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Abstract. The formulation of a generally covariant quantum field theory is
described. It demands the elimination of global features and a characterization
of the theory in terms of the allowed germs of families of states. A simple
application is the computation of counting rates of accelerated idealized
detectors. As a first orientation we discuss here the consequences of the
assumption that the states have a short distance scaling limit. The scaling limit at
a point gives a reduction of the theory to tangent space. It contains kinematical
information but not the full dynamical laws. The reduced theory will, under
rather general conditions, be invariant under translations and under a proper
subgroup of the linear transformations in tangent space. One interesting
possibility is that it is invariant under SLR(4). Then the macroscopic metric must
evolve as a cooperative effect in finite size regions. The other natural possibility is
that each family (coherent folium) of states defines a microscopic metric by the
scaling limit and the tangent space theory reduces to a theory of free massless
fields in a Minkowski space. Irrespective of the assumption of a scaling limit we
show that the theory can be constructed from strictly local information.

I. The Physical Picture

Quantum Field Theory may be regarded as a synthesis of special relativity
(incorporating the restricted principle of locality) and quantum theory. In classical
physics the principle of locality, originating in the development of electro-dynamics
by Faraday and Maxwell, was sharpened in special relativity theory by the
statement that "no causal influence can propagate faster than light" and was
ultimately implemented in the general theory of relativity in its most stringent form:
The /αws of nature regulate only the behavior of physical quantities in the infinitesimal
neighborhood of each point.

In special relativity there is still one last remnant of global laws, namely the rigid
metric structure of space-time. This is removed in the general relativity theory in the
following way:

(i) The basic physical quantities relate to the tangent spaces at the points of the 4-
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dimensional space-time continuum M, i.e. they are vector fields, tensor fields etc.
Among them is the tensor field gμv governing the metric.

(ii) The laws are differential equations for these quantities (field equation).
(iii) The field equations are required to be intrinsic, i.e. independent of the

coordinate system used to describe M. This last requirement, also called
"general covariance" is extremely restrictive once the types of all fields with
which one has to deal are specified.

It is by no means clear that Quantum Theory should (or even can) follow the
development of classical theory towards an elimination of global features from the
formulation of basic laws. In the last decade quantum field theory has relied
increasingly on the use of the Feynman path integral to compute a distinguished
global state. In addition there is justified doubt that the notion of a space-time
continuum (or in fact any continuum) makes physical sense in the small.
Nevertheless it seems important to us to clarify whether it is possible to incorporate
the unrestricted principle of locality and general covariance into quantum theory. It
is the purpose of the present paper to study how this can be achieved.

Let us, first, consider general covariance and ask whether it can be interpreted in
an active sense as invariance of the laws under a very large symmetry group, the
group of local diffeomorphisms of the manifold. Throughout the paper we shall only
be concerned with local properties. Suppose we have a chart mapping some (open,
contractible) region of Ji into 00 c [R4, the coordinates being denoted by x = {xμ},
μ = 0, 1, 2, 3. Consider a smooth, invertible transformation

x->x'(x) (1)

such that there is a closed subregion Jf c (9Q which is transformed into itself as a set
and so that (1) is the identity transformation outside of K:

for xejf x'eJf and for xeΦQ\J(? x' = x.

We may interpret this transformation either as a transition to another chart so that x
and x' represent the same point of Jί in two different coordinate systems ("passive
interpretation") or as a shifting of the points of the manifold so that x' describes the
image point in the same chart. In this second, "active" interpretation (1) describes a
local diffeomorphism of Ji. Clearly, if in the classical theory we have a field
configuration allowed by the laws, the action of a diffeomorphism on it is well
defined (because the diffeomorphism of M defines also maps of the tangent spaces)
and there results a different field configuration on the manifold which again satisfies
the laws. If, metaphysically, we imagine that the points of the manifold have a reality
in their own right, then the transformed field configuration is a different physical
situation from the original one. This, however, would mean that we have no
deterministic prediction of the future from the past because a local diffeomorphism
changes the fields in the region where it acts nontrivially while leaving them
unchanged in the past where it acts trivially. To understand the significance of this
let us consider the case of generally covariant electrodynamics. We have then only
the electromagnetic field Fμv and the metric field gμv satisfying together the
Maxwell-Einstein equations. Suppose these fields are known prior to some space-
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like surface Σ then, indeed, without conditions for the coordinatization of future
points one has no Cauchy problem. As is well known, the Einstein equations give
four constraints for the metric field and its normal derivative on the surface Σ and
only 6 "dynamical" equations for the 10 quantities gμv. If the observer establishes the
labelling of future points of M (coordinatization) by means of conventions using
only Fμv and gμv, then the mentioned diffeomorphism will have no effect on his
observations. The "change of the physical situation" is exactly compensated by his
change of the labelling of the points. The field equations together with such
coordinate conditions provide a deterministic scheme. The active interpretation of
general covariance demands therefore that we imagine the possibility of decoupling
the labelling of (future) points of the manifold from the prevailing configurations of
fields which obey a closed system of intrinsic field equations. It need not concern us
here whether such an imagination fits into the ideal of a complete, classical field
theory of the world1. On the one hand there are circumstances in which such a
decoupling is approximately realizable. And there is quantum physics which, in its
present formulation, starts from a cut between the macroscopic world and the
quantum phenomena.

In orthodox quantum theory we have a division of the world into a macroscopic,
naively described part associated with "the observer" and the microscopic regime
behind it. The need for such a division is stressed in Bohr's words that we have to be
able "to tell our friends what we have done and what we have learned2." Space-time,
as attached to the observer establishing a reference frame by means of "rigid" bodies,
clocks, signals is a concept of the macroscopic world serving as a vessel in which the
phenomena are placed. It is inherent in this picture that this macroscopic space-time
continuum and its coordinatization by the observer is prior to the quantum events
studied and unaffected by them. Since our direct means of determining the
placement of a phenomenon in this frame is limited to the rather poor accuracy of,
say, 10 ~7 cm, the structural assumptions and detailed formalism of the theory must
be judged indirectly by their ability to account correctly for the observed
phenomena. Among these assumptions is the mathematical representation of
physical quantities as elements of a noncommutative algebra and, in quantum field
theory, the generating of this algebra from quantities associated with arbitrarily
small space-time regions. The spectacular quantitative success of this formalism in
Quantum Electrodynamics and its qualitative success in elementary particle
physics, using significantly subdivisions of space-time down to extensions of
10"16 cm suggests that it is worthwhile to pursue this approach till its limits become
(clearly) apparent.

1 The realistic interpretation of the space-time points underlines their role as the carrier of physical
action as envisaged by Faraday. For that reason Einstein sometimes advocated the reintroduction of the
term "ether" e.g. in [1]. On the other hand it contrasts with the point of view, probably first advocated by
Leibniz and shared by many to-day, that space-time is just an ordering device for physical events without
independent significance
2 This description must be unambiguous and objective ("intersubjective") and this is probably the reason
why it may still use concepts and laws of classical physics to shorten the explanation. The distinction
between macroscopic and microscopic is necessary but not sufficient in the division as exemplified by the
existence of macroscopic quantum phenomena
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The general frame indicated is then: We consider a (classical) 4-dimensional
manifold Jt and associate to each open region Θ a Jί an involutive algebra 9I(0)3.
The selfadjoint elements of 9ϊ(0) are usually interpreted as the "observables" which
can be measured in Θ. This becomes somewhat painful if we think of regions of
10~16cm diameter, since it suggests a rather incredible employment of hardware
which does not correspond to actual laboratory practice. A better picture is perhaps
to maintain that certain positive elements in 91(0) represent elementary events
whose intrinsic extension and placement in M is described by (9. Although in Jt, as
the macroscopic space-time of an observer, there is a classical, pseudo-Riemannian
metric available we should not use this metric to formulate the microscopic laws. It
has to be taken into account as a consistency condition matching prevailing
quantum states with the classical description of space-time by the observer. In order
to accommodate general covariance and unrestricted locality, the algebra 91 has to
be flexible, free of relations between quantities associated with disjoint space-time
regions. In this respect we must depart from the usual scheme of Quantum Field
Theory in Minkowski space, where we have a natural correspondence between the
causal independence of two distant regions and the commutativity of observables in
these regions. H. Ekstein had advocated for many years that one should distinguish
between "observables" and "observation procedures," the former being equivalence
classes of the latter, and he pointed out that this distinction becomes crucial in the
generally co variant extension of quantum field theory [2,3]. We are ready to follow
his advice now.

In the notion of "equivalence classes of procedures," i.e., relations between
algebraic quantities of different regions, the concept of "state" enters. A state ω,
intuitively understood as summarizing previous history—or our knowledge of it as
far as it is relevant—defines a probability for subsequent events. It is mathematically
described by a positive linear form (expectation functional) on 9Ϊ. Given a state ω we
obtain in a canonical manner a representation πω of 91 by an operator algebra in a
Hubert space ξ>ω (Gelfand-Naimark-Segal construction), we get a full folium <Fω of
related states, namely those represented by vectors and density matrices of §ω;
furthermore we (may) get relations in the algebra. Two algebraic elements Al9A2 are
equivalent with respect to this folium of states if ω' (B*B) = 0 for all ω'egω (putting
A1 — A2 = B). The set of such relations defines a 2-sided ideal Jω(&) in every
subalgebra 91(0); it is the kernel of the representation πω, i.e. the set of elements in
9ί(0) which are represented by the zero operator in §ω. For mathematical
convenience we may pass from the operator algebras πω(9ϊ(0)) to the associated von
Neumann algebras Mω(0) in the Hubert space <r>ω.4

3 An algebra over the complex numbers with an involution (adjoint operation, *-operation) denoted by
A^>A*. At this stage we leave open the topology put on those algebras. They may be thought of as C*-
algebras or as equipped with a set of seminorms. The correspondence Θ ->Sl(0) will be called the net of
local algebras. Of course ^(Θ^) c 2l(02) if 0ι <= 02 and all algebras shall have a common unit element. We
shall sometimes write $1 for the algebra of the largest region under consideration
4 Typically there is no norm on $1 satisfying the condition \\AB\\ ^M||||l?||, and therefore the
representors nω(A) may be unbounded operators. Therefore the transition from πω(9ί) to 9?ω needs some
explanation. There is, however, a canonical procedure which is described in the appendix. For an abstract
construction of Banach algebras associated with the Borchers algebra, see [13]
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The first step in the formulation of a specific theory is a description of the net of
algebras 9Ϊ($). The second is the characterization of all possible states, i.e. all
physically allowed positive linear forms on 91. The division between these two tasks
is to some degree movable. The less structure one incorporates in the specification of
91 the more restrictive information must be put into the second. In the present paper
we take the simplest possible choice for 91, the free tensor algebra of smooth scalar
functions on M. We shall sometimes refer to it as the Borchers algebra [4] of a scalar
field, although in contradistinction to [4] it is not equipped with relations expressing
local commutativity. It will be described explicitly at the beginning of Sect. II5. A
local diffeomorphism of M induces an automorphism of 91. That this action is not
merely an empty definition but carries physical content is illustrated in Sect. II. It
allows us to compare the counting rates of idealized detectors in different
(accelerated) motions.

Concerning the specification of the set of physically admissible states, we make
here several tentative assumptions of a general nature. The first is that there are
states which are "everywhere primary." These are such that the von Neumann
algebras 9iω((9) have only trivial center for each sufficiently small, contractible region
0 (they are "factors")6. All other admissible states shall be built up by convex
combinations (possibly continuous mixing) from such primary states. We can then
restrict attention to these primary states and folia. We denote the set of admissible
states in this (primary) class over an algebra 91(0) by ίf((ΰ\ the set of such folia by
y(G). Since 9I((P1)c:9ί(02)for Θi^β2 and since the states considered are assumed
to be primary over all regions, we have natural restriction maps y(Θ^ίf(Θ^,
^(Θ2)-+&Γ(Θί). Mathematically, ίf and 3F are presheafs. This allows us to define a
"germ" in 9> or J^ at a point PeJt as an equivalence class consisting of all states
respectively folia such that there exists some open neighborhood of P on which their
restrictions coincide. We assume further that there remain no quantum observables
at a point: n 0tωψ) = {λί}9 where the intersection is taken over all neighborhoods of
a point PeJί. This implies that two states in the same folium become indistingui-
shable in infinitesimally small regions; more precisely, the norm distance of their
restriction to algebras 9ϊ(0M) goes to zero as On shrinks to a point. This generalizes
the principle of "local definiteness" stated in [5]. There the metric structure was
assumed to the given, and as a consequence a unique germ was assumed. Now we
have to deal with a stalk of allowed germs.

As a first orientation towards a description of these germs we use in Sect. Ill a
scaling assumption proposed in [5] which reduces the theory to one in the tangent

5 The generalization to fields of vector, tensor-character is obvious. Spinor fields and gauge connections
require a more subtle starting point. The essential structure used is that if (9 = (J φi (open covering), then

t
21(0) shall be the free algebra generated from the Sl(0f), for which we use the symbol 51(6?) = V 91(0,). By

"free" we mean that no new relations are introduced, a typical element of ̂ (O^V 9ί(02)
 is a sum of

products of factors from 9ϊ(0j) and 9l(02)> where products composed of the same factors appearing in
different order are considered as different elements (apart from the identification of elements in the
intersection region Θlr\Θ2 and relations within the algebras 91(0 1), 9ί(02))
6 This is suggested by our knowledge of customary theories in Minkowski space, but there may be
reasons for abandoning it ultimately
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space at a point, and yields for each primary folium OF and each point P one
distinguished state alp for the tangent space theory. The set {cop} forms a fiber
bundle over Jt. The primary folia give sections in this bundle. The scaling limit
carries, of course, much less information than the above mentioned germs. The
reduced state ωf is dilation covariant by construction, translation invariant by
reasonable continuity assumptions. Due to general covariance the action of the full
linear group in tangent space is defined on the fibers. If the ωζ were not invariant
under some subgroup of GLR(4) each primary folium would define a flat affine
connection in Jt. To allow curvature there must be invariance under some subgroup
of GLR(4). The maximal possible invariance group is SLR(4). This may be an
interesting possibility. If the scaling below the Planck length has physical meaning,
the symmetry should be increased beyond Lorentz invariance. The macroscopic
metric would then arise, analogous to the phase formation in statistical mechanics,
as a symmetry breaking effect by cooperative action. The other natural possibility,
suitable if one neglects the gravitational constant, is that the invariance group is
isomorphic to the Lorentz group. Then a (primary) folium defines by the scaling
limit a microscopic metric in the tangent space. In this case the most natural
possibility is that the tangent space theory reduces to a free, massless quantum field
theory in a Minkowski space and thereby defines the kinematical structure of the
theory. The step from tangent space to infinitesimal neighborhoods (germs) will
carry the dynamical information corresponding in the standard treatment to the
field equations and the local part of commutation relations. There remains the
problem of constructing the folia of extended regions from the germs. We shall
address ourselves to this problem in Sect. IV.

II. Idealized Detectors in Different Motion

As mentioned above we take in this paper the simplest possible choice for 21,
the free tensor algebra of scalar test functions on the manifold. The elements of
21(0) are formal linear combinations of monomials/(/l) of different degrees n where
f(n} =/(π)(P1,...,Pn) is a complex valued smooth function onJίn = JίxJίx ~ Jt
with support in Θ in every argument7. The algebraic product of/(w) with g(n} is just the
tensor product

f(n).n(m)_ lj(n + m). L(n + m)(p p \_f(n)(p p \π(m)(p p } (1 ]\
] 9 — " > " l * l > >*n + m)—J \*l9 9*n)9 \Γn +1 •> ' ' >Γn + m) \^ l)

The involution is the complex conjugation together with the inversion of the
sequence of arguments. A diffeomorphism sending the point P to χP acts as the
automorphism αx on 21:

(α./^XPi,..., Pn) = f(n\χ -lPl9...,χ- 1PJ. (2.2)

A state ω on 21(0) is given by a hierarchy of distributions ω(n)e@'((9 x ••• x 0).
ω(w)(/(π)) is the expectation value of the monomial element f(n) in the state ω.

7 A more familiar notation where the "quantum field φ" is regarded as an "operator valued distribution"
would be to write for the degree 1 elements ψ(/(1)) instead of/ (1)
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The use of (2.2) to compute the effects of acceleration on detectors depends on
our ability to assign an element in 91 to a specified observation procedure. This can
be done without essential ambiguity only under every idealized circumstances, i.e.
when a purely geometric description of the procedure in space-time suffices. The
simplest idealization is to neglect the spatial extension and internal structure and
consider the detector as a world line of which a certain segment in temporal
extension is activated. This activation may be described by a structure function of
the proper time on the world line (with respect to the macroscopic metric pertaining
in some chosen primary folium of states). The choice of the world line and of this
function are the only data which enter into the description of the detector. Suppose
we choose an algebraic element A according to these specifications. Then if χ is a
diffeomorphism which deforms the world line leaving the proper time parametriz-
ation unchanged, ocχA will describe "the same detector" in different motion.

Let us assume now that among the admissible folia there is one containing the
vacuum state ω0 of a quantum field theory in flat space so that in the corresponding
representation space §0 the Poincare group is implemented by unitary operators
£7(0, A ) and the ω(ό° are the Wightman distributions (vacuum expectation values) of
a Minkowski space theory. We have a Hamiltonian H and linear momentum
operators P generating the translations in this folium,

In the remainder of this section we shall be concerned only with this folium and will
use Minkowski coordinates x to denote points of Jί.

To represent a detector at rest at the origin we choose the simplest positive
element in the algebra which answers to these specifications. In the notation of7 we
take

C = φ(f)*φ(f) (2.3)
with

x = (ί,x). (2.4)

If we want to select quanta of energy E we may choose the structure function
t2/τ2. (2.5)

Assume, for simplicity, that the theory describes only one type of particle (mass m).
Denoting C of (2.3) with (2.4), (2.5) inserted by C(£,τ), we may interpret

dPω(E) = const(E2 - m2)- 1/2 lim τ~ *ω(C(E9 τ))dEΔ t (2.6)
τ-*oo

as the probability in the state ω for a particle of energy in the interval [E, E + dE~] to
hit the detector in the time interval Δ t. The constant depends on the normalization
of the field.

We sketch briefly the justification for the interpretation (2.6). If the particle
density in the state ω is low and correlations between particles meeting the world line
of the detector at different times may be neglected, then only the matrix elements of
φ(f) between single particle states and the vacuum are relevant and interaction
between particles plays no role. The matrix element ofφ(f) between a single particle
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state with momentum p and the vacuum is (we omit constant factors)

f ̂ =^-f(x)d4x = ̂ -e-
(ε-E)2τ2/4 = 4^(p); ε = (p2 + m2)1/2,

/2ε Jε

where ψ is a normalized single particle wave function, i.e. J |^ | 2d 3p=l, and
A2 = τ(E2 — m2)1/2 for large τ. ̂  describes a particle with zero angular momentum
with an equally large inward and outward directed radial probability current. Its
probability of crossing the origin in the future is \. Thus A~2ω(C(E,τ)} gives the
expected number of particles in the energy range E ± τ~1 crossing the detector in the
time 2τ. This is easily converted into (2.6).

The diffeomorphism xf = χx,

f = (a + x(1))sinh (t/a), x(1)/ = (a + x(1))cosh (t/a\
χ(2)' = χ(2); χ(3)' = χ(3)9 (2.7)

sends the world line of the detector at rest at x = 0 to the linearly accelerated orbit

*(!)' = (a*+ ί'2)i/2; χ<2>' = χ<3>' = 0 (2.8)

such that the proper-time differences for the image points and for the original points
are the same. Let us compute the response of the accelerated detector C in the
vacuum state ω. We have

C'(£,τ) = *xC(E,τ) = φ(f')*φ(f') , f =f*l~l.

ω0(C'(£,τ)) = ω^ίf®/')

V2

Inserting phe definitions (2.4), (2.5) for/and (2.7) for χ, this reduces to

I (tfj,\pj\ dt^Wt2^ I > g L 2

Using the Lorentz invariance of dμ(p) we get

= lim τ~ ̂ 0(C(£, τ)) = j>(/c2)F(£, κ2), (2.9)
τ-^ oo

where dp(κ2} is the Lehmann-Kallen weight of ω(

0

2) and

rfε(ε2-κ2)1/2 J dt'e-i2a(Et'+εsinht'\ (2.10)

Since ε is always positive we can change the contour of the ί'-integration in the
complex plane within the strip Im sinh z ̂  0 or, putting z = t — ίa (ί,αreal), within
0 ̂  α ̂  π. For the evaluation α = π/2 is most convenient, giving

F(E,κ2) = 4πae-πaE]dε(ε2-κ2)1/2 ] dte-ί2aEt e-2aεcosht. (2.11)
K — 00

For K = 0 the ε-integration can be performed first, and the result evaluated by the
residue theorem. One obtains
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,Q) = 4π2E(e2naE-lΓ1. (2.12)

For K / 0 the substitution ε = /ccosh u and use of the relation

Kv(z) = ̂ dtevt-zcosht; Rez>0,

Kv denoting the modified Bessel function of the third kind of order v [6], leads to

ί£flM|2-|K_ lΈα(ακ)|2). (2.13)

One sees that the contribution for K = 0 is the Planck distribution for the Hawking-
Unruh temperature kT = (2πa)~1

9 while the contribution for κ^0 is not precisely
the corresponding Bose distribution for massive particles in flat space. If, as assumed
in (2.6),

where dp' has support starting from K = 2m, then for m φ 0 the main contribution to
the counting rate comes from κ = m.

Our purpose in this section was to illustrate in a simple example how the general
covariance can be used to compare the response of idealized detectors in different
motion. The method can be applied to the more interesting case of circular motion in
a synchrotrone [7]. We hope to return elsewhere to a more detailed discussion of
such problems. One remark concerning the above mentioned temperature should be
added. If one shifts the integration path in (2.10) to α = π, then one obtains the
relation

F(E, κ2) = e~2πaEF( - £, κ2\ (2.14)

which is the KMS-relation and follows directly from the theorems of Bisognano-
Wichmann [8] (see Sect. Ill of [5] and the literature quoted there). It does, however,
not help directly for the computation of counting rates since the commutator
[</>(/)*, </>(/)] changes under the diffeomorphism.

III. The Scaling Limit

The contents of this section generalize and clarify Sect. II of [5]. The main difference
in the point of view is that now^ is not equipped with a given metric field; rather we
ultimately want that a primary folium determines a metric field (at least macroscopi-
cally). The laws must therefore admit different such folia and a set of germs at a point.
Hence the "principle of local definiteness" stressed in [5] must be softened. We can,
however, still explore the consequences of the assumption that the theory has a
scaling limit in the sense of [5].

Consider a vector field X which vanishes at a point PeJί and is to first order
"radial" there, i.e. in a coordinate system (chart φ with x = φ(P)) it is of the form

X»(x) = χ»-χ» + 0(x - x)2. (3.1)

Note that this is an intrinsic property of X since the Kronecker δ^ is invariant. The
form of Xμ(x) will differ in different charts only in the quadratic and higher terms in
(x-x).
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The orbits

—77— = λ X \x\λ)) (3.2)
dλ

will contract an open neighborhood (9 of P to this point as Λ,-»0. The solutions of
(3.2) with the initial condition x(l) = x define for λ ̂  1 a 1-parameter semigroup of
local diffeomorphism δx (in multiplicative notation) generated by the vector field,

P^δxP corresponding to x(l)->x(/ί). (3.3)

Let ηxP be the tangent vector of the curve δx P at λ = 0. ηx:P-^ηxP is then a
diffeomorphism from a neighborhood 0 of P into the tangent space yp. This may be
seen by substituting xμ(λ) = λyμ(λ) in (3.2). The mapping y(l) ->j>(0) describes ηx in
terms of the chart φ. One has

ηxδx

λP = ληxP. (3.4)

We shall suppress the index X in δλ and η when not essential for distinction. The
action of δλ on the algebra 91(0) (see (2.2)) will be denoted by αλ. Similarly η defines
an isomorphism β from $t(0), the tensor algebra of test functions in 9~'P with support
in & = η(99 to 21(0) by

and, according to (3.4), (2.2) isomorphisms from $L(&) to

&λ = β-l*λβ (3.6)

(αJ^XZi , . . . ,ZΛ) =/(">(A- ̂  , . . . , 1- ̂ J; z e^p. (3.7)

We shall say that a state ω has a scaling limit at PeJί with respect to the
contracting vector field X if there exists a scaling function N(λ) (monotone,
nonnegative for λe(Q, oo]) such that for all neN and /(M)e^(0") the limit of
N(λ)nω(n\aλf

(n)) for λ-»0 exists and is nonvanishing for some n,f(n}8. Since β is a
linear positive map we may regard the limit as a state on $:

(n\aλβ?(n)) = lim N(λ)nω(n)(βόtJ(n)). (3.8)
λ-^O λ-O

Note that in the last form ωp is defined over the tensor algebra $ί of all functions in
ί̂ (̂ ~p) since the support of όtλ / will move inside Θ for sufficiently small λ whenever /
has compact support.

3.1 Theorem. Ifω has a scaling limit at P with respect to the contracting vector field
X, then it has a scaling limit with the same scaling function N(λ)for every contracting
vector field (in the class (3.1)) and the limit state on the "tangent space algebra" & is
independent of the choice of X.

Proof. Suppose ω has a scaling limit ωp with respect to the vector field Xί and

8 λ4N(λ)^> 0 for λ-+Q if the distributions ω(n) are more singular than the Lebesgue measure
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scaling function N(λ). Let X2 be another contracting vector field. Set

ωtfW; X) = N(λ)n ω<">0Λ/<">); ft = βx\ i = 1, 2.

Note that Aλ = βΓ1<$βi does not depend on Xt due to (3.7). From (3.6) we get

with

From condition (3.1) we have

^(z) = z + χ(z), where χ(Az) = 0(A2).

ω^/l) is by assumption a pointwise converging sequence of distributions, and
therefore uniformly bounded. To prove that ω2(λ) converges and has the same limit as
a>ι(λ\ if suffices therefore to show that for all/(")e^(er^)/(n)o^A converges in the
topology of <®(yn

p) to/(π), i.e. there is a compact set jf with supp/(/l)°^λ c tf for
sufficiently small λ, andf(n)°ψλ converges together with all derivatives uniformly on
jr to/(M).

The support oϊ?(n)°ψλ is ^Γ1(SUPP/(II)) Since

we see that for all λ < A0, A0 sufficiently small, the support of/(w)°^A is contained in a
compact neighborhood JΓ of supp/(M).

To prove the convergence of the derivatives of/(π)°^λ one uses the fact that all
derivatives of a composed function g°φ,φ = (φ1,..., φm\ g, φl being smooth func-
tions, are finite sums of terms of the form

(d*g°φ)dβlφjl...dβkφjk

with multi-indices α, βl9...9βk, with Ί,... Jke{l9...9m} and fceN. Therefore it is
sufficient to prove that dβψλ converges uniformly on JΓ for all multi-indices β to
dβ id, where id is the identity mapping.

From the definition of ψλ,

δ>φi(z) = λ*-ld>ψ(λz), \β\=Σβι
i = l

Thus for |j8| ̂  2, dβ\//λ->Q9 uniformly on JΓ. For the first derivative we obtain

ψ'λ(z) = \l/'(λτ)^\ for λ->0 (uniformly on Jf)

and finally

(again uniformly on JΓ). This finishes the proof.
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3.2 Theorem. Suppose the state ω belongs to a primary folium 3F ana has scaling limit
ωp. Then, for a dense set of states in 3F the scaling limit exists with the same scaling
function N(λ\ and all the limit states coincide with ωp.

The proof, demanding a discussion of the relation between πω(2I) and 9ίω is
deferred to the appendix.

There are a few general properties of scaling limits of distributions.

3.3 Lemma. Let Te^'([Rw) and assume that

UmN(λ)T(fλ) = S(f) (3.9)

exists for allfG@(Rn) and is nonvanίshing for somef, where fλ(x) =f(λ~ 1 x) and N(λ) is
a monotone positive function. Then S is a tempered distribution and for some αelR

a) limΊίT7 = A2-<, (3.10)

b) S(fλ) = λ~*S(f). (3.11)

Proof. S is a distribution due to the sequential completeness of &. Now

\)= lim N ( λ ί ) T ( f λ ί λ ) = lim

Since lim N(λ1 λ) T(fλlλ) = S(f) exists and does not vanish for some/ we have for

all/

S(fλ) = n(λ)S(f); n(λ)=lim

n(λ) is continuous because/^ depends continuously on λ in the sense of the topology
of 3). It satisfies

Thus n(λ) is a power and we have (3.10), (3.11), i.e. S is a homogeneous distribution of
degree α, where α is given by (3.10). A homogeneous distribution is always tempered.

We shall now make some assumptions concerning the dependence of the scaling
procedure on the contraction point P.

3.4 Assumption. An admissible primary folium contains states in which the
convergence of (3.8) is uniform for P ranging through some neighborhood Λr.

To explain the precise meaning let us use a chart (coordinates x\ identify the
tangent spaces at points in the mentioned neighborhood with [R4, e.g. by using
frames in the tangent space corresponding to the coordinate axes, and let us choose
the family of contracting vector fields

X»(x) = x>ί-x» (3.12)

for x ranging through Jf. Then, defining β^ accordingly (see (3.1) through (3.5)), the
assumption means that for fixed /(w)e^(K4/ί) there shall be a bound Rf(λ) with
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lim Rf(λ) = 0 such that
λ->0

\N(λγωM(β£&Jw)-ωs(fW)\<Rf(λ) for all xeΛΛ (3.13)

The proof of Theorem 3.1 shows that this property does not depend on the choice of
the chart. We have then

3.5 Theorem. Under Assumption 3.4 the limit states are covariant under dilations and
invariant under translations. Specifically, defining

(Tj<">)(zi9. . . , zj =/<">(*! - α, . . . , zn - a\ (3.14)

one has

ώP(&jM) = λ-n«ώP(?^\ (3.15)

ώP(Taΐ
(n)) = ώP(fW). (3.16)

Proof. The dilation covariance follows trivially from Lemma 3.3. Concerning the
translation invariance let us choose a chart φ (φ(P) = x), identify the tangent spaces
with [R4 by means of dφ and use the family (3.12) of contracting vector fields. Then

^A/^^i,...,^)^/^-1^!-^...^-1^-^), (3.17)

and consequently

β,&λTj=β,+λaάJ. (3.18)

Put

(β,+taάjW) = F(t,λ). (3.19)

For fixed λ, F is a continuous function of ί. Choosing an arbitrary ε > 0, we can find
by Assumption 3.4 a value λγ such that \F(t,λ) - F(ί,0)| < ε/4 for λ < λ1 and all t in
some fixed interval 1 1 \ < ί0. Due to the continuity in t we can find a tl < ί0 such that

) i< for \t\<tι. (3.20)

Then

\F(t,λ) - F(0,0)| ̂  \F(t9λ) - F(ί,0)| + F(ί,0) - F(t9λJ\

+ \F(t,λ1)-F(Q9λ1)\ + \F(09λl)-F(Q9Q)\. (3.21)

Therefore, for \t\<tl9λ<λl9

|F(ί,λ)-F(0,0)|<ε. (3.22)

By (3.19) the left-hand side of (3.16) is limF(λ,λ). Therefore (3.21) gives the
λ->0

translation invariance (3.16) and also the continuity lim(ώ^+ίfl(/) — ώ^(/)) = 0.
ί->0

The discussion so far has lead to the picture that each admissible primary folium
3F determines a section in a fibre bundle ̂  over M. The fibre over PzJt is the set of
all ωf arising from the different admissible folia by the scaling limit (3.8) at the point
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P. A local diffeomorphism χ of Jί induces an action α* on the states (the dual action
to (2.2)) and, since the images of all states in one primary folium lie again in one
primary folium, it induces an action on the set 3F of primary folia which we shall also
denote by α*. The change of the section ύf due to the local diffeomorphism χ is
geometrically given:

<(/) = <(/'), (3.23)

where #"' = α* J^; P' = χP; L = L(P, χ) = (dχ)P is the differential of χ, mapping the
tangent space at P on that at χP and

/'(z1,...,zn)=/(Lz1,...,Lzn). (3.24)

For the subgroup of diffeomorphisms leaving the point P fixed L is a linear
transformation of the tangent space at P and (3.23), (3.24) define a corresponding
action on the fiber ώp. Once we have chosen a frame in the tangent space it
determines an action of the group GLR(4) on the fiber.

We shall assume that the fiber consists of a single orbit of this group action. This
is the minimal set of states ώp demanded by general covariance, and there is at this
stage no reason to consider a larger set. The fibers over different base points must be
isomorphic due to (3.23). Therefore, for all points P and all primary folia J^ the ώ^
result from a single reference state ώ0 over the tensor algebra of test functions in U4

by a choice of a frame in the tangent space at P which depends on &. If ώ0 were not
invariant under some subgroup of GLR(4) then each primary folium would define a
section in the frame bundle, i.e. it would determine a flat affine connection in M, a
teleparallelism. In order to allow curvature ώ0 must be invariant under some
subgroup of GLR(4).

The next question is what this stability subgroup should be. It cannot be the full
GLR(4) because there is no translationally invariant 2-point distribution ώ(2) which
is also invariant under GLR(4). A maximal possible stability group is SLR(4) with
either

d4z2 (3.25)

or

ώ<2H/) = cί/(z,z)<i4z. (3.26)

The first case corresponds to α = - 4, the second to α = - 2 in (3.15), (3.10). In both
cases each primary folium defines a volume element but not a microscopic metric in
the scaling limit. This high symmetry may be an interesting possibility if the
philosophy described at the end of Sect. I is adopted.

Another interesting possibility is that the stability subgroup is isomorphic to the
Lorentz group. This case corresponds to an essentially classical treatment of
gravitation. It is natural then to demand that the tangent space theory at P should
satisfy beyond Poincare invariance also the other standard principles of quantum
field theory in the Minkowski space with the metric ̂ defined by 2F at P, i.e. space-
like commutation and "positive energy." The scaling power is then restricted to
values α ̂  — 3. In the case α > — 3 the scaling limit of the 2-point distribution is

ωW(z1,z2) = $dκ2(κ2r+2Δ+(z1-z2,κ
2), (3.27)
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where Δ +(z,κ2) is the positive frequency solution of the Klein-Gordon equation
(with respect to the metric g^ ) with mass κ\ in the case α = — 3 one obtains

ωί2)(z1,z2) = 4+(z1-z2,0) = D + (z1-z2). (3.28)

In the latter case the higher truncated functions vanish (see [5]), thus the tangent
space theory is the theory of a free massless scalar field.

IV. Reconstruction of the Theory from its Germs

We address ourselves now to the central question, the compatibility of the strict
principle of locality with quantum physics. Is the local information about the laws,
as it is contained in the specification of germs, sufficient to determine the laws at
large? This is evident in classifical field theory where the only laws are differential
equations. In quantum theory we have in addition the commutation relations, and it
is not evident how they can propagate.

The basic problem is: Given an open covering 0 = u Θi and given for each (9i a
folium &i(G& i.e. the equivalence class9 of a representation π, of

1 ) can there exist different folia ̂ (G) whose restrictions to the Θi are the given ones?
2) What are the compatibility conditions for the set (̂  (0f)} so that an extension

&(Θ) exists?
A full analysis of these questions is beyond the scope of the present paper. We shall
show, however, that in a somewhat different sense the theory can be constructed
from strictly local information. The input then is a "tame state" ωt for each region Θt

of the covering; compatibility means that the restrictions of these partial states to the
overlap regions Θt n (9j must coincide. The "extended theory" to the covered region
Θ means an additive net of von Neumann algebras in 0, coordinatized in the small
by affiliated Borchers algebras. It is uniquely determined by the {ωj. In general the
Borchers algebra of the large region will no longer be affiliated with the von
Neumann algebra on Φ. It is not clear whether this discrepancy is a weakness or a
strength of this construction. If one wants to retain the correspondence between von
Neumann algebras and Borchers algebras in the large then stronger compatibility
conditions must be imposed. They should be conditions for local equilibrium of the
set {ωj and may imply that the construction of the theory can be done — as
suggested by the questions above — using as local information only the set of partial
folia {^ί}.

We recall that in ordinary quantum field theory the positivity of the energy leads
to analyticity of Wightman functions and that this, in turn, as shown by Reeh and
Schlieder [9], implies that the subset of state vectors obtained by applying the
algebra of any open region to the vacuum is already dense in the Hubert space of all
state vectors. In short, the net of algebras {π0(2l(0))} has a common cyclic vector for
all open regions. In fact it has many such vectors since any state with finite energy

9 We should be speaking of "quasiequivalence classes" but since we anticipate dealing with type III
factors quasiequivalence and unitary equivalence coincide
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has this property. Let us call a state ω over 21 (0) "fully correlated within 0" if in the
GNS-representation the set of vectors πω(2l(0))β is dense in §ω for any open
subregion 0 c 0. One has then

4.1 Theorem10. Let 0 be open and connected, d) = \J&t an open covering and ω a state
ieJ

on 21(0) which is fully correlated within 0. Then there exists no other state on 21(0)
whose restrictions to the subalgebras 21 (0f) coincide with those of ω.

Proof. Suppose ω' is another state on 21(0), not assumed to be fully correlated on 0
but satisfying

(ω/-ω)t2I(0ί) = 0; ieJ. (4.1)

Let (§,π,β) respectively (£>', π',β') be the GNS-representations induced by ω
respectively ω'. Due to (4.1) we may put for each zeJ,

Vίπ(A)Ω = πf(A)Ωf; ,4621(0;), (4.2)

and, since π(2l(0f))βis dense in <?>, by assumption Vt is an isometric map from § into
§' with

(4.3)

If QiΓiΘjϊ φ, we have

Viπ(A)Ω= Vj

But by assumption π(2I(0f n Φj))Ω is again dense in §. Thus Vt = V3. This leads to the
equality of all Vt:

V^V; ieJ, (4.4)

for, if (4.4) would hold for a subset J0 c J we could obtain 0 as the union of the two
open sets

ieJo ieJo

which are disjoined. As 0 was assumed to be connected & = φ. Now we get for a
product of elements from different regions

where (4.3), (4.4) are used to move K successively to the left on the right-hand side of
the equation. Thus ω' coincides with ω on the algebra generated by the 2ϊ(0t ) which

10 In a different context W. Driessler proved a closely related theorem. Compare Proposition 3 of [10]
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is 91(0) in the case of the Borchers algebra or, more generally, whenever 91 is an
additive net.

We turn now to the construction of a state over 91(0) from the partial states ωt of
a covering. Let Θlr^Θ2¥^φ and ωί(r=l,2) states over 2l(^-) respectively fully
correlated within their regions of definition and compatible in the intersection
region:

. (4.5)

Denote the GNS-representations of 91(0,) induced by ω£ by (&, ί2f, πt.). Then (4.5)
together with the cyclicity of Ω, with respect to πi(9ί(β1 n 02)) implies that we have a
unitary map V12 from <r>2

 onto Si uniquely determined by

F^^, (4.6)

V,2π2(A)V^ = πl(A); ΛeSI^n^). (4.7)

If we have three regions with ̂  n 02

 n $3 ̂  </> an<3

ωi(A) = ω{A)ι AeW^nOj), (4.8)

then the unitaries satisfy

^2^3=^13- (4-9)

4.2 Theorem11. Let (9 — (J (9t be a covering of a path connected, simply connected
ieJ

topological space Φ by path connected open sets, let §f, i eJ be a family of Hilbert
spaces, and let for each pair iJεJ with 0; n 0,- / φ Vtj be a unitary operator from §,-
onto ξ)i such that

VijVjk=Vik if Θ^Θ^Θ^φ. (4.10)

Then there exists a Hilbert space ξ) and a family of unitary operators Wi :§,•->§, ieJ
such that

Vίj=WΓ1WJ. (4.11)

Proof. Fix ϊ'0eJ and x0E&io. LetjeJ and }>£$/. Since Θ is path connected there is a
path γ from x0 to y, i.e. a continuous mapping γ from the unit interval [0, 1] into &
with y(Q) = χ0 and γ(l) = y. For each feeJ y~\0^ is an open subset of the unit
interval. Its connected components are intersections of open intervals with the unit
interval.

Let Ck denote the set of connected components of y ~ 1 (βk), and let V = <g(γ) be the
disjoint union of the sets Ck9 keJ. <β is a covering of [0, 1] by open intervals. For IeCk

we set k(ί) = k. We have 0k(/) n Θk(n Φ φ if / n /' φ φ and 0k(/) n ^fc(/Ί n βk(n ^φiϊ
Γ'ϊφ.

Since the unit interval is compact, it can be covered by finitely many intervals

11 This theorem was stated by J. E. Roberts [11] and proved by him in the context of non-Abelian
cohomology
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/0,...,/Π6^. We can choose them such that Oe/0eQ0, le!neCj and /jΠ/ J + 1 ^φ9

/ = 0,...,tt— 1. Using such a sequence of intervals we define Wj by

^=Vo>W l> *VlWn>. (4-12)

We have to show that Wj does neither depend on the choice of the intervals /0, ...,/„
nor on the path γ from x0 to y nor on the choice of yeΘj.

Provided this can be achieved the proof is completed as follows. Given ieJ with
Qi n βj Φ φ, we take.y e0f π (9 3 and a path y from x to y. We can select the sequence of
intervals such that In^1€Ci. Then V^ w^ = Vy and

WtV^Wj. (4.13)

The independence of W^ from the choice of the intervals /0, . . . ,/„ is equivalent to
the statement that

VD = ^c(D1)fe(D2) ' ' ' Vk(Dn _ j)fc(DM) ^(/V/cCDi) = * (4-1 4)

for any sequence of intervals D1?...5Dme# with D,πDI + 1 ^φj= l,...,m- 1 and
Dmr\Dl =/=φ. For m = 2, (4.14) follows directly from the cocycle condition (4.10).
For general m we proceed by induction and assume that (4.14) holds for any
such sequence of (m-1) intervals. Let D^ = (af9bf)9af<bf9f=l9...9m and let
ar = min af. Then either Dr+1aDr9Dr^1c:Dr or breDr_1 nDr+1 (we set D£ = £>/modm

for *feZ). In all cases three subsequent intervals have a nonempty intersection,

1^φ9 s = r-l9 r or

thus

and

with D', = D,9t=l9...9s-l9D'f = Df+ι9S = s9...9m-l and S=l for s^l,5 =
Vk(Dι)k(D2) f°r 5 = 1. By the induction hypothesis VD. = 1, hence VD = 1.

In the next step we show the invariance of Wj under continuous deformations of
the path y. Since G is simply connected this implies the independence of Wj from y.
Let α be a continuous mapping from the unit square [0, 1] x [0, 1] into & such that

α(0,ί) = y«, ίe[0,l],

α(s, 0) = x0> Φ> 1) = y> se[0, 1],

Let γs(t) = α(s, ί), s, ίe[0, 1], and let Wj(s) be the unitary operator Wj associated to ys.
Let If — (a^ bf) n [0, 1], α^ < b{^ = 0, . . . , n be a sequence of intervals in # which
fulfils the conditions mentioned before relation (4.12). Then for ε sufficiently small,
there are intervals I^(s) = (af(s\ b^(s)} with bf(s) >^+l (s), f = 0, . . . , n — 1,
Oe/0(s), le/π(s),.0 ̂  s < ε which are connected components of ys~

 x (0Λ(/ }). Inserting
this sequence in (4.12) we get

^ for 0^5 <ε,

hence Wj is constant under continuous deformations of y.
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It remains to show that Wj does not depend on the choice of ye0J . Let j; be
another point in 07 . Since Gj is path connected, there is a path γ in Θj from y to y. Let
y' = yy be the composed path. Then the connected component of the intersection of
the path y' with Θj with contains j; also contains y, thus the intervals /^e#(/) which
enter in (4.12) can be chosen such that k(Γ,) = fc(/,), hence Wj does not change. This
finishes the proof.

We conclude: given a covering 0 = u Θt as specified in Theorem 4.2 and given a
fully correlated partial state ωt on each 0t such that the system {ωf } is compatible in
the intersection regions in the sense of (4.8), then there is a Hilbert space § with a
vector Ω and a system of operator algebras in §

1 (4.15)

such that fti is a representation of 91(0^), the system {πj is compatible in the sense

«,(>!) = π/4); Λeδl^nίP,) (4.16)

and

(β, π (Λ)β) = ωt μ); Ae9ϊ(0;), ie J. (4.17)

Furthermore Ω is cyclic for πt (9ί(0)) whenever ieJ and (9 a 0. is open. Conversely,
the structure (δ,ί3,πt ) is uniquely determined up to unitary equivalence by the
requirements that πt are representations of 9I(0f) satisfying (4.16) and that ί2 satisfies
(4.17) and has the stated cyclicity properties12.

Does the system πt define a representation of 21(0)? There are two possible
obstacles. First, with our choice of 91 (the Borchers algebra) the operator π^A) will
be unbounded in general, and we need a common, dense, invariant domain to be
able to multiply operators coming from different ie J. Only then can we generate an
operator algebra

φ= V 7 (̂91(0,.)). (4.18)
ieJ

Secondly, if S exists we have to verify that it is a representation, i.e. that no relations
within 91(0) are violated in Φ. This will certainly be true if 91(0) is free over (91(0,.)} in
the sense of the following definition.

4.3 Definition. Let 91 ,̂ ieJ be a family of subalgebras 0/91. 9Ϊ is called free over
{9ίί5 ieJ} if the following holds: For any algebra fyfor which there exist morphisms
y^M^^i satisfying the compatibility condition

(4.19)

there is a morphism y:9ί->S with y \<ίii = γt. One checks

12 For the purpose of studying the significance of local gauge invariance in the algebraic frame of
quantum field theory in Minkowski space, J. E. Roberts [11] considered such a system of representations
πf of a given net of von Neumann algebras. He called it a "local representation." The extension problem
encountered there is not present in our simple model but may be very relevant in more realistic theories
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4.4 Theorem. Let (9 = u0 f be an open covering of a differentiable manifold 0. Then
the Borchers algebra 21(0) is free over {21(0,-), zeJ}.

Proof. Let y{: 2ϊ(0/)->St,ι'eJ be a family of morphisms into an algebra S with
(Vi - V j XA) = 0 for /4e2X(0ί n 0,.). Let/e^(0) and JΓ c 0 compact with supp/c= jf .
There is a finite ^-decomposition of the identity on JΓ subordinate to {0, , ίe J}9 i.e.
a finite family {(^e^(0;)} wίthΣφ^x) = 1 for xeJΓ. Since/c^eS^) c 21(0,-) we can
set

If {^£^(0;)} is another finite ^-decomposition of the identity on Jf , we have
), and therefore

hence y(/) does not depend on the choice of the family (φ^. Since for any compact set
Jf ' => Jf we can enlarge the family (φt) to a finite decomposition of the identity on
JΓ' by adding functions vanishing on Jf , γ(f) also does not depend on the choice of
JΓ. Hence y is a well defined linear map from 3i(G) into St. Moreover, if
fe®(Θj)9fφie®(Θinβj)9 hence

Since 2ί(0) is the tensor algebra over @(&\ y has a unique extension to a morphism of
21(0) into $, and γ(A) = γ^A) for Ae^Θ^.

Thus S in (4.18), if it exists, i.e. if the multiplication is not obstructed by domain
problems, is a representation π of 21(0). The state

ω(A) = (Ω,π(AΩ); ,4e2l(0) (4.20)

extends the given ωt and is fully correlated on 0. Due to Theorem 4.1 ω is the only
possible extension of {ωj and π the only possible extension of {πω.} to 0. The
conditions used are that the covering is as specified at the beginning of Theorem 4.2,
that each ωf is fully correlated within its region of definition, that the natural
compatibility condition (4.8) for the intersection regions is respected and last, but
not least, that the domains of the πf fit together.

To assess the physical significance of the last probelm we must remember that we
would prefer to obtain an extension of the set of partial folia {^"J (which define "the
laws" in the small) and not one of individual states. If each 3P \ contains a fully
correlated state ωί? then ̂  Ί is determined by ωt but not vice versa. Therefore, if we
hope that the specification of {^t} determines a unique extension 3F to the covered
region 0, we need stronger restrictions on the choice of the ωt and stronger
compatibility requirements in the construction described above. Concerning the
restrictions for the choice of each partial state ωf a guide line is the requirement that
ω, should generate within 0f a well defined additive net of von Neumann algebras
9ϊω.(0), 0 cz 0t , where 9ίωί(0) is obtained from ωf f 0 by the construction described in
the appendix. Let us call a state ωt on 21(0^) "tame" if it generates an additive net 9?f
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within 0f. Tame states must be fully correlated and satisfy additional conditions13.
Concerning the compatibility of the set (ωj we note that if coj is given and
0 1 n0 2 τ έ </>, then we can change ω2 by a unitary from 9ΐ'ω2(0ιn02) without
changing the folium #"2 or the relation (4.8). This freedom of the choice of ω2 within
^2 is reduced if one requires that the domains of πί and π2 shall fit together. This
requirement will also demand a stronger compatibility condition between ϊF v and
OF 2 than the naive one that they agree on 01n02. It may lead to a unique
determination of the extended folium 3F to 0 from {^ί9 ^2} alone. As mentioned at
the beginning of this section we would interpret such conditions as a demand of local
equilibrium. We shall not pursue this line further here.

Irrespective of these last speculations the results of this section show that in a
weaker sense an extension of the theory to 0 from local information on a covering
{0J is possible and unique. Namely, specifying a set {ωj of tame states on the
covering respecting (4.8) we obtain first additive nets 9^ of von Neumann algebras in
§ω. with an identification of elements,

(4.21)

given by the common affiliation of 2l(0ί,n0j) with these two von Neumann
algebras. We can then regard ωt as a state on 9lI (0ί) and obtain a system of von
Neumann algebras ,̂ within the bounded operators of a single Hubert space § and
/2e§, replacing (4.15)-(4.17) by

ft.(X) = WtX Wr1: XEWάΦά (4.22)

π^X) = πΛ,PO; XeKiWt n 0, ), (4.23)

Then

<R(0) = V 7^(9?;) (4.25)
ieJ

is well defined and gives an additive net of von Neumann algebras over 0. The vector
Ω gives a state on $(0) which is fully correlated within 0 and this pair ($, ω) is the
only possible extension of the system {9li9 ωj up to unitary equivalence. In general
21(0) will no longer be affiliated with (̂0), but this may not be relevant. The only
role which the Borchers algebra plays now is to define the identification map yjt of
the elements of 9ϊi(0i n Φj) and 9 (̂0; n0;). However, the identification of elements
in the intersection region is already uniquely determined by the geometric interpret-
ation given by the net structure in 0,00; unless 9^ possesses automorphisms
transforming every subalgebra 9^(0), 0 c 0, into itself, i.e. in physical terms unless
there exist internal symmetries. In that case, however, we face the problem indicated
in12 which we want to leave aside here. Thus one might drop the Borchers algebra
and base the theory directly on local nets of von Neumann algebras in the small.

The problems discussed find a natural expression in the framework of sheaf

13 Adapting the methods of [12] one can work out conditions for "tameness" which look reasonable
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theory. As an illustration let us consider the presheaf Φ-+£f.c(Φ\ the set of fully
correlated states within Φ. The strictly local part of the information in £fc can be
described by the associated sheaf Sfc=v &*c(x), where ^c(x) is the set of germs of
states in ̂ c at the point x. The topology in 3?c is given in terms of a basis of the
system of open sets,

&ω0 = {0y\9y germ of ω at 3;, yeΦ}, (4.26)

where & is open and ωeίfc(Θ\
Now let s:x-*sxe£fc(x\xεG9 Θ open be a continuous section of the sheaf .5 .̂ s

summarizes the local information on the laws as well as on the initial conditions.
Continuity means that to each point xeΦ there is a neighborhood Φx of x and a state
ωx€ίfc(Φx) such that sy is the germ of ωx at y for all yeΦx. We may choose the
neighborhoods Φx to be path connected and such that their intersections are
connected. For all zeΦxr\Φy>ωx and ωy have the same germ at z, i.e. they coincide in a
neighborhood of z. Thus from Theorem 4.1 ωx and ωy coincide on ΦxnΦy. This is
exactly the compatibility condition (4.8).

The preceding attempt to construct a global state from a compatible system of
partial states corresponds to the question as to whether a continuous section in 5fc

gives an element of the presheaf £fc. In the case of £fc the answer was not complete
due to the mentioned domain problems. Instead of ίfc one may consider other
presheafs, e.g. the presheaf of local nets of von Neumann algebras without internal
symmetries and with a distinguished fully correlated state. In the latter case we have
shown that every continuous section over a path connected, simply connected
region does correspond to an element of the presheaf.

V. Summary and Outlook

Sections I and IV show that basic tenets of the general theory of the relativity, namely
general covariance and strict locality, can be incorporated into quantum theory.
These sections also give a rough sketch of the frame of such a unified theory.

Many questions remain to be answered before a viable theory along these lines
can be proposed. The most important one is to find an explicit charaterization of the
germs. In particular, what is their relation to a "Lagrangian"? Further: does the
distinction between space-like and time-like directions become established only at
scales large compared to the Planck length? In Sect. Ill we have attempted to obtain
some partial information about the germs using the assumption that the theory has
a scaling limit. Then each quantum state defines a reduced theory in the tangent
space of each point and one of the possibilities is that it thereby defines a metric field.
This possibility fits into the picture of an asymptotically free quantum field theory
where gravitational effects are included in a semiclassical way. The other interesting
possibility is that the tangent space theory has higher symmetry and that the metric
evolves only at scales large compared to the Planck length. Nothing has been said
here about the mechanism which could lead to a macroscopic metric by a
cooperative effect. This needs, of course knowledge about the dynamical laws
contained in the germs. Other untouched problems are the role of local gauge
in variance and of spinor fields. The relation of technical properties of partial states
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used above such as "full correlation" and "tameness" should be better understood in
their relation to their behavior under diffeomorphisms and to a precise characteriz-
ation of local stability of the theory.

There are other aspects within this scenery which have an interest in their own
right. Among them is the use of general covariance for the computation of the
response of idealized instruments in non-uniform motion as illustrated in an
example in Sect. II.

Nothing in the formal structure described depends significantly on the
dimension of the underlying manifold. Conceptually, however, unless we choose it as
4-dimensional space-time, it will not fit with the orthodox interpretation of quantum
theory, in particular Bohr's emphasis on the necessity of an unambiguous (classical)
description of the operational side and the Heisenberg cut.

It is, of course, entirely open whether future theory will develop along these lines
or whether the reference to an underlying manifold and strict locality will disappear.
Irrespective of the ultimate answer a clarification of the scope of a synthesis between
the conventional tenets of general relativity and those of quantum physics is
important.

Appendix

In this appendix we want to describe how one can pass from the operator algebras
πω(2l(0)) m the GNS representation induced by some state ω on 91 to von Neumann
algebras Kω(0).

Let ω be a state on 21, i.e. a linear functional on 21 with

ω(l)=l, and ω(A*A)^Q (A.I)

for all Ae 21. Then, by the GNS construction, one has a Hubert space §ω, a
representation of 2ϊ by operators on some dense subspace Dω of §ω, and a unit
vector ί2ωe§ω, such that

(A.2)

The operator πω(A) may be unbounded; however, because of

πωμ*)cπωμ)* (A.3)

its adjoint is densely defined, thus πω(A) is always closable. Let

(A.4)

denote the polar decomposition of the closure nω(A)~ ofπω(A). Then 9tω(0) may be
defined as the von Neumann algebra which is generated by VA and the spectral
projections of | πω(A) \ for all A e2ϊ(0). $Rω(0) is the smallest von Neumann algebra to
which all operators πω(A)~,Ae2l(^), are affiliated.

We now can turn to the proof of Theorem 3.2. Let ω be a state on 21 belonging to
some primary folium F. Then for Pe^,

}. (A.5)
_

Now assume that ω has a scaling limit ωp at P with the scaling function N(λ) (cf.
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(3.8)). Let for /e$,λ>0 sufficiently small,

f^ = N(λγβ£J^9 neZ + ί (A.6)

and define for/e^ί and c> 0,

Λ(/) = (l +c2\πω(f)*\2Γ1πω(fΓ (A.7)

We have

(i) \\Ac(f}\\^~,

(ii) IKΛ(/)-

(iii) l(Φ,μc(/)-

(iv) Λe(/)e9U0) if /6«I(0). (A.8)

A.I. Lemma.

w — lim w — lim Ac(fλ) = ωp(f) 1 .
c->0 λ^O

Proof. Let 0 be an arbitrary open neighborhood of P. Then for λ sufficiently small
Ac(λ)e$lω(Θ) for all c> 0. Hence according to Eq. (A.5) the weak limit points of the
uniformly bounded sequence (Ac(λ))λ^0 are multiples of the identity, i.e.

Ac(fλ) - (Ωω, Ac(fλ)Ωω) 1 -> 0, λ -> 0.

But by inequality (A.8) (iii) these limit points differ from the limit ωp(f) of the

sequence (Ωω9πm(fλ)Ωω) = cΰ(fλ)9λ^O at most by ^ωP-(/*/)1/2ωP-(//*)1/2. In the

limit c-»0 one obtains the statement of the lemma. q.e.d.

It is now easy to find a dense set in §ω for which the scaling limit exists. Namely,
let 0 be an open neighborhood of F and let BΈ9lω(βy. Then BΏω is in the domain
of definition of πω(/)~ for all/e2l(0). We have for an arbitrary/eSI and λ sufficiently
small,

w(πω(fλ) - Ac(fλ))Ωω) + (B'*BΏω,Ac(fλ)Ωω\

In the limit λ -> 0, c -> 0 the first term in the last line of this equation vanishes
according to inequality (A.8), the second term converges to \\BΏω\\2ωP(f)
according to Lemma A.I. Hence in the state induced by BΏω the scaling limit exists
with the same scaling function N(λ) and coincides with ωp. From Eq. (A. 5) the set
\j3lω(β)Ώω is dense in §ω, thus the finite convex combinations of the induced
ΰeP

states are a dense subset of the folium 3F on which the scaling limit exists and
coincides with ωp.
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