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Abstract. We show that the only finite-action solutions of the two-dimensional
Grassmannian σ-model that are stable under small fluctuations are the
(anti-)instanton solutions.

0. Introduction

(0.1) The two-dimensional Grassmannian σ-model is a field theory which shares
many of the properties of the (more complicated) four-dimensional non-abelian
gauge theories: for instance, the action is conformally invariant, there is a
topological charge and the associated (anti-)instantons minimise the action among
all fields with the same charge. For a survey of this theory, see [11].

(0.2) It is of interest to know whether there exist any non-instanton solutions in
this model that are stable under small fluctuations. It is the purpose of this article
to answer this question in the negative; thus all non-(anti-)instanton solutions are
saddle points for the action. Our technique uses methods of Algebraic Geometry to
ensure a sufficiently large number of non-positive modes for the fluctuation
operator so that stability is only possible for (anti-)instanton solutions. These non-
positive modes are essentially provided by solutions of the background fermion
problem.

1. Preliminaries

(1.1) The non-linear σ-model is a field theory where the dynamical variable takes
values in a Riemannian manifold (N, h\ The Lagrangian density and action for this
model are given by

L(φ) = hΛβdμφ«dμφ^ S=$Ldnx. (1)

We are interested in finite-action solutions of the equations of motion, which
are known to mathematicians as harmonic maps (see e.g. [3]). We shall restrict
attention to the 2-dimensional Euclidean version of the model, which is of most
interest to physicists since it shares a number of properties with 4d non-abelian
gauge theories. In particular, in this case, the action is conformally invariant and,
by a result of Sacks and Uhlenbeck [9], any finite-action solution of the equations
of motion extends to a solution on the conformal compactification of R2, the
Riemann sphere S2 = R2u{oo}. Henceforth therefore, we shall suppose, without
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loss of generality, that all fields are defined on S2 since we may then apply the
methods of Algebraic Geometry.

(1.2) From now on, we take as our manifold (ΛΓ,/z), the complex Grassmannian

G r j Π which is the coset space ———— -. Following Zakrzewski [11], we
\J11 I X \J\Yl ΐ i

identify Gr „ with the rankr projection matrices, i.e. n x n matrices φ satifying

φ2 = φ, φ = φ+ •> rankφ = r, (2)

where + denotes Hermitian conjugation. Differentiating (2), we see that the tangent
space to Gr „ at φ is the set of Hermitian matrices, A, satisfying

φAφ = 0 = (ί-φ)A(ί-φ). (3)

The Lagrangian density (1) in this case is given by

L(φ) = trace dμφdμφ, (4)

while the equations of motion are

lφ,dμdμφl=Q, (5)

together with the constraint (2).

(1.3) Gr>π is a Kahler manifold with Kahler 2-form ω, so that a field has a
topological charge with density

q = iεμv trace [dμφ9<p]dvφ9 Q=$d2xq = J φ * ω . (6)
s2

Then S^IQI with equality for the (anti-)instanton solutions of (5) which thus
minimise the action over all fields with the same charge. If we replace our
Euclidean co-ordinates (x l5 x2) by holomorphic co-ordinates x± =xί ±ix2, then
the instanton, respectively anti-instanton, equations are given by (a), respectively
(b), below:

(a) φd+φ = 0, (b) φd_φ = 0. (7)

The topological charge admits a geometrical interpretation which will be
useful below: a field φ defines vector bundles φ, φ^ over S2 of ranks r and n — r
respectively, by

φx = Image φ(x) C C", ^ = Kernel φ(x) C C". (8)

Clearly, ^Θφ1 provides a non-trivial splitting of the trivial bundle S2xC".

Suitably normalising the volume of the Riemann sphere, we have

β=-deg(2), (9)

where deg(φ) denotes the first Chern class of φ evaluated on the generator of
H2(S2).

(1.4) Now let φ be a finite action solution of the equations of motion (5) and let

φt be a small fluctuation about φ = φ0 with
dt

= B. Clearly, B satisfies (3) and,
ί = 0
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conversely, any field of Hermitian matrices satisfying (3) gives rise to a fluctuation
by exponentiation. We say that φ is stable if for all fluctuations around φ we have

i.e. if φ minimises the action up to second order. In terms of the infinitesimal
fluctuation, B, we write this second derivative as

d2

H (B,B)= —y S(φt)= $dx2{trD BD B — tr [[£,<? φ],dμφ]B} (10)
dt ί = 0

(cf. [3]), where the covariant derivative is given by

Dμ = dμ + ad[φ, dμφ^\. (1 Oa)

In fact, Dμ is just the pull-back of the Levi-Civita connection on G,tn9 while the
second term in the integrand comes from the curvature of Dμ:

(1.5) Now let Bl9 B2 be two infitesimal fluctuations and consider the complex
fluctuation B1-\-iB2. As integration by parts using (11) gives the following
formula of Moore and Micallef [8]:

Hφ(B9 B) = Hφ(Bl9 B,) + Hφ(B2, B2)

= 4$d2x{tr(D_B)+(D_B)-trB+[[_B, d + φ]9 d.φ]} . (12)

Further,

tr£ + [[5,d + φ],5_φ] = -tr[5V_φ^^

Thus we have

Theorem. Let φbea finite action stable solution of (5) and B a complex fluctuation
with

D_B = Q, (13)
then

[B,a + φ] = 0. (14)

In Sect. 3, we shall find that there are sufficiently many solutions of (13) for (14)
to force φ to be an (anti-)instanton solution.

(1.6) Remark. Equation (13) is a Cauchy-Riemann equation (see below) but also
admits another interpretation: the Kahler structure of S2 endows it with a Spinc(2)
structure and hence a Dirac operator. If we consider fermion fields in the
background of φ then the —i eigenstates of γ5 are precisely the complex
flucatuations considered above and the Dirac-like equation in the background of
φ is just (13).

Warning. This Spinc(2) structure is not induced by the Spin(2) structure of S2; in
particular, one of the ^-spin bundles in our case is trivial (which is why we may
identify fermions with fluctuations).
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Solutions of (13) have also been used by Zakrzewski [11] to provide negative
modes of fluctuation for certain solutions of (5).

2. Algebraic Geometry and Vector Bundles

(2.1) Given a field φ, the infinitesimal complex fluctuations about φ are sections of
the vector bundle φ~ 1 TGr n®C. To study solutions of (13), we apply a theorem of
Koszul-Malgrange to convert the problem into one of Algebraic Geometry:

Theorem [6]. Let E-+M2 be a complex vector bundle over a Rίemann surface with
covariant derivative D. Then there is a unique holomorphic structure on E for "which
the local holomorphic sections are precisely the solutions of the equation

Thus we are guaranteed a sufficiently large supply of local solutions of (13) that
they span each fibre of φ~vTGr jM®C. However, we require globally defined
solutions of (13) and for this we need more structure.

(2.2) The simplest holomorphic vector bundles are the line bundles, i.e. those
with one-dimensional fibres. Concerning these we have the following useful
proposition (see, for instance, the book of Griffiths and Harris [4]).

Proposition. Let L-»M2 be a holomorphic line bundle of positive degree. Then for
each x e M2 there is a global holomorphic section σ with σ(x) Φ 0.

(2.3) To reduce our situation to that of (2.2), we have recourse to the
factorization theorem of Birkhoff-Grothendieck [5] :

Theorem. Let E-*S2bea holomorphic vector bundle over the Rίemann sphere. Then
there is an essentially unique decomposition of E as a sum of holomorphic line sub-
bundles

Remark. This theorem only applies to S2 and is in fact the only point in our
arguments where we require that our fields be defined on S2 rather than satisfy
some other (e.g. periodic) boundary condition.

(2.4) Let us now apply the foregoing theory to the sub-bundles φ, φ1 of S2 x C"
defined in (1.3). First, observe that the covariant derivative

μ μ 9 μ (15)
satisfies

( l-φ)oD μ oφ = φ oD μ o(l- φ ) = 0, (16)

using (3) applied to dμφ. Thus Dμ preserves sections of φ and φ1 and so is a
covariant derivative there. Now, applying Theorem (2.1), φ and φ1 become
holomorphic vector bundles to which Theorem (2.3) may be applied. Thus

r (17)
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with each Lt, Mj a holomorphic line bundle and deg(L;)^deg(Ll+1), deg(My)
^ deg(MJ+ 1). If φt denotes orthogonal projection onto Li9 then the condition that
LI is holomorphic is just

(l-φί)oD_φi = 0. (18)

Each (pt is rank-one projection matrix, i.e. a field with values in GltΛ which is
just complex projective space CPn~ 1. Thus we see that any Gr>n-field splits as a sum
of CPn~ ^fields satisfying (18). This observation should be of some use in studying
the moduli-problem for Grassmannian models.

3. Stability of Classical Solutions

(3.1) Let φ be a solution of (5). We use the description (17) to construct fluctuations
satisfying (13). Consider the line bundle Lf (x)M7 ; a section, B, of this bundle is a
field of rank-one matrices satisfying (3) and so is a complex fluctuation about φ.
Further, B satisfies

ΨjBφi = B (19)

with φt as above and \pj denoting orthogonal projection onto Mj. Lastly, the
condition that B be holomorphic is easily seen to be Eq. (13) by comparing the
covariant derivatives (lOa) and (15).

(3.2) We can now state and prove our main theorem:

Theorem. Let φ be a finite-action classical solution of the Grassmannian σ-model.
Then φ is stable if and only if it is an (anti-)instanton solution.

Proof. First we assume that deg(Lr)^deg(Mrt_r). Then, for 1 rgjrg w — r, we have

deg(L* ® Mj) = deg(L*) + deg(M ) = deg(M,.) - deg(Lr) ̂  0 ,

using elementary properties of the degree (cf. [4]). Now fix x e S2, by (2.2) and (3.1)
we have a fluctuation Bj satisfying (13) and

with jB^ΦO. Further, by Theorem (1.5), we have

that is [^+<p] = 0,

(d + φ)ιpjBjφr = ipjBj(pr(d + φ) .

Multiplying both sides by φ gives

since φψj vanishes and so at x, where #/Φθ, we have

Then, summing over j gives

φ(

while from (3) we have
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whence
φc + φ = (j

at x. Since x was arbitrary we have shown that φ is an instanton solution. If deg(Lr)

^ deg(MM_r), a similar argument using M *_Γ{g) Lt shows that φ is an anti-instant on

solution. Π

4. Remarks and Extensions

(4.1) In case that r = l, i.e. the CP""1-model, Theorem (3.2) has been proved by

both mathematicians and physicists [10,11], also by considering solutions of (13);

although in this case the analysis is simplified by the definiteness of the curvature

term in (12). Moreover, Zakrzewski [11] has proved (3.2) for certain special

solutions of the general Grassmannian model.

(4.2) It is of interest to consider whether similar results are available for other

non-linear σ-models. By using a considerable refinement of the above techniques,

Burstall et al. [1] have shown

Theorem. Let φ be a finite-action stable classical solution in a non-linear σ-model

with φ taking values in a Riemannian manifold N. Then

i) if N is a compact irreducible Hermitian symmetric space, φ is an

(anti-)instanton solution (i.e. a ± holomorphic map);

ii) if N is a compact symmetric space with π2(N) = 0, then φ is constant.

In particular, taking N = Sn [the 0(n) σ-model] or N a compact semi-simple

Lie group (the principal chiral model) we see that there are no non-trivial stable

solutions. For N = Sn this was well-known, [7, 2].
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