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Abstract. We discuss classical lattice gas models with a finite number of different
particles and ferromagnetic type interaction between them. We make the set of
particle types into a finite abelian group and explore the algebraic structure of
such a system. We present a criterion for using the Peierls argument to establish
the existence of phase transitions. In the case of a cyclic group of order equal to
the product of different prime numbers we obtain a complete description of all
periodic Gibbs states at low temperatures.

1. Introduction

One of the main tasks of statistical mechanics is to describe the family of equilibrium
states of the system for a given interaction, external parameters, and temperature.
This problem is addressed here in the context of certain classical lattice gas models.
Namely, at each site of the lattice there is a variable which can take on a finite
number of values. One may think of these as different species which can occupy the
lattice sites or 21 + 1 orientations of a spin / particle. The particles or spins interact
through many body potentials. Central in the analysis of low temperature behavior
of such systems is the notion of a ground state and the so-called Peierls condition. A
ground state is a configuration of particles with a minimal potential energy per
lattice site. A model satisfies the Peierls condition if the creation of an "island" of one
periodic ground state in a "sea" of another periodic ground state leads to an increase
of energy which is greater than some fixed positive constant times the length of the
boundary of the "island". In the case of models which have a finite number of
periodic ground states and satisfy the Peierls condition there is a complete theory
due to Pirogov and Sinai [1,2] (see also the review article by Slawny [3]). Namely,
the phase diagram at low temperatures is obtained by perturbation of the zero
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temperature phase diagram. In particular the number of extremal periodic Gibbs
states is equal to the number of periodic ground states. If the above conditions are
not satisfied then no general results can be inferred. However, there is one class of
models, the translation invariant ferromagnet spin 1/2 systems, where the complete
description of all periodic Gibbs states is available: Holsztyήski, Slawny [3-6]. In
such systems, at each site of the lattice there is a spin variable which can take on just
two values: 1 and — 1 (spin up or spin down). Many body interactions generalize
that of a ferromagnetic Ising model: all coupling constants are negative.

We generalize their results to the case of arbitrarily many (but finite) spin
orientations or equivalently a finite number of different species which can occupy
lattice sites. To use the algebraic techniques developed by Holsztyήski and Slawny
[5] for simple cubic lattices and Slawny [3, 6] for arbitrary lattices we make the set of
different species into an abelian group. Although one may think of a cyclic group of
finite order, to be more general we deal with an arbitrary finite abelian group. Lattice
site variables become now characters of that group. Every finite product of the
characters at different lattice sites can constitute a bond of the interaction. We
restrict ourselves entirely to the ferromagnetic case, i.e., negative coupling constants.
More precisely, the finite volume Hamiltonian as a function on the space (the
product group) of particle configurations has a Fourier decomposition with non-
positive coefficients.

Formally:

HΛ= - ΣJ(B)B; J(β)^0, (1.1)

^Λ

where the summation is over all characters of the product group of particle
configurations χΛ in a finite volume A. By discussing the arbitrary finite abelian
group case we enlarge the family of ferromagnetic models.

One of the models which fits into our scheme is the ferromagnetic Potts model
with m components. The interaction is given by:

.
otherwise,

where a and b are a pair of nearest neighbors on the cubic lattice, and X(ά) and X(b)
are the configurations at sites a and b respectively. Since

m - l

δ(X(a),X(b))=ί/m £ exp{(2πik/m)lX(a)-X(b) ] } , (1.3)
fc = 0

the interaction is of the type (1.1) with /m, the cyclic group of order m, as the group of
configurations at each site of the lattice.

The phase structure of Zm models was studied recently by Frδhlich and Spencer
[7]. They have shown that if m is above some critical value, a massless soft phase,
characteristic of the X Y model, will appear between ordered and disordered massive
phases of the Ising type. When m goes to infinity, the ordered phase disappears
except at zero temperature and the remaining two phases are those of the AT model.

Zm models were used by Gruber, Hintermann and Merlini [8] to investigate
higher spin systems. They mapped a spin / system into a Zm system with m = 21 + 1
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by a set of local transformations from the set of spin orientations to the set of integers
modulo m. They used the group structure to obtain certain results such as the
analyticity of the pressure, and then they inverted the transformations returning to
the original system.

Here we investigate the low temperature periodic Gibbs states in ferromagnetic
abelian lattice systems described above. We generalize the algebraic methods
developed by Holsztyήski and Slawny [3,5,6] for spin 1/2 models, i.e., the case of Z2,
the cyclic group of order two. It is known [4,9,10] that to describe the periodic
Gibbs states at low temperatures in such systems it is enough to know the unbroken
part, y+, of the group of all transformations, £f, which leave the interaction
invariant. In particular, the number of extremal periodic Gibbs states—pure
phases—is equal to \^/^+ \ at low temperatures.

y can be identified with the ground states of the model so we can have a finite
number of pure phases even in the case of an infinite number of periodic ground
states. Here and in the following paper [11] we present the explicit expression for
^ + , the group orthogonal to £f+ , in terms of the bonds of the system. The main
idea is to use the Peierls argument as in [5]. Namely, in the case of a spin 1/2 on
the cubic lattice, a finite volume magnetization p\ (σα), where ρ\ is a finite volume
Gibbs state with " + " boundary condition (all spins up outside A\ is studied.

p+

Λ (σa)= 1-2- probability Λ{X(a)= -I}. (1.4)

There is a standard Peierls estimate for the probability that the spin at the site a is
oriented downward:

probabil i ty A {X(a) = - 1} g Σ%^£, (1.5)
E

where nE is the number of indecomposable excitations from the " + " ground state
(all spins up) with energy E and the spin at site a oriented downward. If nE can be
bounded from above by some expression which grows slower than eβE as E increases,
then the series in (1.5) becomes a geometric series, can be summed up and the sum
approaches zero independently of A as β increases. It follows that:

pVβ) = limpπ

+(σβ)>0. (1.6)
Λ-*L

The magnetization per lattice site is non-zero in the ρ+ state. The symmetry of the
Hamiltonian—flipping all spins—is therefore broken at low temperatures.

On the other hand, if there are too many indecomposable excitations with the
same energy, some symmetries can be preserved at low temperatures. It would be
best to have a criterion for when the appropriate estimates can be obtained and the
Peierls argument can be applied. The main goal of this paper is to find such a
criterion. It is known [5] that for a spin 1/2 on the cubic lattice the Peierls argument
can be applied if and only if the greatest common divisor of an ideal generated by the
bonds of the system in a certain ring is a unit. If this is not the case, then one can pass
to the "reduced system," where the standard argument can be used.

The case of a spin 1/2 on an arbitrary lattice is more complicated. The energy of
the ground state can be invariant under a local change of the configuration. If this is
the case then the system is a gauge model. Complete results as in [5] were obtained
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by Slawny in [3,6]. However, more advanced mathematics is required. In place of a
ring and its ideals, modules over the ring must be considered. The same technique is
required for the case of an arbitrary finite abelian group on the simple cubic lattice.
In fact, an arbitrary lattice case can always be reduced to the cubic lattice
case. An arbitrary lattice is a finite union of simple cubic lattices. We can glue
together the corresponding sites to make the simple cubic lattice with a finite
abelian group being the product of the corresponding, not necessarily identical,
1m groups.

In Sect. 2 we introduce the notation and describe the model. We show that in
some cases the group of configurations can be reduced. Namely, if we have a group,
^ at each site of the lattice, then for some interactions a system can be constructed
with group <&' with smaller order. There is a natural one-to-one correspondence
between the families of the periodic Gibbs states of these two systems. The second
system can be studied by the methods described in the next sections.

Section 3 deals with the algebraic structure of the system. In particular, the
contours are defined.

In Sect. 4 a condition for using the Peierls argument, the so-called decomposition
property is formulated. It says simply that the excitations which are not connected
(in some sense described later) can be decomposed into the sum of independent
excitations. We give a criterion for this property to hold. Consider for example the
group Zpn on Zv, the simple cubic lattice in v dimensions, where p is a prime number.
Let stf be-the ideal in Zpn[Zv], the group ring of functions from Zv to J.pn with finite
support, generated by all bonds of the system. Then it can be shown that the
decomposition property holds in the system with the ideal ̂  if and only if it holds in
the system with the ideal pn~l<s/. Because pn~l^ is a Zp[Zv]-module and Zp is a
field (Z2 in the case of a spin 1/2), an easy generalization of a spin 1/2 technique can
be then applied.

In Sect. 5 we show that it is not necessary to consider gauge models on Zv in the
^ = Zm case. Passage to the new system, which is non-gauge, can be achieved as
described in Sect. 2.4.

In Sect. 6 we generalize the results of [5] to the case of Zm on Zv, where m is the
product of different prime numbers. Namely, we present the explicit expression for
&+ in terms of the bonds of the system.

Systems with a finite abelian group on an arbitrary lattice are discussed in [11].
The general construction of the "reduced system" is presented there. This allows us
to find £ft* and to construct all periodic Gibbs states as before.

2. Notation and Description of the Model

2.1 Configuration Space. By the lattice D_ is meant any Zv invariant, discrete subset
of [Rv. A finite abelian group ^ is placed at each site of the lattice.

χ= x # (2.1)
iel

is the configuration space of the system.
For Aεχ, pr{a}A = A(a\aεL. If ̂  is equipped with the discrete topology then χ
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becomes a compact abelian group with the product topology.

(2.2)
ieΛ

is a finite volume configuration space, where A is any finite subset of I and

It = ©9 (2.3)
lei

is the group of configurations equal to the identity of the group ^ everywhere but
on the finite subsets of the lattice. We provide χf with the discrete topology. ^ as
a finite abelian group can be decomposed as follows:

, (2.4)

where pt are prime numbers and <&pt are pi primary groups,

^Zpίl@Zpί, (2.5)

The group dual to χ is isomorphic to χ f :

t*Xf. (2-6)

If Aeχf then we write λ for the corresponding element in χ.

2.2 Interaction. The Hamiltonian in a finite volume, H Λ, is a real, negative definite
and translation invariant function on χΛ. By this it follows that the Fourier
decomposition of HΛ is the following:

HA=- ΣJ(B)β, (2.7)
BeχΛ

where J(B) ^ 0, J(B) = J(B ~ * ) and if B2 can be obtained from Bl by a translation
then J(#i) = J(B2). The family of bonds is defined as follows:

& = {Bεχf:J(B)>0}. (2.8)

We assume that there is a finite fundamental family of bonds, J*0, such that any
element of Si can be obtained in a unique way by a translation of an element from
J*0. Let K(B) = βJ(B\ where β is the inverse temperature. Sometimes we refer to K
as the interaction of a system.

2.3 Gibbs States. Let e^ the identity of the group ,̂ be placed everywhere outside
A. With this as a boundary condition, a finite volume Gibbs state can be
constructed. It is denoted traditionally by p\ .

Recently Pfister [9] proved some correlation inequalities for the ̂  = Zm case.
They can be trivially generalized to the arbitrary finite abelian group case. In fact,
they can be obtained for any compact abelian group: Fernandez [12]. Using them
one can obtain the standard conclusions. In particular, the Gibbs state p+ can be
constructed as a limit of p +

Λ when A -> L p + is a translation invariant state, extremal
in the set of all Gibbs states and therefore mixing.

The following definitions are standard:

$$ — a subgroup of χf generated by ,̂ (2.9a)

p + (A)>0}, (2.9b)
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£f = { A e χ : β ( A ) = 1 for any Be &}, (2.9c)

^+ = {Ge^:p£(A) = A(G)-p + (A) = p + (A) for any Λe^}. (2.9d)

It is known [4, 9, 10] that if the pressure (the Gibbs free energy) is differentiable with
respect to the temperature then every periodic Gibbs state p has the following
representation:

p= J p£μ(dG), (2.10)
+

where μ is a measure on ^/^ + . The differentiability of the pressure at low
temperatures was proven by Slawny for spin 1/2 systems in [13] and for higher spins
in [4]. The finite abelian group case can be treated in the same way and the same
result holds [14]. Both &+ and ̂ + depend upon temperature. It will be shown,
however, that they are constant at low enough temperatures. The number of
extremal, periodic Gibbs states — pure phases — is equal to \^/^+\ at low
temperatures. ^/^+ is isomorphic to the group dual to &+/,rf9 hence |

2.4 Reduction of the Group of Configurations. In some systems the space of
configurations can be reduced. Let χ = X ^ be the configuration space of the

system.
Let

= Ker(pr{f l}J>) and χ' = X

Since χ' c Cl^f, any Gibbs state of the system is γ' invariant [5].
Let

To describe the family of Gibbs states of the system it is enough to take χ" as the
configuration space. In particular, it can be assumed without loss of generality that
the least common multiple of the orders of elements of & is equal to the least common
multiple of the orders of elements of ̂ . In the case of I = Zv and ̂  = Zm this means
that there is always a non-zero divisor in J*0 (cf. Theorem Al).

3. Algebraic Structure of the System

We introduce here the notions of contours and cycles. These are generalizations of
definitions from [5].

3.1 Contours and Cycles. LetAeχf. A(χ) is a finite group with the multiplication of
complex numbers as a group action.

Proposition 3.1. A(χ) is a cyclic group with order equal to \A\, the order of A. In
particular, for every Aeχf there is XAeχf such that A(XA) = exp {2πi/\A\}.

Proof. A(χ) is a subgroup of the group of | ̂  |-th roots of unity. Hence A(χ) is cyclic as
a subgroup of the cyclic group Z^. If for any aeA(χ) ak = 1 then Ak = 1. This proves
the equality of the orders.
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Denote:

Jl= x Z)β), (3.1)
Be®

(3.2)
Be®

If each cyclic group is equipped with the discrete topology then Jί becomes a
compact abelian group with the product topology. Mf with the discrete topology is
a locally compact abelian group. Let m be the least common multiple of the orders of
elements of ̂ 0. By remarks in 2.4 m is equal to the l.c.m. of the orders of elements of
G. Both Jί and Jif are Zm[Zv]-modules, where Zm[Zv] is the group ring of all
functions from Zv to Zm with finite support. Moreover, Jtf is a reflexive, finitely
generated module, χ and χf are also Zw[Zv]-modules. Two useful module
homomorphisms can be constructed. Let

Xeχ. (3.3)

Then by Prop. 3. 1 it can be written: y(X) = αeM where B(X) = exp {2πiα(B)/| B \ }, so
γ:χ->Jl.

Let now αe^,

(3.4)

so ε:Jί^χ. The sum converges in the topology of χ because the interaction is of
finite range. It is easy to see that both γ and ε are continuous module homomorphisms.

The following definitions are standard:

Γ=Im(y) Γf = y(χf), (3.5a)

Kf = κnJίf. (3.5b)

From the definition S = Ker (7), j/ = ε(Jί f) and let ̂  f = ̂  n χf. By the continuity
of ε and y, Jf and ̂  are closed subgroups ofJt. Because χ is compact so is Γ and as a
subset of a Hausdorff space ̂ , Γ is closed. By the density of χ/ in χ, 7"^ is dense in 7".
In general, Jf y and ̂  are not dense in JΓ and ̂  respectively. It is shown later that
the density of tf f in Jf is equivalent to the so-called decomposition property and
the density of ̂  f in ̂  to the absense of phase transitions at low temperatures.
Elements of Γf are called contours and elements of Jίf are called cycles.

3.2 Bicharacters on χ x χf and Jί x M γ. It is known that χ, χf and Jt^Ji f are
mutually dual groups. For Xeχ and Yεχf we have:

αeL

where ^ = ©^/ is the decomposition into cyclic groups,
ί = i

i = 1
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similarly for u^eJl and

1 ,α 2 > = Πexp{2πία f(B)α2(B)/|B|}. (3.7)

Proposition 3.2.

(a) <y(^),α>-<^,ε(α)>, where
(b) <α,y(*) > = <<<«),*>, where Xeχf,aeJ(.

Proof. Denote y(JSQ -

The second part of the proposition can be proven in the same manner.
Let Jf c jfs (if] then

clΛf = CIJi n Mf(C\Jΐ n χf)9

^L = {aeJt(x):(a^y = \ for all j5eyr}.

If J^eJ?(x) then

(χ/):<j8,α> = l for all ^e^Γ},

/->Zm[Zv],/(^) = 0 for every

It can be proven [6, 15] that clΓf = (αe^y /ία) = 0 for every

Proposition 3.3.

(a) Γ/= Jf, JΓ1 - Γf9 JίTf= Γ, Γ1 - jf/,
(b) (C/Jf /)

1 = c/Γ/9

(c) y = s/λ,
(d) (C/,9^
(e) ̂ +-
(0

f. Let aeJίf then by Proposition 3.2(a) oceΓ^ iffε((x) = eχ9 so αeJΓ/? hence
Γλ = jίTf. Because Γ is closed, jf/ = Γ lx - Γ. The rest of (a) follows from
Proposition 3.2 in the same way.
(b) (Cltff}

L = JΓ/nJt s ^Γr\Jt f = clΓf.
(c) follows from Proposition 3.2(a).

To prove (d) it is enough to notice that by Proposition 3.2(b) £ff — (C/^/)1, so

(e) follows directly from the definition of ̂  + ,^+ and the fact that
(f) follows from (c) and (e).
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4. The Decomposition Property and the Peierls Argument

There is a standard Peierls estimate for the probability of occurrence of a given
contour (Lemma 4.5). It vanishes exponentially as temperature approaches zero. It
can be shown that in some systems (the systems which satisfy the decomposition
property) contours which are not the sum of two other contours are connected (in
the sense described below). If this is the case, then in the estimate of the type (1.5),
only connected contours are used. The number of connected contours can be
majorized (Proposition 4.4) and again the geometric series can be summed up as in
(1.5).

4.1 The Decomposition Property. Let BEχfB = {ael:B(a) φ ey}9

αe^,α= (J B9 suppα - {B:<x,(B) /O}.
B:α(β)/0

For α e L c f f r a = (al9...9av)

\ a \ = m a x { \ a 1 \ 9 . . . 9 \ a v \ } 9

diam B = max{\a — b\:a9beB}9 diamα = diamα.

For Bί9B2eχf

Let N be an integral greater than the range of the interaction, α can be treated as a
graph (F, E)N, where

E = {(U9 W): U9 We V9 δ(U9 W) ̂  N} .

The components of this graph will be called N-components.

Definition 4.1. The interaction has the decomposition property if there exists a non-
negative integer N such that the JV-components of contours are again contours. In
other words the decomposition property holds if and only if there exists an integer N
such that for each X e χf there exists an integer n = n(X) and Xl9...9Xneχf such that:

(a) y(Xt) is N-connected,
(b) supp γ(Xi) n supp y(Xj) = φ9 l^i<j^n,

(c)

I n λ n

In that case γ{ Σ xι } = ?(x) so x = Σ xt + y> where Ye^f and if

\ i = l / i = l

then there is i such that prAX^prA^f. If α1|suppαι = α2|suppαι then we write
α!c=α 2 .

4.2 Estimates and the Main Theorem. For finite Λ c I, let

Γ(N,Λ)= \JΓ(N,Λ9l).
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The following lemmas and theorems are generalizations of the corresponding
theorems in [6]. For proofs see [6, 14].

Lemma 4.2. Let I be a natural number and let Be&. The number o/α's such that αe^y
and is N-connected, |α | = /, and £esuppα is not greater than \_(2b + 2N + l) vb] 2 /~ 2,
where b = max ( | ̂ 0 1 1 G | , mesh J>0).

Lemma 4.3. For any Be& the number of translates of B contained in
(suppα:αe.Γ(ΛΓ,/i,/)} is not greater than [2(l(b + N) + m) + diam/l]v.

Now it follows immediately that:

Proposition 4.4.

Card Γ(N, AJ)^ b[_(2b + 2N + l)vb]2 /~ 2 [2(l(b + N) + m) + diam A ]v.

For A c A ' we have the standard Peierls estimate:

Lemma 4.5.

UEsuppα

c = 2 - 2cos(l/|^|), αeΓ(ΛΓ,Λ, /) απJ K(J3) > 0/or
The estimates can be applied to obtain the following theorem:

Theorem 4.6. The decomposition property implies that for any finite A c L and ε > 0,
for low enough temperatures

p + ({XEχ:prΛXεprΛSf})>l-ε.

Corollary 4.7. For systems with the decomposition property ^+ = Clϊf f at low
temperatures.

Corollary 4.8. For systems with the decomposition property έ%+=cljtf at low
temperatures.

4.3 Criteria for the Decomposition Property to Hold. The following two theorems
are due Slawny [6].

Theorem 4.9. The following conditions are equivalent to the decomposition property:
(a)
(b)
(c) jf/n .*, = />.

Theorem 4.10. If the symmetry group ^ is finite and the dimension of the lattice is
greater than or equal to 2 then the decomposition property holds.

In the case of L = Zv, the so-called transitive case, a useful criterion can be
obtained. Let us begin with 0 = Zm, where m is a product of different prime numbers.
χf can be identified with the group ring Zm[Zv] of all functions from Zv to Zw with
finite support. One can generalize the result of [5] to get the following theorem [14]:

Theorem 4.11. The system has the decomposition property if and only ifg.c.ά. (&0) is a
unit.
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Now let j/ be an ideal in Zm[Zv], m any natural number and let ^0 =
{#!,...,£„} be a finite family of its generators (Zm[Zv] is a Noetherian ring so
there is at least one such family). The lattice system with ̂ 0 as a fundamental family
of bonds has the decomposition property if it has this property with respect to any
other finite family of generators oϊjtf. To see this it is enough to combine Theorem
4.9(b) with the fact that <? = <$4L. If this is the case then si satisfies the decomposition
property or simply <tf is reduced.

Proposition 4.12. Let ̂  \ c= j^2 be the two ideals in ZP[ZV] where p is a prime number
then if £0 1 is reduced then j/2 is reduced.

Proof. If j/ j is reduced then by Theorem 4.1 1 g.c.d. of its generators is a unit. Then
g.c.d. of the generators of stf 2 is also a unit so stf 2 is reduced by the same theorem.

•Let sΰ be the ideal in ZpW[Zv], p-prime and <z/p = {Azstf'.pA = 0},

Proposition 4.13. ^(J/P) = pχ + &*, where χ = X Έpn.

Proof. Let ®J = χ/y so <& ~ «s/. It will be shown that «a/p = (p^)1. Really for every
YE^ and Λe.< <pA, 7> - < Λ , p Y > . Let ΛE(P^) then <pA, Y> = 1 for every YE^,
so pA = 0, hence AEJ/^. Conversely if AE^P then </ l ,pY> = 1 for every YE^, so

Nowlet/:χ->^be a canonical homomorphismand(j/p)1theannihilatorof,o/p

in χ, then (^/p)1 = / ~ 1 (p^) and finally (st/p}L = pχ + ̂ .
By Theorem 4.9(b) the decomposition property holds if and only if clΓf = Γf.

This is equivalent to the following implication:

X=Y + S Xeχ, Yeχf,

Now in the case of Zpn[/v] we prove the following lemma:

Lemma 4.14. If p^ is reduced then s$ is reduced.

Proof. Let γ(X) be finite; then obviously yp(X) is finite, where γp(X) is a contour for
the stfp system for a fixed choice of generators of j/p as bonds. By the assumption
and Lemma 4.12, stfp is reduced. By Proposition 4.13 X = Yl + S1 + pXί9 where
Yi^Xf, S^eS.X^eχ. By the general assumption (cf. 2.4) there is a bond in the <$/
system whose order is equal to p". Now it is easy to see that yp(X) is finite, where yp is
a contour for the ps# system. Xl =Y2 + S2, where Y2£%f> S2£^(p^) = (p^)1 and
obviously pS2e^. Finally X = Y1 4- pY2 + &Ί + pS2 and hence s4 is reduced,

Theorem 4.15. stf is reduced if and only if pn~l ^ is reduced.

Proof, the if part
Let us introduce s/pk = {Aepk~1 ^:pA = 0} fe =!,...,«- 1.

pn-1

tst<=i3/pn~l cjtf1*'2^... c.δ/p. (4.1)

It is easy to see that p""1 d and j/pk are reduced in Zpn[Zv] if and only if (1/p"""1)
[p""1 0 and (l/p"-1)^^ are reduced in ZP[ZV].
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Now if p""1^ is reduced then by (4.1) and Proposition 4.12 <$/pk is reduced for
every k= l , . . . , w — 1.

so by Lemma 4.14 pn~2 jif is reduced.

so using the lemma n — 2 times more j/ is reduced.
The only if part (by contraposition)
Assume that pn~lB = pn~l(B/D)D for Be3S0-family of generators of .a/, where

v] and D is not a unit. Let

, (4.2)

where κBeJ(f'9 ttB(B') = δBB,,BΈ&.
y0 φΓf because otherwise for BE&O such that \B\ = pn

in Z^[ZV]5 (4.3)

where KeZ^[Zv].
Now it is easy to see (cf. the proof of Proposition Al) that R = pn~1R\

K'eZp[Zv] so

pn-^(l(B}} = pn~l RΊ(B)I(D), (4.4)

and D is a unit in ZP[ZV].
y0εclΓf. Really if fe(Γf)

Q, then

= 0. (4.5)

The last equality follows from the fact that I(D)γ0 = p"~1γ(X)9 where Xeχf,
X(a) = δa^. Now /(<y0)

 = 0 because I(D) is not a zero divisor as an element of
ZP,[ZV] (cf. 2.4). By Theorem 4.9(b) jtf is not reduced.

It is now easy to generalize Theorem 4.15 to the case of ̂  = Zm with arbitary m.
n

Let m = Π p*1, where pt are prime numbers. If Xeχ then
f = 1

i = 1 eL

}5 where J* is the family of bonds. If y(X) is a contour with
respect to $ then y^X) is a contour with respect to ̂ .

Lemma 4.16. γ(X)eclΓf iffyt(X)ecirfi for all ί.

Proof. It follows easily from the properties of prime numbers.

Theorem 4.17. The system $ has the decomposition property iff 3Si has the
decomposition property for every i.

Proof, the if part

Assume that γ(X) is finite then by Lemma 4.16 ji(X) is finite for i= l , . . . , w .
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Because Sίi is reduced, there is Yleχf such that γ^Y1) = yι(X) and we can choose
(Yί)j = 0 i f i ϊ j .

Let

i= 1

γ(Y) = y(X) hence & is reduced.

the only if part
Assume that γ^X) is finite, then y((m//?fl)^i) is finite, so there is Yeχf such that

γ((m/rt)Xi) = y(Y) and finally yf(X) = 7ί(7).
The &i system can be investigated by Theorem 4.15. Theorem 4.17 is obviously

true for any lattice. However, in the case of Zpn a complete characterization of the
decomposition property is not available.

5. Non-Gauge Models

If one can change the configuration locally without changing its contours then the
model is called a guage model. This is equivalent to non-triviality of £ff and non-
injectivity of y on χf.

Theorem 5.1. If the symmetry group £f of the non-gauge model ίsβnite then there are
\£f\ pure phases at low temperatures,

Proof. £f is finite so the decomposition property holds and ̂  + = Cl£ff. If &* f is
non-trivial then it is infinite so £ff is trivial because ̂  is finite. Finally ̂ + is trivial
or equivalently &+ = χf at low temperatures.

It is a well known fact that in the case of spin 1/2 there are no gauge models on the
L = Zv lattice. This is also true in a more general setting.

Theorem 5.2. There are no gauge models on L = Zv in the $ = Zm case.

Proof. First consider the case of ̂  = Zpn. Let Xeχf,X ^eχ and / the largest number
such that pl divides pr{a} X = X(a) for all αeχ. Let b be the last (in the sense of
lexicographic order) element of χ such that pl + 1 does not divide X(b). Now take
Be^o such that p does not divide B(a) for some αe^ (such B exists by the
assumption about the interaction, cf. 2.4). Let a' be the first of such α's and Ba> the
translate of B by b — a'. It can be shown that Ba> (X) φ 1.

6a,(X) = exp 2πi £ Ba,(a)X(a) pn

l \ «e/v / /

so Ba,(X) = 1 if and only if V Ba,(a)X(a) = 0 (modpw).
«eZv

ΣBa,(a)X(a) = Ba.(b)X(b) + ^Ba.(a)X(a)9
αeZv αeZv

and pί+ί divides ]Γ Ba,(ά)X(d) and does not divide Ba>(b)X(b) so

This finishes the proof for the ̂  = Zpn case.
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Assume now that 0 = Zm so ̂  = Zp«ι © ZpjM, where the pf's are different prime
numbers. If Xeχj,^ ^eχ denote J^ = ( X l 9 . . . 9 X k ) where A^

There exists /, 1 ̂  / < k such that Xl / e .̂ From the previous case we know that
there is some Bε&0 such that B(eχί,...9Xh. ,<?/k) / 1. It is easy to see that

6. Reduction

The results of [5] are generalized here to the case of ̂  — Zm on Zv, where m is the
product of different prime numbers.

Let & be a translation invariant family of elements of χf with a finite
fundamental subfamily &0. Let DeZm[Zv] and suppose that D is not a zero
divisor.

Let

Let K be a ferromagnetic translation invariant interaction with bonds ^ and let
K' (DB) = K(B); Be&. The following theorem relates the systems with interactions K
and K' respectively.

Theorem 6.1. If p+ and p'+ are the equilibrium states corresponding to the
interactions K and K' respectively, then

p + (A) for all Aεχf, (6.1)

= ΰ if Aφ(D\ (6.2)

The proof follows exactly the proof of the corresponding theorem in [5] and is
contained in [14].

Let now K be any ferromagnetic, translation invariant interaction of finite range
and let D = g.c.d. (38). Let K' be the interaction with bonds & obtained by factoring
out D from the bonds of @:@ = {DB:Be^} and such that K'(B) = K(DB). Obviously,
g.c.d. ($') is a unit. Applying Theorem 6.1 and then Theorem 4.1 1 and Theorem 5.1
to the system with interaction K' — the so-called reduced system — we obtain

Theorem 6.2. For any temperature

' + (A) for all Aeχf9 (6.3)

p + (A) = 0 if Aφ(D\ (6.4)

where ρ + ,pf+ correspond to K and K' respectively. In particular, for low enough
temperatures, έ%+ =(D).

Appendix

Proposition Al. //De/pn[Zv] is such that there exists #eZv, D(a) ̂  0 and p does not
divide D(a) (D(a) is not a zero divisor in Z „) then D is not a zero divisor in Z n[Zv].
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Proof. Let A be any non-zero element from ZpM[Zv]. It will be shown that DA Φ 0.
Let z be the least (in the sense of lexicographic order) αe/ v such that D(ά) φ 0 and p
does not divide D(ά). Let k be the least number such that there exists beZv such that
A(b) = spk and p does not divide s. Let w be the least of such b's. It will be shown that
(DA)(z + w)*Q.

(DA)(z + w) = D(z)>4(w) + X D ( a 1 ) A ( a 2 )
a\,Q2

a\ + d2 = z + w
a\ 7= z, d2 i1 w

= D(z)A(w)+ £ D(aι)A(a2)+ £ D(a,)A(a2).
aι,θ2 a\,O2

aι+ci2 = z + \v a\+a2 = z + \v
a\<z,a2>w a\>z,d2<\v

Now it is easy to see that (DA)(z + w) is not a multiple of pn because it is not a
multiple of pk+1.
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