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Abstract. We show that any quantum dynamical semigroup can be written with
the help of the solution of a vector-valued classical stochastic differential
equation. Moreover this equation leads to a natural construction of a unitary
dilation in term of Wiener spaces.

1. Introduction

In this paper we study dilations of quantum dynamical semigroups. Such
semigroups are the quantum analogues of classical Markov evolutions and they
describe irreversibility without memory effects. The mathematical structure of
quantum dynamical semigroups and their generators has been studied by many
authors e.g. [1-4]. The dilation problem consists now in constructing a larger
reversible dynamical system in such a way that the semigroup evolution arises as a
reduced dynamics. The existence of dilations of quantum dynamical semigroups has
been studied from a purely mathematical point of view in [5]. Recently, however,
quite a few papers have been published in order to obtain explicit and physically
relevant constructions of such dilations [6-8].

It is well known that classical Markov evolutions are generated by stochastic
equations of Langevin type driven by Brownian motions. For quantum dynamical
semigroups a construction of the following nature has been described by [9-11].
The quantum system is coupled to either Fermi or Bose fields of dimension 1 (both
cases can be handled). Then a reversible dynamics of the composed system is
constructed with the help of a quantum stochastic differential equation in the sense
that not only the equation is operator-valued but also the noise terms are given by
quantum fields. The fact that the noise terms do not commute is essential in this
scheme in order to obtain a general quantum dynamical semigroup as reduced
dynamics. Technically this approach uses therefore a non-commutative version of
the Ito stochastic calculus.

Our approach is quite different [12]. We start from the observation that the
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quantum dynamical semigroup is generated by a stochastic differential equation on
the vectors in the Hubert space of the system; moreover it is sufficient to consider
as driving term a multidimensional Brownian motion. The stochastic evolution of
a vector in the system space can in general not be expected to be unitary. This is not
surprising, also for the classical case the solution of the Langevin equation is not
given in terms of canonical transformations of the phase-space of the system.
However this stochastic evolution defines for a given initial state a vector-valued
random variable φt(ω\ t ̂  0 with time independent L2 norm. We show next that it is
possible to construct a continuous unitary cocycle on the L2 space of vector-valued
random variables which maps the initial vector into its evolved random variable
φt(ω). Finally, composing this cocycle with the unitary shift we obtain a dilation of
the quantum dynamical semigroup. Formally the generator of the unitary dilation
group involves a very singular coupling between the system and the bath; for this
reason we prefer to construct the evolution in terms of solutions of (ordinary)
stochastic integral equations.

II. Quantum Stochastic Equation with Classical Noise

We denote by B = (Bk)k=1 d the d-dimensional Brownian motion. Let Ω(d} be the
space of continuous sample paths on IR with values in Ud and $ the smallest Borel
algebra generated by the sets {ωeΩ(d) \ ω(t) — ω(s)eA}, A Borel set of [Rd, s < t e [R and
denote by dP the Wiener probability measure defined by B on $. L2(Ω(d\ dP) is then
the Hubert space of complex-valued dP square integrable functions on Ω(d) and
{EJseIR} is the family of conditional expectations which act on L2(Ω{d\dP) as a
strongly continuous family of orthogonal projections. We also write the scalar
product in L2(Ω(d\dP) as

), f,geL2(Ω<d\dP)9

where E is the expectation with respect to the Brownian motion. The system will be
described by a separable complex Hubert space 2f and will be injected into

(Ω(d\ dP\ (1)

where e is the unit function on Ω(d\ We will also use the notation Xφ instead of
(X®^}φ for Xe&(JP)9 φ<Ξ3e®L2(Ω(d\dP\

We should also remark here that we use two different symbols for the scalar
product in je®L2(Ω(d\ dP):

(φ,ψ)^(φ\ψy and W>,ιAHE«ΦIΆ»

The first notation will be used for Hubert space type arguments, whereas the second
is used to make a connection with current practice in probability language. In the
last case φ and ψ are looked upon as Jf -valued random variables and (φ\ψy
denotes the scalar product in #f, hence <</>|^> is now a complex-valued random
variable on Ω(d\

Next we consider a d-tuple V = { V1 , . . . , Vd] of bounded linear operators on tf
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and we use the following vector notation:

VdBt = £ VkdBk

t, etc.
k=l

Consider now the following stochastic differential equation on ffl ®L2(Ω(d\dP\

dφt = Kφtdt + VφtdBt , ί ̂  0 (2)

with initial condition φ0 = a®e, aeJjf, where Ke^(^f). The solution φt, t ̂  0 is an
adapted process which satisfies: Vαe Jf and t ̂  0,

E(| |φ r | |
2 )= II α||2, iff K + K*=-V*V. (3)

The link between such stochastic differential equations and quantum dynamical
semigroups is now given in

Proposition ILL Let </> n £^0 be the solution of Eq. (2) with initial condition
, and suppose that Ke^(^if) satisfies condition (3), then for all

) = (a\etL(X)a\ (4)

where

L(X) = K*X + XK+ V*X V (5)

is a generator of a semigroup of completely positive unity preserving mappings on ^(^}
[2,3].

Proof.

Hence there exists a unique function ίe(R+ -> Xtε^(J4?) such that E((φt\Xφty)
= <α| Jr fα>, where Xtε&(3tf) and X0 = X. By Ito-calculus,

+ (dφt\Xdφt))

(vφtdBt\xvφtdBty)
v*xv)φty)dt

and therefore Xt = etL(X\ t ̂  0.

III. Dilation of the Quantum Dynamical Semigroup

In order to construct a unitary evolution on J4f®L2(Ω(d\dP) which coincides for
ί ^ 0 and the special initial condition φQ — α ® e, αe Jf with the solution of Eq. (2),
one has to introduce a modified Eq. (2). For a heuristic motivation of this new
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integral equation we refer the reader to [12]. We now first introduce new operators
onL2(Ω(d\dP).

For ί^O and k= l , . . . ,d,let

y/), feL2(Ω(d\dP\ (6)
Ό

then

E(|μ?)*/Ί2) = ι

and therefore 04?)*,^ 0 is a bounded linear operator on L2(Ω(d\dP) with norm

||μ?)*|| = I I M f ) l l = ί 1 / 2 . (7)
We define also the free evolution {U?\teU} on L2(Ω(d\dP) by

((t/f°/)(ω))(s) = (/(ω))(s-ί) fεL2(Ω(d\dP\ ωεΩ(d} s,tεU. (8)

{C/^l ίe lR} is a strongly continuous group of unitary operators on L2(Ω(d\dP).

Lemma III.1. The following covariance relations hold:

Uθ-t(BSί-BS2)U? = ESl + t-Ba2 + t, sl9s29teR, (9)

(10)

(11)

Proo/. Follows immediately from the definitions.

•We now introduce the evolution equation on Jjf ®L2(Ω(d\dP}. For ίe[0, T],
T ^ 0, let ^Y be the Banach space of continuous functions

fe[0, Γ] -> 0 feJf ® L2(Ω(d\dP]

equipped with the norm

We say that φε<gτ satisfies Eq. (12) with initial condition φQe^f ® L2(Ω(d\ dP\ if for

l= sup ||
f6[0,Γ]

5)d5 + VEs(φs)dBs, (12)
0 0

where Kε&ffl) satisfies condition(B).

Theorem III.2.
i) VT>Qαnd φQe2f®L2(Ω(d\ dP)3l solution φt ofEq. (12) with initial condition φθ9

ii) 3 strongly continuous family {Wt\tER} of unitary operators on ^)®l2(Ω(d\dP)
such that φt = Wtφ0, where φt satisfies (12) with initial condition φ0for t ̂  0,

in) Wtl+t2= V\Wt2υ^Wti tlίt2εU. Hence {Ut=U?Wt\tER} is a strongly cont-
inuous group of unitary operators on 3^®L2(Ω(d\dP),
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Proof. The proof is divided in several steps. First of all we show that Eq. (12) admits
locally (for small T) a unique solution (A); next we obtain the local cocycle relation in
terms of the solution of (12) (B); then we obtain for small T the existence of bounded
linear operators Wt such that φ(t) = Wtφ0 and the local cocycle property for the Wt

holds (C); in (D) we show that those Wt are isometric and in (E) that they are unitary
and finally in (F) we extend the Wt to the whole of R.

(A) We denote by || V \\ = £ || Vk \\.
k=l

Let T < TO - ({|| V ||2 + 41| K \\}1/2 - || V \\ )/21| K \\ and consider the iteration scheme

$« + D = (1 _ Ztγ*)φQ +
0 0

From (7), (11) and the properties of the Ito integral it follows that φ("]eΉτ,
n = l , 2 , . . . .

Furthermore,

= sup
ίe[0,Γ]

^ sup
ί6[0,T]

g sup ||
ίe[0,Γ] 0

sup v
ίe[0,Γ] (.0

^ { || K i i T + i i v i i r1/2} nι$?) - 0ί«- ^111
where C < 1 as T < T0. Hence by the fixed point theorem (12) has a unique solution
in <gτ.

(B)
Consider ί l5ί2e[0, T], T<T 0 , such that ίι + ί2e[0,T] and for

φ0εJjf®L2(Ω(d\dP) the equations

φ, = {1 - 4F*}00 + }K£s(0s)ds + \VEs(φs)dBs,

o o

We next show that </> ί l + ί 2 = UQ-tlψt2.
In order to do so we need a few auxilliary results:

i) For ί, ί j ^ 0 and fεL\Ω(d\ dP\

VEs(φs)dBs.

(13)
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Indeed for all geL2(Ω(d\dP) one has

AlfI 1 J

= ( Jdfl'E, J dBlEs(g) / =0.

ii) For ί, ίj 2; 0 and fs an adapted process on L2(Ω(d\dP) one has

μf+(1-4
Indeed for all geL2(Ω(d\dP)9

(14)

= o.

iii) For ί, ίx ̂  0 and /s and adapted process on L2(Ω(d\ dP)

(15)

Again, for geL2(Ω(d\dP\

ί dBs,EM
ίi \ 0

-0.

We now compute for t > 0, using the covariance relations (9), (10) and (11) from
Lemma III.l, (13), (14), and (15),

U°_tί\VEs(ψs)dBs
o o

= φtl - (Άt+tl - Atί)V*φtί + ']>lKEs(U°_,ψs_tί)ds

+ ί

J
ί + ίi

- ί
ίl

ί + ίi

j
ίl

ί + ίi

ί + ίi

+ J VEs(φs)dBs + ' j"
0 ίi

Define now a new function </>(•) in

for 0 ̂  ί ̂  ̂

f > f _ f l f o r ί > ί l 9
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then we just have shown that $(•) is a solution of (12); therefore by uniqueness we
have $t = φt, ίe[0, T], and so

(C) From the iteration procedure in (A), we immediately obtain for 0 5Ξ ί ̂  T0 and

1 +ί1/2 11? II
r I I ώ> l l -

Therefore there exists for 0 ̂  t < T0 a family of bounded linear operators Wt on
^f®L2(Ω(d\dP) such that Wtφ0 = φt9 where 0, is the solution of (12) with initial
condition φ0. As φtE^τ, Wt is strongly continuous in ί and satisfies by (B) the local
cocycle relation

W,1 + l l = l/0_ ί lW ί ϊl/<X1, ί^ίi + ίzepm (16)

(D) In order to show that Wt,Q ^ t < T0, is an isometry we use the local cocycle
relation (16):

II Wt + eχ\\ - || Wtχ\\ = || U<ίtWεU?Wtχ\\ - \\ U?Wtχ\\

= \\WeU?Wtχ\\-\\U?Wtχ\\9

it is therefore sufficient to show that for any φ0e3?®L2(Ω(d\dP)

l i m + - { | | W Ά I I - U 0 o l l } = 0 .
ε->0 £

We verify Eq. (17) by keeping in (12) all terms up to 0(ε),

Wεφ0 = φ0-ΆεV*φ0 + ΪVEs(φ0)dBs

We then get:

(17)

VES(ΆSV *φϋ)dBs + j VES, VEs(φ0)dBsdBs, + o(ε).
0 0 \0 /

+ 2ReJds<0 0 l
0

\VEs(φ0)dBs
0

. (18)

In order to avoid inessential notational complications we will continue the proof of
(D) for a 1 dimensional Brownian motion. The general case can be treated in a
similar way.

Any φ0E3^®L2(Ω(1\dP) can be written uniquely as φQ = a®e + ^(s)dBs,
where αeJ^ and where \l/(s) is a square integrable tf-valued adapted process. We
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now compute for ί ̂  0 the action of A, on φ0. For any χeJ^<S)L2(Ω(1\dP):

Hence Atφ0 = γ0ψ(s)ds.
We now use in (18) the following estimates:

\\AεV*φJ2 = ]v*ψ(s)ds (19)

Φo $VEs(AsV*φ0)dBs $VEJ(AsV*φ0)dBs

1/2

= \\Φo\\<Sds\\VAsV*φ0\\2ϊ =o(ε) by (19).
L O J

Finally as K + K* - - V*V it follows that 1 1| Wεφ0 \\2 - \\φ0\\2\ = 0(ε).

(E)
In order to prove that Wt, 0 g t < T0, is a unitary, it is by (D) sufficient to check

that the range of Wt is the whole ofjjf® L2(Ω(d\ dP\ From Eq. (12) and from the fact
that Wt90^ t < T0, is an isometry we get

Hence Wt is invertible on 3f ®L2(Ω(d\dP) for t small enough. Using the local
cocycle property (16) Wt is unitary for 0 ̂  t < T0.

(F)
To end the proof one extends the local cocycle Wt in the usual way. For

0 < T< T0 and for t ̂  0 3NeN such that NT^t<(N+ 1)Γ. Define then

This definition is independent of T due to the local cocycle property (16). For t < 0
one puts Wt = U°-.t(W-t)*U°. It follows now immediately that {Ut = U?Wt\teR}
has the properties stated in part iii) of the theorem.

Finally we remark that by the construction in (B) one has for all ί ̂  0, Wtφ0 = φt,
where {φt\t^.O} is the solution of (12) with initial condition φ0.

We are now coming to the main result of the paper. In the next theorem we show
that the group {Ut\teU} constructed in Theorem III.2 dilates the quantum
dynamical semigroup described in Proposition II. 1.

Theorem III.3.
i) Let [φt\t ^ 0} be the solution of the stochastic differential equation (2) with initial

condition φ0 = α(χ)£, αeJf , then

φt=Wtφ0 t^O.
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ii) For all a e 34? and

where L is given as in (5).

Proof.
i) As {φt t ̂  0} is a solution of (2) with initial condition α ® e, aeJtf, φt is adapted.
Plugging φt in Eq. (12), we get

(1 - ΆtV*}φ0 + \KEs(φs)ds + } VEs(φs)dBs = φ0 + \Kφsds + } VφsdBs = φt
0 0 0 0

by Eq. (2).
ii) By Proposition II. 1,

= <φQ u*xutφ0y.
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