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Abstract. In this note, we prove two regularity theorems for solutions to the
Navier-Stokes equations of an I.B.V.P. in exterior domains. Namely, we prove
that the set S of the singular points of a solution, if not empty, has at most 1-
Hausdorff measure Hί(S) = 0. Moreover, the set S is enclosed in a sphere of ray
R for any t > 0. These results are obtained as corollaries to the partial regularity
results furnished in [2].

1. Introduction

In this note we study the regularity of suitable solutions to the initial boundary
value problem for the nonstationary three-dimensional Navier-Stokes equations
in exterior domains. The existence of global-in-time solutions has been proved
long ago by Leray and Hopf [12, 14, 15]. They furnish weak solutions of initial
boundary value problems. As is well known, two remarkable questions are open
about these solutions: the former concerns their uniqueness, the latter their
regularity. In this connection, we observe that so far, the regularity of a solution
seems to be independent of the regularity of initial data, and recently Scheffer in
[27] has proposed a conjecture, namely, that a solution to Navier-Stokes
equations exists having an internal singularity, at least in the class of weak
solutions verifying only a "generalized energy inequality" as an a priori estimate.

A first result concerning the regularity of weak solutions to the Cauchy
problem is due to Leray [15] with his famous "theoreme de structure." Later on,
the "theoreme de structure" was extended to the case of initial boundary value
problems [10, 11, 19]. However, we must notice that, so far, in the case of
unbounded domains the "theoreme de structure" can be obtained for Leray's weak
solutions, [8], while for Hopf's weak solutions it is not known, and, on the other
hand, we do not know whether Leray's and Hopf's solutions are the same. In
[21-26] Scheffer commences and develops an analysis of the set of the possible
singular points of a weak solution to the Navier-Stokes equations. Following
Caffarelli, Kohn, and Nirenberg [2], a point will be called "singular" for a solution
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u to the Navier-Stokes equations if and only if solution u is not essentially bounded
on any neighborhood I(x, t) of (x, t) [i.e. u φ L°°(/(x, ί))]. In particular, we now quote
two papers by Scheffer [25,26]. In [25] it is proved, essentially, that the set S of the
possible singular points has at most 5/3-Hausdorff measure: the result is proved
for a bounded domain Ω and for the vorticity ω = rotu of solution; however, ω can
be replaced by solution u. In [26], the case of the half-space is considered in R3

instead of a bounded domain Ώ, and the possibility of singularities on the
boundary x3 = 0 is investigated. The set S has in this case at most 1-Hausdorff
measure and it is a closed set of the plain x3 = 0. Later on, in [2] the result of [25]
for bounded domains was improved and the Cauchy problem was also considered
for the Navier-Stokes equations. To this end, in [2], suitable weak solutions are
defined, which essentially differ from the usual weak solutions in that they verify a
generalized energy inequality [cf. (3.1) below]. However, a higher regularity of the
initial data is required in the case of a bounded domain, while for the Cauchy
problem it is required only that the initial data is square summable on R3. The
result about the set S of the possible singular points of solution u is expressed in
terms of a Hausdorff measure constructed on parabolic cylinders, say Pk (keR+),
and the authors prove that Pι(S) = 0. Further, they consider the question about
where the set S of singular points can be possibly localized. This question is tackled
for the Cauchy problem. To this aim it is necessary to require an extra condition of
summability of initial data. Finally, we must observe that in [2] the above
statements are based on local (in space and time) regularity theorems, whose
validity is independent of the type of the considered domain and which will be of
help also in the note.

In this note we extend to the case of exterior domains some results obtained in
[2]. We consider a class of solutions to the Navier-Stokes equations which are
more regular than Hopf 's solutions and that we call "generalized" for the following
reasons. In [8], in a quite different context from the current one, we prove global-
in-time existence of solutions to the Navier-Stokes equations corresponding to an
initial data u° e J 9 / 1 0 ) 5/4(Ω) that, among other things, have generalized derivatives,
second-order spatial derivatives and time derivatives, of 5/4 power summability.
For the first time and for the Cauchy problem this result was obtained by
Ladyzhenskaya [14], and later in [2] for a bounded domain. The properties of the
solutions, however, are not sufficient to consider them as regular. Moreover, these
solutions do not a priori cover the class of all generalized solutions to the Navier-
Stokes problem, since we have not a uniqueness theorem for them. However, these
generalized solutions present the remarkable advantage to inform us about
summability properties of the pressure and its gradient, which are necessary to
apply our methods to obtain results of partial regularity. The result of this note
follows the proof lines of [2]. First, we prove that our generalized solutions verify a
generalized energy inequality of the same type as that given in [2]. It allows us to
deduce that the set S of singular points, if not empty, at most Hausdorff measure of
parabolic type (cf. Definition 1) P1(S) = 0. Moreover, we prove that, in the further
hypothesis of summability of first derivatives in L2(Ω — SR), where Ω is an exterior
domain and SR a sphere of ray R, the generalized solution is regular at any instant
t>0, at any point xeΩ such that |x| > R ' > R for a suitable R'. It is worth noticing
that, in order to obtain our results of partial regularity, we do nothing more than
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set ourselves in a position to apply the results of local and partial regularity of [2].
Finally, we observe that by virtue of the higher regularity results due to Serrin [29],
we can deduce that the generalized solution belongs to C°°(Ω — SR) and even
becomes analytic [18, 32].

The plan of the work is as follows. In Sect. 1, after introducing some notation
and mathematical preliminaries, we give the statement of our two theorems of
partial regularity. In Sect. 2, we recall some results concerning weak and
generalized solutions, which in Sect. 3 will be of help for the proof of theorems.

2. Mathematical Preliminaries and Statement
of the Theorems of Partial Regularity

Let Ω be a domain of the three-dimensional Euclidean space R3, exterior to v (v ̂  0)
compact subregions whose boundaries are supposed C2-smooth1. We denote by
Ro the diameter of the complementary Ωc of Ω and suppose, without loss of
generality, that the origin 0 of coordinates belongs to Ωc. For Ω'QΩ and t > 0 we set
Ωt = Ωx(0, i). By LP(Ω), p e [1, oo], we denote the Lebesgue space of functions on Ω.
Analogous meaning has the symbol Lp(Ωt). The norm in LP(Ω) [respectively Π(Ωty\
will be indicated with | \p (respectively | \PtΩt). Wmp(Ω) denotes the usual Sobolev
space of order (m, p) of functions on Ω and | \mp is its associated norm. By Wrp(Ω\
with r ^ 0 and p ^ 1, we denote the Sobolev space of functions on Ω with derivatives
of fractional order (r, p) endowed with the intrinsic norm | | r > p [1]. For an open set
A in R3, we let CQ(A) be the set of indefinitely differentiable functions having a
compact support in A. Moreover, ^{Ω) denotes the set of vector valued functions
Φ with components ΦieCQ(Ω) (z = l,2,3) and divergence free. The following
completion spaces are considered: J(Ω) = completion of ^ ( Ω ) in L2(Ω), J^Ω)
= completion of ^ ( Ω ) in Wl2(Ω\ j 2 ~ 2/p(Ω) = completion of «^(Ω) in
W2 ~ 2 / p 'p(Ω). Finally, by ί/((0, s); X) we denote the set of functions u from (0, s) into

s

X, where X is a Banach space, such that j \u(τ)\pdτ< + oo (| | x is X-norm). For
o

details and properties on the space introduced above, we refer to [20, 30].

Definition ί. For any ScR3xR and k^O, Pk(S) = supPk

ε(S) is said to be a

Hausdorff measure of parabolic type, with Pk

ε(S) = infΣδ(Ai) where {^4;};^ is any
decomposition of S in a countable number of "parabolic" cylinders with radius r{ in
space and rf in time.

If Hk is the usual Hausdorff measure, then Hk(S)^C(k)Pk(S).
The foregoing definition, as well as the Hausdorff measure Hk, is a particular

case of a construction due to Caratheodory; for the basic facts and properties
about Hausdorff measure, we erfer the reader to [5]. The measure Pk is introduced
by Caffarelli et al. in [2], for they found it more suitable to the application of their
methods to the Navier-Stokes equations.

We end mathematical preliminaries with some inequalities of Sobolev type.

1 Here the regularity of dΩ is required in order to apply some helpful results, which do not
explicitly appear in this note
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Lemma 1. Let f:Ω^R with VfeLP{Ω\ p<3. Then there is a constant f0 such that
ψ=f—fo satisfies the following inequalities:

)\pdγSC J \Vf\*dx9 M ^ C | F / | p , (2.1)

where pe(l,3), q = 3p/(3—p), and Γ = angles of spherical polar coordinates in R3.

Proof See Lemma 1.3 of [8].

Lemma 2. Let fe C£{R3). Then a constant C exists such that

(2.2)

when
i) p^2, γ + 3/p>0, α + 3/2>0, β + 3/2>0, and ae[1/2,1];

ii) y +
iii) φ -

Proof. See Lemma 7.1 of [2] or [3].
Finally, the symbol C denotes a generic constant whose numerical value is

inessential to our aims, and it may be given several different values in a single
computation. For example, we may have in the same line 2 C ^ C .

By a generalized solution of the initial boundary value problem of the Navier-
Stokes equations,

uf + u F u = - F π + zlιi i n Ω τ , F u = 0 i n ί 2 τ ,
(2.3)

u(x,0) = uo and u ) 5 Ω = 0 with u(x, ί)->0 for|.x|

we mean a pair of functions (u, π) defined as follows.

Definition 2. The field u: Ωτ-+R3 and the scalar function π: Ωτ-+R (T= + oo) are
such that

i) (u,π) satisfies (2.3) almost everywhere in Ωτ;
ii) (u, π) satisfies the energy inequality in the following form:

|u(t)l! + 2l |F w |2dτg|n(s)|i (2.4)
S

for 5 = 0, for almost all s > 0 and for all t^s;
iii) u(x, t) can be redefined on a set of zero ί-measure in such a way that

lim |u(ί)-u(s)|2 = 0 for all se[0, Γ).

Definition 3. A point (x, ήeSc Ωx(0, T) is said to be singular for a solution u(x, t) to
Navier-Stokes equations iff u(x, t) φ L°°(/(x, ή) for any neighborhood I(x, t) of (x, ί);
the remaining points, where u(x, ί)6L°°(/(x, ί)) for some neighborhood /(x, t), are
called regular.

Remark 1. The set of generalized solutions is certainly non-void. The first result of
existence of generalized solutions is due to Ladyzhenskaya for the Cauchy
problem [14]. Later, in [2] and [8], the result has been obtained in the case of a
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bounded domain and of an exterior domain, respectively (for exterior domains cf.
Lemma 3 below). The generalized solutions have more regularity properties than
Hopf's weak solution; in particular, the energy inequality holds in the form ii),
which allows to give a "theoreme de structure" 2. Moreover, ii) is interesting in itself
from a physical viewpoint and it is necessary for the well-posedness of stability and
energy stability study, in the sense of [13, 28], in exterior domains: [6, 8, 9, 11,
16-17,19]. However, we prove that any generalized solution (cf. Lemma 3) satisfies
a generalized energy inequality (Lemma 6) of the same type of [2], which contains
the one referred to in ii) of Definition 2 as a particular case.

Remark 2. From Definition 3 it is clear that a solution (u, π) is regular iff S = 0. We
observe that by virtue of the higher regularity results due to Serrin [29] we can
deduce that ueC°°(/(x,ί)) and is even analytic [18, 32].

Our results concerning the partial regularity of a generalized solution to
Navier-Stokes equations in exterior domains are furnished by the following
theorems:

Theorem 1. Let u o e J 9 / 1 0 ' 5 / 4 ( Ώ ) and (u,π) be a generalized solution obtained in
Lemma 3 (below) corresponding to u 0. Then the set S of possible singular points has
P\S) = 0.

Now, we consider the question about where the set S can be possibly localized
in Ω. In this connection the following theorem holds:

Theorem 2. Let (u,π) be as in Theorem ί, such that for some R>0
j Vu0: Vuodx < GO at initial instant, then there exists a sphere of radius R such

Ω-S(0,R)

that ScS(O,JR).

Remark 3. In Theorems 1 and 2 we assume u(x,0) = u o e J 9 / 1 0 ) 5 / 4 ( ί2); this
hypothesis can be relaxed to u0 e Y(Ω) = J2/55/4(Ω)nJ(Ω), provided one can prove
that ^Q(Ω) is dense in Y(Ω) endowed with its natural norm 3 .

Theorem 1 is the natural extension of Theorem A' of [2] to the case of exterior
domains. However, we actually require u o e J 9 / 1 0 ' 5 / 4 (Ω) while in the case of Ω
bounded in [2] it is required only that u0 e Y(Ω). Among unbounded domains the
Cauchy problem is an exception, where it is sufficient to assume u 0 e J(Ω).

Theorem 2 is "equivalent" to the corollary (Sect. 8, p. 820) to Theorem D
of [2].

3. Some Preliminary Considerations to the Proof of Theorems

The following lemma ensures that the class of generalized solutions in exterior
domains is non-void

2 For Hopf's solutions we have not a "theoreme de structure" in exterior domains, since they a
priori do not verify ii). For a more extensive consideration on the question, cf. e.g. [8]
3 Professor G. Paolo Galdi has recently communicated to the author that such a result of density
has been actually obtained by him
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Lemma 3. Assume u 0 e J 9 / 1 0 ' 5/4(O). Then there exists a generalized solution (u, π) to
the system (2.3). In particular, we have:

ίί (l«(τ)|2,5/4 + Wτ)|5/4 +1Vπ\5 / 4)
5 l 4dτ;£C{|uo | | + |u o | 2 / 5 > 5 / 4 } , V ί £ 0 , (3.1)

0

|u(ί)|5/4^|uol5/4 + Cί 1 / 5 | u o | i , Vί^O. (3.2)

Proof. The existence is proved in [8, Theorem 2.1]; (3.1) is a consequence of (2.6)
and (3.2) of Lemma 3.2 of [8].

Lemma 4. Let (u, π) fee α generalized solution. Then there exist a set Ec(0, + oo)
wϊί/z zero Lebesgue measure and a 0e[O,exp(C|uo |2 + l)C|uo |2], such that
Vί0 e(0, + oo) — £, (u, π) ΪS regular in (ί0, ί0 + T(ίo))j ^ ^ (u?π) ^ regular in (0, + oo).

Proo/. See Theorem 8 of [11].

Lemma 5. Let (u, π) α suitable weak solution to the system (2.3) m a neighborhood of
the point (x, t). If

( / )
lim sup r ~1 J J Vu(y, τ): Vu(y, τ)dydτ ^ c,
r^O ί - (7/8)r 2 \x-y\^r

where ε is a suitable constant, then (x, ί) is a regular point of u(x, t).

Proof. See Proposition 2 of [2].

Remark 4. We stress that θ in Lemma 4 depends only |u o | 2 , but not on the (possibly
not unique) particular weak solution considered.

Lemma 5 is stated as in [2] as a weak solution they mean a weak solution
verifying, among other things, a generalized energy inequality of the type (4.1)
below.

4. Proof of the Theorems

In order to prove Theorem 1, we commence by proving that any generalized
solution given by Lemma 3 satisfies a generalized energy inequality, the same
proved in [2].

Lemma 6. Let (u,π) be a generalized solution furnished from Lemma 3. Then

J |u|2(x, t)Φ(x, ήdx + 2 J J Vu(x, τ): Vu(x, τ)Φ(x, τ)dxdτ
Ω s Ω

g j \u\2(x,s)Φ(x,s)dx+ j J |u|2(x,τ)(Φτ(x,τ) + AΦ(x,τ))dxdτ
Ω s Ω

+ } J (|u|2(x, τ) + 2π(x, τ))u(x, τ) FΦ(x, τ)dxdτ, (4.1)
s Ω

for s = 0, for almost all s > 0 and for all t ̂  s, for any Φ e C°°(Ωx(s, ί))nC0(Ω) such
that Φ;>0.

Proof. We give a proof which is quite analogous to that of [2] for the case of Ω
bounded. In [8] the existence of a solution (u, π) is obtained by proving the
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convergence (with respect to suitable norms) of a sequence {un}neN of solutions to
the following system:

nt n n n n Γ ,
(*)

V-nn = 0, u B | e β = 0 and u ^ O for |x|-> + oo, uB(x,0) = u j 6 * ? ( β ) ,

where the functions un are defined Vί^O, these are regular solutions and verify ii)
and (3.1H3.2); Uπ = j Jί/n(x-y)un(y)dy and finally u°-+u° [therefore, in parti-

κ3

cular, in J(Ω)]. Multiplying both sides in (*)i by unΦ in L2(Ω) and integrating by
parts we have

J \un\
2(x,t)Φ(x,ήdx + 2\ f Vun(x,τ):Vun(x,τ)Φ(x,τ)dxdτ

s Ω

t

= j \nf(x,s)Φ(x,s)dx + j J \un\
2(x,τ)(Φτ(x,τ) + ΔΦ(x,τ))dxdτ

Ω s Ω

t

\2+ j J (|uJ2(x, τ) + 2ππ(x, τ)K(x, τ) FΦ(x, τ)dxdτ,
s Ω

V (ί, s) such that t ^ s and Φ ̂  0.

We observe now that, as {uπ} weakly converges in L2((0, T); J 1 ), by virtue of the
Friederichs lemma [4], we have a subsequence {un} strongly converging in
L2((0, T); L2(ί2')) for any compact subdomain Ω'cΩ. This last fact implies the
existence of another subsequence {un} which converges in L2{Ω') for almost any
se [0, T]. Moreover, for (2.1) and (3.1), πneL 5 / 4((0, T); Lί5/Ί(Ω)% VneN. Here and
in the sequel we tacitly suppose that the pressure is π'n = πn + π®: in such a way
inequality (2.1) can be applied. However, for the sake of simplicity, the apex ' is
omitted for π'n. From these considerations and analogous ones for the remaining
terms, it is routine to deduce from (3.2) in the limit as n-> + oo, (3.1), therefore, the
proof is omitted and we refer [14] for details.

From (4.1) and Lemma 5 the proof of Theorem 1 is achieved by a suitable
covering of a neighborhood of the possible singular point (x, t) e S by parabolic
cylinders, as is proved in [2] to which we refer for further details of the proof
(Sect. 6, p. 806).

To prove Theorem 2 we need the following preliminary lemma.

Lemma 7. In the same hypothesis of Theorem 2, there exists a constant Cί for which
it is possible to find a sphere centered at 0 and radius R, such that for \xo\ ̂  R (with
(R-1)>SRO) L= J | u | 2 ( x , 0 ) | x - x 0 Γ 1 r f x < l / C 1 = L 0 and for some η>0,

for any fixed T o >0, | v | 2 ί < L 0 - L , and | v | ί^ l .

Proof. Let ψ(ή = e"kβ{t) with )8(ί)= r , , — l 7_,1 / 7, where

k>0 is a constant whose value will be given in the sequel. We consider g(x, t) so
defined:

g(x, ί) = gr(x)ψh(t) [e + |x - (x0 + vί)|2] " 1 / 2 = σ(ε, x, t)gr(x)ψh(t),
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where gr(x)eCCΌ(Ω) is a cut-off function with gr(x)=l Vx such that \x\^r and
gr(x) = 0 for |x| ̂  r + 1 , φΛ(ί) is the mollification of φ(ί). By substituting g in (4.1), and
taking into account that ψ is absolutely continuous, with ψ e 1/(0, t) Vί ̂  0, in the
limit /z->0 and, subsequently, r->oo, it follows

0 0
ί

2,Jφ(τ)J|u|2(x,τ)(-v Fσ + z1σ + ii Vσ)dxdτ
o β

+ 2 j ψ(τ) J π(x, τ)u Vσdxdτ, (4.4)
0 Ω

where we have set α(ί)= J |u|2(x, ί)σ(ε,x, ί)dx. Now we observe that Aσ^O and

| F σ | ^ σ 2 \/XEΩ. Therefore, it is possible to majorize (4.4) by neglecting the term
with Δσ and by treating the terms in Vσ with the aid of (2.2) in the following way:

f σM2dxύ Qy\ [j5(ί)α(0]1/2 ύ Cβ(t)a(t) + |v|2, (4.5)
Ω
f
Ω

\ σMzdx ύ C$(tyi\t) £ (l/2)/}(ί) + Cβ(t)a(t), (4.6)
Ω

where in the last step we have employed the Cauchy inequality. A different estimate
to be found for the pressure. From (2.3)! it follows that π obeys the equation

Aπ=-Vu:VuT almost everywhere in Ω (P 7u r^(F 7u) t r a n s p o s e). (4.7)

Let χ(x) e C°°(Ω) be a function cut-off such that χ(x) = 0 for |χ| ̂  R1 and χ(x) = 1 for
|x|Ξ>2# where # ! = ( # - l ) / 8 > # 0 ( f o r t h e moment K>8i^ 0 + l is arbitrary). Set
τ(x) = π(x) χ(x), from (4.7) we have

zjτ(x) =-Vu: Vuτχ(x) + π(x)zlχ(x) + 2Vπ(x) Fχ(x) in K 3 .

Therefore, τ(x) = mΣτί(x) in R3 with m = (measS(0,1))"1 and

τ,(x)= ί

τ2(x) = 2 J ui{y)uj{y)Dyφ)Dyj
Λi^|y|^2Λ! |

R3 \χ~y\

τ ( χ ) = f (π(y)

\x-y\

It is easy to verify (cf. for example [7]) that for |x| ̂  2R1, π(x) = τ(x). Let us consider
the integral with the pressure term, which is majorized by

t

j ψ(τ) J |π(x, τ)| |u(x, τ)|σ2(β, x, τ)rfxrfτ
0 ΩnS(0,Λ2)

+ ί ψ(τ) ί N(^s τ)l lu(^? τ)|σ2(ε, x, τ)dxdτ = Ix + / 2 ,
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where R2 is chosen in such a way that R2e(2Rί,(R —1)/2). Since it is

σ-2(ε,x,τ)^ε + (l/2)|x0 + v τ | 2 - ^ ^ ε + (^-l) 2/4 VxeΩnS(O,jR2),

by employing Holder's inequality, we have

lD'- luolS Vίe[0,T0], (4.9)

where, in the majorization, we have interpolated L15/8(Ω) between L2(Ω) and
L5/4(Ω), 0 = 8/9, and taken into account (2.1) and (3.1)-(3.2). As far as I2 concerns,
we start with the following position:

I2ίC Σ ίvW ί \τh(x,τ)\\u(x,τ)\σ2(ε,x,τ)dxdτ = Σ K (4.10)
ft=l 0 | * | ^ K 2 h=ί

and we estimate the Jh (h = 1,..., 4) singly. Applying Schwartz' inequality we obtain

x( J |u(x,τ)|2σ2(ε,x,τ)^ί/τy/2

By employing Minkowski's generalized inequality, for the first spatial integral, the
following estimate holds:

J \τί(x,τ)\2σ2(ε,x,τ)dx
\x\^R2

( f \u(y,τ)\2\D2χ(y)\( J \x-y\-2σ2{^τ)\
\^2R \\^R

where in the last step we have taken into account the property of the cut-off χ(y)
((l/RιWx(y)\ + \Άχ(y)\)^C/R2 and (2.4). Therefore, employing for the term
J \u(x,τ)\2σ2(ε,x,τ)dx, (2.2) and subsequently the Cauchy inequality, we have
Ω

' Vίe[0,Γo]. (4.11)
0

The same arguments can be applied to obtain for J 2 ,

\ψ(τ)β(τ)a(τ)dτ Vίe[0,To]. (4.12)

τ 3 is a singular integral, then taking into account Calderon-Zigmund's theorem for
singular integrals and E. M. Stein's theorem with respect to the measure
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|)αdx, [31] (Sect. 6.3, p. 49), and employing the Holder inequality yield

\τ3(x,τ)\3'2σ2(s,x,τ)dx)2/3(j \u(x,τ)\3σ2(ε,x,τ)dxY13

0 \β

S C J ψ(τ) J |u(x, τ)|3σ2(ε, x, τ)dxdτ.
O Ω

Majorizing further on by (2.2) and Cauchy's inequality we arrive at

J3^{ί/2)β{t) + Cβ{tMt). (4.13)

Let us consider J 4 . Applying Schwartz's inequality

O \\x\^R2 J \Ω

By employing Minkowski's generalized inequality, it follows that

f \τA(x)\2σu'*(x)dx

J ( \ \x-y\-2σ^\x)

Since R2>2Pι and the derivatives of χ have compact support, by taking into
account (2.1), we get

J4£ CiRJ-215 f ψ(τ)\Pπ(τ)|5/4 /f |u(x, τ)|V / 4(ε, x, τ)ί/xV/2 dτ.
o \a J

By virtue of Schwartz's inequality applied over and over again, we deduce

j u2(x)σ5/4(x)dxS (J u2(x)σ3/2(x)dxV/2A u

^ (\ u2(x)σ2(x)dxV/4A u2(x)σ(x)dx\314

^ A u2(x)σ2(x)JxV/8 \u\l14

which for (2.2) and (2.4) it is further on increased by C[uo | |
/4(^(τ)α(τ))5/16. Therefore,

+ }ψ(τ)β(τ)φ)dτ Vίe[0, Γ0], (4.14)
0

where in the last step we use Cauchy's inequality and take into account (3.1). From
(4.4) and (4.5)-(4.14) and taking into account that SR1 = R — \, we have

α(0 + ί Ψ(τ)β(τ)dτ + k f xp{τ)β{τ)a{τ)dτ
o o

Vίe[0,Γ o ], (4.15)
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where the symbol [ ] denotes the dependence of F by u0 with respect to suitable
norms. Moreover, we recall that F is bounded Vε > 0 and tends to zero at large R.
Set k = Cί: then (4.15) is equivalent to

α(ί) + exp(fc/?(ί))((CΓι -α(0)-|v|2ί-F(TΌ9 [u 0 ],R,ε))^C^ Vίe[0, Γo]

therefore, if R is chosen in such a way that (4-16)

we have that (4.16) is verified uniformly in ε > 0 and t ̂  To. Therefore, we can think
of (4.3) as achieved, provided we prove

u0 eL2(Ω) and J | Vno(x)\2dx < oo , implies
Ω~S(0,R) (4.17)

Vε>0, 3JR such that $u2

){x)\x-x0\~1dx<ε Vx0 such that |

To this aim, set u = uoχ, where χ e C 0 0 ^ 3 ) is a function such that χ(x) = 0 for |x| fg
and χ(x) = l for | x | ^ 5 + l. Then ύeWι'2(R3), and there exists a sequence
{Φn}neNQC%(R3) such that Φn^w in WU2{R3). Now, we can prove (4.17):

ί u 2 (x) | x-x 0 Γ 1 dx+ j ύ\x)\x-xo\-Hx
ΩnS(0,R+l) \x\^R

-R-iy^u2

o(x)dx+ J \Φn{x)\2\x-x0\-Hx
Ω \x\ZR

\*R J

j \V(ύ(x)-Φn(x))\2dxVί\
J

and (4.17) follows from this last inequality, since for sufficiently large n and
[|xo| — diam(suppΦJ], the terms on the right side become small. Therefore, the
lemma is completely proved.

We are now in a position to prove Theorem 2. The proof follows the lines of the
proof given in [2], which we present here for the sake of completeness.

In virtue of Lemma 4, we can restrict ourselves to consider points (z, t)eΩΘ. We
set To = θ in Lemma 7, and let R be the radius of the sphere for which (4.3) holds.
Let (z, ί') be a point of Ωx(0, To) such that

\z — xo |2<min{ί'(Lo — L), 1/2} for some x0 with |xo |^,R,

where Lo, L, and R have the same meaning of the symbols introduced in Lemma 7.
Moreover, we set v = (z —xo)/ί; to obtain

? ^ 0 0 ' f o r te(t',mm{t'2(L0-L)/\z-x0\
2,2t'}.

For \z-x\^r and rG(ί/-(7/8)r2,ί/ + (l/8)r2), it follows

and we have for |v |r^l that

t' + (l/8)r2 t' + (l/8)r2 Wu(x τΨ

r'1 J j \Vu(x,τ)\2dxdτS2 f J , lVU}X>τ)l dxdτ.
ί '-(7/8)r2 μ - j c l ^ r ί '-(7/8)r2 | s - * | ^ r | X ( X + Vτ)|
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Since from (4.18) the right-hand is finite Vr, we obtain

ί' + (l/8)r2

limr-1 J J \Vu(x,τ)\2dxdτ = O,
r-*0 ί'-(7/8)r2 \z-x\^r

which, by virtue of Lemma 5 implies the regularity of u in (z, t').
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Note added in proof. Once this work was already accepted for publication, the author was
kindly acquainted by Prof. G. P. Galdi with the paper by "H. Sohr and W. von Wahl - A new
proof of Leray's structure theorem and smoothness of weak solutions of Navier-Stokes
equations for |x|", where results similar to his are proved. The methods, however, are completely
different.






