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Abstract. We study four-dimensional pure gauge field theories by the
renormalization group approach. The analysis is restricted to small field
approximation. In this region we construct a sequence of localized effective
actions by cluster expansions in one step renormalization transformations. We
construct also β-functions and we define a coupling constant renormalization
by a recursive system of renormalization group equations.
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0. Introduction. Formulations of Results

In this paper we continue our study of the ultraviolet stability problem for lattice
approximations of gauge field models. We consider here the renormalization
group approach to four-dimensional pure gauge field theories. We restrict the
study to a part of the problem, namely we want to understand how to generate the
effective actions in a small field approximation, and how to perform a coupling
constant renormalization by a system of recursive renormalization group
equations (Callan-Symanzik equations).

The renormalization group approach we use here follows the ideas of Wilson
[74, 75]. This approach was developed by the author for superrenormalizable
gauge field theories in the papers [4-16], see especially [4-6] for an explanation of
ideas and an introduction to techniques. The renormalization group approach
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was pursued by Gawedzki and Kupiainen in [39-44], and other papers, for an-
other class of models. Some of their ideas are very important here, and we use them
quite extensively.

Renormalization group ideas in rigorous results in quantum field theory
already have a long history. We do not intend to give a responsible account of it,
but we would like to mention here some papers and methods which were especially
important for us. Some aspects of these ideas are present in early papers of Glimm
and Jaffe, most clearly in [46] in the form of the phase space cell expansion. This
method has been developed since then by many authors [30, 61-63, 31-34]. The
most recent and interesting achievement is a control of the infrared renormalizable
and asymptotically free critical Λ(^4)4 model [31], and the construction of the two-
dimensional Gross-Neveu model [76*], see also [77*]. The next important and
decisive step towards the constructive renormalization group approach was done
by Gallavotti and collaborators [19-21,37,38]. In these papers some fundamental
ideas and techniques were introduced, which laid a basis for future developments.
Especially the papers of this author were influenced by them in an essential way.
The renormalization group approach was developed in numerous papers, mainly
from a perturbative, or a numerical point of view. Nonperturbative and discretized
versions of renormalization group equations, called Callan-Symanzik equations,
play an important role in this and subsequent papers. Some fundamental papers
on these equations are [45, 69, 70]. Also we mention that renormalization group
methods in Wilson's form were investigated in the papers [65, 37, 38] from a
perturbative point of view. The fully developed, nonperturbative methods were
presented in the above mentioned papers by Gawedzki and Kupiainen.

Applications of renormalization transformations involve two kinds of prob-
lems. An integral defining the transformation is divided into two subintegrals,
one determined by the "small field" region, another by a "large field" region.
Controlling small field integrals is connected with understanding renormalization
problems. In our case the only important renormalization is a coupling constant
renormalization, but there also is a simple vacuum energy renormalization. We
study the renormalization transformations under the simplifying assumption that
integrals are restricted to small fields. This simplification allows the representation
of renormalization group transformations by transformations acting on effective
actions. Thus applying a sequence of small field renormalization transformations,
we obtain a sequence of effective actions with new effective coupling constants. We
use methods and results developed for gauge field theories, Abelian and non-
Abelian, in the series of papers [7-16]. The fundamental technical results obtained
in those papers are valid in four-dimensional theories (in fact they are dimension-
independent), and they form a technical core of this paper. Not only technical
results are important here, but also some ideas used previously in a simpler
framework. For example the analysis of renormalization in Higgs models done in
the paper [7], which seems to be restricted to superrenormalizable models,
provides ideas how to represent effective actions and how to analyze them using
Ward-Takahashi identities, which are essential for renormalizable models. We can
say, with some exaggeration, that the method of this paper is the method of [7] for
the resummed perturbative expansion. Other methods and results used in this
paper are taken from the papers [41-43] of Gawedzki, Kupiainen; especially we
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use the idea that the effective actions should be considered as analytic functions
defined on spaces of complex field configurations. In the above papers it was used
as a method of proving convergence to a fixed point. Here we use it as a purely
technical device, simplifying a formulation of inductive assumptions on effective
actions, and simplifying many technical aspects of cluster expansions. In
Gawedzki and Kupiainen's papers, scaling transformations play a fundamental
role. We do not have them in the class of nonlinear models considered here; instead
we analyze effective actions using regularity properties of field configurations, and
symmetries. The important symmetries are given by lattice Euclidean transforma-
tions and gauge transformations. They yield a set of Ward-Takahashi identities.
These identities, together with the regularity properties, allow the analysis of
renormalization transformations and the reduction of them to simple transforma-
tions of effective coupling constants. More precisely, the identities determine
^-functions which we use to transform the coupling constants by discrete analogs
of Callan-Symanzik equations. These ideas form the core of our method, although
they are rather simple from a technical point of view. The Ward-Takahashi
identities are discussed in Sects. 4 and 5. The analysis of the Callan-Symanzik
equations, based on perturbative calculations, will be discussed in another paper.

Let us recall now some geometric definitions. Consider a lattice as a subset of a
continuous Euclidean space Rd, or a torus T obtained by the usual identification of
boundary points of the cube {x e Rd: - Lμ ^ xμ ^ Lμ, μ = 1,..., d}. We take Lμ = Lm,
where L is an odd, positive integer > 11, and m is a positive integer. These spaces
are divided into regular lattices of cubes with corners at points of L~nZd,

n = 0,1, . . . . Each lattice determines a lattice of centers of these cubes, i.e. the lattice
d

L~nZd+ Σ 2L~neμ, where eμ denotes a unit vector of the positive μ-th axis. Field
μ=l

configurations are defined on these lattices. Define the initial lattice approxi-
mation on the torus

Tε=\xeεZd+ Σ-εeμ:-Lμ<xμ<Lμ,μ = l,...,dϊ, (0.1)

with a lattice spacing ε = L~κ. This torus determines a sequence of tori denoted by
T[ϊ\ and defined by (0.1) with ε replaced by L% fc=l,2,.... A point yeT$ε

determines a cube of the continuous torus with a center at y and the size Us. We
denote it by A(y), or Ak(y) if it is necessary to indicate the scale. Usually we drop
subscripts, or superscripts, indicating lattice spacing, or other scales, if a meaning
of a symbol is clear, or if the scale is unessential. It is convenient to determine
subsets of a lattice by subsets of continuous space. We consider only subsets which
are unions of cubes of a division described above. Such a subset determines a set of
lattice points, of a given scale, belonging to it, a set of bonds, i.e. intervals b
connecting nearest neighbor points £>_, b + , which intersect it, and a set of
plaquettes, i.e. elementary squares of the lattice, which intersect it. We denote all
these sets by the same symbol denoting the continuous space set.

Field configurations have values in a compact Lie group G. For definitions
concerning Lie groups and algebras see [71]. We assume that G is semisimple and
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that it is a Lie subgroup of a group of complex unitary matrices, for example
GcU(N). (In fact a bigger part of our considerations does not depend on the
semisimplicity assumption.) Gauge field configurations U are functions defined on
bonds of the lattice T, with values in G. A value of a gauge field configuration U at
b = <x, x'> is denoted by Ub = U(b) = (7«x, x'» = U(x9x'\

An action for gauge field models was proposed by Wilson [73], and is given by

A%U)= Σ ε d- 4[l-Retrt/(3p)], (0.2)
peTE

where tr is the normalized trace, i.e. trl = 1. For rf=4we drop the superscript ε
from the symbol of the action. We denote also the plaquette variable by dU, hence
U(dp) = (dU)(p).

The gauge field action and its properties were discussed in many papers [22,64,
67, 2, 27, 56, 57, 74, 75].

In this paper we are interested mainly in d = 4 gauge field theories. We do all
considerations, and write all formulas below for this case, and only occasionally we
discuss some special features of d = 3.

Our basic object of investigation is a sequence of actions defined recursively by
applications of small field renormalization transformations, starting with the
action (0.2). We apply renormalization transformations similar to those intro-
duced by Wilson [74, 75]. To write a definition we have to recall some geometric
definitions of [4,5,9,10]. If}/ is a point of a lattice 7J(lf) with a lattice spacing δ, then
a block of fe-th order, determined by the point y, is defined by

Bk(y) = A(y)nT[n-~k» (0.3)

\_Δ{y) is a continuous space cube with a center at y and with the size δ~\. Blocks of
order 1 are denoted by B{y). For a point x e B(y) we take a family G(y9 x) of
shortest contours with the initial point at y, and the final point at x. If x — y

d

— Σ <>nμeμ (<5 is a lattice spacing, nμ an integer such that \nμ\ ̂ L —1/2), then we
μ=l

construct contours of G(y, x) in the following way: take a permutation {π(l),
π(2),...} of indices μ with nonzero numbers nμ, next take |nπ(1) | bonds in the
direction sign nπ ( 1 )eπ ( 1 ) starting at y, \nπ(2)\ bonds in the direction sign nπ{2)e%{2)

starting at y + δnπ(1)eπ(1), and so on. We define G(y, x) as the family of contours
generated by all such permuations. For a bond c and a point x e £(c_), let [x, x7]
denote a contour which is obtained by a parallel transport of c to the point x.

Renormalization transformations are defined by averaging operations. In the
previous papers we have used the definition introduced in [12]. This definition has
one disadvantage, it is not symmetric with respect to lattice Euclidean transforma-
tions. Preserving this symmetry is very important for the method; therefore it is
necessary to modify the definition. For technical reasons we wish to establish
analyticity with respect to group valued gauge fields. Therefore we also consider
the complexified group Gc. Elements of this group are defined as matrices of the
form U = U'U, where 17 e G and U' = expiA\ A'eg^ gc is the complexification of
the real Lie algebra g. Let us write the simplest, immediate extension of the
definition of averages in [12]. The set of contours used in this definition was too
small to be lattice Euclidean symmetric, so we extend it. We define an average of a
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gauge field configuration U, corresponding to a bond ce T ( 1 ), by

Σ *
β(c_) ΓeG(c_,Jc)|G(C_,X)| Γ'eG(c+,*') |CJ(C + , X ) |

x ylogU(Γu[x,xlu(-Γ)u(-c))lu(c). (0.4)

We need also a Euclidean invariant definition of the axial gauge fixing. A
natural idea, in agreement with the above definition, would be to use variables
obtained by averaging the contour variables {U(Γ)}TeG{ytX)9 rather than to use one
contour variable U(ΓyiX). Thus we have to define an average of a finite set of group
elements. We introduce an axiomatric definition of such an average. It is a Gc-
valued function defined on sets {Uy: j = 1,2,..., n}, U7 e Gc, with sufficiently small
diameters. We denote it by {Uj}=M({\Jj}), and we assume that it is an analytic
function having the following properties:

1 ; (0.5)

J J)V; (0.6)

M(π{Uj}) = M({Uj}) for an arbitrary permutation π of the set {Uy}; (0.7)

for a set {Uy} of elements close to the identity of the group, i.e. Uy = expL4y with Aj
in a small neighborhood of 0 in gc, the average is close to the identity also, and

1 1 n

τlogM({expL4y})= - Σ >!,• +(higher order terms); (0.8)
i n j = i

if U7 eG, then M({U;})eG also. (0.9)

There are several proposals how to define such averages, see [74, 75, 35]. Let us
write a definition which is equivalent to the one given by Federbush in [35]. The
average of the set {Uy} is the element U e G c such that Uy are in a small
neighborhood of U, and it satisfies the equation

Σ -logU U - ^ 0 . (0.10)
j=ι ι

This definition has all the properties listed above, as it was proved by Federbush in
[35 (II)].

The considerations and results of this, and previous papers, do not depend on
any particular averaging operation used; they are valid universally for all averages
satisfying the above properties. Having such an average we introduce the averaged
contour variable corresponding to the set of contours G(y, x),

υ(y,x) = M({υ(Γ)}ΓeG(y,x)). (0.11)

In fact the only reason for introducing the group averages with the properties (0.5)-
(0.10) is to define the controur variables (0.11) which are invariant with respect to
permutations of the contours Γ in G(x, y). Using these variables simplifies a little
bit the subsequent discussion of the Euclidean invariant axial gauge fixing. To
match a bit better the new axial gauge fixing to the definition of the averages of
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gauge field configurations, as in [12], we introduce the definition

ϋ(c)=eχp|i Σ L-**iogυ(c-9x)υ(iχ9xTi)υ(x\c+)υ(-c)\υ(c). (0.12)
L xeB(c-) I J

This average has properties similar to the properties of the average introduced in
(0.4), especially all results of the paper [12] are valid for it. The proofs are in most
cases unchanged; in others only minor and obvious modifications are needed.
These modifications are connected again rather with the fact that we consider Gc-
valued configurations, than with the different definition of the average. Let us
stress that both definitions are equally good for our purposes, in fact we may use
many other definitions. It is possible to axiomatize them also, listing all essential
properties, but it is not interesting enough to do it here. We mention only this
possibility in case it will be convenient to use some other definitions.

Now we consider renormalization transformations, which have the general
form

(Tρ)(V)=$dUt(V,U)ρ(U). (0.13)

Here 17, V are gauge field configurations on the lattices T, T ( 1 ) correspondingly,
and t(V, U) is a gauge invariant kernel, for example see the definitions in [9,12]. If ρ
is a gauge invariant function, then Tρ is gauge invariant also. We are interested in
functions restricted to small field regions, which in this case means that the
function ρ and the integral in (0.13) are restricted to regular configurations U, i.e.
configurations satisfying bounds \U(dp) — ί\<εθ9 peT, with ε0 positive and
sufficiently small, and we consider Tρ on configurations V satisfying similar
bounds on Γ(1). The kernel t(V9 U) introduces connections between fields U and V,
like the equalities Ό = Vin the definitions of [9,16], or more generally \U — V\<ε0

on bonds of T(1). Even with these restrictions the underintegral expression in (0.13)
is still invariant with respect to the gauge transformations u satisfying u(y) = 1 for
y G Γ(1). We have to fix a gauge in order to remove this invariance, as in [9,16],
where the block axial gauge was used to this purpose. In order to maintain the
Euclidean invariance on the lattice T ( 1 ) we have to use other expressions than the
contour variables U(Γy x). We use the variables U(y,x) defined in (0.11). It is
inconvenient to fix the gauge by the ̂ -functions δ(U(y, x)), because unlike the axial
gauge fixing in [9,16] these functions determine complicated nonlinear restric-
tions on gauge fields. Instead we introduce exponential gauge fixing functions,

=exp[-i[l-RetrC/(j;,x)]J. (0.14)

It is convenient to introduce simultaneously restrictions on the variables U(y, x).
We have the following identities for ye Tw, xeB(y), xφy,

(0.15)
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where z is defined by the last integral. We introduce (0.15) under the integral in
(0.13) and we apply the usual Faddeev-Popov procedure, i.e. we change the order
of integrations and apply the gauge transformation U^Uul with u(y) = ί for
yeT{1). By the gauge invariance with respect to such transformations the
integrand does not depend on u and the integral over u is equal to 1. Thus we get

(Γρ)(7)=Jdl/ί(7,Γ7) Π Π ~exp[- - [1 -Retrl/fox)]]
yeT^) xeB(y),x*y Z \_ CC J

χχ({\U(y,x)~ί\<εo})ρ(U). (0.16)

The new restrictions on U(y, x) together with the previously discussed restrictions
determine finally a small field region in the following sense: fix a configuration Uo

in this region, then configurations U from this region satisfy \U — Uo\< 0(1 )ε0 on
T, with an absolute constant 0(1). In concrete situations considered in this paper
there is a natural choice of the configuration Uo as a minimal configuration of an
action.

We now define the renormalization transformations. According to our point of
view, connected with small field restrictions, they map actions into actions. In the
first step we define

-A" Σ Σ [1 - Retr [/(}/, x ) ] - 4 ^ ) 1 (0.17)
0 T < i > 0 J

where the normalization factor N o is given by the same integral as above, but with
V=l.

The action Ax determines a function βλ(g0) of the bare coupling constant g0,
defined on an interval [0,7], y > 0. This is a function in a sequence of jS-functions. In
the next section we will relate them to effective actions. Now we assume the
existence of the first function, and we define the new coupling constant gx

i = 4+^(00), or ±Ί = lΊ-βM. (0.18)

The equation (0.18) written in the form (l/g2

1)-(l/gl) = (d(ί/g2))0= -β^go) is a
finite difference approximation, corresponding to two consecutive lattice spacings
(on a logarithmic scale) of the differential equation (d/ds) (l/#2) = — β(g), or (dg/ds)
= i/2β(g)g3. This is the usual differential renormalization group equation, an
example of a Callan-Symanzik equation, considered in quantum field theory.

The fe-th action Ak determines a coupling constant gk. The (fe+l)-st action
Ak + 1 is defined by the generalization of (0.17),

Π
6 T ( k + l )

^ Σ Σ ll
9k ysT^*D XEB(y),x*y

(0.19)
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where the constant Nfc is given by the integral above with V= 1, and the coupling
constant gk+1 is determined from the equation

•4 = -f-+&+i(&) (° 2°)
9k

The characteristic function χk restricts the integral to small fluctuation fields!
We continue the calculation of the effective actions until we reach the unit

lattice, or rather until we reach a scale which we define as the unit scale. Let us
denote the corresponding index by X, hence ε = L~κ, and the sequence of actions
and coupling constants is defined for fc = 0,1,...,K.

Now let us describe a general form of the actions suggested by the previous
work on superrenormalizable models [4-7,16,17, 55]. In these papers the actions
were expressed as functions of external (background) fields. Each action was
represented as a sum of localized contributions coming from integrations in
successive renormalization transformations, i.e. see the sums over; in (2.7) [7], (41),
(47) [16]. This representation is important here also. The background fields are the
same as in [16]. The integrals in (0.17), (0.19) are calculated by a variation of the
steepest descent method, and an important part of it is to find critical
configurations of the actions, or rather of these terms in the actions, which go to oo
if the effective coupling constants go to 0. These critical configurations are the
minimal configurations investigated in [15], i.e. the minima of the functional

U-+AXU), on U:Uk = Mk(U) = V, (0.21)

where V is a gauge field configuration on the lattice T{k). The space of
configurations U in (0.21) is invariant with respect to the gauge transformations u
defined on T and satisfying the condition u = 1 on T(fe). These transformations form
a group, and the functional (0.21) can be considered on orbits of this group. In [15]
it was proved that in a space of regular orbits there exists exactly one critical orbit,
which is a set of minima of the function (0.21). We denote a configuration in this
orbit by Uk(V), or simply by Uk. These configurations are the background fields,
and the effective action Ak depends on V through these fields. We have, as in [16]

Ak(gk, V) = Ak(gk, Uk(V)) = - 1- A\Uk(V)) + Ek(Uk(V)). (0.22)
9k

The function Ek depends also on the effective coupling constants g0,..., gk _ λ. It is a
sum of contributions coming from the k successive integrations in the k
renormalization transformations. In the first step the integral (0.17) yields the
action A1=—(ί/go)AL~1+Eil\ and then applying Eq. (0.18) we obtain the
representation Ax= — (l/gl)AL~ί + [_ — fi^g^A1'1 + Eay]. The expression in the
square bracket is equal to Ev In the second step a new expression of this type is
created, in the old only a background field is changed. Thus we obtain after k steps

W k ) = Σ C-βfa- M\Uk) + E ^ ) ] . (0.23)

The functions EU) are represented as sums of localized terms. Such a
representation arises in a natural way as a result of cluster expansion, see [39-44,
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25,26]. To describe it we have to introduce new geometric definitions. Let us take a
nonnegative integer j , and the continuous space T scaled properly, so that it
corresponds to the lattice Tξ, ξ = L~j. We decompose the space Γinto the lattice of
closed cubes of a size M, where M = Lm, with centers at points of the lattice 7 $ + m ) .
Let us notice that we have already several scales of big blocks, for example, the
scale M o connected with the exponential decay of basic propagators, or the scale
M x connected with properties of the variational problem, etc. In this paper we
choose the size M much bigger than the previously fixed scales. We denote this
family of cubes by πj9 and the cubes by •, D', etc. For a cube D e π,- and n = 1,2,...
we define 0 " as a cube of the size (1 + 2w)M and with a center at the center of D.
We introduce a notion of a localization domain. Such a domain is a union of a
connected, finite family of cubes from π y A connected family means that for every
pair D, D' of cubes from the family there exists a sequence Π, D l 5 . . . , •„, D'of
cubes belonging to the family and such that two consecutive cubes have a common
wall, i.e. their intersection is a d—\-dimensional cube. We denote localization
domains by X, X', 7, etc. The meaning of the symbol Xn should be obvious. The
class of all these localization domains is denoted by D7. Domains from different
classes, i.e. classes corresponding to different indices j , are connected by scaling
transformations.

Thus every localization domain X is a union of continuous space cubes from π,-.
Consider a class of tree graphs contained in X and intersecting all the cubes in X. A
length of a shortest graph in this class, divided by M, is the linear size of X, and is
denoted by dj(X). Thus we rescale the space, so that cubes from π, become unit
cubes, and we take the distance in this scale. Let us stress the fact that we consider
graphs in the continuous space. For a given X usually there are many of these
shortest tree graphs. It is easy to see that there are also the shortest tree graphs
formed by edges of cubes in X, hence an equivalent definition can be formulated,
based on such graphs only.

We assume that the functions E0 )(l7), for regular gauge field configurations 17,
have the following representation

E°')([/)= Σ E ω (X, 17), (0.24)
XeΌj

where E(J)(X, U) are analytic and gauge invariant functions of U, depending on U
restricted to X, and satisfying the inequality

J)\^E0 exp( - κdj(X)), (0.25)

with a sufficiently large constant K. In the next section we will give precise
definitions, now we are interested in basic properties of the above representation.
Let us study implications of the inequality (0.25). We obtain

S ΣιχΣΌ Eoeχp(-κdj(Xj)

S Σ Σ Σ Eoexp(-κdj(X))^ Σ Σ E0O(l)

= Σ
. 7 = 1

(0.26)
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Of course a bound of this type, with a divergence typical for a vacuum energy in the
four-dimensional space, should be expected, without use of cancellations. The
purpose of the terms with ^-functions in (0.23) is to provide necessary cancella-
tions, i.e. they are renormalization counterterms. In fact there is one more
renormalization counterterm needed, it is a vacuum energy counterterm. It is
contained in the normalization factors in the integrals (0.17), (0.19), hence we may
assume that it is included already in the definition of the function Eo ), and
E0 )(l) = 0. Let us explain a fundamental idea behind a definition of the /^-functions
and the cancellations. The guiding principle here is the gauge invariance. It
identifies the action Aη(Uk), through a set of Ward-Takahashi identities, as a basic
term in the effective action, the so-called marginal variable in the renormalization
group language. The remaining terms sum up to a uniformly bounded expression.
The gauge invariance is used here in the same way as in the analysis of the Abelian
Higgs model in [7]. Let us remark that the analysis of the non-Abelian models in
[16] is based on slightly different ideas. In fact we follow the method of [7] closely,
as will become clear in Sects. 3-5. Now we sketch it very briefly. Consider a term in
the sum (0.24). If its localization domain X is large, for example it is not contained
in any cube 0 , with D eπfe, then the inequality (0.25) ensures that

|Eω(X, Uk)\ S Eo exp( - κ(Ljη)'') exp(- l/2κdj(X)), (0.27)

and the first exponential can be bounded by an arbitrary positive power oϊIJη, e.g.
by (5\/κ5){Ljη)5. This power is enough to control the sums in (0.23), (0.24). If the
localization domain is contained in a cube G, then we introduce the local
coordinates constructed in Sect. F [15] for the configurations Uk on 0 . This
means that Uk = expiηH modulo a gauge transformation, where H is a regular,
g-valued configuration on Π, and where the cube D is considered as a subset of the
^-lattice Tη. By the gauge invariance we have E0)(X, Uk) = Eω(X, exp iηΉ), and we
expand the last expression in H up to the fifth order. The fifth order term can be
bounded by E0O((Ljη)5) exp(-κdj(X)). The sum of lower order terms is analyzed
with a help of Ward-Takahashi identities. They allow the extraction of terms,
which grouped together yield an expansion of βAη(expiηΉ). The remaining terms
have bounds as above. We define the function /?/#/_ 0 to be equal to the coefficient
β. Thus we obtain

j j Uk), (0.28)
XeΌj

where the functions V(7) satisfy the inequalities

ω j 4 + α > 0 , (0.29)

instead of (0.25). These inequalities yield a uniform bound of the sum (0.23) on the
lattice Tψ i.e. the only dependence on k is through the volume \Tη\
corresponding to the scale η. Indeed, we have

Σ Σ 0(l)(Uη)4 + «exp(-κdj(X))S Σ Σ Σ
=ίXΌ j l Π

j = 1 D e Kj

= Σ 0(i)(LjηγM~4\ψ\S0(i){l -L~xy 'M-^Tί^ . (0.30)



Renormalization Group Approach to Lattice Field Theories 259

For the effective action corresponding to the unit lattice, where k = K = logLl/ε,
the above bound is uniform in the lattice spacing ε. This is the essence of the
ultraviolet stability concept, and the construction summarized in the representa-
tion (0.28) is, from a technical point of view, the main subject of this paper. Terms
satisfying the inequality (0.29) are called irrelevant - a word, borrowed from the
renormalization group language - but which should not suggest that these terms
are irrelevant operators in that sense. There are no scaling transformations here,
and these terms do not behave in a regular way under the renormalization
transformations.

The ultraviolet stability concept has two aspects. The first concerns the
effective actions generated by the renormalization group transformations, their
description and the bounds they satisfy. The second concerns the behavior of the
sequence of the effective coupling constants gk generated from the bare coupling
constant g0 by the renormalization group equations (0.18), (0.20). In this paper we
prove a theorem concerning the first aspect. To formulate this theorem we
introduce small field domains. For the fc-th action such a domain is determined by
the condition \dUk(V) —1| <ε0η

2 on Tη, for ε0 sufficiently small. Another possible
definition, technically less convenient, is given by the condition \dV— l | < ε 0 on
T^\ Now the main result can be formulated in a general way as follows:

Theorem 1. // the sequence of the effective coupling constants is contained in an
interval ]0, y] with a sufficiently small positive y, then the effective actions for small
fields are given by the formulas (0.22)-(0.24), with terms satisfying (0.29).

It is interesting to notice that we do not assume any special asymptotic
behavior of the coupling constants, like asymptotic freedom. Hence in principle
arguments could be applied to models with different behavior of running coupling
constants, for example to the so-called asymptotically safe models, or finite
models.

The above theorem will be reformulated more elaborately in the next section. It
will be proved in this paper for an arbitrary semisimple compact Lie group
G C U(N), and for d = 4. The proof also covers the dimension d = 3, but in that case
it is not necessary to consider the β-functions and the renormalization group
equations (0.18), (0.20). The effective coupling constants are given by gk=g2ϋε;
hence the assumption of the above theorem is satisfied for g sufficiently small. The
problem of whether the assumption is satisfied in dimension d = 4 is addressed in
the next theorem.

Theorem 2. Let d = 4,G = St/(2), and let y be a sufficiently small positive constant,
then for a sufficiently small positive g there exists a bare coupling constant
θo = #o(ε> O)sucn t n a t t n e sequence of the effective coupling constants gk is contained
in the interval ]0,y], and gκ = g. Moreover, there exist constants β, β\
such that gk satisfy the inequality

4 S K βg(y1. (0.31)
9 0k 9

A proof of this theorem, based on perturbative calculations, will be given in a
separate paper, where more precise asymptotic behavior will be proved. The
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restriction to the group SU(2) is superficial and is done only to simplify
calculations.

Finally let us mention that all results of this paper are valid for a certain class of
two-dimensional nonlinear σ-models, the so-called nonlinear chiral models. For
these models field configurations are functions U defined on sites of the lattice T,
with values in the Lie group G, and the action is given by

= Σ [l-Retrl/(3i)L U(db) = (dU)(b) = U(b^)U'1(b+). (0.32)
bCT

In fact all the results were obtained at first for this class of models. They are
technically much easier, and many modifications and simplications are possible in
this case; therefore we will discuss them separately in the future.

1. The Inductive Description of the Effective Actions

The inductive assumption is based on the results of the previous papers, e.g. see
(2.7) [7], (41), (47) [16], and on the general remarks in the previous section. At first
let us recall the definition of the background field configurations on which the fc-th
action depends. They are determined by regular gauge field configurations V given
on the unit lattice 7?k). The regularity means that the plaquette variables of V are
small, I V(dp") — 11 < ε'o for p' e T[k). For such a configuration there exists exactly one
regular, critical orbit of the functional

U-+A(U)9 U:Uk = M\U) = V on T(fe\ (1.1)

and it is a minimal orbit (a set of minima). This variational problem was
investigated in the paper [15], see Theorem 1 there for precise formulations. We
denote by Uk(V), or simply Uk9 a configuration in the minimal orbit.

The fc-th action Ak{V) depends on V through the minimal configuration Uk(V),
Ak(V) = Ak(Uk(V)). It is defined on configurations belonging to the space Uk(ε0),
i.e., Uk(V)eUk(ε0). The space was introduced in [14, 15], in a more general
context, and here it is defined as the set of all configurations U satisfying the
following regularity properties:

η = L~\ peT,

\J\<ε0 on T, J = Dηuη~2πImdU,

with ε0 sufficiently small. By Proposition 2 [12] this condition implies that |F(δ//)
— 11 < 2ε0 for pf s T{k\ and is implied by the condition on F, with 2ε0 replaced by
Bϊιεθ9 see Theorem 1 [15]. The action has the following form

J=O

Uk)-E^k%, 1)]}. (1.3)

We have written explicitly terms of the order 0 in the coupling constants. Let us
recall that the factor Z{j)(Uk) is given by the Gaussian integral normalizing the
Gaussian measure for a fluctuation field in -th step integration

(1.4)
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The quadratic form in the integral is given by

- 2(Huj(Uk)hC^(Ui B), J) + G(2)(£), (1.5)

where the operators Hιtj, Δ1 are defined in Sect. D [13], and C{2)(U{,B) is the
second order polynomial in the expansion of Q(U{,B).

In many considerations it is not necessary to separate the terms of zeroth order
from the remaining terms in the interaction, and then we write

1 k - l

gl J=O

(1.6)

The terms in (1.3) given by explicit formulas, like (1.4), can be easily extended,
by the same formulas, to a much wider class of regular gauge field configurations.
For example we can extend to Gc-valued configurations satisfying the conditions
(3.35)—(3.38) [13], and from results of that paper we conclude that these terms are
analytic functions of the configurations. We assume that extensions of this type
exist for all terms in the effective action (1.3), or (1.6).

The function E{j\gj_ι, Uj) is a result of an integration in thej-th step, after a
subtraction of the previous action evaluated at Uj. We assume that it has the
representation

XeΌj

Again, the term corresponding to a domain X depends on Uj restricted to X. We
can assume that this representation holds for the functions E 0 ) in (1.3) and (1.6),
because the expansion of the logZu~1\Uj) constructed in [16], implies, that we
can represent this term in the form (1.7). Further, we assume that the terms in (1.7)
are determined by functions defined on larger spaces of regular gauge field
configurations. The regularity means that at least the conditions (3.35)—(3.38) [13],
or (1.7)—(1.10) [14] are satisfied, i.e. first order derivatives and the special second
order derivative of a configuration are small. For technical reasons it is convenient
to separate the dependence on the second order derivative. From the previous
papers it is clear that it appears only in the functions

£ (1.8)

where π denotes the projection in the space of all complex N x N-matrices onto the

algebra gc, and imU = ^—(U—U'1). They appear in expansions of the action, and

in expressions defining propagators. We extend the terms in (1.7) introducing two
variables U, J, the second variable replacing the functions (1.8), and the first
satisfying milder regularity conditions involving first order derivatives at most.
Thus we assume that there are functions E0)(X, gj_u\J, J), analytic on a space of
regular, complex configurations U, J, such that

gj_l9 Uj9Jj). (1.9)
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Now we define spaces of configurations U, J. We define them for each j , and we
are interested in local spaces determined by localization domains X e D,. The
gauge field configuration U is defined at bonds of X and has values in Gc, the
configuration J is also defined at bonds of X and has values in gc. A Gc-valued
gauge transformation u acts on pairs (U, J) in the following way

( U , J ) " = (U 1 I ,R(M)J) = ( I I - U I I ; 1 , R ( M . ) J ) , (1.10)

where for a bond b = (JD_, b+> we define u±{b) — u(b±). The orbit of the group of
Gc-valued gauge transformations determined by a pair (U,J) is denoted by
[(U, J)]. We are ready to formulate the following fundamental definition.

The space Uc

j(X,ccθ9ai,yo) is a union of orbits [(U,J)] determined by
configurations U, J satisfying the four conditions written below.

(i) U = U'U, U has values in the group G,

\dU-ί\«x0ξ
2 on X, (1.11)

for each cube D CX of a size 0(ί)LM there exists a G-valued gauge transformation
u defined on D and such, that Uu = expiξA,

\A\, \VξA\<0(l)LMBoc0 on D , (1.12)

with a sufficiently large constant B (it will be determined later).
(ii) U/ = QxpiξA/, A has values in the algebra gc,

μ4Ί, . IViA'lK*! on X. (1.13)

(iii) The configurations U, J satisfy the bounds

\d\]-l\<aoξ\ | J |<7 0 on X. (1.14)

(iv) We consider X as Ωo, and we construct the sequence {Ωn}, n = ί, ...,7, of
maximal possible domains satisfying the conditions (1.3)—(1.6) [14] (withj, ξ instead
of k,η, R = Rί). For this sequence, or rather for its subsequences {Ωo, Ωί9..., ΩB},
n=l,...yj, we construct the functions Un(V) in the axial gauges, for regular
Gc-valued configurations V. We consider the pair

(ί/ π (M'(U)),J n (M (U))), n = l , . . . J , (1.15)

where M'(υ,b) = Mp(\J,b) = Upφ) for beΛp (see (1.5) [14]J, and JH(M'(U)) is
defined by the formula (1.8) with l/n(M"(U)) instead of Uj9 L~n instead of ξ. This
pair satisfies the bounds.

\dUn(M\V))-l\«x0ξ
2, \Jn(MχV))\<a0(Πξ)2 on X " 2 , (1.16)

and the same bounds hold for U instead of U.

The domain X~2 is obtained from X by taking away two layers of cubes from
πp which are closest to the boundary of X. Thus it is a domain Xr such that
X'2 = X. The first three conditions (ΓHm) i n the above definition are rather simple
and natural, the conditions of this form appeared many times in the previous
papers, e.g. see (3.35H3.38) [13]. The last condition (iv) is connected with the fact
that in some important constructions in the next sections we have to substitute the
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functions (1.15) in place of the variables U, J. We have to make sure, then, that they
have required properties. Usually we consider spaces with y0 = α0, and then we
omit the constant y0 from the symbol denoting the space.

Let us make now a few remarks about the above definition.
At first we show that there are some simple and natural spaces contained in

UCj(X, α0, α j . Let us take the space of configurations (U,J) satisfying the
conditions (i)—(iii) with constants αό, αl instead of α0, ot1. We assume that the
constants αό, <x\ are smaller than α0, ax correspondingly, then obviously these three
conditions are satisfied in the original formulation. Now consider the functions
l/w(M'(U)). We have M'(U) = U P on Λp9 \dΪJp-l\<2θL'o(Lpξ)2. From Proposi-
tion 9 [15] we obtain

\d Un(M \V)) -11 < B32κ'0L- 2\Πξ)2 = 2B3oι'oξ
2,

\Jn(M'(U))\<B32^(Lnξ)2 on X~2.

It is obvious that for αό sufficiently small the above estimates imply the condition
(iv), thus the configuration (U, J) belongs to the space U^X, α0, α j . We specialize
this example even more and consider configurations satisfying (i)-(iii) with αό, OL\ as
above, and such that J = D^*£~2πImδU satisfies the bound |J |<αό, similarly the
configuration constructed for U instead of U. Then the pairs (U, J) belong to
UftXyOίQjOCi). In particular the minimal configurations Uj satisfying the bound
\dUj—l\<ε0ξ

2 with ε0 sufficiently small, satisfy the above conditions.
Let us come back to the description of the actions. We assume that the function

E0 )(X, #,._!, U, J) is defined and analytic on the space UCj(X, oc0,oίι), with some
positive, absolute constants α0, aι (i.e., constants independent of X and j). It
depends on the configurations restricted to X, i.e. on (U, J)\x. It is a C°°-function of
#/-1 e [0, y], (or analytic), with a positive, absolute y. There exists a constant Eo

such that

\EU\X, gj_u U, J ) | ^ E o e x p ( - κdy(*)) (1.18)

for M ^ M(κ), y sufficiently small, and for all configurations (U, J) e UCj(X, α0, α j .
Symmetries are the subject of this point in our discussion of properties of the

actions. The most important is gauge invariance. We assume that all functions
E0 )(X, Qj-ι, U, J) are gauge invariant with respect to the group of all gauge
transformations (1.10). Explicitly

, gi.l9V
u, R(u)J) = ΈW(X9 gs. ί9 U, J) (1.19)

for all Gc-valued gauge transformations u. The spaces UfiX, (t^oti) are, by the
definition, gauge invariant also. This assumption is an easily verifiable statement
for all explicitly defined terms in the action (1.3). These assumptions imply that the
action Ak(U) defined on the space Uk(ε0), which is contained in all the spaces
UfiXtOίQiOίi), is gauge invariant with respect to all G-valued transformations.
Other symmetries are Euclidean lattice transformations. We assume that the
action (1.3) is invariant with respect to the transformations of the lattice T(k\ More
precisely, we notice that the explicitly defined expressions in the j-th term in (1.3)
are invariant with respect to the Euclidean transformations of the lattice Tϋ+1\
and we assume that this is true for all expressions in this term.
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Now we describe the most important expressions in (1.3), (1.6), the ^-functions
βj+ίidj)- They are determined by the functions Eu+1)(gp Uj+1) in (1.6). Let us
denote Ea+1)(gpB) = Έu+1)(gp Uj+1(expiB)). We define

(1.20)

This is the vacuum polarization tensor of the theory defined by thej-th fluctuation
field integral. We will analyze this tensor thoroughly in Sect. 5; now we describe its
basic properties necessary to formulate a definition of the ^-functions. The
function E o + 1 ) is gauge invariant, hence it is invariant with respect to global
transformations V^R{v)V, veG, or B^>R(v)B. The function (1.20) can be
considered as a function of μ, v, x, x', with values in the tensor product g®g, and
these values are invariant with respect to the transformations R(v)®R(v), veG.
This is possible only if they are proportional to the identity matrix, i.e. to δab. By the
Euclidean invariance of E ( J + 1 ) the function (1.20) is Euclidean covariant. This
implies

Πf+Uμv(gpx,x') = δabΠj+Uμv(gpx-x'),

Π ( b b ' ) Π(bb')

where Πj+ίiflv(gpx) is a real valued function, and r is a Euclidean rotation
leaving the lattice Tu+ί) invariant. Now we take a limit of these functions as
Tu+1)/*Zd. This limit exists by the localized representation (1.7). The func-
tion βj+ι(gj) is defined by

= ~ ( a a Πj+Lμv)(gj>°)= ΣΠj + xtμv(gj,x)xμxv (1.22)
\opμopv J x

for μ, v arbitrary, μ φ v, where f(p) denotes the Fourier transform of the function
f{x\xeZd.

It is a smooth function defined on the interval [0, y], (or analytic), uniformly
bounded on this interval together with all derivatives. We will investigate other
properties in a separate paper.

This completes the description of the inductive assumptions. Now we can
formulate a precise version of Theorem 1.

Theorem 3. There exist positive constants κ0, M(κ), γ, ε0, εu α0, oc1 such, that if
κ^κ0, M^M(K), 0<gk^y for fc = 0,1, ...,iC, then the sequence of actions Λk,
defined inductively by the small field renormalization transformations (0.17)-(0.20),
satisfy all the inductive assumptions described between (1.1)-(1.22). The constants ε0,
ε1? α0, oc1 depend on M and satisfy numerous restrictions, which will become clear in
the proof The constant y depends on all other constants.

In the rest of the paper we will be proving this theorem.
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2. Fluctuation Field Integral in k + 1 Renormalization Transformation

We assume that after k steps we have obtained the action Ak described in the
previous section, and we apply the next renormalization transformation Ύk

restricted to a small field region by a characteristic function χk

xχkexp\ -\G(V)-^A(Uk(V)) + Ek(Uk(V))\. (2.1)

The gauge covariance of the averages implies that the ̂ -functions in (2.1) are
invariant under the gauge transformations V-+Vv

y W->WV, because δ(U) is
invariant under the transformations U^R(u)U, ueG. The meaning of the
function Ek is obvious, it is equal to (l/gk)A + Ak. We consider the new action on
regular configurations W defined on T(k+ υ . More exactly we assume that W is so
regular that the minimal configurations Uk+1(W) exist and belong to the space
Uk + 1(ε0). By Proposition 2 from the paper [12] this implies that | W(dp') — 11 < 2ε0

for p' G T(k + 1). We will define the characteristic function χk in such a way that the
domain of integration in (2.1) is restricted to configurations V for which
Uk(V) e Uk(ε0). Thus the inductive assumption of the previous section is valid for
the action Ak(Uk(V)).

We calculate the integral (2.1) applying the saddle point method. At first we
look for critical points of the function

V^G(V) + A(Uk(Y))9 V: V=W. (2.2)

Under the above regularity assumptions there exists the exactly one critical point,
which is obtained by taking the critical orbit of the function A(Uk(V)) considered
on the subspace, and choosing the element of the orbit satisfying the axial gauge
conditions G(F) = 0. This critical configuration, which is a minimum of the
function (2.2), is denoted by V{k)= V{k\W), and is related to the minimal
configuration Uk+1(W) in the axial gauge by the equality

V^ = Uk

k + 1=Mk(Uk + 1 ) . (2.3)

We introduce new integration variables V/=V(V(k))~1

9 or V=VΎ{k\ and we
assume that the characteristic function χk and the (5-functions in (2.1) restrict the
variables B' = (\/i)\ogV to a sufficiently small neighborhood of 0. A gauge
transformation D of F induces the gauge transformation υ of V{k) and the
transformation B'-±R(v)B'. The expressions in (2.1) are invariant with respect to
these transformations.

As in Sect. G [15] we write Uk(VΎ(k)) = Uk(Vr)Uk+u and we transform at first
U'k(V) into the axial gauge Axk(T{k\ Uk+1). This does not change the expressions
in (2.1) because this gauge transformation is equal to 1 on T{k). Next we apply the
gauge transformation uk constructed in [14] and changing the axial gauge into the
Landau gauge. We obtain Uk

u*1 =expiηHk(B/), where the g-valued configuration
Hk(l?') is regular and of the same order as B\ Its properties are described in Sect. G
[15]. The gauge transformation uk can be expressed in terms of the configuration
Hfc(2J') by the formula (106) in [12] with Uί =expiηHk, and it implies that uk is an
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analytic function of Hk, hence of Bf for Hfc satisfying a boundedness condition of the
form |H f e |<α1 ? with an absolute, positive constant av

Let us write the expressions under the integral (2.1) in the new variables B'. The
expression under the <5-function is equal to

MiVΎ^MiyWy1 =expϊβ(50. (2.4)

The gauge fixing term under the exponential in (2.1) is equal to G(VΎ{k))
= G(F0 = G(JB0- The ̂ variables V\y,x) = {VΎ{k)) (y,x) ( F ^ x ) ) " 1 have an
expansion of the form Ϋ'(y, x) = 1 + B'(y, x) +..., where B'{y, x) is a linear function,
hence the gauge fixing expression has the representation

= Σ Σ i\B'(y,x)\2 + G3(B0 =W2\B') + Gi{B'). (2.5)

The function G3(JB0 is an analytic function of B\ with an expansion beginning with
third order terms, localized in blocks of the lattice T(k\

Now we analyze an expansion of the action under the exponential in (2.1).
Using the gauge invariance of the action, and the formulas (41), (174) [15] we have

+ (Uk(B% Jk+x>+KIW), AHk(B')> + V0(Mk(B'))

= A(Uk+1)+<H1ΛB'+A1Λ,Jk+1)-(HkDk(H1,kB'+AίΛ),Jk+ίy

+KH1ΛB'+AUk, A(HUkB'+Auk)}

-<H1ΛB'+Auk,AHkDk(HltkB'+A1Λ)}

+KHkDk(HukB'+A1Λ),ΔHkDk(HukB'+Auk))

+ V0(HίΛB'+Auk-HkDk(HukB'+Auk)). (2.6)

Let us omit for simplicity the subscript k. By Eq. (171) [15] we have <AX, J) = 0. In
the third term on the right hand side above we decompose the function D into the
sum D(2)+D3, where D ( 2 ) is the second order term equal to C(2), and D3 is the
higher order remainder. The term with C(2) together with the next term on the right
hand side of (2.6) yield the expression

t(HιB'+Aί,Δι(HίB'+A1)y=i(HίB',Δ1HίB'>+KA1,ΔιA1y, (2.7)

see the definitions (3.127), (3.128) [13]. Denoting terms of at least third order in
RγB' by V{HίB') we get

', J> +i<H 1B', Δ ,H,B'y + V(H xB0. (2.8)

Finally we can define the characteristic function χk

Π z({|B'(6)|<e1}). (2.9)

Another possibility is to take gk/ykε1 instead of ε1? where yk = Clog(Lkε)~1 with C
sufficiently large. It has the advantage that the functions E0 ), βj are analytic
functions of the effective coupling constants, but it has some disadvantages in
perturbative calculations also. We have formulated the implications of both
possibilities in the inductive description. The above restrictions imply also
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restrictions on B'(bo(c))9 with the constant εί replaced by 0 ^ ) , because these
variables can be expressed in terms of the remaining ones as in the first step. This
we will discuss in detail.

Let us write the integral we obtain from (2.1) by the above described
transformation

(2.1) = logNΓ* ί dB'σ(B')δ(Q(B'))

\ ( ) \ ( k + 1 ) \ ( 1 \ )
9k 9k 9k

- - L <HXB\ A !#XB'> - -i- V(H,B') + Ek(t7k(expi5T ( k )))l, (2.10)
29k 9k J

where the factors σ0 are included into the normalization factor N£. In this integral
we make a change of variables linearizing the function Q(Br). This operation was
discussed several times in the previous papers, e.g. see Sect. C [15], Sect. E [14].
Here we have a particularly simple unit lattice situation.

At first we introduce an operator h. It transforms g-valued functions B defined
at bonds of the lattice T{k + 1) into such functions defined at bonds of T(/c). The
function hB is equal to 0 everywhere, except the set {bo(c) :ceT(k+1)}. [Let us recall
that for ceT{k+1) the bond bo(c) is defined as the bond of the lattice T{k) contained
in c and belonging to the corridor B(c) = {beT{k):b^eB(c_), b+eB(c + )}.]
Furthermore, the operator h satisfies the identity LQh = I on T{k+1). Of course h is
uniquely defined by these conditions, in fact it is a very simple operator given by
the equality (hB) (bo(c)) = h(c)B(c), where h(c) is a linear operator on the Lie
algebra g, equal to an inverse of a coefficient at the variable B'(bo(c)) in (QB') (c),
multiplied by L~1. We are looking for an analytic, g-valued function D(B/), defined
at bonds of T(k+1\ and such that the transformation B; = B — hD(B) linearizes the
function Q(B'). The function D(B) is determined by the equation

LQ Bf + C(B') = LQB - D(B) + C(B - hD(B)) = LQB.

It is easy to prove, following the proofs in the above mentioned papers, that there
exists exactly one solution of this equation, and that it is an analytic function of B.
From this equation we obtain also that D(B) has an expansion beginning with
quadratic terms, and D{2)(B) = C{2)(B). The above change of variables yields the
integral with the (5-function δ(QB). Next we make the scaling transformation
B = gkB\ In the expression under the exponential the third, linear term in (2.10)
vanishes now, — (l/gk) (,HXB\ J} = 0 because (δA\ J} = 0 for all δA' satisfying the
condition QQ^A' = 0, and H1B

/ satisfies it. Hence the only term with a negative
power oϊgk is the action evaluated at the configuration Uk + 1. Terms of the order 0
in gk are

C - K H ^ A ^ ^ ' y . (2.11)

The quadratic form in B' above is equal to —\l2(B\A{k)Bry, see the definition
(3.156) [13] with the ^-function gauge fixing term replaced by the exponential one.
This quadratic form defines the fc-th normalization factor Z(kXUk+1) given by the
formula (1.4) with j = k. The quadratic form defines also a Gaussian measure. We
perform the same operation as in the first step, namely using the (5-functions.
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δ{QB') we eliminate the variables B\bo(c)), csTik+1). Denoting the remaining
variables by B we have Bf = CB, C is the operator determined by the configuration
V{k\ and the measure becomes a Gaussian measure in variables B, with the
covariance C(fc) = C{k\Uk+1) = (C*A{k)C) ~ι.

After these transformations we obtain the following expression for the new
action:

9k

βk 9k

^(H1gkCB,A1H1hD(gkCB))
9k

~ (H.hDig.CB), A .H.hDig.CB)}
9k

9 k

(2.12)

Let us notice that the normalization constant N£ is equal to the integral above at
Uk+ί = ί. The expression under the exponential is clearly a sum of two terms, one
is connected with the expansion of the action - (ί/gl)A(Uk(V)) and the measure in
(2.1), and we denote it by P(fc)(#fe, Uk+l9 B), another is the expression in the curly
bracket {...}. The integral in (2.12) defines the new term E ( k + 1 ) in the inductive
definition of the action Ak+ι by the formula

E<k+1>(0k, I7 k + 1 ) = logf ^ c w ( B ) χ k e x p [ P ( f e ) ( f e I7 k + 1,B) +{...}] . (2.13)

Let us remark that the expression under the exponential above vanishes at gk = 0,
and

< * + 1 > l ) . (2.14)

Finally we perform the coupling constant renormalization

4 = -^-+& + i (&) (2-15)
9k 9k+i

with the /?-function defined by the formulas (1.20), (1.22) for j = k. The equalities
(2.12), (2.14) together with the definitions (2.13), (2.15) imply that the action Ak +1 is
given by (1.3) with fc+1 instead of k. By the inductive assumption, and by the
properties of the expressions given by explicit formulas, all terms in this
representation satisfy the required properties, except possibly the last term (2.13) in
the sum.
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Let us discuss briefly the gauge invariance and the Euclidean invariance of this
term. The gauge invariance was discussed already several times in the previous
papers, so let us recall only that all the expressions in (2.12), together with the
measure, are invariant with respect to the gauge transformations

Uk+ i-> Uu

k + x , B'-*R{u)B', (R(u)B') φ) = R(uφ.))B'φ). (2.16)

The characteristic function is invariant with respect to the transformations of the
fluctuation field B\ because they are local, orthogonal transformations; therefore
the expression (2.13) is gauge invariant. Now consider a Euclidean symmetry r of
the torus T, preserving the torus T(k+i). We define generally

(rU)φ) = U(rb), rb = r(b_,b + ) = (rb_,rb + ) . (2.17)

By their definitions the expressions in (2.1) are invariant with respect to these
transformations. If we split the field V= VΎ{k\ and V{k\ Uk+1 transform as above,
then the expressions are still invariant assuming that V transforms as follows:

(rV) φ) = V'(rb) if rb is positively oriented,

(rV) φ) = R(V{k\rb))F ~ * (-(rb)) if rb is negatively oriented.

In these formulas the bonds b are positively oriented. Let us recall that the
representation Vφ) = V\b)V{k\b) holds for such bonds only. The above definition
secures the identity r(VΎ{k)) = (rV')(rV{k)\ hence the invariance also. The trans-
formation (2.18) generates an orthogonal transformation of the fluctuation field B\
hence all the remaining operations preserve the invariance for the same reasons as
for the gauge invariance. Thus the effective action is invariant with respect to the
Euclidean transformations (2.17) of the background field.

Thus the proof of Theorem 3 is reduced to proving the remaining properties of
(2.13), i.e. to a construction of the representation (1.7) with terms having the
analytic extensions satisfying the bound (1.18). We will do it in several steps, and
the rest of the paper is almost completely devoted to these problems.

3. An Expansion of Terms in Fluctuation Field Integral,
and Preliminary Analytic Extension

The underintegral expression in (2.12), (2.13) is a sum of two expressions. One is the
function F(k)(gk,Uk + 1,B), which is given by the sum of all terms under the
exponential in (2.12), except the terms in the curly bracket. This function, although
it has a complicated structure, is simple to understand. It is an analytic function of
the fluctuation field B defined on the unit lattice T^\ It is bounded by a second
order polynomial in 22, with coefficients of the order O ^ ) , hence it can be treated
as a small perturbation of the basic quadratic form in the Gaussian measure dμC(k).
As a function of the gauge field configuration Uk+ί it has a straightforwardly
defined extension P(k)(gk, U, J, B) such, that

P(kXgk,Uk + 1,B) = P<kXgk,Uk+ι,Jk + 1,B). (3.1)

This extension is obtained by replacing the function Jk+ί in all propagators and
operators by the variable J, and by replacing the configuration Uk+ ί in all other
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places by the variable U. The function P(/c)(#fc, U, J, B) is defined and analytic on
the space of all configurations U, J satisfying the conditions (iHiϋ) *n Sect. 1, for
some oco, oc[ sufficiently small, but much bigger than α0, aί there. The only problem
is to localize this function, i.e., to construct the representation (1.7) with terms
satisfying bounds of the type (1.18), modified by factors connected with the
fluctuation field B. We will analyze this problem in one of the next sections in a
general case.

The problem we consider in this section is connected with terms in the curly
bracket in (2.12). We want to represent them as a sum of localized, irrelevant terms,
i.e. terms satisfying the bound (0.28). We make a first step to get the desired
representation, we expand terms in the curly bracket, and we construct prelimi-
nary analytic extensions of terms in the expansions.

Let us take the partition πk. We construct a cover of the space T by cubes D,
which are unions of 2d neighbouring cubes from πk. For this cover we take a
partition of unity 1 = ΣCπ w ^ smooth functions "ζΠ. More exactly we assume

• d

that if y is a center of the cube D, then ζΠ(x)= Π ζ(M~1(xμ — yμ)), where

ζeCJftJί1), ζ(t) = ί for |ί |gl/3, ζ(ί) = 0 for |ί|^2/3, ζ has derivatives up to the
second order bounded by 5. Let us recall that we consider the continuous space T
and all the cubes in the scale corresponding to the lattice TΨ

Let us denote for simplicity the expression under the exponential in {...} by B\
i.e.,

B' = gkCB-hD(gkCB). (3.2)

The first expansion we write below depends on the index) in the sum (1.7). We write
it for the function Eo). Making use of the gauge invariance we have

Eω(t/k(exp iBΎ{k))) - EU)(Uk(V{k)))

= Eu\Uj(U{(QxpiBΎik))))-Eu\Uj(U{(V{k))))

)), (3.3)

where we have used the results of Sect. G [15], and the equality (97) [12]. The
function Hfc and the operation Qj are dependent on the configuration Uk+1. Next
we have

EU)(Uk(QxpίBΎ(k)))-Eu\Uk(V{k)))

= Σ ί it ( ( J | E ^ (UjicxpiQjiηtH^B^OU J),

(3.4)
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This yields a first localization of the expression {...}. We consider now one term in
the above sum, the term corresponding to a cube Π. Decomposing E 0 ) according
to (1.7), we obtain a sum of terms labeled by X e D7 . We divide this sum into two
subsums, assigning a term to one of them according to a position of its localization
domain X with respect to D. The division is according to the conditions

Z n ( D 2 ) c Φ 0 , or X c O 2 . (3.5)

Consider a domain X satisfying the first condition above. Assume that X e Όj.
There are two cases possible, either I n D = 0 , or I n D + 0 . In the first case

the distance is in the scale η, hence in the scale ξ dist(ξ)(X,D)
1. In the second case X is a big domain in ξ-scale, for example dj(X)
Thus either the exponential decay of propagators corresponding to

ξ-scale, or the exponential bound (1.18) should give a small factor O((Ljη)N) with an
arbitrary power N, enough to control the sums. Terms with domains X satisfying
the first condition in (3.5) are simple to deal with, we have to write them only in a
form in which the exponential factors can be clearly seen. Making use of the gauge
invariance, and denoting

we have

^ 1 ) . (3.6)

The function Hy depends on the configuration Uk+1. The expression on the right-
hand side is differential with respect to tπ, at tπ =0, and this yields

(v pYnί^ lJ ( Ώ(tWTT \ I I T-f I CϊϊίtW R I

dA / ' \\oB / dtΏ

(x, exp iξ ΓH/B(0) +1 π / ( A H j j (β(ί)),

)j ^l J Uk+ ̂  |tα=0 . (3.7)

The derivative -— H is an exponentially decaying function, with the decay rate
oB

δ0 on the ξ-scale, see Proposition 9, (190) [15]. Let us denote

Hk(B>)^ . (3.8)

In the case when dist(ί)(Z, Π)^.M{Uη)~x, this function satisfies the bound

on X, (3.9)

and the same for derivatives and the second order operators applied to it. Using
the above bound, and the analyticity properties of E ω , we can obtain easily the
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required bound for (3.7). In the second, simpler case, we obtain the exponential
factor exp( — δκ{lJη)~~ι) directly from the bound (1.18), here δ is a small, positive
number. The remaining factor exp( — (1 — δ)κdj(X)) from the bound (1.18) will be
used in a proof of the inductive assumptions for new terms. Thus in both cases we
have irrelevant terms.

To fulfill the conditions of the inductive assumption we have to construct an
analytic extension of the expression (3.7). Let us consider more generally the
function ΈU)(X, QxpiξAUk+1). It is obtained from the analytic function
E(j)(X,U', JO by the substitution

U' = expίξAUk + 1, J' = DϊxpiζAϋh+ιξ-2πlmdexpiξAUk+1. (3.10)

We expand the expression on the right-hand side above with respect to A using the
formulas (1.43)—{1-54) [14]. We obtain more generally, for any regular configur-
ation U

DfxpiξAl}ξ-2πlmdQχpίξAU = Dξ*ξ-2πlmdU + D^DiA + F(U,A)9 (3.11)

where F is a local operator depending on 17,517, A, V&A only. It is the term D^Df A
in this formula which is a source of a trouble. For A = Hy we have bounds for this
second order operator, but only if we use the second representation for un-
connected with the Eq. (180) [15]. We use the fact that H, satisfies the Landau
gauge condition RD*ϊlj = 0, and we replace the operator D*D by D*D + DRD*
= D*D + DD* -DPD* = Δξ

v-Pί + (lower order, local operator). In the next steps
we will construct an expansion of HJ? and for terms in this expansion we will have
good bounds, including bounds for the covariant Laplace operator. Such bounds
do not hold for the operator D*D, and this is the reason why we do not formulate
second order regularity conditions, as in (1.9) [14], (2) [15], but we replace the
expression Jj by the new variable J. Consider now the formula (3.11) for U = Uk+x.
We have

D f ; k + 1 Γ 2 π I m 5 l 7 k + 1 = ( L ^ V Λ + i 5 (3.12)

and we replace Jk+1by the variable J, and in the remaining expressions we replace
Uk+! by the new variable U. Thus we obtain the following function of the variables
U, J

V^A)). (3.13)

We consider it on the space U*j(X9 l/2α0, l/2αl5 α0) (notice the different constant in
the bound for J). It is an analytic function on this space, and also an analytic
function of A, for A, P̂ A, zl̂ A sufficiently small. These restrictions can be easily
obtained from the definition of the spaces, and from the form of the expressions in
(3.13). Thus, there exists a constant α2, depending on α0 and on some absolute
constants, such that the function (3.13) is analytic in A, for A satisfying the
conditions

|A|, \PXA\, |F£A|, | 4 A | < α 2 on X. (3.14)

Of course, on these spaces of configurations U, J, A the function (3.13) satisfies the
inequality (1.18).
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To get an analytic extension of (3.7) we substitute A = Hj(B(t)) + tπ <...>, with
functions Up Hk depending on U, J. These functions are given by (179), (180) [15],
and we replace the configurations Uk+uJk+1 occurring in operators there by the
configurations U, J. The derivative with respect to tπ, at tπ = 0, can be written as
the Cauchy integral

-1-: j ΛD jrE^(X,...,...), (3.15)
lπi\tu\=r t u

with the radius r given by the equality

r max{|(5H7 | x , I P ^ H , ^ , | F ^ H 7 |X, \A&H:\X} = 4 α 2 .

We assume also that ε1 is so small that Hj(B(t)) satisfies (3.14) with l/3α2 on the
right-hand side. Thus we have constructed the analytic extension (3.15) of the
function (3.7), defined on the space

Uc

j(X9^oco,jθίί,oίo)n{(\Ji3): U, J satisfy the conditions

(i)—(iii) for j = k+i, and with the constants (l+/?)α0, ( l+j8)α l 9 α 0 } . (3.16)

This function has the bound

^ Eo exp( - κdj{X))6ocϊ 1LjηB0B3

1)\ζΠΆk(B/)\9 (3.17)

following from (3.9). Let us stress that it follows only from the fact that Hj(B(t))
satisfies (3.14) with l/3α2, and δHj satisfies (3.9). Later we will change these
functions by a localization procedure, but new localized functions will satisfy the
bounds (3.14), (3.9), hence (3.17) will be preserved also.

We remark that the above considerations apply almost without a change to the
second case, with a big domain X. The only difference is that we do not have the
exponential factors in (3.9), (3.17) connected with the decay rate of the functional

derivative - — H .
oB

Now we consider the fundamental case, the case when the second condition in
(3.5) is satisfied, i.e. when Xc Q 2 . This case includes all localization domains of
small sizes, and with small distances to D, hence without obvious small factors.
The real renormalization problem is connected exactly with this case, and we have
to analyze it carefully. To do the analysis we transform the terms in (3.4). We take
the function Uj constructed for the cube D 0 = 0 5 as in the condition (iv) in the
definition of spaces Up Thus we construct a sequence of cubes { Π J ,
n = 0,l,...,/c + l, satisfying the conditions (1.3)—(1.6) [14] (with k+ί,L~1η instead
oϊk,η,R = Rί), hence D 4 C • k +1. For this sequence we construct the functions Up
j = 1,2,..., k + 1 , which we denote by Uj( • 0). The configuration in terms of (3.4)
with localization domains X satisfying I c D 2 can be written as

t7ί + 1 ))). (3.18)
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Using the gauge invariance, and similar transformations as in (3.3), we obtain

ί/k + 1))). (3.19)

For the expression under the exponential function above we have

Q(ξHj(Bπ)) = Qj(ξUj(Bπ)) = ΰ D o n a neighborhood of 0 4 . (3.20)

Later it will be important to have the configuration Bπ only, instead of the
expression on the left hand side, so we remove from (3.19) a part of this expression
localized outside D 3 . Take a function ζπ e Q?(D 0), ζΏ = 1 on • 3 , ζΏ = 0 outside
D 4 . We have

tί.Έ(X9 expi€H/D o, (Γ(l - ΓDut

, 17/ Π 0, exp iζΏBaM \Uk+,)))

J d ? 4 - E( Λ ( x , exp iξ
o αt V

x (1 - Γ α ) β ( ξ H / B D ) ) ^ I7 t + 1 j |ro = 0 . (3.21)

Again, from the exponential decay of the derivative (δ/δB)Hp and from the
condition dist(ξ)(X, supp(l — ζπ)) ^ MiLJηy1, we obtain a bound of the type (3.9)
for the expression <...> under the exponential. Thus a bound for the second term
above has the small factor O((Ljη)N), and we treat this term in exactly the same way
as the terms (3.7) before, i.e. constructing the analytic extensions and proving the
bounds (3.17).

To simplify some formulas in the future we change the first term on the right-
hand side of the last equality in (3.21). Taking into account the definition of BΏ, we
write

ΓQBΠ=iCπQMt+tDCα)H,(β')) - QMtζa+ίDCD)H,(F))]+Sa,

We remove the expression in the square brackets [...] repeating the procedure in
(3.21). The expression is localized in D 4 \Π 3 , and the term corresponding to the
second term in (3.21) has a very similar form and the same properties, so we apply
the same considerations as before.

Thus we consider the expression

(3.23)
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This equality is connected with the way we introduce the variables U, J, namely in
the interior averages M'(Uk + 1) we replace the configuration Uk+1 by U. The
function Hfe and the averaging operations Qj in the definition of Bu depend on
Uk+1. Now we introduce the variables U, J in these expressions in a slightly
different way. The variable J replaces the function Jk+1 as usual, but the
configuration Uk + 1 is replaced by the configuration Uk+ί(D0, M'(U))5 extended
as equal to U outside D 0. We do it in order to get better properties with respect to
gauge transformations of this configuration, as it will become clear in the future.
Let us remark that C/fc + 1(Dθ 5M'(U)) has approximately the same regularity
properties as U, hence all necessary theorems are valid for operations with this
configuration. Thus we consider the function

E^XX, l//D 0 , expiBDM ([/ k + 1 (D 0 ,M (U))))). (3.24)

In fact we should replace the function EU)(X, Uj) by Eij)(X, Up J3) determined by
the analytic function E0)(X, U, J), as in (3.13), but this would make the formulas
even much more complicated, so we will keep the above notation. Taking into
account the definition (3.22) of Bπ we can write the expression (3.24) as

9 t//D0,M'(expiη(tζπ + ί D ί D ) H k ( W * + .(Do,M'(U))))). (3.25)

This is obviously a well defined and analytic function of the variables U, J in a
sufficiently small domain. We will prove that it is analytic on the space Uk+ i(Π0>
(1 + 2β)cc0, (1 + 2β)aί, α0). This space is defined by the same conditions (i)-(iv)> o nly
the configurations U, J are defined and satisfy (i)-(iii) on the whole lattice Tη. Let us
assume this and let us transform further the above function. We repeat the
constructions of Sect. F [15], and we introduce the same generalized axial gauge
for the configuration M *(U). This is achieved by a gauge transformation v, and we
have

V\ |7(&)-l |<0(l)Mα 0 , | i ;-l |<O(l)Mα 1 . (3.26)

The variables V can be expressed simply in terms of the contour variables
introduced in (77) [12], e.g. in the simplest situation for a bond b e D 4 nΓ ( / c + 1 ) we
have V(b) = \Jk+1(Γyθtb_ubuΓb + >yo). We assume that αθ5 ot1 are chosen so that Mα0,
Moc1 are still small. We make the next gauge transformation uk+ι changing the
axial gauge into Landau gauge for the configuration Uk+1(Π0, V), hence

1( Do, j

+ 1( Π 0 ,-logF

D0,τlogK

<B3O(l)Ma0 on G4, for O^ i8^ i80

|M f c + 1-l|<B3O(l)Mα0 on D o .

(3.27)
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Performing these gauge transformations in (3.25) we obtain

E ω ( x , C / / π 0 , M ^

x, Uj(Do,expiρ \jlogexp w/(ίΓD + ίDζD)Hk(B0

(3.28)

Making use of the gauge invariance of the function (3.25) it is necessary to apply the
gauge transformations to the variables J, B also, not only to the gauge field
configurations in (3.26), (3.27). Thus in the function Hfc(£0 the variables J, B are
replaced by l?(%+

1

1)JR(ι;~1)J, K(wfc~+

1

1).R(£>~1)i?. This is a complication, but not a
very serious one for the following reasons. First, there are the bounds in (3.26),
(3.27) for v9 uk + ί. They imply that the above expressions have almost the same
bounds as J, B. Second, these gauge transformations are explicitly given analytic
functions of U, depending on U restricted to the cube D o . This will be important
later on in a final localization.

The functions (3.25), (3.26) are gauge invariant with respect to the simultaneous
gauge transformations

U->U", J->JR(ιι)J, B-+R(μ)B9 (3.29)

for Gc-valued transformations u in a sufficiently small neighborhood of G-valued
transformations, so that the configurations after the transformations belong to
proper spaces also. The expressions in (3.28) transform in a very simple way under
(3.29), namely by R(μ(y0)) (where y0 is the center of the cube •). Of course this is
connected with the fact that the contour variables V transform this way.

In the final localization the function Hk(B') will be transformed into many
different functions, hence it is important to understand properties of the expression
obtained from (3.28) by replacing (tζπ + tπζπ)Ή.k(B/) by a gc-valued variable A. Let
us denote . / 1

A= —logexpwjAexpilΓ^Hfc+J D 0 , τ l o g F
iη \ ι /

( 3 3 0 )

on D o .
We hope that the last function will not be confused with the fluctuation field
variable B defined on the lattice T/k). The function B above is defined on the set of

bonds determining l//D 0 ), i.e. on I (J An luDyλ Now we define a class of
\π = 0 /

functions A. We assume that A is regular and satisfies the bounds

|A|, |FΆ | , | |A| | l f /,<α 2 on D o , (3.31)

for Q^β^βo<l. Obviously such bounds are satisfied by the function (tζπ

+ tDζπ)Hk(B') for εx sufficiently small. We have similar bounds for the function

• 0,τlog Fj, with α2 replaced by £ 3 0(l)Mα 0 , and D o by D 4 , see (3.27).
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The assumption (3.31) implies that A satisfies

\A\, \V«A\, \\A\\Uβ<2(oί2 + B30(l)M(x0) on D 4 . (3.32)

These regularity conditions are basic for the further analysis.
Thus we consider the function

, l//D 0,expίfl)), (3.33)

and we expand it in B up to the fifth order

+ j d τ ^ ^ - (βs^KX, l//Π0>expίτB)), (g)BJ . (3.34)

This is the fundamental expansion for the analysis of renormalization. Such
expansions with respect to background fields were used many times for this
purpose, on perturbative and non-perturbative levels for example see [72, 54, 68,
27, 7, 16, 41-44]. Here we will follow the methods of the papers [7, 43].

Let us consider the last term in the expansion (3.34). By the definiton of B and
by the inequalities (3.32) we have \B\ < O(l)Ljη, hence we expect that this term can
be bounded by

O(l)exp(-/cd/X))(O(l)L^) 5 . (3.35)

To prove this statement we have to go into rather lengthy considerations. The
main problem is to investigate analyticity properties of this term on proper spaces.

We consider functions in (3.28), or (3.34), on the space L^C

+ 1(ΠO,(1 +2β)oto,
(1 +2β)ot1, α0) of configurations U, J, and on the space of fields A satisfying (3.31).
In (3.34), which is of main interest for us, we have configurations U, A only. We
have to prove that

(UjiΠo^xpiτBlJjiDo.QxpiτB^eU^X^o,^) (3.36)

for all U, J, A in the above spaces, and for the parameters τ in the interval [0,1]. We
will prove a stronger statement, which will allow us eventually to get the bound
(3.35). The analyticity of the functions in (3.34) follows from the analyticity of the
two functions in (3.36), and the assumed analyticity of Έϋ)(X, U, J) on the space
£/5(X, α o , ^ ) .

At first let us take A = 0. We have

Uj(Π 0, expiτρ(L- ^Hk +,)) = ( e x p ^ H / ϋ 0, τβ(L" ^Hk + 1)))u',

L ^ ^ on D 3 ,

7 (3.37)

Assume now that JB3θ(l)Mα 0<l/2α 1, then the orbit of the configuration
Uj(Π0,...) above contains the configuration exp/£Hy(...) satisfying the conditions
(i), (ii) on the cube 0 3 , hence on X. We will prove that this configuration satisfies
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all the conditions (i)-(iv) The following identity holds:

Un(X, M -(exp^H/D o, τβ(ίΓ ^Uk+1))))

= UH(X9 M XUj(D 0, expiτβ(IΓ ^ H f c + J ) ) ) ^ " '

= (expiξH/D o, τβ(L" ^ H f c + J ) ) " ^ " ι , (3.38)

where ΰy is a gauge transformation constant on blocks naturally connected with
the function Un(X, •), and equal to Uj at centers of the blocks. This identity and the
bound on Uj in (3.37) imply that the condition (iv) is a consequence of the condition
(iii), with a bit better constant, for the pair of configurations

expiξH/ ), D

Using (97) [12], (3.27), (3.26) we obtain for τ = 1

-> ̂ \ (3.39)

The assumption that the configuration U belongs to the space U£+1(Π0,
(1 +2β)<x0, (1 +β)a1,<xQ) implies in particular the inequalities

α o(L- 1

> 7) 2,

on D 3 .

The first inequality, and the identities (3.39), (3.37) imply

|0expiξH/Do,β(IΓ1fjH i t + 1))-l|

o, M (U))-1)1

x e x p O ^ A M l +2jS)ao(L- ιη)2

<(l + 3/?)ao(LJ-1ί?)
2ξ2 on D 3 , (3.41)

for a t sufficiently small, e.g. O(l)Ma :^jS. A similar inequality holds for the
expression replacing the variable J

<(i+3β)a0(Lj~1ηfon Π 3 . (3.42)

From the bounds in (3.37), and an elementary inequality, we get

< 8(Blθ(ί)Ma0L
j- ^fξ2 exp4BiO(l)Mα0L- ιη

^(L i-1^)2ξ2 on Π 3 . (3.43)

We assume that (4BlO(ί)M)2a0^β. This second restriction is not essentially
stronger than the first one, because we have already assumed the restriction
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γ^β on αx. The above inequality and (3.41) yield

| ^ H / D 0 ? β ( L - 1 ^ H k + 1 ) ) | < ( l - f 4 i 9 ) α 0 ( L / - 1 / ί )
2 on Q 3 . (3.44)

Furthermore, thefunctionH7 is given by (174) [15]?i.e.H/D0,J5) = H
— HjDj(HijB

JrAij(B)), where the functions on the righ-hand side are at least of
second order, except the first term. This implies

< B3(B30(l)Mot0L
j- ι

Άf <j8αo(ί/- ιη)2 on D 3 . (3.45)

Of course we have used also the exponential decay properties of all the functions
which appeared above. Thus finally we obtain

\dξHuJQ(L- ^ H f c + 0 K 1 + 5β)ao(lJ- 'η)2 on 0 3 . (3.46)

This inequality is linear in Q(...), hence it is valid also for this expression replaced
by τ<2(...), τ e [ 0 , 1]. From the above considerations it is obvious that we can
reverse the arguments, thus we obtain (3.44) with τQ(...), and the factor 1 + 6β on
the right-hand side. Similarly, the inequality (3.43) yields

iϋ-'ηyξ2 on D 3 . (3.47)

Let us notice that j <; k, hence Ljη <; 1 and (1 + Ίβ)L~ 2 ^ 1 for β not too large. The
above inequality is the required first inequality in the condition (ίii). The second
inequality in this condition is obtained in the same way. We start with (3.42) and we
use again the formulas and the bounds (1.43)—(1.54) [14]. They give a bound of the
type (3.44), but for the second order operator dξ*dξ. Then the same reasoning as
between (3.44)-(3.47) gives the required second inequality in (iii).

Now we consider the general case, with A satisfying (3.31). From (3.30) we have

Q'= Uh ((^QJiηAit^L-^ + J), η ((^^)(ίi^L^H,^), A\\ , (3.48)

Λ(A, L~ 1 H ί c + 1 ) = — fc

The function Q' satisfies the inequality

|GΊgO(l )L^ |A |<O(l )α 2 L^ on D o , (3.49)

with an absolute constant 0(1). It is an analytic and almost local function of A and
Hfc +1 We can prove that for α2 sufficiently small we still have (3.36). Instead we will
prove a more general result. We replace τQf by the variable Bf with values in gc, and
we prove (3.36) for B' satisfying \B'\ < α 3 , with a sufficiently small constant α3. To
prove the conditions (i)—(iv) we write

(3.50)
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where the last equality is a definition of A2. It implies

|A2|, \V*A2\£B3\B'\<B3*3,

and if B3a3 < l/2αl5 then this and the inequality in (3.37) imply the conditions (i),
(ii). Consider now the derivative

on D 3 , (3.51)

where we have assumed 2B3oc3 ^ βLΓ 2 α 0 . The above inequality, and the inequality
(3.43) slightly modified for the present situation, give the bound

^oξ 2 on O3.(3.52)

This implies the first inequality in the condition (iii). The second is proved in the
same way, as it was already discussed. The condition (iv) follows from the
corresponding identity (3.38). Thus we have proved (3.36) in several versions. Let
us formulate the one which will be used to bound the terms in (3.34).

Lemma 4. For U e U'k
c

+ x(D 0, (1 + 2β)α0, (1 + 2/OαJ, A defined onΠ0 and satisfy-
ing (3.31), W defined on the set of bonds connected with the definition of t7/Πθ 5 •)
and satisfying \B'\<cc3, we have

(l/j(D0, expz(τ# + 2Γ)), J / D o , expί(τB-h B')))\x e U*j(X, α0, α j (3.53)

for α0, α l 5 α2, α3 sufficiently small and satisfying all the restrictions. The functions in
(3.53) are analytic on the above spaces.

Let us consider the last term in (3.34). We want to bound it by an expression of
the form (3.35). We have

\dτ—-f-

^ sup
re[O,l]

ί
\σ\=r

1

σ
j (3.54)

Because \B\ < 0(1)Ljη, e.g. |ΰ| < ot^η, hence we have the required bound. In fact we
have to be more careful, because this bound holds o n Π 4 only. We should localize
the inner product in domains • 4, (• 4)c, and if at least one factor has a localization
in (Q4)c, then the expression can be estimated by an arbitrary power of Ljη using
the exponential decay properties. The considerations are similar to those done on
several occasions, e.g. (3.6), (3.21), and we do not repeat them. Let us make a final
remark about the constant in the inequality (3.54). It is much bigger than Eθ9 and
further bounds and summations will make it worse. Eventually we have to recover
the constant Eo in the inductive assumption (1.18), and the mechanism for it is
provided by the differentiation with respect to ίD, at tD = 0. This differentiation
yields a factor O(l)α2

 1ε1, and taking εx sufficiently small we can get the required
constant.
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The considerations of this section gave a full control over the terms of the
expansion of the difference Έk(Uk(expίBΎ{k)))-Έk(Uk(Vik))), except the terms in
the sum on the right-hand side of (3.34). These terms are connected with the
renormalization, and we will analyze them in the next section. The remaining
terms are irrelevant according to our terminology, i.e. they satisfy bounds of the
form (0.28) on their domains of analyticity.

4. Ward-Takahashi Identities and Their Consequences

Let us consider the sum on the right-hand side of (3.34). We can still separate some
terms which are very small due to the exponential decay. It is convenient to localize
the configuration B in a neighborhood of the cube D 3 , hence we write

/Do. 1)),((§)ΓDβ) Θ C ® (1 - Γ D ) * ) ) . (4-1)

where the function ζπ was introduced in the previous section [see the definition
after (3.20)]. Terms with m < n are exponentially small in Ljη. To see it we write the
functional derivatives in a form, which will be convenient for other estimates also.
Consider a more general expression with different functions Bu ...,Bn. Using the
gauge transformation in (3.37), and the gauge invariance of the function E0 )(X, [/),
we have

Έ^XX, Uj(D 0, expiB)) = E^(X, expiξUj(Π0,B)). (4.2)

Differentiating the composite function on the right-hand side above n times with
respect to B, we obtain the identities

Xn(p)

/ , \ »__„ ΛL ( A , 1 ), LXJ \ TΓZΓΓTΓT -tt/i I I n > ^/? vAJ D\

/rr1.. ,., . \ ^ U r v 7 ^ < \ λΏn\P) Jx u 7 ^—^ J

D ieiV(p)

- Σ "'
τ = 0

^ E ω U ί ί Σ H / D θ ! 0 ) ) (X) Bt ) . (4.3)

Now, let us recall the considerations connected with the function (3.13). We have
noticed there that this function is analytic on the corresponding spaces of variables
U, J, A, and this fact is quite general, valid for an arbitrary domain X. In the last
formula above we have the function E0 )(X, cxpiξA), i.e. the function with U = 1,
J = 0. Thus it is defined and analytic on the space of configurations A satisfying

, \VξA\x, \Δ*A\x}«x2 . (4.4)
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The functional derivative (δn{p))/(δBn{p))Hj(Πo,0) is given by a sum of several
perturbative expressions discussed in Sect. G [15]. Each expression corresponds
to a tree graph with n(p) initial points and one final point, and it has an exponential
decay in a length of this graph. The derivative has an exponential decay in a length
of a shortest tree graph of this type. The norm in (4.4) of the expression

^ H / Π o , 0 ) , (X) Bt

can be estimated by B3 f| \Bil a n d if o n e °f Λe functions Bt is localized outside
ίeN(p)

the domain X, then we have the additional exponential factor
exp( — δ0 dist(ξ)(X, suppi^ )). Consider a term in (4.1) with m < n. Using (4.3) and the
last remarks we obtain

Eo exp( - κdj(X)) exp( - <S0 dist«>(X, supp(l - fD)))

x\ζπBr\(l-ζπ)Brm. (4.5)

The distance in the second exponential is bounded from below by M(Ljη) ~ \ hence
we get the exponential factor QX^( — 5QM{LJY\)~x). This implies that the terms in
(4.1) with m<n are irrelevant.

We have to consider the terms with m = n only. They are localized in 0 \ hence
the function ζπB is defined on the unit lattice T}j\ We denote it simply by B again,
hence B = ζDQj(ηA).

At this point it is convenient to perform the differentiation with respect to ίD, at
tπ=0. We replace the function A by (tζD + ίDCπ)Hfc(5/), and we differentiate the
sum over n. It is a simple polynomial in B, and the differentiation yields

δB =
 (JΛ

 Qj{ηΛl η
 (JA A' C Π H ^ / } ) ) ' ( 4 6 )

A = A^tζπHk(B%L-'Hk + ί^Π0,-i\ogV)),

where

A(A, B) = — log exp ίηA exp iηB.

The fields A and φ/δA)A, ζDHfc(B0> satisfy the bounds (3.32), the second field is
localized in suppCπ, hence δB is localized in D.

The tools to investigate the sum in (4.6) are provided by a set of Ward-
Takahashi identities. They express gauge invariance of a considered function.
Take a function E(F) defined and analytic on a domain of small gauge field
configurations V on a unit lattice, and assume that it is gauge invariant, i.e.,

(4-7)
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We assume the gauge invariance with respect to Gc-valued gauge transformations,
but it is implied by the invariance with respect to G-valued transformations, and by
the analyticity of the function, as it was noticed already. For a small gauge field
V = QxpίB, and a small gauge transformation v = expiλ, B and λ small, we have

Vv(b) = exp iλφ _) exp iBφ) exp( - iλφ+))

λφ^-λφ+)-iίlλφ_lλφ + )-] + ...),

(4.8)

where the dots denote terms of higher order in λ, and g ~1 (z) = (— z)/(e ~z — 1) = 1
+\z + k2z

2 + .... For more remarks about the above equalities and expressions see
(32)-(41) [12]. Now differentiate the equality (4.7) with respect to λ, at 2 = 0. This
gives the identity

~E(exPLB), i[2(fc_), Bφ)-]-g-\iadm) (32) φ)\ = 0 (4.9)

holding for all gc-valued functions λ, and small, gc-valued configurations B. It is the
fundamental identity expressing the gauge invariance of the function E. Let us
notice that it was derived in exactly the same way as the Ward-Takahashi identities
for the Abelian Higgs model were derived in (2.23)-(2.28) [7]. We will call the
identity (4.9) also the Ward-Takahashi identity. From this we derive a whole
sequence of identities by differentiations with respect to B. For our purpose it is
enough to consider expressions with four derivatives at most. Let us write the
corresponding sequence of identities

c*p2 V ^ / ' A- Ό

C A

j^E(expίB)Jadλ_B1--ίadBίdλ-k2{ίadBιJadB}δλ-...'f = 0 , (4.10)

where
{A,B} = ΆB + BA;

j^E(QxpίBlίadλ_B-g-1(ίadB)dλ,BuB2

, iadλ_B2--iadBldλ-k2{ίadB2, ίadB}dλ-...,,

+ CB1<-»B2)+ (-— E(exp/5), -k2{ίadBιJadB2}dλ-... ) - 0 , (4.11)
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where the symbol (Bί*-+B2) denotes an expression obtained from the preceding
one by the exchange of Bί with B2;

—^ E(expiβ), iadλ_B — g 1(ίadB)dλ, Bu B2, B3

j^ΈiexpiB),iadλ^B3--iadB3dλ-k2{iadBl,iadB}dλ-...,BuB2

^E(expiB),...\ = 0 . (4.12)

We are interested in the above identities at B = 0, because such expressions only
appear in the sum (4.6). This simplifies them in an essential way. Consider at first
(4.10)atB = 0

, -dλ,B^ + ̂ E(l), iad^B^-iad^dλ = 0. (4.13)

For constant λ we get ((δ/δB)Έ(\), ίadλB1} = 0, and since the configuration Bx is
arbitrary, we get [/I, (δ/δB)Έ(l)~] = 0 for all λ e gc. The group G is semisimple, hence
this is possible only for the element 0 in the algebra gc. Thus we have the first, very
important consequence of the gauge invariance

^ E ( l ) = 0. (4.14)

This equality simplifies the identities, and also the sum (4.6), we can drop the term
with n = 1. We obtain the following set of Ward-Takahashi identities

53 — \BuB2,dλ)-(i-2

δB4^s,Bί9B2,B3,dλ} (4.15)

,Buk2{iadB2,iadB?}dλ

for an arbitrary gauge function λ, and arbitrary gauge fields Bu B2, B3.
Applying the above identities to the terms in (4.6) we will get expressions with

derivatives of the field B. Let us analyze bounds for these derivatives. The field

Bμ(x) = B(x, x + eμ) = ζπ(x)Qj(ηA, <x, x + eμ}) = ζu{x)Qhμ{γ]A, x)
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is defined on the unit lattice T}j\ The operation Qjtfl is translation invariant, i.e.,
QjtlL(rjA, x + a) = Qjιfl(ηtaA, x), where (taAv) (x) = Av(x + a), a e T^\ hence we have
the following formula for the derivative dvBμ

(dvBμ) (x) = ζπ(x + ev)Qjtμ(ηA, x + ev)- ζπ(x)Qjtμ(ηA, x)

= Σ ξ(dξζπ)(b)QJ9μ(ηA,x + ev)
bC[χ,x + ev]

+ ζπ(x)} dt ( ~ Qjt In A + ηt(tevA - A)), η(tevA - A)) ,
o \όA I

where xe Tlj), and for x'eT^,

(tevA-A)λM= Σ ξ(dξAλ)φ). (4.16)

The field A is regular on //-lattice, it satisfies the bounds (3.32), hence the derivative
cξAλ can be bounded by O(\)JJη. The same remark applies to the derivative dξζD.
More precisely, (3.32) and Proposition 5 [7] on functional derivatives of averaging
operations imply

\(dvBμ) (x)\ < 0(1) (α2 + B30(l)Ma0) (ljη)2 < ax(Ljη)2 . (4.17)

Thus the differentiation increases the power of Ljη by 1, and improves an overall
bound of an expression. For second order derivatives we have a weaker
conclusion, because we do not have bounds for second order derivatives of the field
A, only for Holder norms of first order derivatives in (3.32). They imply the bound

\(dλdvBμ)(x)\<a1(tiη)2 + β, 0 ^ ^ 0 < 1 , (4.18)

by similar considerations as in the proof of (4.17). The inequalities (4.17), (4.18) hold
for the field δB also.

We begin the analysis of (4.6) introducing simpler notations. We drop the
superscript (/) in (4.6), and denote

^ , l//D 0 ,1)) = E<">(Z), or simply E ("\ (4.19)

n

hence E{n)is a (X)g-valuedfunction Έμ

n)

u...,μn(xi, . . . 5 xj defined on a neighborhood
of D 4 in the unit lattice T^\ and

(4-6) = Σ 7 - ^ T 7 ( E ( " } , δB, "(X) B) . (4.20)
n = 2\n— 1)1 \ I

Let us consider the third term in the above sum. We apply the same method which
was used in [7], see especially (3.25)—(3.32) [7]. We write

(μ,χ),...,(μ3,X3)
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Because of the bound (4.17) the second term on the right-hand side above should
have a bound of the form (3.35). To prove it we use the identities (4.3) again. There
is a problem now, connected with the facts that the last factor (dBμ)(Γx X3) is a
function of two points instead of one, and it has the bound \(dBμ3)(ΓXiX3)\
< (XiiUη)2 \ΓXfX3\. The length \ΓXyX3\ = |x3 — x| is in £-scale, so it can be very big (of the
order O(M(Ljη)~x) for points x, x3 in Π 4 , but far apart. We have to use the
exponential decay properties to get a proper bound. Consider two possible cases.
In the first the points x, x3 are connected with the same set N(p) in (4.3). Then the
exponential factor, with a length of a shortest tree graph in the exponent, yields the
factor exρ( — δ0 \x3 — x|), and the product of it with \x3 — x\ is bounded by 6$ 1. The
second case is more complicated, the points x, x3 are connected with different sets
in a partition, and we apply the identities (4.3) with localizations at the points x, x3

fixed, i.e. with the summations over x, x3 left undone. A term corresponding to
such a partition can be estimated by

3 —X Eo exp( - κdj(X) - δ0 dist«>(X, x)

- δ0 dist«>(X, x3)) \B\2 \δB(x)\ \(dB) (Γ, iXs)|

< Σ

where x 0 is a fixed point in X. The exponential decay factors with δi are
determined by the three factors on the left-hand side, therefore the decay rate is
rather poor, δx = O(M~ *), because of the factor with κdj(X). Summing over x, x 3

we get finally the following estimate

/ α \ 4

|(the second sum in (4.21))|^ 32£3-^0((S1)c1(<51) Qxp(-iκdj(X))(Ljη)5,
\ α 2 /

(4.22)

hence this sum in (4.21) represents an irrelevant term. More generally, let us notice
that by a similar argument we can bound the derivative E (π)(X,x l9 ...,xM) by a
constant times the exponential

exp(-O(ί)κd£Xv{xl9...9xn}))9

where dj{Xv{xl9..., xn}) is a length of a shortest tree graph connecting cubes D
building the domain X, and points xl9 ...,xπ. This bound is enough to prove
bounds of the type (4.22), although with a worse constant.

Consider now the first sum in (4.21). The last factor Bμ3(x) is constant as a
function of x3, and we have

Bμ3(x) = (dμ3λx) (x 3), λx(x3) = £ (*3.v- *v)*v(*) (4-23)
v = l

The first sum can be written as <E(4), δB, B, B, dλx}, where we have indicated the
dependence on x explicitly. We apply the third identity in (4.15) taking into acount
the special role of the first variable x. It is simplest to differentiate this identity with
respect to Bu take B2 = B3 = B,λ = λx, and then multiply by δB(x) and sum over x.
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We get

<E(4>, δB, B, B, dλx) = 2<E(3), δB, B, i[λx, B]-$i[B, dλj)

+ <E<3>, i[4, <5B] -ftδB, δλxl B, β>

-2<E< 2 ) , δB,k2(iadB)
2dλxy

-2<E<2>, k2{iadB, iadδB}dλx, B} . (4.24)

Now we analyze successively all the terms on the right-hand side. For the last term
we have as in (4.21),

(E^\{iadB,iadδB}dλx,B)

= Σ <E<ί )

μ i (x,x 1 ) , { iαd J , μ W , iad 4 B μ W }β μ (x) ,B / 1 1 (χ)>
(μ,x),(μi,xi)

+ Σ <E^1(x,x1),{ίαίBμ(Jφκ«ί41)μ(;e)}5μ(x),(55 ί,1)(rX)je i)>. (4.25)
(μ,x),(μί,χί)

In the first sum above we write again Bμi(x) = (3μiAx) (x j , and by the first identity
in (4.15) this sum equals 0. The second sum can be bounded as in (4.22), hence it is
irrelevant. The second function in the term before the last is equal to

= h ίadBμiiXl)ίl(dBμi) (ΓXtXί), Bμi(x)] ,

hence this term is irrelevant also. Consider the second term on the right-hand side
in (4.24). The first function in it is equal to - l/2i[<5Bμ(x), Bμ(xy]9 because λx(x) = 0.
We apply again the same procedure as in (4.21), or (4.25), and it yields

- i < E ( 3 ) , ilδB, B], £, B} = - i < E ( 3 ) , i[_δB, JB], B, dλx)

+ (the irrelevant term)

9 BJ\ -ϊίVίδB, B], dλxl B)

-f- (the irrelevant term)

+i<E ( 2 )

9ip[δB,B],B],B>

+ (the irrelevant terms), (4.26)

where we have used again the equalities

ilBμι(Xl), (dλx)μι(Xly] = ilBμι(Xl), Bμi(x)] = WBJ (ΓXtXι), B,,(x)], λjx) = 0.

The second term on the right-hand side of the last equality in (4.26) is treated as in
(4.25), hence it is irrelevant and we obtain

-i<E ( 3>, /[δB, B], B, £> - -i<E<2>, i[δB, B], i [4, £]>

+ (the irrelevant terms). (4.27)

Finally consider the first term on the right-hand side of (4.24). This term with the
function — l/2ΐ[B, dλx~\ is irrelevant, by the equality written after (4.26). We apply
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the procedure in (4.21) to the term with i\_λx,B~\

2<E<3>, δB, ilλX9 B], £> = 2<E<3\ δB, i\_λx, B], dλx}

+ (the irrelevant term)

= 2<E<2>, δB9 ilλx, ilλx, B]] - i iplλc Bl dλj >

+ 2 < E ( 2 ) , iiλx, δB] - i p B , a y , ί[

+ (the irrelevant term)

-<E<2U<5B,B],i[4,B]>

+ (the irrelevant term). (4.28)

We can still simplify expressions in the last equalities in (4.27), (4.28), replacing all
fields B by their values at the point x. The difference B() — B(x) = (dB) (Γx .) gives
rise to irrelevant terms. Thus the equalities (4.21), (4.24), and the simplified
equalities (4.27), (4.28) yield

E<4), δB, 0B\ = 2<E<2\ δB, ίlλx, ilλx, B(x)]]> - <E<2\ δB, i\

+ (the irrelevant terms). (4.29)

Let us consider now the second term in the sum (4.20). Again, we apply the
procedure in (4.21), but we expand the last factor up to second order around the
point x. We have the following Taylor's formula on a unit lattice, analogous to the
formula (3.10) [7]

(4.30)

where [Γx y[μ denotes the part of the contour /^parallel to the μ-th axis, including
the initial point and excluding the final point. This formula is applied to the
function Bμs(x3) at y = x3. By (4.18) the last term on the right-hand side can be
estimated by 2l^,jc3l

2 αi(^)2 +^ with a positive β. For the expression
<E(3),B,B,B(2)>, with this last term inserted in the place of B(2\ it implies the
bound (4.22) with the power 4 + β instead of 5 in the last factor. Hence this is an
irrelevant term. Let us denote

Σ
v = 1
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We have

/ E ( 3 ) , δB, (g) fl\ = <E ( 3 ), δB, B, dλx) + <E ( 3 ), δB, B, B(-, x)>

+ (the irrelevant term)

= <E ( 2 ), δB, ilλx, B] - i ί [ B , dλj)-i<E(2), i[_δB, B], B)

+ <E ( 3 ), δB, B( , x), δ/ίx> + (the irrelevant term)

= <E<2>, δB, i[_λ

-\-\ML, ,0D, ιιλx,r>{',x)] — 2ι\_t>y',X), Cλx\)

- i<E ( 2 ) , i[δB, B], B( , x)> + (the irrelevant terms)

= <E ( 2 ), δB, i\_λx, B(x)]> + 2<E ( 2 ), (55, z[Ax, B( , x)]>

-<E<2>,<5B,ί[B(.,x),B(x)]>

- <E ( 2 ), ί[δB, B], B( , x)> + (the irrelevant terms). (4.31)

Here, in the last equality, all fields and their derivatives are taken at the point x.
Thus we have reduced the analysis of the sum in (4.20) to the expression

involving the functions E ( 2 ) only. We will investigate these functions carefully in
the next section, now we will draw further consequences of the gauge in variance.
The basic identity (4.9) holds for all gauge transformations, hence for constant
transformations it is E(expi7?(i;)B) = E(expiB), and it implies

<E ( 2 ), R(v)B, R(v)B} = <E ( 2 ), B,B), veG. (4.32)

The corresponding function E{^v(x, y) has values in the tensor product g® g, and
the above identity implies

R(υ)® R(v)Ef\(x, y) = Ef\(x, y ) , veG. (4.33)

The infinitesimal form of this identity is a consequence of (4.11), or the second
identity in (4.15). An element E in g(x)g can be identified with the matrix Eab of
components in the basis {τα(χ)τ&}, τa are generators of the algebra g, or with the
bilinear form <E, A®By on g. With our assumptions on the group G the identity
(4.33) holds for E if and only if Eab is proportional to the identity matrix, Eab = Eδab,
and then <E,A®By = EtrAB. This gives a further simplification of the ex-
pressions in (4.29), (4.31).

Let us write the result of the preceding analysis

(4.6) = Σ E£>V(X, x, y) tvδBμ(x)Bv(y)
(x,μ),(y,v)

+ Σ Σ (ΣV?Mx,χ,y)(yκ-χκ)(yχ-χJ
x μ, v,κ, λ \ y

x {trδBμ(x)iίBκ(x), (3A) (*)] +^rδBμ(x)i[Bκ(x), i[Bλ(x), Bv(

+ Σ Σ (Σ K2Mχ> *> y) (yκ -
 χ

κ)) \ I tvδBμ(x)iiBκ(x), BV(X)]
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X

v ) (x), B v (x)] - X-tvδBμ(x)i[_Bμ(x\ (dκBx) (x)]

κ{x\ Bv(x)], Bv(x)]

μx)i\_Bμ{x\ i[BK(x),Bv(x

+ (the irrelevant terms). (4.34)

The sums over x above are restricted to suρp<S2?C •, and the sums over y are
restricted to s u p p B c s u p p ^ . The expressions in this formula are local poly-
nomials in the fields δB, B. The first expression on the right-hand side, which is
simply <E(2)(X), δB, B}, is not analyzed yet. We will analyze it in the next section
using momentum representation and symmetries. The second expression is
already in an almost correct form; we have to use only Euclidean symmetries to
reduce it to a final form. By the Euclidean symmetries the third expression should
vanish.

To make use of the Euclidean symmetries we have still to make changes and
resummations of the expressions in (4.34). At first we have to change the function
£7/Π0) used in the definitions of E(n)(X). For n = 2, and by the identity (4.14), the
formula (4.3) yields 2

E(2)(X) = / JpE(X, 1), ff/Do), H/po)\ . (4.35)

If we replace Hj(Ώ0) by Hj with free boundary conditions, then the difference
Hj( D 0 ) — Hj restricted to X x supp<fD, yields the factor Bo exp( - δ0M(Ljη) ~ *) in a
bound of the corresponding expression. Thus this change increases the sum of the
irrelevant terms by the expression of the form (4.34), but with very small
coefficients. Next, we extend summations over y to the whole lattice Z 4 . The
difference between the sum over suρp<fD and the sum over Z 4 is a sum over a subset
of ( D 3 ) c n Z 4 . This gives again the exponentially small coefficients. Finally, the
crucial step is an extension of the sum over localization domains X. In this section
we consider the expressions with the localization domains X satisfying the
condition X C • 2, for a given cube D. The expressions with localization domains,
which do not satisfy this condition, are exponentially small in LJη, either because
the domains are large, or because their distances to D are large. We have analyzed
it in Sect. 3. Of course we have the sum over all X e D 7 in (3.7), the sum connected
with the representation (1.7) of E°λ This sum was divided into two subsums for a
given D, and in this section we consider this subsum for which X e D^, X c Q 2. We
extend it to all X e D^, where Dj is the class of localization domains constructed
for the lattice ξZ4. More exactly we make this extension for all explicitly written
terms in (3.34), not for irrelevant terms. This means that we sum the function
E ( 2 )(X) over X e D j , because the other expressions do not depend on X. The
difference between the two sums gives a function satisfying the following inequality

(-δ 1 |x-3; |), for x e D , (4.36)

hence, substituting it into (4.34), we get an irrelevant expression again.
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Thus, after all the changes and resummations, we obtain an expression which is
equal to this in (4.34), with the function Έμ

2\(X, x, y) replaced by

Πμ,v(x,y) = Σ Έ™(X,x,y)9 (4.37)
XeΌf

and the irrelevant terms resummed over X eΌp XcQ 2. The function Π is called
the vacuum polarization tensor. We will investigate it in the next section.

In this and the previous sections we were concerned with the term
EU)(Uk(expiBΎ{k)))-E{j)(Uk(V{k))) in the fluctuation field action. There is the
second term under the sum over j , the term

βjigj. 0 (A(l//expiBΎ(fc>)) - Λ(Uk(V^))). (4.38)

We localize it by the partition of unity connected with the partition π p and we
apply to it the whole procedure of these two sections. As a result we obtain all the
well controlled terms, and the terms in (4.34) with the function E ( 2 ) replaced by the
corresponding function calculated for the expression (4.38). By (4.35) it is equal to

ydxl χ,μ<v

= βJ<gj-1)<dξHJ{Π0)9ζπ.d%{Π0)>9 Π'επj. (4.39)

Replacing the functions Hj(Π0) by Hj and summing over all D ' in £Z 4 yields the
following expression, as the expression corresponding to (4.37)

βjiθj-1) <dξHj9 d
ξHj) = βj(gj_ ι)Δj, (4.40)

where Aj is given by the explicit formula (1.66) [10]. This formula allos us to
understand clearly a final form of the expression (4.34) in this case. The function
Ajμv(x — y) in the momentum representation of (1.66) has the following expansion
around 0:

Aj,μv(p') = Ao(p')δμv — d1

μ(p')dl(p') + (tevms of higher order in //), (4.41)

see (1.29)—(1.37) [10] for an explanation of symbols used in connection with
momentum representations. This implies that the first term in (4.34), written for
(4.40) instead of E ( 2 ), is represented as

βji9j-i)ί Σ tτ(dδB)μv(x)(dB)μv(x) + (irrelevant terms). (4.42)
x,μ,v

In the second term we have the expression

βj(gj-ί)ΣΛj,μAχ-y)(yκ-χκ)(yλ-χλ)=-βj(gj-1)(j^-Alμ)i(0)

Using this equality we represent the second term as

;•- I) Σ trδBμ(x) {ι[Bv(x), (δB)μv(x)'] + i[Bμ(x), (dvBv) (x)]
χ,μ,v

+ i[(3vBJ (x), B,(x)] + j[Bv(χ), HBJx), B v(x)]]}. (4.44)
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In the third term we have the expression

βj(9j-i) Σ Λ,,v(* - y) (yκ - *κ) = βjiθj- ,) ( T / r ΔhΛ (0) = 0, (4.45)
y \ ι aPκ /

hence this term vanishes. Thus the only terms in the expansion of (4.38), which we
do not control yet, more exactly for which the sum over j has not a uniform bound,
are terms (4.42), (4.44). In the next section we will prove that the polarization tensor
Π has a similar structure as the operator Aj9 especially it has an expansion of the
form (4.41), but with a coefficient. We define the /^-function βj(gj_1) equal to this
coefficient. The corresponding terms from (4.34) are equal to (4.42), (4.44) also,
hence both groups of terms cancel, because (4.38) appears with the minus sign in
the effective action (1.6).

5. The Analysis of the Vacuum Polarization Tensor and the jS-Functions

The vacuum polarization tensor is defined by the formula (4.37) of the previous
section. From this it follows that it can be defined also as

This representation is basic for the further analysis, because it implies symme-
tries of the tensor. The function Eu\Uj(QxpίB)) is invariant with respect to all
Euclidean symmetries r of the lattice Tfj\

E0)(l7/exp irB)) = Eu\r L7/exp ίB)) = E0 )(l//exp iB)), (5.2)

where the fields rU,rB are defined by the identity (rll)(rb)= U(b), hence

(rU)(b) =U(r~1b), (rB)(b) = B{y-1b). (5.3)

The invariance (5.2) yields the following covariant transformation law for the
polarization tensor:

Π(rb,rbf) = Π(b,br), (5.4)

where Π is extended to negatively oriented bonds by the equality Π( — b,b')
= —Π(b,b'\ similarly for the second argument. We would like to get the
representation (4.41) for the function

Πμv(x, y) = JI(<x, x + eμ>, <j, y + e v » . (5.5)

Unfortunately the Euclidean covariance (5.4) takes on a more complicated form
for this function. We formulate it explicitly in two special cases, which we will
use in the sequel. If r is a transformation defined by a permutation π:
(rx)μ = xπ-ιiμ), then the equality (5.4) can be written as

Πμv(rx, ry) = Πn - Hμh π - 1 (v)(x, y) = ((r®r)Π)μv(x9 y). (5.6)
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If r is a reflection in a part of the components of x: rx = εx, (εx)μ = εμxμ, εμ = ± 1,
μ = l , ...,d, then (5.4) can be written as

K, εx + εμeμ}, (εy, εy + εvev)) = Π((x, x + eμ}, <y, y + ev)).

This and the definition (5.5) yield

• εy — τ ^ ~ ev) = ε

μ

εvΠμv(χ, y) • (5.7)

The function Π is also translation invariant and symmetric, hence

J7μv(x, 3;) = Πμv(x - y), Πμv(x) = Πvμ( -x). (5.8)

The gauge in variance, expressed in the first identity (4.15), implies

X d*Πμv{x -y)=Σ SvΠμv(x -y) = 0. (5.9)
μ v

The representation (4.37) yields the following inequality

δt\x-y\), (5.10)

with a positive constant δ1 determined by δ0, K, and M (e.g.,
δ1 = l/2min{(50, /cM"1}). Take the momentum representation of this tensor

Πμv(p)= Σ e-^xΠμv(x)9 Πμv(x) = (2πΓ4μPe
ίx pΠμv(p), (5.11)

Z4Σ
xeZ4

the integration over p with components pμ satisfying \pμ\^n. The function
Πμv(p) is periodic in variables pμ, with the period 2π. By the inequality (5.10) it
can be extended as an analytic function to complex variables ζμ = pμ + iqμ,
\qμ\<δ1. This property is the basic reason why we have taken the infinite
volume limit in (5.1). Let us write the symmetry properties (5.6)—(5.9) for the
function Πμv(ζ)\

Πμv(rζ) = ((r®r)Π)μv(ζ) if r is a permutat ion, (5.12)

)πμv(ζ), (5.13)

^ ( 0 = ̂ - 0 , (5.14)

Σ dμ( - 0Πμv(ζ) = Σ δΛOΠ^ίί) = 0, (5.15)

where dμ(ζ) = eiζμ-l.
We will analyze this function using the above properties only. Our goal is to

prove a representation of the form (4.41), more exactly of the form

Πμv(p) = β(δμvA(p)~dμ(p)dv(p)) + (terms of higher orders in derivatives d{p),d(p)),

(5.16)

and to find the coefficient β. To prove bounds for the expression in (4.34)
connected with the remainder in the above representation, it is important to
write it explicitly as a higher order polynomial in d(p),d(p) with analytic
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coefficients. We obtain such a representation using some simple expansion
connected with the Laurent series expansion. It was used already in [43] for a
similar purpose. To use this expansion we have to choose properly new
variables. Because of the periodicity properties of the function Πμv(ζ) it is
natural to choose the variables zμ = βlζμ, hence we define

e~δ"<\zμ\<eδ\ (5.17)
\l I J

or

The functions fμv(z) are analytic on the polyring χ{e δl<\zμ\<eδί], and the
properties (5.12)—(5.15) imply the following ones: μ

fμv{rz) = ((r®r)f)μv(z) if r is a permutation, (5.18)

[here zε = (zV,..., ff)\

fμM=U(z~ι), (5.20)

Σ(z; 1 -l)/ μ v (z)= Σ(^v-l)/μv(z) = 0. (5.21)
μ v

Now, a given function /(z) analytic on the ring {e~δι<\z\<eδι} can be
represented as f(z) = g+(z) + g~(z~ι\ where g+{z\g~(z) are analytic on the disc
{|z|<eδl}. This representation is obtained by taking regular and singular parts
of the Laurent expansion. It is unique up to an additive constant, and it can be
made unique requiring some normalization conditions. These conditions de-
pend on the property (5.19). Consider cases with one component of ε equal to
— 1. If the index of this component is different from μ, v, then the transformation
law in the one variable is f(z~i)=f(z). The normalization condition
g+(0) = g~(0) implies then g~(z) = g+(z), and we have the representation /(z)
= g{z) + g{z~1), g(z) = g+{z). If the index is equal to μ, then the transformation
law is f(z~ί)= — z~1f(z). The normalization condition g+(0) = 0 implies g~(z)
= —z~ιg+{z), and we have f(z) = g(z) — zg(z~1). Finally, if the index is equal to
v, then /(z~1)= — zf(z\ and the normalization condition g~1(0) = 0 implies
g~(z)=-zg+(z% f(z) = g(z) — z~1g(z~1). Applying these representations to the
functions fμv(z), to each variable separately, we obtain

Jμ\\Δ)— Zjσμvv^ /5 \J.ΔJLJ
ε

where the functions gμv{z) are analytic on the polydisc X{\zμ\<eδl}. They
satisfy the normalization conditions: μ

(ε',ελ= + l,ε")/y Π /') — cr^''ε^= ~ ̂ "J/V Π z") ί5 23)

for the indices λ different from μ, v, if μ φ v, or for all the indices λ9 if μ = v;

g(ε\εμ=
 + 1>ε")(z\09z") = g^'εμ= ~1'ε")(z/, 0, z") = 0, (5.24)
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if μφv. These normalization conditions and the transformation laws (5.19)
imply the equalities

Denoting gμv(z) = g(

μv'
1"> ' + 1)(z), we get the following representation:

f f-\— V P P 7 (1-ε μ )/2 7 -(l-ε v )/2 o . /_ε\ (*> Ί&\
J W V ^ Z J— 2-ι U v U V σuvv /* ^J.ZίU^

£

Let us now write properties of the functions gμv(z) equivalent to the properties
(5.18H5.20). The equalities (5.18) are equivalent to

gμv(rz) = ((r®ήg)μv(z) if r is a permutation. (5.27)

The equalities (5.19) are implied by the form of the representation (5.26). The
equalities (5.20) are equivalent to

gjz) = z;1zμgvμ(z). (5.28)

From the definition of the function fμv(z% we have also the following
representation:

/μv(*)= Σ z-χΠμv(x), (5.29)
xeZd

hence the terms of the representation (5.22) are obtained by restricting corre-
spondingly the range of the summation in (5.29). This implies that all these
terms, and in particular the function gμv(z% are real functions for real variables z.
It is possible also to write the gauge invariance (5.21) in terms of the functions
gμx(z), but it is much simpler to investigate its consequences later on, for
simplified representations.

The first step to get (5.16) is to expand the functions gμv(z) up to the third
order around the point (1,...,1)=1,

d \ , 1 id
. - i ^

Σ ( z κ -
λ

κ,λ,ρ Z θ \CZκ0Zλ0Zρ

=ZgμvW+Σaμv,κ(ZK-1)+^ Σ bμy%κλ(Zκ-\){Zλ-\)
K ^ κ,λ

+ Σ gμv,κλί(z)(zκ-i)(zλ-ί)(ze-i). (5.30)
K, λ,ρ

The coefficients a, b and the functions g above are real for real values of z, the
functions are analytic on the polydisc \{\zμ\<eδl}. Let us investigate the
coefficients. The properties (5.27) imply μ

( έ ) ~ l z ) (5 31)
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for all permutations r, identically for higher order derivatives, hence
aμv,ρ= Σ rμκrvλrQϋaκλtσ, the same for bμVtKλ. (5.32)

This implies that all the coefficients aμvκ with three different indices are equal,
similarly all the coefficients aμμv with μΦv are equal, and so on. The same
conclusions hold for bμvκλ.

Now we substitute the expansion (5.30) into the representation (5.26). Only
the first three terms on the right-hand side of (5.30) may contribute to the basic
second order operator in (5.16), the third order terms in (5.30) give rise to the
higher order terms of the remainder in (5.16). They have also the desired
analyticity properties. Some of the lower order terms in (5.30) generate higher
order terms also. Writing explicitly only the lower order terms, and making
simple algebraic transformations, we finally get the following representation:

-(z;1 - ί)(zμ-1)]

t μ + bμμt μμ){zμ

 1 -

+ Σ [/^K
K,λ,Q

μ ρ ; . l , (5.33)

where the dots denote summation over other possible third order monomials in
z" 1 —1, z —1. The coefficients / ' are analytic functions on the polyring in (5.17).
Let us make a few comments about the above formula. For z = l we get fμv(l)
= δμv2

dgμμ(l), hence /μv(l) = 0 for μφv. Differentiating the second identity in
(5.21) with respect to zμ and taking it at the point 1 yields /^(l) = 0, hence
gμμ(l) = 0 by the above equality. Thus the whole term in the first line on the
right-hand side of (5.33) is equal to 0. Now we investigate consequences of the
gauge invariance (5.21) for the explicitly written lower order terms in (5.33). We
multiply (5.33) by zv —1, sum over v, and we obtain an expression identically
equal to 0. This expression is an analytic function in a neighborhood of the
point 1. Expanding it into a power series we obtain a system of equations from
the fact that the coefficients of this power series are equal to 0. We have to
consider third order terms only, and the equations are

gμv() μv,μ μ v , v ~ 4bμv> μv = 2(dμμ> v + feμμ, v v ) for // φ V ,
(5.34)

&μμ\*) ^μμ,μ •" ^®μμ, μ *μμ,μμ= A^μμ,μ ' ®μμ, μμ) '

Denoting the left-hand side of these equations by — βμv, we have

We have discussed already the consequences of the symmetries (5.32). They
imply that all the coefficients βμv for μΦv are equal. Denoting the common
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value of 2d~2βμv by β9 we get

fμv(z) = β/δμvYj(z~1-l)(zκ-l)-(z;1-l)(zv-l)) + ... . (5.36)

\ κ J
This is the desired representation of the functions /μv(z). Using the relations
(5.17) and substituting zμ = eiPμ

9 we obtain finally

Πμv(p) = β(δμvA(p) ~ W)dM + Π'μv(p). (5.37)

The function Π'μv(p) has all the symmetries of the function Πμv(p) and it can be
written in the form of a third order polynomial in the derivatives d(p), d(p),

Π'μJp)= Σ ίΠ'μv<κφ)dκ(p)dλ(p)dβ{p) + Π'μ^λQ{p)dκ(p)5λ{p)dβ{p)+ ...-] .(5.38)
K, λ,Q

The coefficients W can be extended to analytic functions of ζ = p-\-iq on the

polystrip X { l l ^ }
μ

It remains to calculate the coefficient β, i.e., to express it in terms of the
tensor 77. We have

μ μ , μ μ , μ,μv) (5.39)

for μφv, e.g., for μ = l, v = 2. The representation (5.26) yields

(Zl,z2,l)). (5.40)

Differentiating it with respect to zuz2, at z 1 = z 2 = l, we obtain

tl2) = β9 (5.41)

and

i d 2 \ ί d2 \

for μ Φ v. This is the fundamental equality defining the β-function.
Let us finish now the analysis of the previous section. The first term on the

right-hand side of (4.34), after all the changes and resummations, and using
(5.37), (5.38), can be written as

Σ Πμv(x-y)trδBμ(x)Bv(y)
(x,μ),(y,v)

= βi Σ tr(dδB)μv(x)(dB)μv(x)
x, μ, v

+ Σ \.Tl^κλe{x-y)ir(dκdλdβδBμ)(x)Bv{y)
(x,μ),(y,v),κ,λ,ρ

+ Π'μVt Kt λQ (x ~ y) tr(dλdρδBμ)(x)(dκBv)(y) + . . . ] . (5.43)

The analyticity properties mentioned after (5.38) imply the corresponding
exponential decay properties of the functions in the above formula. More
exactly, we have

(5.44)
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In the third order terms in (5.43) we can always shift the derivatives onto the
other function, so we can write them in the form in which SB is differentiated
once, and B twice. The bound (5.44), and the bounds (4.14), (4.15) for derivatives
of δB, B imply that all these third order terms in (5.43) are irrelevant. Defining
the function βj as equal to the coefficient β in (5.43), we see that the first
expression there is cancelled by the first expression in (4.42). The second term
on the right-hand side of (4.34) is equal to (4.44), and is cancelled by this
expression. The third term is equal to 0. In both cases we have used the fact that
the first and second order derivatives of the function Π'μv(p) vanish at p = 0, so
we have to calculate the corresponding expressions in (4.34) for the first term on
the right-hand side of (5.37). These calculations are the same as in (4.43), (4.45).

Thus we have finished the analysis of the fluctuation field effective action in
(2.13) from the point of view of analyticity properties and bounds. We have
transformed this action in such a way that a uniform bound is clear. The terms
of the transformed action have also good analyticity properties, but they are
still nonlocal in the fluctuation and the background field; more exactly they do
not have localization properties connected with good bounds. In the next paper
we will construct such localizations and prove the bounds. They are used to
construct a cluster expansion of the integral in (2.13), and to finish the proof of
the inductive assumptions for the term E ( f c + 1 ) defined by (2.13).

Finally, let us make some remarks about the functions E(n\ obtained by the
changes and the resummations of the functions Έ{n\X) in (4.3), and about the β-
functions. In this section we have analyzed the function E ( 2 ) = i7 using the
symmetry properties and the analyticity properties of the momentum represen-
tation. We can do a similar analysis for the higher functions, e.g., for E(3), E(4),
again using the symmetry properties, especially the Ward-Takahashi identities
(4.15). We can represent these functions as sums of basic marginal operators
with the coefficient β, and higher order operators leading to irrelevant terms.
Then we can use this representation to analyze the whole expression (4.3) in the
same way as the term with E ( 2 ) was analyzed in (5.43). This would give a
method alternative to that applied in the previous section. It is connected,
unfortunately, with a lot of technicalities and calculations of an algebraic
character, and it seems that the method presented in the last section is more
clear and simpler. The β-functions are related in the simple way to the tensors
Π by the formula (5.42). In fact we should write the superscript (j) at the tensor
in the formula (5.42) defining the function βj. We write βj as explicitly
dependent on g^u although it depends also on all preceding coupling con-
stants. The dependence on g7_! is important and it determines main properties
of the renormalization group equations.
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