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Abstract. We discuss the mathematical picture of anomalies. By solving the
Dirac equation in the background of non-trivial families of gauge connections,
we show explicitly the interplay between spectral flows, zero modes of the
Dirac operator and projective representations of the gauge group, and the
existence of both perturbative and non-perturbative anomalies. We give an
explicit expression for the fermion determinant for chiral QCD in two
dimensions when an anomaly is present.

1. Introduction

In recent years, considerable progress has been made in understanding the
structure of the anomalies and their topological origin. By exploiting the
cohomological properties [ 1, 2] of the Wess-Zumino consistent condition, one can
derive the descent equations, and using these, a straightforward way of writing
down gauge anomalies can be prescribed. Finally, one can give topological
interpretations to these essentially algebraic constructions [3]. The mathematical
foundations for anomalies were reviewed by Atiyah and Singer, and discussed
within the framework of the family index theorem of elliptic operators [4].
However, the physical implications of the anomalies remain largely to be
explored. As is well known, anomalies pose serious problems for the quantization
of chiral fermions in gauge theories. In building models of elementary particles, the
current wisdom is that anomalies are inconsistencies in the theory and have to be
cancelled, giving rise to severe constraints on the resultant particle content. What
other kinds of constraints do anomalies imply? It is, of course, far from clear that
current methods of handling quantum field theories are adequate in the presence of
anomalies, and if not, the structure of the anomalies may help in pointing out
alternatives. In addition, there is also the question that even if anomalies are
cancelled, what role each individual anomaly plays in the theory, especially in
models of composite fermions. To further explore these questions, it is useful to
examine more closely the structure of anomalies in the form of explicit solutions in
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theories which carry anomalies. This paper is a step in this direction. We show
explicitly for representative field theories, how the existence of special solutions to
the Dirac equation gives rise to ambiguities in the usual quantization procedure,
thereby generating the anomalies. Our results cover the non-perturbative cases as
well, where no local expressions for the anomalies exist. The examples we discuss
substantiate the general topological arguments already given in the literature.
The plan of the paper is as follows. In Sect. 2, we review the geometrical setting
and what is generally known about gauge theories and anomalies, and indicate
how our results fit into this framework. In subsequent sections we study anomalies
in simple but representative theories, which allow for explicit calculations, and
which also have the requisite topological properties. In Sect. 3, we determine the
eigenvalues of the Dirac operator on a spherical surface with a non-trivial family of
SU(2) background gauge fields, and obtain an exact expression for the chiral
fermion determinant. The presence of unpaired zero modes is seen to produce a
phase ambiguity in the determinant, which is akin to that in wave-functions
around magnetic poles. In Sect. 4, similar results are obtained in the Hamiltonian
approach for the same model. Here, it is the flow of an integral topological index
that determines the anomaly. The fermionic states form a non-trivial bundle on the
group of local gauge transformations. The Hamiltonian approach is then used in
Sect. 5 to discuss the non-perturbative anomaly in 2+ 1 dimensions. We demon-
strate the fermionic states now form a non-orientable space on the group of
local gauge transformations. The situation arises because of the flow of a Z/2 index
associated to the energy levels. Section 6 contains some concluding remarks.

2. Review of Known Results

In n dimensional Euclidean space-time, gauge fields with appropriate asymptotic
behavior can be regarded to be on an n dimensional sphere S”. The gauge
potentials are the connections of some principal bundle with a certain structure
group, the gauge group. One usually associates the principal bundle with vector
bundles through representations of the gauge group. The sections of the vector
bundles tensoring with some spin bundles are called the matter fields. It can
happen that there are many non-isomorphic bundles on S$". Each isomorphism
class is then called an instanton sector. The sectors are classified by =, _ ;(G), where
G is the gauge group. For each sector, the connections form an affine space A. The
gauge transformation group (the group of base preserving automorphisms of the
principal bundle) acts on A. The subgroup G that consists of those elements which
leave the points above a base point (the north pole, say) in the space-time manifold
fixed acts on A without fixed points [5, 6]. Hence P: A—A/G is a principal bundle.
The gauge orbit space A/G is therefore a classifying space of G because A is
contractible. Also known is that G has the homotopy type of the iterated loop
space Q"G of the gauge group G [5, 6]. In discussing gauge invariance, one usually
restricts to G which, being slightly smaller than the full group, gives the well
defined topological properties just mentioned. These properties give rise, in
particular, to isomorphisms among the homotopy groups, 7;,,(A/G)=7(G)
;. ,(G). Non-vanishing of the homotopy groups implies non-triviality of the
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principal bundle P: A—A/G. This is the mathematical statement of the Gribov
ambiguity since a non-trivial principal bundle has no global section. Typically,
G=SU(N). For N large enough, Bott periodicity says that m,,.,(G)=~0,
Toad(G) =Z.

On an even dimensional spin manifold, we denote the spin bundle
of chirality + by S*. In a chiral gauge theory, the chiral Dirac
operator —iD, = —ig, -(0+I 4+ A) maps + spinors to — spinors, —iD,
eHOM[I'(S*®E), I'(S* ®E)], where E is a vector bundle in a certain represen-
tation of the gauge group. To study the gauge invariance of the quantum theory,
one examines the vacuum functional of the chiral fermion, which is formally
defined as the determinant of the chiral Dirac operator. Because of the gauge
covariance of the chiral Dirac operator, the determinant can be thought of as a
section of a line bundle on the orbit space. Whether the functional is gauge
invariant depends on whether the line bundle is trivial. Does the topology of A/G
allow non-trivial line bundles? Complex line bundles are classified by the classes in
the second cohomology of the base space. Typically, n,(A/G)=Z, n,(A/G)~0. By
the Hurewicz isomorphism and the relation between homology and cohomology
groups, H*(A/G)= Z. Hence line bundles are classified by these integers. The
determinant can be a monopole wave function on a non-contractible sphere in
A/G. The Atiyah-Singer index theorem provides the link between this possible
non-triviality and the actual non-triviality of the determinant line bundle. The
result in Atiyah and Singer [4] is that the determinant of the chiral Dirac operator
—iD, corresponds to + 1 in H*(A/G). We will see in Sect. 3 how the determinant
actually behaves in an explicit example, and how this behavior is dictated by the
presence of zero modes.

When there is a real structure [7], the determinant is a section of a real line
bundle. Real line bundles are classified by the first Stiefel-Whitney class
w, € H'(A/G,Z/2). w, not being zero will show up as a non-perturbative anomaly
[77, which is associated with a Mobius strip like structure on a circle in A/G. In
fact, non-perturbative anomalies also exist in odd dimensional space-time (in
which there is no chirality). For SU(2) gauge group in 3 dimensions, H(A/G, Z/2)
~7/2. The Atiyah-Singer index theorem in Real K-theory predicts the non-
triviality of the determinant line bundle.

All such anomalies can be discussed in the framework of canonical quanti-
zation [8-10]. In the 4,=0 gauge and static (or adiabatic) 4 background, one
quantizes the fermion fields by solving the eigenvalues and eigenfunctions of the
single particle chiral Dirac Hamiltonian,

Hyy=Ey,, H=—ic-(0+A+1D), 2.1)

for one chirality. The spatial dimensions are compactified to S"~!. A now is the
space of all static gauge potentials with only spatial components and G is the
group of time independent gauge transformations with a base point. All the
general properties discussed earlier still apply when the dimensions are shifted by
1. Let ¥, be the space spanned by the eigenfunctions of positive and negative
energies. On a fixed fiber of P: A—A/G, the space ¥, @ ¥ _ is independent of the
background (the gauge transformations) since the eigenvectors of different
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background span the same Hilbert space. However, in second quantization the
Fock space is AW, ®¥_)=AV,)RA(F_), where A denotes the exterior
algebra. For a Hermitian vector space V, A(V)is isomorphic to A(¥) up to a phase.
In the familiar group theoretic language, the sum of all column Young diagrams is
equal to the sum of all the complementary columns in the representations of
SU(V), modulo a U(1) phase. Up to a phase, the isomorphism is, of course, given
by the Levi-Civita e-symbol. For a field theory, we have an infinite dimensional
vector space and we need some form of regularization before we can attempt at
identifying any such isomorphism. Physically, this isomorphism is simply the
identification of holes in the filled Dirac sea to antiparticles. Before we make the
identification, however, the afore-mentioned phase has to be looked at carefully. If
the phase can be removed, we have a true isomorphism. The Fock space is then
independent of the background. Quite generally, continuity requirements in the
total space A relate the phases at different fibers. As the fiber changes the spectrum
also changes, and non-trivial phases can result from the interaction of positive and
negative energy levels. For n,(G)=Z, this can happen. The Atiyah-Singer index
theorem predicts when these non-trivial phases actually occur. We will see in
Sect. 4 how this happens explicitly. This phase gives rise to a 2-cocycle in the
projective representation of the gauge group. In this paper, we are only interested
in exhibiting the topological features of the cocycles. The algebraic properties have
been studied in numerous other works [2].

For real cases, there is a symmetry between the positive and negative energies.
¥, and ¥_ would be independent of the background if there were no overlap
between them at all. They both would span a fixed Hilbert space. The Fock space
A(Y ;) would be independent of the background. However, when a zero mode
appears, a sign ambiguity arises in the identification of Fock spaces with a constant
space. In Sect. 5, we will see how the sign enters the picture as a result of the spectral
flow. A Z/2 extension of the group is needed. The non-trivial sign again is predicted
by the index theorem.

3. An Exact Fermion Determinant

In this section, we solve the eigenvalue problem and the determinant of the chiral
Dirac operator on a two dimensional spherical surface in the background of a non-
trivial family of SU(2) gauge potentials. Actually, the equations we are going to
write down are slightly more general. It includes the chiral case, and the non-chiral
case which will be useful in Sect. 5. The family is constructed as follows. Let A be
the vector space of all SU(2) gauge potentials on the spherical surface, G be the
group of gauge transformations equal to the identity at the north pole. A/G is a
classifying space of G. Now 7,(G) = n3(SU(2))=~Z. We choose a representative of
the generator of n,(G) as follows,

s .. S LS.
cos— +isin—cosf sin —sin fe*?

e B2 2 2 2
gs= is/2 > (3.1)
0 e —sin>sinfe™®  coss —isins cosf
2 2 2%
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which is periodic in s. It comes from the standard identification: §*—SU(2). Here,
0, @ are the spherical coordinates.

We consider the class of potentials related to A=0 by gauge transfor-
mations generated by this matrix

A,=g, 'dg;. (3.2

While this loop is not contractible in G at [4=0], it is contractible in A to any
point A,. Let us arbitrarily take the point A4, to be

—isinf  €“cosf 0 e
AO:[—e_i"’COSB isinf :|d9+l:_ie—i(p 0]sm9dq), (3.3

The family of SU(2) gauge connections we are going to use is {A(s,t)
=(1—1t)Ay+tA,|te[0,1], se[0,2n]}, which is a disc in A with the boundary in
the fiber of P:A—A/G at [4=0]. P projects {A(s,#)} to a representative of the
generator of n,(A/G). Explicitly,

. B p sinf e*(p,+ip, cosb)
id(s,1)=df [e‘i¢@2—ip1 cosf) —p,sinf
. p,sinf —e'?(p, —ip, cosb)
0 .
+sin d(p[—e“"’(pl +ip, cos0) —p,sinf ’ (34)
where p,; = ésins+(1 —1), pp= %(1 —COSS).
On the sphere we choose the metric
ds*=d0*+sin*0dep? . (3.5

Since the tangent bundle is non-trivial, unit tangent and cotangent vectors are not
globally defined. Let N be the path 0<60<r, and S, 0 <6 < 7. A set of orthonormal
basis of the cotangent vectors is

el |VS cos VS sing do
2 = NS o . , (3.6)
e —0"sing  cose sinfdo
where 6¥= —1, 6°= +1. The patching functions and the connection are the
following,
[e;]"’ _ [co‘s2q)—sin2<pj| I:e:]s , 57
e sin2¢ cos2¢ e
17]N,S 0 1 17N, S
d[iz] = [_ 1 O] ™S [Zz:l , @V5=("5+cosfdep.  (3.8)

The tangent vector basis is then given by

1 cos N Ssing
NS_ g
[es,e,] [ ®sind ‘/’] [—5N’Ssingo sin¢ cos @

] (no differentiation) .
(3.9
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The spinors also have to be defined on N and S, respectively,
pi=etyl, (3.10)

where + refers to the chirality. The connections for the spinors are
Ff'szi%w""s=i%(5”"g+cosﬁ)d(p. (3.11)

The chiral Dirac operator can now be written down,
—iDYVS(A)= —ig%S. (dP+TY 5+ 4), (3.12)

where 6¥5 = +iel'S +el'S, dP = (e e + e,e?). This operator maps + spinors to —
spinors, and vice versa,

1§ 5= —iDLSpls, (3.13)
We can eliminate the patching of N and S by the substitutions,
HrS=e Ty, phS=e TNy, (.14
—iDYS =D )OO = —iD . '

However, we have to be careful about the boundary conditions, e.g.,

22(@+27,0)= —y+(,6). (3.15)

For the connection A(s, t), the differential operator is

. 1
—iD[A(s,t)]= £ 0p— ma(pi ECOtG
sinf ie(+1+cosb)
Px [ie’i“’(i 1—cos6) —sinf :I’ (3.16)

where p, = tip, +p, (see (3.4)).
The eigenvalue equation becomes finally

=D, (D) =2z, D)= » (3.17)

where p’ can be thought of as fixed. —iD . (p”) is needed to bring the spinor back to
its original chirality after being acted on by —iD 1 (p). The eigenvalues are found by
first factoring the equations and finding the series solutions. The characteristic
values are fixed by comparing with the 4 =0 case, and the termination of the series.
The eigenvalues are described as follows. The eigenvalues are labelled by (m, n),
m=0,+1,+2,...,n=0,1,2,3,.... For m=n=0,

Ao=(1-2p"1)(1—2p3). (3.18)

Form=0,n=1,2,3,..., there is a pair of eigenvalues which are the roots of the
quadratic equation,

A+(m+1)(—n—142p3)=2p":2ps—1) 2pz(n+1)—2p':(n+2p3) ~0
—n(—1+2p5) A—(n+2ps)n )

(3.19)
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Note that the product of the two roots is

(m+1)(=n—14+2p3)=2p" 1 2ps—1) 2pz(n+1)—2p's(n+2p%) — (1 +n)?
—n(—1+2pz) —(n+2pz)n ’
(3.20)

which is independent of p, p’. For m=0, there is also a quadratic equation and the
product of the two roots is again independent of p, p’, (n+ |m| — 1)*(n + |m|). These
results show that there is no zero mode except for 4,. By taking advantage of the
fact that the products of the paired eigenvalues are constant, we can regularize the
determinant in a simple way. Formally, the determinant is equal to the product of
all eigenvalues up to a multiplicative constant. We can first take the products of the
pairs and factor out these constants. Therefore, we get, in this simple regulariza-
tion, just A,. In the chiral theory, p’ can be taken to be a constant. Hence, we
find that

Det[ —iD.(p)]=1—2p, =(1 —)(1 +2i) +te*™. (3.22)

At t=1, this is simply e**, which is a gauge dependent phase. The phase winds
around the loop {A4,} with winding number + 1, respectively. In Fig. 1 we plot the
contours of constant phase, and from these it is easily seen the ambiguity in the
determinant originates from the zero mode located at

(tcoss, tsins)= ( - (3.23)

1 2 )
1+)/5° 1+)/5/
From the point of view of the gauge orbit space A/G, the boundary is identified as a
point, and the determinant is seen to be a monopole wave function with a “string
singularity” at that point.

/2

+3n/2
Fig. 1. Equal-phase curves for the fermion determinant
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The fermion determinant for the non-chiral case is obtained by setting p'=p,
Det(—iD)=4(p, p)=5(1 —1t)* +t*> +2t(1 — t)(cos s+ 2sins), (3.24)

which isequal to Det . - Det _. At the boundary, this is equal to 1, which is certainly
gauge independent.

4. The Anomaly and the Dirac Hamiltonian

The anomaly in Sect. 3 can also be studied by discussing the theory in terms of its
Hamiltonian. In this context, the anomaly is manifested as a breakdown in the
usual second quantization scheme in that we cannot find a basis consistent with
gauge invariance everywhere.

We consider 4,=0 gauge, and A, being static (or adiabatically dependent on
time). The one spatial dimension is compactified to a circle. We consider a
representative of the generator of n,(G) given by

X ..0X X L
-2 cos > +1sm§cose sm5s1n9e e
g(eb(p):[ 0 ix/z] 2 (4'1)
e X L X ..
—sinzsinfe™'?  cos- —isin-cos0

2 2 2

where 6, ¢ parametrize the 2-sphere, and x is the spatial coordinate. This gives rise
to the following representative of the generator of 73(G/A),

1—cosé isin@e“""‘"”:'

—isinfe™*"®  —1+cosh (42)

A=tgdg™! =t—;-dx[
We take the connection for the spinors to be i/2dx, which is equivalent to taking a

non-trivial spin structure on the circle. The single particle Hamiltonian for a chiral
fermion, say of negative chirality, is then given by

[ d i
H__l<d_x+§+Ax)

I Sin g 7 S g —i(x—9)
——ii+1+tsing 2 R 4.3
o odx 2 2 —icosge"‘x"” -—sing ‘ )
L 2 2
The eigenfunctions are of the form
_ Fa(g)e—ix inx
Y,= | b@)eo e, 4.4)
and the eigenvalues are
Ef=n+ 1—t(1—t)sinzg 4.5
n —_ 4 2 . .
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N

E-

—_——-E*

Fig. 2. Spectral flow diagram for the 1+ 1 dimensional Hamiltonian

These eigenvalues form the pattern shown in Fig. 2. We focus our attention on
EZ and their wave functions. E; and E, have a zero mode at t=1/2 and 0=,
where they become degenerate. Although other eigenvalues also have similar
degeneracies, they have no zero modes. For the special eigenvalues, the wave
functions are, respectively, at t=0,

0 e—ix
[1] and [0 J, (4.6)

while at t=1, they are, respectively,

. 9 —ix ip . —ix
lsmze e —lCOSie
and 0 . 4.7)
— S P 1
Cos 3 Sin 3 e

These two wave functions are not well defined in the parameter space at ==
because they depend on ¢ at that point. They cannot be made well defined on the
2-sphere in G. Indeed they are actually sections of the principal Hopf bundle. To
get around this difficulty, one usually defines the functions on patches similar to
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those in Sect. 3

ot 0 ip,—ix . o 0 —ix
isinz % isinze
'Iﬂ-vf-: ] ’ 'Ilﬁ-= ’ eiwq’lyi—:lpi’
cos 5 cosie“i“’
(4.8)
.0 . .0 . .
—lcosze x —lcosie"”e >
py = , P5= 0 , eyt =S,
sinze_i"’ sinz

Note that the winding numbers of the patching functions are +1 and —1,
respectively. If we use these two wave functions to span a two dimensional space,
the “monopole charges” will cancel and one can choose a new basis without the
phase problem, e.g., one can choose

Oun . o 0ygs |0
‘I’l—cosz‘l’++sm§‘1’_-—[1:l,

S (4.9)
Y,= —sing s +cosg Py = [ lg }

However, when we second quantize, the wave functions that go into the Fock
space are ¥, and ¥_, and this complex conjugation introduces a difficulty. The
point is that now both functions have topological index + 1. If one insists on
writing down an equation similar to (4.9), then ¥,, ¥, will no longer be linearly
independent on the whole 2-sphere, and therefore, they cannot serve as a basis. It is
easy to show that the transition from zero topological indices at ¢t =0 to non-zero
indices at t =1 occurs precisely at t = 1/2, where there is a degeneracy. Although the
topological charge is generally conserved at such degeneracies, second quantiza-
tion introduces a twist in the space of fermion states at the zero mode degeneracy,
and this twist makes it impossible to define a consistent basis. The other
degeneracies cause no problems because taking the direct sum will always cancel
the indices. Notice we have ignored the degeneracies at #=0. These degeneracies
do not play a role in our discussions, and indeed, we can choose a simple
perturbation to lift the degeneracies there without disturbing the topological
features.

5. The Non-Perturbative Anomaly in 2+ 1 Dimensions

Non-perturbative anomalies cannot be expressed as non-conservations of local
currents, unlike the anomalies discussed in the previous two sections. In this
section, we show how these anomalies arise explicitly, in a way similar to that
discussed in Sect. 4.

From the Hamiltonian point of view, if we consider a static background field in
241 dimensions, we need to solve the equations of some Euclidean theory in 2
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dimensions. Once again we work in the 4,=0 gauge, and consider a family of
gauge field background which has the same form as that in Sect. 3. The single
particle Hamiltonian is then a (non-chiral) Dirac operator in 2 dimensions,

_ 0 —iD_(p)
il om0 .
The equation
HY=EV, W:L[%] (52)
Vilv-
is equivalent to
i
~D.(MD-(py-=E%y_, Ye=—gD-v-. (5.3)

We recognize immediately this equation is a special case of (3.16) with p'=p,
E=+ [/I For p’=p, A’s are non-negative. Actually, the spinors we consider here
have a real structure. We can find a basis in which both H and ¥ are completely

real. We now pay special attention to the eigenstates with E= +1/A4(p, p). As t
goes from 0 to 1, E changes in the fashion shown in Fig. 3. The different levels are

-
!

-1

Fig. 3. Spectral flow diagram for the 1 +2 dimensional Hamiltonian
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for different values of s. The wave functions are

singe"“’/ 2
+ eiaz—iJN’S(o/Z 2
N 2 9 —ip/2
1 —icos 3 e
P = oy 0 : (5.4)
) on cos - e¢?
eiéN» Sep/2 2
I isin g e 02 J
where « is the phase of [(1—t)(1—2i)+te **]. Now we use the unitary matrix
1 0 0 -1
1 0 1 1 0
U=— . (5.5
‘/5 0 i —i 0
—i 0 0 —i

and an overall phase to put the wave function into the real form. The result is

F—sin<z+1———51vi(p-|_-£>sing_
2 2 4 2
cos<g—1+25ms(p$%>cosg
N,S __ 1
Y _sin(g_naN'Sﬂz)Cosﬁ °o
2 2 4 2
cos<g+——1—5ms(p-_|-£)sing
i 2 2 4 2 |

This wave function depends on « as a half angle. For each t [0, 1], as we let s
go from O to 2=, the wave function can change sign, depending on how « changes.
From Fig. 1, it is clear that for t< ]/5/(1 + 1/5), the change in « is zero while for
t>1/5/(1+ [/g) the change is 2%, and the wave function does change sign as s is
varied. We can follow the flow of eigenvalues as ¢t changes in terms of the possible
changes in the eigenfunctions with the help of a topological index defined as
follows. To each energy level of a real Hamiltonian that doesn’t become degenerate
when a parameter is varied, we assign a mod 2 index according to whether the wave
function changes its sign. Should two levels touch each other as another parameter
is varied, each level can acquire a new topological number upon their subsequent
separation, but the sum will be conserved (mod?2). For the case of a real fermi field,
we need only consider the positive energy states in constructing the Fock space. At
t=0, nothing depends on s. As t increases, there may be exchanges of the
topological number as a result of degeneracies, although the total is unchanged.

This conservation fails, however, at t=|/§/(1 +]/§) where the zero mode is
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situated, because a unit topological charge has escaped from the Fock space

defined by positive energy states (see Fig. 3). Hence, for ¢ > 1/5/(1 + [/5), the total
index is 1mod?2. At t=1, in particular, there is a sign ambiguity around a non-
contractible loop which cannot be eliminated by any change of basis. The fermion
Fock space is therefore ill-defined as a representation of the gauge transformation
group, and the theory is afflicted with a non-perturbative Z/2 anomaly. This
anomaly was first discussed by Redlich [11] in the Euclidean functional integral
formalism. An analogous situation in four dimensions was first discussed by
Witten [7]. In that case, the Hamiltonian is of the form iD, where D is a real skew-
adjoint operator.

6. Conclusion

We have given three explicit examples to show how topology and spectral flows
can cause anomalies. In the first example, we were able to solve the exact spectrum
and the determinant of the chiral Dirac operator in a non-trivial background. In
the other two examples we showed how topology determines the spectral flow and
how second quantization introduces a bundle twist in the fermion states. Zero
modes are seen to be the origins of the topological twist in all three examples. Local
properties of the zero modes in the gauge orbit space constrain the global
properties of the quantum theory. Having these explicit examples can help
elucidate the physical implications of anomalies, and other forms of topological
obstructions [12].

After the completion of this work, we received a preprint [13] which contains
essentially the same results as those in Sect. 3. 4, is taken to be zero by the author
instead of (3.3) in this paper.
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