrate the y term twice. We first note that

j21c dx’ <21 P )¢(2+K — Y +k), (7.12)

because the Stirling expansion for (3 + x) only contains terms of the standard
form (5.5), (5.6) (and no constant term).
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The second integration step produces [2x'y(3+«')dx’. To identify this
primitive, we note that 2k (% + k) has poles at (—% — ) with residues — (21 + 1).
Hence, exp| — [ 2«'y(3 + «')dk’ ) has exactly the same zeros and multiplicities as

the function A*(—k);A*(z) was defined by Eq. (6.31) as the determinant of

</ — L+ 1/4, L being the Laplacian on the two-dimensional sphere. We then verify
by a direct computation upon Eq. (6.31) that

1 0
(2 )(—IOgA (=x)=—yYG+x). (7.13)
K
According to our formalism, this means that
2w di' @ + k)= —logD* (— ), (7.14)

where D (z) is the corresponding zeta-regularized determinant.
We still cannot use Egs. (7.10), (7.11) and (7.14) alone to express the second
primitive of Eq. (7.8), for the reason mentioned at the end of Sect. 5; precisely, the

integration operators j dA’ and j 2k’ di’ are not equal when they perform divergent

integrations (the change of vanable 4= 1/4 — 12 then does not work as usual). The
simplest expression of the difference is found by integrating in the two ways the
asymptotic expansion of Eq. (7.8), which is generated by the Stirling expansion for
(% + ) (the exponentially decreasing log % term does not contribute),

RY()~(g=1) 3 (1 = By = (g - 1)[Box‘2 Dy 0(;«-6)].
(7.15)

Applying the standard integration rules (5.5-5.8) with the variable — k? (= 4 — 1/4),
we get

( f >2R‘1)=(g—1)[Borc2(log(rc2)—1)+§2£10g(1c2)+0(1c‘2)]. (7.16)

(recall that the translation by } does not alter the standard integration rules). If
by contrast we apply those same integration rules with the variable x, we get

© 2
( f 2w drc’) RW = (g — 1)[2Byr2(logx —3) + Bylogk + O(k"2)].  (7.17)

Hence the difference between (7.16) and (7.17) is exactly 2(g — 1)ic? (the remainder
terms being identical). Taking this into account, we can exponentiate the twice
integrated expression (7.8) to finally obtain

ZG+1)=[e"DT(— 020 IDG), (A=4—K?). (7.18)

This “Selberg determinant formula” is not just the multiplicative analogue of
the usual Selberg trace formula (7.5); it also contains the implicit specification of
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the two integration constants C,C’ appearing in Eq. (7.9). Equation (7.18) also
illuminates better the nature of the Selberg zeta function by providing for it a clean
factorization; for instance, the analytical continuation of Z(s) to an entire function,
and the well known structure of its zeros ([16], Theorem 7.2), are obvious
consequences of (7.18). (This occurrence of two determinants may appear mysteri-
ous, especially for D, but it has a dynamical explanation as a quantum tunneling
phenomenon, to be given in a future publication.)

We now try to make the factorization (7.18) more explicit by expressing Z(3 + x)
in terms of A determinants (canonical products).

This can be more easily done upon the factor containing D*, which relates to
the better known Laplacian on the sphere. The determinants D* and A* are
closely related to the determinants D? and A2 associated with the Barnes G-function.
We can then derive the ratio D*/A™ as in the Appendix, identifying

0" (1) = ;i 21+ 1) (43 = _% m (7.19)
ct,=2, ¢ ,= %_212)2") n=12,...), (7.20)
Z%(s)= i 204+ (1 +3) " =25 - 2)(s— 1), (7.21)
to obtain finally, thanks to Egs. (6.38) and (6.39),
D*(z) =21/12eH (- - (1 4y +2log2)z2 A+ (7) (7.22)
=e 2Dy T($ - 2)GE —2)%, (7.23)

an expression involving the Barnes G-function studied in the Appendix.
This has two interesting consequences. First, the parity of D(A) with respect to
k implies that

26+ x)/ 24— 1) =[D* (= ©)/D* ()] (7.24)

but Eq. (7.23) for D* and the reflection formula (A.5) for G(z) together transform
this relation into the well known functional equation for Z(s),

ZE+K)/ZE—x)=expd(g— l)fmc’ tan (nx’)dx’. (7.25)
0

(This ratio no longer involves the constants of integration C, C’ of Eq. (7.9) either;
hence Eq. (7.25) is directly derivable from the original trace formula (7.8).)
Another consequence of (7.23) is a more explicit form for Eq. (7.18), [36],

ZE+r)=[""2YC002n) T TE+x)GE+ 1?1?29 YD(), (A=%—x?). (7.26)

Incidentally, this formula exhibits a close analogy (and certain differences as
well) with the factorization formula for the Riemann zeta function over its nontrivial

ZEros p,
log2n—1-—1y/2)s 1 ___i S/p
{(s) =€ 2) % DT +s/2)I;[|:<1 p)e/ ] (7.27)
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We shall now set k =1/2 to reobtain certain recent results [1,3] as special
cases of Eq. (7.26). We must however be careful because there is a zero mode (A =0
is a simple eigenvalue), hence both D(1) and Z( + k) have a simple zero at
A=0,x=1/2. We thus have to check that our formalism works in this initially
excluded case.

The determinant defined by Eq. (4.2) is now the Weierstrass product

AR =(- 1) ﬁ (1 — A )e = — 1A, (4), (7.28)

where * labels spectral functions with the zero mode deleted. Hence
—logA(A) = —log(—4) —log4,(4);

but since log (— A) is the standard primitive of its derivative according to the rule
(5.6), we then also have

D(3)= — AD (%) (7.29)

for the zeta regularized determinants. The comparison of Eqgs. (7.28) and (7.29)
confirms that the zero mode is harmless as announced previously, since it can be
factorized out explicitly. (This holds for any multiplicity.)

If we now insert (7.29) into (7.26) and differentiate at k = 1/2, we obtain, using
G()=1,

Z'(1)=eX0 VD, (0), K=1—40(—1)—log2m~ —0.6761925. (7.30)

This result agrees with Eqs. (7.23) and (7.30) of Ref. [1a]; also compare with
[3] (Appendix), where K is only expressed as an integral,

K=n]@+r2)sech?mr] — 1 +log( +r2)dr. (7.31)
0

We now return to our more general factorization formula (7.26), and now try
to make the other factor D(1) more explicit in terms of canonical products (this is
the factor connected with the eigenvalues on the compact Riemann surface). There
we can only write, using Egs. (7.28), (7.29) and (4.12) (with u=1).

D(Z) _ D, (4)

_ _ _z’*(o)—FPZ*(I)/l, 7.32
A A2 "

where Z ,(s) is the zeta function with the zero mode deleted,

Z,.(5)= kzl A (7.33)
We then find as our final result
ZG+ 1) = [V K TG + 1)GE + 1)P P Ve FPAEROA (), (7.34)

which has the structure predicted by Eq. (7.9), considering that 4= 1/4 — k2.

In conclusion, the main results of this section are the factorization formulae
(7.18), (7.26) and (7.34) for the Selberg zeta function. The last obstacle which
prohibits its fully explicit factorization into a canonical Weierstrass form is our
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ignorance of the two integration constants Z,(0) and FPZ (1) in Eq. (7.32). Recent
advances ([19] and references therein) suggest that these might be computable at
least for special Riemann surfaces.

Appendix. Old and New Properties of the Barnes G-Function
This function is defined by the infinite product ([12],[13] Chap. XII, Ex. 48—50)

G(l + Z) — (2n)z/2e—1/2[(1 +9)z2+z] H [(1 + Z/n)"e_z+22/2"]. (Al)
n=1

It is an entire function analogous to 1/I'(z) except that it has order 2 instead
of 1, its zeros being the negative integers ( — n) with multiplicity n(n =1,2,3...).
This definition is indeed similar to the Weierstrass product for 1/I'(z). Its other
properties are likewise similar in their nature and proof, only more complicated.
We therefore list them by their familiar names in the theory of the gamma function.
—normalization:

G(l)=1; (A2)
—functional equation:
Gz+ 1)=T(2)G(z); (A.3)

—Taylor series in |z| < 1:

2 0 n
log G(1 + z) =(log2n — 1)%—(1 + v)% + Z% (=" Ym— 1)%; (A.4)

—reflection formula (two equivalent forms given):

G(1 +2)
G(1—2)

GG+2)  (nf T
GG —z) I'(G+2)\cosnz

=(2n)exp — [ nz'cotnz dz, (A.5)
0

1/2 2
) exp [nz'tannz' dz';
0
—Stirling expansion for z— + oo:

o
1ogG(1+z)~z2<1°£—§)+§1 2 —i+——1ogA+0<1) (A.6)

2 4 12 12
where
N? N N?
A= lim 1 .22 . .NM—|— A.
log 13151010 og(1t-2 NY) (2 +2 —|~12>10gN+ e (A7)

(A ~1.28242713 is called the Glaisher, or Glaisher—Kinkelin, constant [21]);
—special value:

G(1/2) = A= 32 114g1/8 1124, (A.8)

(Many other properties exist, like the duplication formula, which will not be
used here; we simply refer to the literature [12].)
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The G-function has been revived lately in connection with the Selberg trace
formula [22], for reasons which are clear from the main text. Surprisingly though,
it is little known that the Glaisher constant A (analogous to the Stirling constant
\/ﬂ for the gamma function) can be evaluated in a quite elementary way; this fact
is actually concealed in some literature on Toeplitz determinants which also
involves the Barnes G-function [23,24].

It is clear from Eq. (A.7) that log A must be the finite part of the divergent
sum () nlogn) according to some regularization, hence it must be related to
—djds(Y.n"%)y= _y = — {'(— 1). Now, to compute {'(s) around s = — 1, we may use
the Euler—-Mc Laurin summation formula to obtain ([25], Eq. (13.10.8) p.333)

{(s) = lim [in-s N1~S—Nhs+£] (s~ —1). (A.9)

N— o 1—s 2 12

We may differentiate under the limit sign at s= — 1 to obtain ([23], bottom
of p.280)

N2 N 1 N2 1

" — = 1 N - .

(=1 hm[ anogn+log < 3 +— 3 +12> T +12} (A.10)
Comparing this with the definition of 4, we find that

logd= —{(—1)+1/12. (A.11)

An alternative expression as a convergent series follows from the functional
equation for {(s), which relates {'(— 1) to {'(2) by Eq. (6.25),

')
2n?

[Remark. A classical quadrature formula ([12];[26] formula 6.441 (4)),

1
logd= — + TZ(IOg 21+ y). (A.12)

Z(z+1) +log27z
z
2 2

log G(1 +z) = zlogI'(1 + z) — [log I'(1 + 2)dz’ — , (A.13)
0
together with Eqgs. (A.3) and (A.11), turn a whole set of definite integrals into closed
form,
n+1/2

[ logI'(1+2z)dz=(n+%)logT'(n+3 i logl(m+ % _ At 12+ 3/2)
0 m=0

2

log?2 1
0g +(n+)

5
+(n+ %) 2

logm —30'(— 1)/2.] (A.14)
We now show that many properties of the G-function can be immediately
derived from our general formalism. We exclude from these considerations the
functional equation (A.3) which has a number theoretical nature (it relates to the
arithmetic progression of the integers).
Indeed, it suffices to specialize our formula to the following sequence (of order

p=2),
{4} = {n with multiplicity n}, n=1,2,3.... (A.15)
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We distinguish the spectral functions of this sequence by the superscript B. We
can readily identify

S w_ df 1
0= ¥ ne = dt<e,_1>, (A.16)
and
Z8s)= 3 non=t =5 — 1), (A.17)
n=1

The coefficients ¢; are then

1 —mB
c,,_2=(—7’3)—"—(n:0,1,2,...; note that ¢, =c, =c;= - =0). (A.18)

The G-function itself is related to the determinant,

AB(,l) = H |:<1 _%)ex/wp/z»ﬂ] — (27r)’”2e”2“1+")’12_“G(1 —7), (A.19)

n=1

whose logarithmic derivative evaluates as

d
(—logA%(2) = R*(2) = A=y —y(1 = )} (A.20)

this is just the reciprocal of the quadrature formula (A.13).
The zeta-regularized determinant is given by Eq. (4.12),

DA() = exp[— [ 1)— 1) — (P e %)HJABM)

= e!/21082MA-L(- D G(] — 2), (A.21)

and its asymptotic expansion for A — — oo follows from Eq. (5.1),

10gDB(/’~)~C—z[10g(—?t)—%] +6010g ch 2, T(n—=2)(=2)727"
(A.22)

This is equivalent to the Stirling formula (A.6) for G(1 + z), with A specified in
accordance with (A.11).
Similarly, the Taylor series around 4 =0 is equivalent to Eq. (A.4),

(1+)

logD3(l)= —{(—1)={0)A— Z "'. (A.23)

We have thus gained a better understanding of G(z) by considering it as a
special determinant; in this context, though, the function D?(z) appears to be more
fundamental.
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Note added in proof.

Summary. The functional determinant D(1)=exp(—d/dsZ(s, — A));=o is an entire function of the
spectral variable A with the following properties:

1) It can be computed by finitely many quadratures applied to the convergent expression (5.10);

2) the integration constants are determined through the compliance of log D(1) to the specified
expansion (5.1) for A— — oo;

3) an alternative determinant A (%), specified by a Weierstrass product expansion, has a computable
ratio to D(4), Eq. (4.12).

All in all, the zeta regularization prescription appears as the limiting case of a Weierstrass canonical
expansion whose reference point is sent to infinity.

This formalism can be used to simplify the Selberg trace formula by removing two spurious
differentiations, thus exhibiting the Selberg zeta function as essentially the product of two functional
determinants, Eq. (7.18).

Supplementary References. After completing and submitting this work, we have learnt of additional
relevant references:

1) Barnes’ G-function: its connection with Toeplitz determinants goes back to [27]; the value
(A.12) for Glaisher’s constant was in fact found by Glaisher ([21], 1894 reference p.2-3; he did not use
the notation {'(2), using the series 3 n~2logn instead, and did not observe the connection with {'( — 1));
see also [28,29].

2) Selberg’s trace formula and zeta function; the trace formula (7.5) is closest to the one used in
[30]. The related two parameter zeta function Z(s, a) was studied in this context by Randol [31]. The
problem of the Hademard factorization of Z(s) was raised in Refs. [32], but the crucial computations
of the two integration constants has always been omitted to our knowledge, except in two very recent
Refs. [33,34] which were both unpublished and unknown to us when we submitted the completed
article above.

First, a factorization equivalent to Eq. (7.34) was given by J. Fischer ([33], Satz 3.4.11), where the
determinant A _,,,(4) (in the notation of our Eq. (2.7)) is exhibited in place of A(1) and, moreover, the
corresponding constants FPZ (1, —1/4) and Z (0, — 1/4) are replaced by explicit limits of sums over
the eigenvalues themselves (we have studied the numerical behavior of such limiting processes in [35]).

Finally, while our article was being written, P. Sarnak [34] discovered the factorization formula
in the form identical to Eq. (7.26), and extended it to the tensorial-spinorial Laplacians as well.
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