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Abstract. We show that the eigenvalues of the derivatives at periodic points
form a complete set of invariants for smooth local conjugacy of Anosov
diffeomorphisms of T2.

0 Introduction

One of the most important results about structural stability is that if/, g are C°°
Anosov diffeomorphisms of a compact manifold M which are sufficiently C° close
(exactly how close depends on C1 properties of both/,0) then there exists a
homeomorphism h such that we have

f°h = h°g. (1)

Moreover, the homeomorphism constructed in the theorem is C° close to the
identity if /, g are C° close and is unique among those satisfying conditions of

proximity to the identity.
It is a natural question to ask how smooth can h be.

It is known that h is Cα for some α > 0. (This α is related to the contractive and
expansive constants of/, g, so that the best α yielded by the proof is always smaller
than 1.) C1 conjugacy is harder. Indeed, if h were differentiable, and/"(x0) = x0, we
would have gn(h~ί(x0)) = /Γ1 (x0) and

Dfn(x0) = Dh(h-1(x0))Dgn(h-1(x0))Dh-1(h-1(x0)) so that, (2)

Spectrum (Dfn(x0)) = Spectrum (/VX/Γ1^))) whenever fn(x0) = x0 (3)

(A slightly more careful argument would show that (3) is also a necessary condition
for h being Lipschitz.)

There are examples [An] that show that in general, conditions (3) are violated so
that there is no hope of getting differentiable conjugacy without extra hypothesis,
and indeed such examples played a major role in the proposal of [Sm] to restrict
the study to continuous conjugacy.

However, there are very natural questions:
A) Suppose that (3) is met, is h differentiable?
B) Is the set of diffeomorphisms satisfying (3) a manifold?
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A motivation for these questions comes from the strategy introduced in [G.K]
for inverse spectral problems. Equality of the spectrum implies the analogue of (3) for
the geodesic flow, and we would like to deduce from this that the manifolds are
isometric. Since we are studying the Laplacian, the natural regularity class for the
changes of variables is C2.

Notice that if h is C2 we would take another derivative of (3) and obtain further
necessary conditions. These conditions have already been worked out in connection
with the celebrated Sternberg theorem [St]. We just remark that in the case where/
is a linear automorphism, they are nontrivial (since the determinant is 1, there are
relations for the eigenvalues).

In that light, it is somewhat surprising that we have the following:

Main Theorem. Suppose f and g are C°° Anosov dίffeomorphίsms of T2 such that:

a) They are sufficiently close in the ^-topology.
b) Condition (3) is met.

Then, they are C°°-conjugate.

Remarks. The eigenvalues of the derivatives at periodic points are not a minimal
complete set of invariants. The periodic orbits accumulate, and if one knows the
eigenvalues of derivatives for periodic orbits of high period one can also reconstruct
those of small ones.

This accumulation of periodic orbits can serve as a heuristic explanation of why
higher derivatives do not come into a complete set of invariants.

There have already been some results about smooth conjugacy of hyperbolic
systems under conditions on the derivatives at periodic points. [Co, Su, Pr] discuss
conjugacy of Julia sets. (Notice, however, that this is a one dimensional system so
that the further obstructions taking derivatives of (3) are trivial.) Katok also has
results about smooth conjugacy of Anosov geodesic flows.

In [M.M] it was shown that, for families of area preserving Anosov diffeomorph-
isms of T2 starting on a linear automorphism, preservation of eigenvalues implies
the preservation of the action invariants, which were shown to be complete in
[LMM]. We generalize this result in that we require neither families nor linear. In
spite of the fact that we do not work with symplectic techniques, we will draw heavily
on techniques and results from [LMM].

Marco and Moriyon have also succeeded in proving that when/:Γ2—>• Γ2 is
Anosov and has constant Lyapunov exponents on periodic orbits it is C1+ε

conjugate to a linear automorphism (no proximity assumptions). By our Theorem 1
this implies C°° conjugacy.

Some extensions of the results of this paper to higher dimensions and to flows are
being worked out by Marco and Moriyon and the author.

1. Proof of Main Theorem

This theorem will be a "bootstrap of regularity" argument.
The climb up from Cα (0 < α < 1) to C00 has a very clear milestone which is C1.

(Notice that the necessity of conditions (3) appears in C1 but not in lower regularity.)
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Once we get to C1, several manipulations become possible and it is almost painless
to get from there to C°°. (For families of hamiltonian systems this C1=>C°° was
already done in [LMM] Cor. 1.1.) Since the ideas involved in proving C1 => C°° are a
subset of those required to prove CΛ=>C1

9 we prove it first and then, do the low
regularity result. Again, the low regularity result breaks up into Cα=>Lipschitz,
Lipschitz^C1.

We also remark that the proof is simpler when g is linear; then the regularity
theory of [LMM] can be substituted by elementary arguments.

We will start by recalling some definitions and results of [LMM] we will use.
Let / be a C°° Anosov system in a compact manifold M. The stable and unstable

foliations have C°° leaves with Cα oo-jets (some α > 0). Hence, the following
definitions make sense.

We denote by Ck the space of functions which, when restricted to any leaf of the
stable foliation are Ck and the fc-jet of the restriction is continuous on the manifold.
For k < oo those spaces can be given a Banach space structure similar to that of the
usual Ck. For k = oo or ω, they can be given a Frechet space structure.

We will also talk about Ck

s diffeomorphisms.
Also denote by 0* the space of first order linear operators tangent to the leaves of

the stable foliation and of the form ^alDl with a^Cf and Dl differential operators
with C°° coefficients. l

The operators in 0* can be composed and, out of those powers, by addition, we
can form 0*, "the space of /cth order operators tangent to the foliation."

An operator D in Ok maps Cl

s

+k continuously into C^ke^JeN ί/{oo,ω}.
Similar definitions and conclusions hold for the unstable manifold.
Since we will be using two Anosov diffeomorphisms and the stable and unstable

foliations are different, so are the corresponding spaces. We will put in parenthesis
the one we are talking about (e.g. Cj(/)).

Lemma 2.3 of [LMM] is

Lemma 1.
Cs

conCtt

00 = C00.

The next lemma is the same essentially as Lemma 2.2 of [LMM]. There it was
stated for flows and only when fe = oo, but the proof there works for any feef^l. In
that paper it was also shown that the result for flows implies the result for
diffeomorphisms.

Lemma 2. Iff is as above ψeC° and ηeCk and ψ°f— ψ = η, then ψeCk.
Neither of the previous results assumes transitivity of/ Nevertheless, we will also

be using Livsic fundamental result which does.

Theorem [Li] Let f be as above and, moreover transitive, given any function ηεC*
0 < α ̂  1 (α = 1 means here Lipschitz) satisfying

"Z\(/*x) = 0 Vxs.t./"(x) = x. (4)
k = 0

Then, there exist a function ι//eCα s.t. ψ°f — ψ = η. Moreover, ψ is unique up to
additive constants and, 3K(f) s.t.
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We will often refer to (4) as "the compatibility conditions of Livsic theorem."
Transitivity, however, is assured for all Anosov diffeomorphism of 2 and 3

dimensional manifolds (in [Fr] is also shown that the manifolds carrying them have
to be T2 or Γ3)

Theorem [Nel], All Anosov diffeomorphisms whose stable or unstable foliation is of
dimension 1, are transitive.

Remarks. Lemma 2.3 of [LMM] is of a local character, hence it applies word for
word for any geometric object which can be reduced in a coordinate patch to a set of
functions (e.g. diffeomorphisms).

Lemma 2.2 there, however, is global; to study ψ at one point we need to study η in
the whole orbit, so we cannot use it for geometric objects without some trickery.

We would also like to recall that many standard proofs in hyperbolic dynamical
systems can be modified to be just existence of fixed points for perturbations of
hyperbolic operators in some Banach space (this is done quite systematically, e.g. in
[Sh]). If one appeals to the implicit function theorem-rather than to the contraction
mapping principle — one can very often obtain smooth dependence on parameters.
For example, one can get smooth dependence on parameters in the conjugating
homeomorphism in the structural stability theorem.

One can also get smooth dependence on parameters in the local stable manifold
in a hyperbolic fixed point and, since the stable (unstable) foliation theorem can be
reduced to the existence of a stable manifold of a fixed point in a Banach space of
sections (see [Sh]) one can get smooth dependence of the foliations on the parameter
affecting the Anosov diffeomorphisms. (It is very easy to check that the auxiliary
operators depend differentiably on the Anosov diffeomorphisms.)

The C°° dependence is also very uniform. If we topologize the space of /c-jets
keN with the C°-topology, it is a Banach manifold. If the diffeomorphism moves
along a C°° curve in the space of diffeomorphisms topologized with a Ck + fe0

topology (some /c0 > 0 that can be figured out) then, the /c-jet of the stable manifold
also moves along a C°° curve.

The proof of the main theorem, which we will now start, will use some softer
statements about smooth dependence and its uniformity.

According to the theorem of Franks and Newhouse [F,Nel] there is one and
only one fixed point for Anosov diffeomorphisms of T2. By conjugating with
appropriate translations, we can assume that the fixed points of/and g are 0. (This is
done only for notational purposes, any periodic point would do as well.)

Since the stable manifolds of a fixed point can be characterized by topological
conditions, as soon as /zeC00 we have

h( W$β)) = wy\ h ~ 1 ( Ws

0

(f)) = WS

0

(9} .

More generally, h transforms pieces of leaves of the stable foliation of g into pieces of
leaf of the stable foliation of/. (This is a non-trivial amount of regularity since the
leaves are C°° and h was only assumed to be C°.)
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It is immediate to prove for h the conjugating homeomorphism and u any
function.

Proposition. I f h e C k

s ( g ) U:T2 ->ReC£(/), then V°heCk

s(g).
We also have

Consequently the problem of conjugation can be restricted to the stable
foliations of 0. Moreover, since those leaves are dense (a consequence of transitivity
[Ka]) what happens on them determines what happens in the whole manifold. The
fact that they are one-dimensional will give us an extra handle on them.

In order to take advantage of this one dimensionality, it will be quite important
to pick an appropriate set of coordinates.

Notation. Once we pick coordinates in W%9\ Ws£f\ h, /, g all become functions
IR -> [R which we will denote by /z, J, g respectively.

Lemma 3. We can find coordinates in W$f\ Ws^β} in such a way that

1) Derivatives with respect to the coordinates extend to a vector field in 0^ 0^g)

respectively.

2) sup|/Γ(ί)-ί |< oo.
teH

Remarks. Notice that in the proof of Lemma 3 is the only place where we used in an
essential way that/, g are close. In the rest of the argument we could use — with some
extra steps — just that they are C° conjugate which, according to [Nel, Fr] follows
from conjugacy of the actions on H^T2).

Proof. What we do is to construct a C°° function F S1 x S1 -> T2 such that F(-t) is a
family of circles which are transversal to the leaves of the stable foliations
«a/ds,Ds(/ί> ̂  l / W , ( d / d s , D s ( g ) y g l/10<Z)s(/),Ds(/)> = 1) and 3/Sί is almost paral-
lel to the directions of the stable foliations « δ/δί, Ds(/) > ̂ 9/10).

It then follows that each stable leaf hits every transverse circle infinitely many
times.

Given a point in Ws^f) we call nf(x) the number of times that the manifold
transverses the family of circles.

We then take coordinates in Ws^f) by assigning 0 to 0 and then, increasing the
coordinate at the same rate that t is increasing.

The extension of the derivatives with respect to these coordinates is just the
projection of d/dt onto Ds(f) which is in 0* due to the uniform transversality.
(Remember that since f,g are C1 close, the 1-jets of the leaves are close.)

It is also clear that, for two points x, y on W*$f\ W%9) we have (dτ2 is the standard
distance on T2),

t(x) - t(y) g KdT2(x, y) H- nf(x) - ng(y)

(unless we are in some borderline cases, which we leave the reader to fix rather
than burden the exposition; to prove the lemma we just need to show nf(x) —
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We can do that by interpolating smoothly between/and g by a family fλ. The
stable foliation and the conjugating hλ solving (1) depend continuously on g. We can
take one function F for all the g's in a small neighborhood and then t(hλ(x)) should
be continuous. From the fact that dT2(hλ(x),x) is uniformly small we conclude that
nf(x) = ng(hλ(x)) (unless we are in the borderline cases, in which it changes in the
right way)

The construction of the function F is an intermediate step in the proof of the
theorem that a vector field on T2 can be reduced to linear. (A version can be found in
[CFS] p. 408ff.) The only difference is that, there, one uses smoothness of the vector
field Ds(f} but, however, obtains the vector field d/dt orthogonal to Ds(f).

To get what we need, one just applies the standard theorem to a smooth
approximation of the vector field Ds(f)C° close to it. One needs to verify that there
are smooth C°-approximations to this vector field which still do not have any
periodic orbits (so that the classical theorem applies). This can be done in many
ways. One possibility is prolonging the leaves of the foliation; we obtain a return
map to one transversal circle. This return mapping can be smoothed keeping the
same rotation number and the smoothing can be propagated along the foliation.
The irrational rotation number prevents the existence of periodic orbits.

Theorem 1. With the same notation of the main theorem, ifh solves (1) and is in Ck

s(g)

where k ̂  1, then it is in Cj^1.

Proof. The derivatives along Ds(g) of h should be vectors along Ds(f} so that we will
have

for some K'(x):T2-+U +

 9 where
(We should remember that Dh does not make sense except when acting on

vectors tangent to the stable foliation of g.)
We also have

(Df)(x)Ds(f}(x)=?'(x)Ds(f)(x),

J'(x)εC™(f}, g'(x)eC^g) and both are bounded away from zero.
It is quite important to observe that even if/(x),^(x) are defined only on the

stable manifold of 0, their derivatives extend to the whole of T2 and (if we disregard
some nitpicking about whether they are defined on the manifold or the coordinates
of the manifold) the extensions agree withj'(jc), g'(x) so that this notation is sensible.

This fact that what happens in the (dense in T2) stable manifold extends will give
us enough control in the Cα -> Lipschitz part of the argument.

Applying the chain rule to derivatives along Ds(g) of (1), we have

and, taking logarithms

Iog7'(/ι(*)) - log g'(x) = - log K'(x) + log K'(g(x)). (5)
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According to proposition 1, the L.H.S. is in Ck

s(g) so that, according to Lemma 2.2 of
[L.M.M.] we have logK'(x)eCk

s(g)9 so that ΛeC^1.

Theorem 2. With the same notation of the main theorem assume h solves (1) and εC*
(0 < α). Assume moreover that f^g satisfy condition b) of the main theorem.

Then, h (the expression of K in the coordinates picked in Lemma 3) is uniformly
Lipschitz on the real line.

Proof of Theorem 2. Equation (1) when expressed in the coordinates constructed in
Lemma 3 becomes

ϊϊ°g. (6)

We have some a priori information about the K because it is the restriction of the
unique h close to the identity in T2.

For example, we know it has an inverse and that

(Notice that Id + L°° is closed under composition.)
The standard expansiveness argument performed with due care will give that the

only solution of (6) in Id + L°° (not necessarily invertible) is precisely /T.
In order to prove Theorem 2 we will study

and will show that Kn converges to K(x) uniformly on the real line and that under the
hypothesis of the theorem all the Kn's are uniformly Lipschitz. Hence IT is Lipschitz.

The first result of the previous paragraph is quite standard (it is just one of the
ingredients in one of the usual proofs of the shadowing lemma) and is true in great
generality. The second one, on the contrary, uses quite essentially the compatibility
conditions (3); it is not true for one dimensional systems in general, but uses that our
one-dimensional system is the restriction of the two dimensional one.

Proof of Theorem 2. Call K(x) = x + ΐι and Kn(x) = x + hn (all h are in L°°).
From (6) we have

K(X) =7"o£ogΓ"(x) =7"(Γ "M + δ(T "(*)))•

Now/" is a contraction uniformly on the whole real line so that

fi (x)-βB(x)g|Up7|-supfi(fl|--(x))=|lip7Γsup|ί(x)|.
xeIR xeIR

To prove the second statement we will estimate

uniformly in n and x. For that, we will use that there is a Cα α > 0 function ψ in T2

such that
log /'(/ι(x))- log #'(*) = -ψ +

The existence of such a function follows from the existence part of the Livsic
theorem. Transitivity of g (even if transitivity is used in other places to ensure density
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of the leaves, I hope this could be removed from the argument — this seems to be the
only place where transitivity is essential) is ensured by the Frank and Newhouse
theorem and the compatibility conditions will follow from the assumption b) of the
theorem.

Since the stable manifolds are tangent to the eigenspaces of the derivatives at
periodic points we should have

when

Using the chain rule we have

7"'(*o) =
and, using (1)

Taking logarithms, this reduces to the compatibility conditions for the existence of

^
We will call φ the restriction of ψ to W%9} expressed in the coordinate system

constructed in Lemma 3.
Now we try to write log (Jng~n) in such a way that we can obtain the uniform

bounds.
We have

To estimate the sup in x, it suffices to estimate the term in brackets. We start by
estimating a very similar sum.

Out of the Livsic theorem and (6) we obtain

"

so that these auxiliary sums are bounded uniformly in n, x.
Comparing this bound with the one we want, we see that it suffices to bound

independently of π, and x.
Each of the terms in the sum can be bounded by

sup|(log7'°7t')(x)|sup|£(je)-x|



Invariants for Conjugacy 377

but, applying again the chain rule we see that those are bounded by the terms of a
/ / Y

geometric series. Notice that sup |/' Ml < 1> hence sup|7k'(x)| ̂  ί sup | /Ml 1 .
V x x \ x /

This completes the proof of Theorem 2.

Theorem 3. Ifh is Lipschitz and b) is satisfied, then heCl(g).

Proof. By the density of the stable manifold W$9) we obtain that it is Lipschitz in
every leaf of the stable foliation and with the same Lipschitz constant.

By the fundamental theorem of calculus, on each leaf there is a set of full
Lebesgue measure on which there is a derivative for /z.

The sense in which this derivative exists is strong enough to guarantee that the
chain rule applies and, hence, (5) is fulfilled.

So, we have

(log K'(x) - φ(x)) - (log h' - φ)og(χ) = 0

almost everywhere on each leaf.
"Almost everywhere on each leaf" is an extremely strong property. Because of the

absolute continuity of the foliation it implies almost everywhere in the two
dimensional Lebesgue measure of the torus. More importantly, it implies almost
everywhere for the backwards Bowen-Ruelle measure because the Bowen-Ruelle
measure can be projected onto the unstable manifolds to give a measure with
smooth density (in the literature, e.g. [Ne2], p. 64 one finds C1 density, but probably
one can do better; C1 is more than enough for present purposes).

Since Bowen-Ruelle measure is ergodic, we have

log £'M - {//(x) = cte a.e. B - R.

Therefore, there exists at least one leaf in which

log /t'M — ψ(x) = cte a.e. in the leaf.

But, for a transitive Anosov system, all stable leafs are dense in the manifold (see e.g.
[Ka]). Since the leaf is dense in T2 and ψ is continuous on all T2, it follows that
exp [_ψ(x) — cte] is the true derivative (see [LMM] for more details on the argument
which is nevertheless standard) and, hence heCl(g}.

This completes the proof of Theorem 3.
Putting together Theorems 1, 2, 3 we get that
We now observe that

so that applying the previous result we also have fteC^-i^ C™(g).
Invoking Lemma 2.3. of [LMM] finishes the proof of the theorem.

Remark. The conclusion /zeC1 => /zeC00 does not require proximity assumptions for
/and g.

If/ = h°g°h~1 and /zeC1, we can find another /Γc C°° and sufficiently C1 close to
h ([Hi] Thm 2.7) so that our local theorem can be applied to/and/ = h°g°h~1.
Uniqueness of local conjugations shows /zeC00.
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Journe has found an alternative proof to Lemma 2.3 of [L.M.M] using different regularity properties
of the foliation. [Jo]

Marco and Moriyόn have shown that for Anosov systems in T2, constant lyapunov exponents at
periodic orbits imply smooth conjugacy to a linear automorphism, and they have also shown that the
periods and the lyapunov exponents are complete sets of invariants for families of Anosov flows on 3-
manifolds. This later result involves study of vector cohomology equations. [MM2]

Moriyόn and myself have also shown that equality of lyapunov exponents at periodic orbits for two
Anosov systems on T2 implies C00 conjugacy without proximity assumptions and removed the use of
families in the result about flows.
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