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Abstract. Analyticity of correlation functions for the two-dimensional Ising
model as a function of the inverse temperature except for the singularity at the
critical temperature is proved. A crucial step is the establishment of the
correspondence between extremal equilibrium states of the model and pure
ground states of a one-dimensional spin system below the critical temperature
T.. An exact decay rate of the clustering property along axes is also determined
for all T+ T,

1. Main Results

We consider the two-dimensional Ising model with the Hamiltonian
H(é):-— Z(Jléij€i+1,j+‘]2€ijéi,j+1)9 (11)
t,J

where &;= =1, (i,j)eZ? and J’s are real constants. We are interested in the
thermodynamic limit (L, M — 00)

wy(F)=Hm<{F> . (Fdpy=Zpy by F(&)e PH™® (1.2)

Ziy= % exp—fH"™(&), (1.3)

in which H*™ denotes (1.1) with the sum over &, with (k,[)e[—L, L] x [ — M, M]
and we consider an arbitrary polynomial F(£) of a finite number of &’s, which we
call a strictly local observable.

There is a critical inverse temperature . such that ), is the unique equilibrium
state for || <, while there exist two extremal equilibrium states ;. with

Y= +p;-)/2 (1.4)

for |B|>B. [1, 12]. Our main result is as follows:
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Theorem 1. For any strictly local F, py(F) for |B|= p. and vy (F) for |p|> . are
real analytic in B, J,, and J,.

Let 7, ,, be the lattice translation automorphism: 7 (&) =&s1 j+me
Theorem 2. (1) Let
p=y;, 0=2K{—|K,]) for |BI<p.,
Y=Ygqy O YPp_, 0=4(K,|—K%) for |B>p.,
where K, =pJ,, K,=pJ,, and K¥=(1/2)logcoth|K,|. ($.>0 is a solution of
K¥=|K,|.) Then
lim eWW(Fﬂ(l,O)(Fz))*V)(F1)1P(F2)|=0

1- o

for any local F, and F,, and there exists F,, and F,, for any ¢>0 such that
lim em(Ha)hl’(Fsﬂ(l,O)(Fzz))“U’(Fu)W(ng)l: 0.

[ Aaded]

(2) For any continuous functions F and F , on the configuration space supported
in {(Lm)eZ?*;I<N} and {(I,m)e Z?; |= N +d}, respectively,

[w(F 1 F2)—w(F)w(F)lSe” Pp(IF ) p(F,*)' 2.
(3) For any continuous functions F, and F, on the configuration space
{1’ - 1}227
m  w(F tg,m(F2))=pF Jp(F>).

(I,m)— 0
By the transfer matrix method, the state 1, is related to a state ¢, of a spin
lattice system (of spin 1/2) in one-dimension by

w[i(F)z(pﬂ(Fﬂ) > (1.5)

where F is any-function of a finite number of £’s and F is a corresponding strictly
local operator belonging to the C*-algebra 2 generated by Pauli spin matrices at
all sites of the one-dimensional lattice Z. [ See Egs. (4.4) and (4.5) of Sect. 4.1 In [5],
it has been shown that, for || <., ¢, is pure, while

0p=(p+ +05-)/2 (1.6)

for B> B. where states ¢, of 2 give rise to disjoint representations of 2. A key
result is the following:

Proposition 1.1.
0 (F)=¢p.(Fp) (1.7)

defines states wgy . on the abelian C*-algebra generated by &’s which are ergodic and
mixing equilibrium states for the Hamiltonian (1.1). (Ergodicity and the mixing
property refer to lattice translations as usual.)

Equations (1.5) and (1.7) imply the ergodic decomposition of equilibrium
states:
Yp=(wp4 +wg_)/2. (1.8)



Correlation Functions for Ising Model 243

This much can be established without any outside information on y ;. However, we
do not know at this point how to decide whether w;, are extremal equilibrium
states. Thus we refer to the result of [10] that the decomposition (1.4) is an ergodic
decomposition, to obtain the following identification.

Corollary 1.2. y;, =wy,.

We note that the labelling + of w,, for varying f is fixed by analytic
continuation except for the overall choice of the labelling. Since +v;,(¢;;)>0, the
analyticity of the quantity ¢,.(c¥) in f then requires the labelling on two sides of
Corollary 1.2 to be independent of B(|8|>f,). The over-all labelling of wy, is
adjusted to coincide with that of y;,.

We may also use the clustering property of y,, [10] to obtain an alternative
direct proof of Corollary 1.2 (see Sect.2). We are indebted to Dr. D. E. Evans for
this direct and simple proof.

By using the same method as the case of the XY model [7], we prove the
analytic dependence of ;. on J; and BJ,:

Proposition 1.3. ¢4(A4) and ¢, (A) are real analytic as a function of K;=pJ and
K,=pBJ, (hence as a function of B) except at f=f, for any strictly local Ae .

As will be seen in Sect. 4, F is a linear combination of local observables with
entire function of § as coefficients. Equation (1.5) for || < ., and Corollary 1.2 for
|8l > B, together with Proposition 1.3 prove our main Theorem 1.

We present a proof of Proposition 1.1 in Sect. 2, a proof of Proposition 1.3 in
Sect. 3 and the strict locality of Fy along with a preparation for subsequent sections
in Sect. 4.

The states @4, ¢4, are actually ground states of 2 with respect to a one-
parameter group of automorphisms o of 2 defined from the transfer matrix. For

F= l—[1 Sk Iy), &k Iy = I—I[ Chyi (1.9)
Jj= telj
with k; <k, <...<k,, the corresponding operator F;e U is given by
Fy=af (0.(I1)...oh (0.(1,), (1.10)
(D= T] o?. (1.11)

iel

Thus the relation (1.5) tells us that y,; and v, . are obtained as Schwinger functions
of ground states ¢, and ¢, . This view point is used (1) to prove the hermiticity
wjy =w;,,(2) to prove Theorem 2, and (3) to prove wj, & w,_ [without using the
identification with v, and without explicitly computing w;,(A4) for some A].

The dynamical system (2, «) will be introduced and the relation (1.10) will be
established in Sect. 5, clustering properties will be proved in Sect. 6 and the last
point wg , # w, - will be discussed in Sect. 7. In the final Sect. 8, we use a conjugate
automorphism j of 9, which is the time reversal symmetry in the sense jo, = _,j, to
deduce the hermiticity of wy . The same method has an application to the one-
dimensional X Y-model, as is given in Proposition 8.6.

By the automorphism (of the classical configuration space), changing ¢; ; to
—¢;, ;for i odd while keeping &; ;for i even unchanged, J, changesto —J; in H. A
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similar statement holds for J,. By another automorphism changing ¢; ; to ¢; ; for
all (i,j) e Z?, J, and J, are interchanged. The equilibrium states depend on real
parameters K, = fJ, and K, =fJ,. Therefore, except for the point K; =K, =0,
we may assume K, >0, which means K¥ defined by (1.5) of [ 5] is real and positive.
At the same time we may assume — e < K, for any ¢ > 0. (For analyticity at K, =0,
we have to consider slightly negative K,, too.) The analyticity of correlation
functions at #=0 is immediate, for example from the unique determination of the
correlation functions by Kirkwood-Salzburg equations [11]. Thus the point
K,=K,=0istaken care of and we assume K, >0, K, > — K¥ in the following. We
also assume K,+K%¥ (ie. f+f,), because we are proving analyticity and
exponential clustering, which fail for K, =K7%.

2. From States of the Non-Commutative Algebra in One-Dimension to States
of the Commutative Algebra in Two-Dimensions

The map F— F will be studied in Sect. 4 and the following property will be basic
for the present discussion.

Lemma 2.1. (1) Fy is linear in F and 15=1.
(2) Fy satisfies (t(o,nF)s="1.(Fp) and the clustering property
lim ||(F1T(0,n)(F2))/i_(Fx)/;'fn((Fz)ﬁ)” =0, 2.1
where T , is the lattice translation automorphism &;;—¢; ;. of the C*-algebra €
generated by &;; and 1, is the lattice transformation automorphism of U.

(3) For the automorphism @ of U determined by (2.9) of [5] and the
automorphism @ of the abelian C*-algebra € generated by &;; determined by
@(éij)= -fij,

(O(F));=06(Fy). 2.2)

The states ¢, of U are lattice translation invariant and pure [5]. Hence they
have the clustering property

nlgg @p(ATy(B)) = @4+ (A)pyp(B). (2.3)

We also use the result of Sect. 8 that ¢, , (F ) is real if F is real (as a consequence
of the “j-symmetry” of ¢, proved in Sect.8).

Lemma 2.2. If F20, then ¢;.(Fp)=0.
Proof. By (1.5), F 20 implies
@p+(Fp)+0p-(Fp)=20,(Fp) =2ys(F)20. (2.4)

By (2.2), (F,0(F,)+ O(F,)F,); is © invariant. Since F; =0 and F,=0 imply
F,O(F,)+ O(F,)F,=0, we obtain

€0ﬂ+((F1@(F2)+@(F1)F2)ﬂ)+(Pﬁ—((F1@(F2)+9(F1)F2)p)
=2yp(F1O(F,)+ O(F)F,)=0. 2.5



Correlation Functions for Ising Model 245

By (2.1), (2.3), and (2.5),

205+ (Fp)@p (O(Fp) +205_(Fp)os(O(Fp))
= '}gg {0+ (FO(1(0,n(F)) + O(F)1 (0, (F))p)

+ @5 (FO(1(0,n(F)) + O(F)t0,n(F))p)} 20. (2.6)
Since @g4°0= @y, we obtain
(Pﬂ+(F;;)€0ﬂ—(F/;)§0- (2.7)

As quoted before the statement of the lemma, ¢, (F;) is real for F=0.
Combining (2.4) and (2.7), we obtain

wp+(F)=0;.(Fg) 20 (2.8)
for FZ0. Q.E.D.

Proof of Proposition 1.1. Lemma 2.2 means that the restriction of w; ;. to the finite
dimensional subalgebra €(I) generated by ¢, ;, (i,j) €1, for any finite subset I are
states [the linearity from Lemma 2.1 (1), the positivity from (2.8) and the
normalization by w4 (1)= @+ (1) =1 due to Lemma 2.1 (1)]. Hence [|w; 4 || <1 and
wy 4 extends to a state on the C* algebra € generated by €(I). (Alternatively, we
may refer to the Kolmogorov theorem.)

By Lemma 2.1 (2) and the translational invariance of ¢4,

0p+(T0,mF) = w4+ (F). 2.9)
Furthermore, by (2.1) and (2.3)
lim g (F170,mF2) =0+ (F1)wp(Fy). (2.10)

n—+w

Going over to the cyclic (GNS) representation 7z, on $sy, 7, Will be
represented by a one-parameter group of unitaries U, ,, and (2.10) means

lim (¥, Ugg,n® = (¥, 2ps) (@2, ®) @.11)
for ¥, @€ H;,, where Q;, is the canonical cyclic vector corresponding to F=1.
[Equation (2.10) implies (2.11) for a dense set of vectors ¥ and @, which then
implies (2.11) for general ¥ and @ by L, approximation.] This is the strong mixing
property, which implies ergodicity (all relative to the group of one-dimensional
lattice translation).

The mixing property relative to the two-dimensional translations will be
shown later, but the properties relative to 7, are sufficient for the proof of our
main theorem indicated in Sect. 1.

Finally, we prove that w;, are equilibrium states. Because of the cluster

roperty (2.10), we have
property (2.10) w-lim <0, u(F) = 05 ()1 2.12)

on $,, for each strictly local F. Since w; is a vector state by 27 /*(Q,, ®Q,_) on
9=95+ DHs—, We have
W'lim T(O’n)(F)=wﬁ+(F)P+ +(OB_(F)P_ s (2.13)
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where P are projections on ;.. Thus (2.13) for all possible F are observables at
infinity according to Lanford and Ruelle [13] and induce the decomposition (1.8)
(if wp4 F wz-). By the result of [13], wy, are equilibrium states (i.e. satisfies the
DLR equations). (Note that if w, . = w;_, then wg, =y, is an equilibrium state. If
this happens, y,; would be ergodic and mixing. In the present model, this is not the
case) Q.E.D.

A Direct Proof of Corollary 1.2. For any @-even element F, F; is @-even and
Ve (F)=wp(F)=p4Fp)=pp.+(Fp). (2.14)

Next we note that y,, (and y,_) has a clustering property [10] and the state
@p+ also has a clustering property by 7,-asymptotic abelian property of the
algebra as it is pure. For ®-odd F, and F,, we obtain

W+ (F )W+ (F2)=0p 1 (F1p) @4 (F2p) 2.15)
by the clustering properties of
V5+(G) =vy(G) = 05(Gn)p) = 95+ ((G)p) (2.16)
for G,=F,7,,(F,) as n—co. (2.15) with F, =F, implies
Wy (F)= £, (Fp) 2.17)

with the sign + common for all F again by (2.15). The labelling has been already
discussed. Q.E.D.

In spite of this simple proof (due to D. E. Evans), we retained the argument via
Proposition 2.1 as it shows which information on the two-dimensional classical
lattice model can be obtained by working only with a one-dimensional quantum
system, i.e. we can obtain an ergodic decomposition of 1 into equilibrium states
without any input on the property of y;.

3. Analyticity

First we describe ¢, in more detail, following [ 5]. We recall that an extension of 2
to a larger C*-algebra %[ =2+ T by an addition of a new element T satisfying
(2.1) of [6] (or (2.10) of [ 5]). The algebra 9 contains the Fermion algebra 2R on
the one-dimensional lattice Z. The involution automorphism @ of A is extended to
the automorphism @ of [ (denoted by the same letter here) by @(T)=T. Both A
and ACAR are @ invariant subalgebras of % with the following decompositions into
©-even and @-odd parts:

QI=QI++QI_, QICAR QICAR-{—QICAR (31)
Then
A, =WAR, Q[ =TUACAR, (3.2)

Strictly local elements of 2, are exactly strictly local elements of AR except that
T is to be multiplied in case of @-odd elements.

Annihilation and creation operators are denoted in a unified manner by B(h),
hel(Z)+1,(Z)= K in the selfdual formalism of the canonical anticommutation
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relations (CAR) [3]. A Fock state ¢ of AA® is specified by a projection operator E
on K [satisfying I'EI'+E=1, where B(h)*=B(I'h)] through the relation
@g(B(hy)*B(hy))=(hy, Eh,). The state ¢, is a @-invariant extension (to ) of the
restriction of a Fock state ¢ of AAR to WSAR =, , where E is a multiplication of

E@0)=(1+V(0))/2 (3.3)

on the Fourier transform of & = [,(Z) + [,(Z) with y(f) and V() defined by (3.8) and
(3.7) of [5].

From (3.8) of [5], y(0) is an analytic function of K¥, K,, and €, if sinhy(6) %0,
and so is €°® by (3.9) of [5]. Therefore, E(0) is an analytic function of K*, K,, and
e if K¥ and K, are real and unequal (i.e. f+ f, for real values of parameters).

The rest is exactly the same as [7]. Let K¥+K, and let E’ be the projection
operator corresponding to another value (K7, K5) in a sufficiently small
neighbourhood of (K%, K,). Let U,, be given by (3.3) of [7] where E, and E,
should now be replaced by E and E’. Then U,,(6) is analytic in K%, K,, K7*K5,
and €. By Lemma 2 and (2.17) of [7] U,,0_U,'6_ —1is in the trace class and
with sufficiently small norm so that the Bogoliubov transformation o(U, ,) of ASAR
can be extended to a *-automorphism of 4(U,,) commuting with 6 due to the
Evans-Lewis criterion (see Lemma 1 of [7]) and we obtain

o(A)=p(a(U12)A4) G4

because @p(A)=pg(a(U,,) (4)) for A AL =, and ¢j(4)=0=¢4(a(U,,)4)
for AeU_ [and then &(U,,)4eW_] by definition of ¢; and ¢,z where ¢j
corresponds to the parameters K7, K.

Defining L by U,,0_U;'0_ =¢'f, with | L|| <=, we see that L is holomorphic
in (K*, K3) (relative to the trace class norm) and hence u = ¢"®L#/2 is holomorphic
in (K¥,K5) (relative to the operator norm), where (B,LB) is the bilinear
Hamiltonian. Thus 4(U,,) (T)=uT is holomorphic in (K ¥, K3). Since any strictly
local observable 4 in A is a polynomial of B(h)’s and T, the analyticity of
(U ;) (B(h))=B(U,,h) and d(U,,) (T) just proved implies the same for &(U,,)A4
and we obtain the analyticity of (3.4) and hence Proposition 1.3.

Remark. Equilibrium states y, of the Ising model can be related to a ground state
of the X Y-model in one dimension (with a different definittion of F;) [15]. Then the
proof of this section can be entirely omitted by referring to results of [7]. We have
not done so here because our results in Sect.5 and later would require an
introduction of o different from the X Y-model and different from [5], so that it
would lengthen the paper.

4. Strict Locality of Fj
For Qe U, let

#M(0) = Ad [exp (—izK’f b a;ﬂ)] . @.1)

j=—-M

A2M(0) = Ad [exp <—izK2 S oot %ﬂ ), 42)
=M
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where Ad[V](Q)=VQV ~'. Then
ofM(Q)=TyQTy ' = o *Muf Maf24(Q), (4.3)

where Ty, is the transfer matrix given by (1.4) of [5].

Any polynomial of a finite number of &;; is a linear combination of the
monomials F of &’s given by (1.12). The corresponding element Fy e 2 is defined as
follows:

Fy= lim Fpy, (4.4)
FﬁM = T]\lfllo-x(II)T'I\IEIZ—klo-x(IZ)Tl\"‘I3 —kz' . 'O-x(In)T]\;kn
= {0 (I} {20 (1)} (™) o (1,)} - (4.5)

We denote the subalgebra of U generated by ¢¥) with |j|<n by U,. The
following lemma shows the strict locality of F.

Lemma 4.1. For Qe ,

£ Q)= 1&1_120 M) =ol'(Q) e N, (4.6)
“HQ)= Aiiinm Q) =02 (Q) e, . (4.7)
Proof. By commutativity of summands, we obtain
exp <——izK’;e ; ag)) = ]:[ exp(—izK*a¥), (4.8)
exp (—izK2 ; dWgl™* “) = [J] exp(—izK,aWa¥* )y, 4.9)

By commutativity of Q € 2, and the factors in (4.8) with j>n, (4.6) follows from
(4.8). Similarly (4.7) follows from (4.9). Q.E.D.

By (4.6) and (4.7), F; can be explicitly calculated as a polynomial of ¢’s with
analytic functions of K’s as coefficients by

exp(—izK¥a¥’) =coshzK* —ig¥ sinhzK* , (4.10)
exp(—izK 66 * V) =coshzK, —ic¥e¥* VsinhzK, . 4.11)
Corollary 4.2.
Q)= lim of™(Q)=al*a!'af*(Q), (4.12)
M- ©
Fy={0") 0,1} {(P)20,(I,)}... {0 a.(1,)} . (4.13)

Proof of Lemma 2.1. (1) Since monomials (1.9) are linearly independent, the
linearity holds by definition.

(2) From the proof of Lemma 4.1, it immediately follows that 7, commutes
with o' and «f2. Hence (7 ,,F)s="1,(Fp).

From the proof of Lemma 4.1, it is also clear that for sufficiently large n (and
local F’s), (F 7o, »(F2))s=(F1)s(t(0,n(F2))s. Therefore, (2.1) follows.
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(3) From (4.1) and (4.2), O (in one-diemnsion) commutes with o?'™ and /2.
Thus, for F given by (1.12),

(OF) 5y = {00, (1))} .. {(f*) O (I,)} = O(F gpy) .
By taking limit M — o0, we obtain (2.2). Q.E.D.

5. The Dynamical System (2, «¥)

The aim of this section is to define a dynamical system (2, «f) for the one-
dimensional lattice spin system, identify ¢, and ¢,, as ground states of this
dynamical system and identify the quantities ¢4(F ;) and ¢, (F ) appearingin (1.5)
and (2.7) as their Schwinger functions. For this purpose, we first introduce a
dynamical system (ACAR, a“AR) and then extend it to (I, &%) so that as its restriction
to ACA we obtain the desired dynamical system (U, o).

Let T, be the transfer matrix given by (1.4) of [5] and used in the preceding
section. We define o

EM(A)=T, "ATE, Ae¥l, (5.1)

which is consistent with notation o of (4.3). Since Ty, € W, = ALK, oM leaves
ACAR invariant. Its restriction to ACAR is determined by

ofM(B(h) = B(e™**""h) (5:2)

which follows from the expression (2.23) of [ 5] for T,; up to a constant factor. Here
HM is defined by (2.22) of [5] and tends to H defined by (3.5) of [5] in the strong
operator topology. Hence

lim of™(B(h))=B(e 21h), (5.3)

M- ©
where the limit is in the norm topology of A°AR, Therefore,
wAR(4)= lim ofM(4), AeUAAR (5.4)
M-

exists for real ¢ and defines a dynamical system (UCAR, xCAR),

Proposition 5.1. (1) The action t e R—af*® € Aut AR extends to an action te R
—@f e AutqlL.

(2) The extension 6¢ of aS*R to N continuous in t is unique.

(3) Foranystrictlylocal Ainq (i.e. A= A, + TA,, where A, and A, are strictly
local elements of AR (equivalently of N)), G(A) is entire analytic in t.

Remark 5.2. We are avoiding the question of whether (5.1) has a limit for A € as
M —o0.

Proof. (1) We will use the criterion of Evans and Lewis [9] that if the

automorphism oSAR@ _a4R@ _ of ACAR is implementable by a unitary u, in AGAR

Adu,=a*RO _a RO _, (5.5)
then u, can be chosen to satisfy

1,0 _(u)=1 (5.6)
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and @f defined by
@Ay + TAy)=of(4;) +u,Tef(A4,) (5.7

is an automorphism of 9 coinciding with o*® on ACAR (Lemma 1 of [7]).
Let a(U) denote the Bogoliubov automorphism of A“AR such that a(U) (B(h))
=B(Uh). Then of*R = q(e ™ 2*H) by (5.3) and

aCARO _aCARO _ = e 2t _e2itHp ), (5.8)

After the Fourier transform of the test function space K=[1,(Z)®1,(Z), His a
multiplication operator of the function

H(6)=(0) (1-2E(0)) (5.9)

which is a holomorphic function of z=¢" at the unit circle |z|=1 if ||+ f, as
indicated in Sect. 3. By Lemma 2 and (2.17) of [7] again, e 270 _e?"™0_ —1isin
the trace class. For a Bogoliubov transformation U,=e 2*™H(_e2™H(_, its
determinant is 1 or —1 depending on the even-oddness of the multiplicity of its
eigenvalue —1 (due to I'U,I'=U,). Since U, is continuous in the norm topology
and since U,—1 is compact, this is constant in t and hence must be 1 due to U,=1
for t=0. Therefore, the criterion of Evans and Lewis is satisfied, and «, for each t
can be extended to &, € Aut9l.

We finish the proof of (1) by showing that &, can be chosen to be an action (of
teR). Wefirst prove that d, can be chosen to be continuous in ¢, then we prove that
such d, is automatically a one-parameter group.

By the same argument as above, the operator

A=60_ HO —H=-2(q,Hq_+q Hq,) (5.10)
is in the trace class (g =(1+6_)/2) if f= .. Therefore,
t
U,=1+2i | e” 2sH fg2is0-H0- g (5.11)
0

is continuous in ¢ relative to the trace class norm. For sufficiently small § >0,
|U,—1| <1 for |t|£6. Then ‘

Us=el, L(=log+U,~1)=T (=) U~=D"n, (512

n=1

where L, is continuous in ¢ relative to the trace class norm. Therefore, the choice
u,=e'®L®12 is continuous in ¢ and satisfies (5.5) (by (8.23) and (8.24) of [3]) as well
as (5.6) (by © _(B,L,B)=(B,0_L,6_B) due to (7.12) of [3]and by 8 _L,0_ = —L,
due to 0_U,0_=U, "), where (B,L,B) is the bilinear Hamiltonian and the
continuity of L,—(B, L,B) is by (7.11) of [3]. For larger values of ¢, we define u, by
the following cocycle equation:

Uit o+t — a{jl Foeittno 1(“:,,)' . '(xfl(utz)un . (5~1 3)
For example for (n—1)d<|t|<nd, we use t;=...=t,_,=(signt)éd and
t,=t—t;—...—t,_. Then u, so defined is continuous in ¢t € R. Such u, automati-

cally satisfies (5.5) [by (5.5) for u,] and (5.6) [by © _(u) =u,:1 and by
Ad(u,)® _of ©_=0of]. Then the group property &fdf, =df, ,,, follows from the
uniqueness argument, i.e. the proof of (2), which will be presented now.

(2) For the proof of this part as well as for a later use, we need the following
lemma to be proved immediately after the present proof.
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Lemma 5.3. Any element of N commuting with all elements of A, = AAR must be a
multiple of the identity operator.

Let d; be another extension of o, Then &,(T)T =u; also has the property (5.5)
and hence u/u* commutes with all elements of AR, By the above lemma we have
u, = c,u, for a complex number c,. Since u; and u, are unitary, |c,|=1. Since &,(T)
=u;T=c¢d(T), and since both &(T) and d,T) are selfadjoint, ¢c,= +1. By the
continuity in t, ¢,=1 and we obtain the uniqueness.

(3) By (5.3), d,(A) is entire analytic for any polynomial 4 of B(h)’s. Therefore,
we have only to prove the entire analyticity of &,(T) =u,T or equivalently that of u,.

Using the trace class operator 4 of (5.10), we define

A=(B, 4B). (5.14)
It is a selfadjoint element of AR =A, and satisfies
[4, B(h)]=B(24h)
by (7.9) and (7.1) of [3] due to I'AI'= — A (= — 4*). By (7.12) of [3],
A(t)=of(A)=(B, e~ "1 ge* "1 B) (5.15)

is entire analytic in t as A(z) = e~ 2“7 A¢?"H {5 an entire function of z with values in
the trace class operators (cf. (7.11) of [3]).
We define

e} 1 th-1 ~ ~
o,=1+ 3 (o) § dtr... | dt,A(t,2)...0(t,2) (5.16)
n=1 0 0

(see Exp, defined in [4]). For z=t real, v, is unitary by (2.14), (2.15), (2.17), and (2.18)
of [4]. Furthermore, Proposition 12 of [4] implies that B,=(Adv¥)atA® is an
automorphism of AR

(u,*= (EXPz <f iﬂ(t)dt»* =Exp, (ff ; —iﬂ(t)dt>
0 0

in the notation of [4]> with the generator given by

d d
7 B(B(h) =B, [% ﬁs(B(h))}

s=0
8, {i CAR(B(hY) — i ], B(h)]}
dS s=0
— B(B(—2i(H + A)h)) = B(B(—2i0_HO_h)). (5.17)

This implies that S(B(e*-H#%-'h)) has an identically vanishing t-derivative and
hence is equal to its value B(h) for t=0. Hence

(Adv,) (B(h)) = (Adv)B(B(e**-"°-"h))
—aCAR(B(0_e?™10_h)=oSARO_oAR@ _(B(h)
=(Adu,) (B(h)). (5.18)
This implies the same equality with B(h) replaced by an arbitrary element of QCAR,
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As we have seen, (5.17) or (5.18) implies f, = © _«7 %@ _. Since 6 _460 = — A by
(5.10), we have @ _(4)= — 4. Therefore,

6 _(v)=Exp; (i ; ﬁt(—ij)dt>
=Exp, <£; (—id)* (—id)) (s)ds) (5.19)

t
by definition (3.7) of [4] because v¥=Exp, (j, —iﬂ(t)dt). By (3.11) of [4],
0

v,0 _(v,)=1. Since v, is continuous in t, we conclude by the uniqueness proof of (2)
that
U, =0,. (5.20)

_For |z| =, [ A(tz)|| £ e®1HN) 4], for || <1 by (7.11) of [3], where we have
T'A(t2)*I' = — A(tz) due to T'H*I'= — H and I'4*I' = — A. Therefore,

1 th-1 ~ ~
(iz)" | dty... | dt,A(t,2)...4(t,2)
(4] 0

< ()" (2l 4] e* M Ny (5:21)

and the sum in (5.16) is uniformly and absolutely convergent. By the entire
analyticity of A(t), u,=v, given by (5.16) is entire analytic in t. Q.E.D.

Proof of Lemma 5.3. Let Q e 9 commute with all elements of 2. We have

M M
6(Q)= lim ( I1 62"’) 0 ( I1 09’) =0 (5.22)
M- \j=-M i=-M
M . ~
because ( I a;> belongs to 2, and its squareis 1. Let @_ be the automorphism
~ j= -M
of A satisfying 5
O_(A4,+4,T)=A4,—A,T (5.23)
for A,, A, e U. (The dual automorphism of ® _ € Aut?l.) Then
6_(X)= lim ¢MeMXsMe™  Xeq, (5.24)
M-

dueto lim [¢¥, A]=0for 4 e A, M Te™ = Tand 6 M Te{ M= —Tfor M>0.
jzoo
Since dMg{" M e A, , we have
6_(Q)=0. (5.25)

The two equations (5.22) and (5.25) imply Q € 2 .. Since A, = AR is known to
have a trivial center, we have Q=cl. Q.E.D.

Remark 5.4. Lemma 5.3 implies that any unitary ue U satisfying u2l , u* =A,
must belong to one of A, TA, A_, and TA_, because u@(u*) and uB(u*)
commute with all elements of 2, and hence are multiples of identity.
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We now want to identify the analytic continuation of «?(A4) to z =i with «(4)

defined by OCﬁ(A) = lim TMA T]\:[_ 1_ a?lafla?Z(A) , (526)

M-
where A is a strictly local element of 2, and «?/ (z=1 here), j=1, 2, are defined in
Lemma 4.1.
Proposition 5.5. For any strictly local Ae,
wb(A)=aP(A). (5.27)

Remark 5.6. For Ae AR, a#(A) (including the case z=1i) is defined by the same
type of limit as (5.26). However, this is not the case for 4 € A (or equivalently for
A=T) and we present a proof avoiding the discussion of such a limit in the
following.

Proof. Let o) be the algebra of all strictly local elements of A and B be a
subalgebra of 9 generated by o and T or equivalently by T and B(h) with
strictly local h’s. We now extend o2’ defined on 2y, by Lemma 4.1 to B:

OCEI(B(h)) =lim aglM(B(h)) =limB(e~ ZiZKTH{Wh)

= B(e 2=Kiflip) (5.28)
«f4(B(h)) =lim of?M(B(h)) = lim B(e ~ 2K2H2}y)
= B(e ™ #K2Hz2p) (5.29)
In view of (3.5) of [5] and (5.2) in this section, we obtain
of(A)=of?of Tof(4) (5.30)

for A=B(h). For hel,(Z)®I,(Z) with components (h);=0,,(1), B(h)=c;+c}
=Td'V. Hence T=B(h)a'! for such h. Thus a??0f'af?(T) is well-defined. Let

w=al20blaf2(T)Te U, . (5.31)
Since T?=1, w™* = Tof2af'of*(T). We compute

wB(Ww ™! = af?of L af2(T {(0P%0PL0b2) (TB(W)T)} T)
_ B(eszzezkaleKsze_e—Ksze— 2K’1‘H1e— Kszg_h)

=B(e*™0_e 20 _h)=v,B(h)v; *, (5.32)
where we obtain the last equality by the analytic continuation of
v,B(h)=B(e” 2"H0_e*H0 _p)p, (5.33)

from z =t real to z=i. Therefore, w™ 'v,e A, = ASAR commutes with all B(h) and
hence is a multiple of the identity, for example by the simplicity of AAR (or by

Lemma 5.3): w=cv;. (5.34)

Since v,0 _(v,)=1and @ _(v,) = Tv,T, we have (v,T)* =v,Tv,T=0v,0 _(v,)=1.
We also have (WT)? = af2af10f2(T)? =1 due to T?>=1. Thus c>=1 and we obtain

w=+v;. (5.35)
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We now start varying K¥ and K,. Since we are interested in the situation
|Bl> B 1.e. |[K,| > K*¥ (K¥ is taken to be positive), we change K¥ to 0 with fixed K,,
although a similar argument works for the case |K,| < K%, in which case we change
K, to 0 with K¥ fixed. We prove the continuous dependence of w and v; on K¥ and
+ sign in (5.35) in the limit of K¥ =0. This would prove

w=u,. (5.36)

By (3.7), (3.8), and (3.9) of [5], H(0) is a continuous function of ¢ and the
parameters (K%, K ,). Hence, if H(6) denotes H(0) for other values (K*, K ,) of these
parameters, then sup |H(6)— H(6)| tends to 0 as (K%, K,)— (K%, K,) (assuming

‘]

|8l % B.). Therefore, the operator H (on the test function space) is continuous in
(K%, K,) relative to the norm topology. Furthermore, |H(6) — H(6)| tends to 0 as
(K%, K,)—(K¥%, K,) uniformly over complex values of z=¢” in a sufficiently small
neighbourhood of the unit circle |z| = 1. Thus by the same estimate as the proof of
Lemma?2 in [7],

(H—H);Sc(1£e)7, (5.37)

c= | |sup |[H(O)—H(0)|->0 as (K%, K,)—(K},K,). (5.38)
z|=1x¢

By the proof of Lemma 2 of [7], this implies that the operator 4 of (5.10) is

continuous in the parameters (K¥, K,) relative to the trace class norm. Therefore,

A(z) defined by (5.15) is continuous in (K*, K ,) relative to the norm topology, the

continuity being uniform in z over a compact set in the complex plane. By (5.16), v;

is continuous in (K¥, K,) relative to the norm topology.

Next we prove the continuous dependence of w on (K%, K,). We use the
definition (5.31) and the expression T=B(h)a'". By (5.28) and (5.29),
ab20b1of%(B(h)) is entire analytic in (K¥, K ,) relative to the operator norm. On the
other hand, Lemma 4.1 implies the entire analyticity of «f!(4) and «#?(4) in the
parameters zK* and zK, for any strictly local A. Therefore of?af!af?(s'!), and
hence w is entire analytic in (K%, K,).

Finally, we compute v; and w for K¥=0. Then H=K,H, and

of (A)=(o*)*(4) (5.39)

for A€ A% by (5.29) and (5.3). We have seen that the limit (4.7) exists for Q in a
total subset of A, namely for strictly local Q € U in (4.7) and for Q@ = B(h) in (5.29).
Therefore, restricting for z=t real, we obtain the existence of the limit (4.7) for all
Qe and it defines a one parameter group of *-automorphisms 2 of A. By
Proposition 5.1 (2), we obtain
68 = (af?)? (5.40)
in the present case. As we know the existence of analytic continuation for ¢*(T) and
a??(T), we obtain
0;=8/(TT=((T)T=w. (5.41)

(In the case of K, =0, &/ commutes with T and v;=w=1) Q.E.D.
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Proposition 5.7. ¢, and ¢, are ground states of (U, of). If K% =|K,|>0, ¢ is the
unique ground state. If 0<K¥ <|K,|, @, are the only pure ground states and the
cyclic representations of W associated with @, are mutually disjoint.

Proof. The time translation «“A® is a quasifree dynamics of ASAR determined by

aSAR(B(h))=B(e” *""h) and the projection operator E described by (3.3) is the
spectral projection of the generator —2H for the interval (0, + 00). Since H does
not have an eigenvalue 0 if K¥, K, +0 by Lemma 3.1 of [5], the Fock state ¢ is the
unique ground state of (AAR, «AR) (by Theorem 3 (1) of [6], for example). The
restriction of ¢y to WSAR =9, is the unique ground state of (U ,, of) if K* =40 and
K, +0 by Theorem 4 (1) of [6]. Note that H has a continuous spectrum if K¥+0
and K, +0. Hence ¢ is the only @-invariant ground state. We can then find all
ground states of (2, o) according to the scheme described in Theorem 5 of [6]. The
relevant criterion has been worked out in [5] and the conclusion is that ¢, is the
unique ground state of (U, oY) if K¥ 2 |K,| >0 and that ¢ = (¢4, + ¢, -)/2if 0 <K}
<|K,|, where ¢, are the only pure ground states of (2, «/) and yield mutually
disjoint representations of 2. Q.E.D.

Remark 5.8. If K, =0, the original system is the same as the tensor product of one-
dimensional Ising model and a time independent spin-lattice system. The
corresponding one-dimensional system (2, «f) has a unique ground state [though
(A, of) has an infinite number of ground states].

The case K¥=0 does not correspond to any finite parameter values of the
original two-dimensional system.

6. Clustering Properties

Let ¢ be a pure ground state of (U, o) and (9, 7, ) be the (GNS) triplet of a Hilbert
space, a representation of 2 and a cyclic vector for the state ¢ : p(4) = (P, n(A4)P).
Let U, be the canonical one-parameter group of unitaries on § implementing a,:

) Un(A)P=mn(o,(A)D. 6.1)
Let U,=¢e"".

The following properties of the generator L will be relevant for the general

discussion in this section:
(i) L=0.

(ii) The multiplicity of the point spectrum O of L is 1.

(iii) Thereis a gap of 6 >0 between O and the rest of the spectrum of L [namely
(0,8)nSpecL=0 and 6 € SpecL] and § is not a point spectrum of L.

First, we discuss the validity of these properties. Then we discuss its
consequence. Combining these discussions, we obtain finally our conclusion about
clustering properties of @, and .

The property (i) is a definition of an o,-invariant state ¢ being a ground state.
The property (ii) follows from an abstract property of ¢, which is satisfied by ¢,
(when 0<|K,|£K¥) and by ¢, (when |K,|> K7 >0) due to Proposition 5.7:

Proposition 6.1. Assume that ¢ is a pure ground state and the associated
representation is disjoint from representations associated with any other pure ground
states, then (ii) is satisfied.
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Proof. If @' is a vector annihilated by L, then w'(4) = (@', n(4)P’) is a ground state
and the associated (GNS) representation [is contained in (r, ) and hence] must be
the same as (7, ) because of the irreducibility of . Therefore, w’ is a pure ground
state with the associated representation coinciding with that of w. By assumption
o’=w. By the irreducibility of n, ®’=c® with a complex number ¢. Q.E.D.

The property (iii) requires a concrete computation.

Proposition 6.2. (1) For |K,|>K%>0, pure ground states @g, satisfy (iii) with
0=4(|K,| - K¥).

(2) For 0<|K,|<K¥, the pure ground state ¢ satisfies (iii) with
0=2(KT —|K,|).

Proof. From the formula (5.9) for H(f) and the definition (3.8) of [5] for (), H has
an absolutely continuous spectrum of multiplicity 1 on

Spec H =[—(IK,|+KT), —[IK,[—KT[]
UK, |- K7, K|+ KT T (6.2)

For the ground state ¢ of (AR, oAR), we may define L°*® in exactly the same
manner as above. Since «SAR(B(h)) = B(e ~ 2'Hh), L°A® satisfies the property (i), (ii),
and (iii) with 6 = 2| |K ,| — K¥|. Furthermore, the restriction L*® of L°*® to the even
subspace, which is the same as L constructed for the restriction of ¢ to
(UACGAR 4CAR) = (U, af), satisfies the property (i), (i), and (iii) with 6 =4| |K | — K7|.

These follow from the formula U,= Y (e 2™)®" on a Fock space
n=0

$= 3 Antisym[(ER)®"], R= lza)@zz(zy)
n=0

When |K,|>K% >0, we can apply Proposition 5.1 (2) of [6] and obtain the
GNS representations for (U, of,¢,.) in the GNS representation space of
(W, of, 0p) =(ALR, ofAR ) with the identical cyclic vector and with the
identical representation of 9, C . Since U, is determined already by the cyclic
vector and the representation of A, [via (6.1) valid on a dense set (2, )P], we
obtain L=L®, which satisfies (i), (i), and (iii) with 6 =4(/K,|—K%).

Now we consider the case 0 <|K,| < K¥. We imitate Proposition 5.1 of [6] and
perform an irreducible decomposition of the cyclic representation 7 of U
associated with the state ¢ of U given by

Pp(A +TA)=0g(A4,), Ay, Aye AR, (6.3)

Like (4.2) ~(4.4) of [6], the cyclic representation (7, §) of 9 associated with this
state can be decomposed as a sum of 4 irreducible representations (m;;, ;;),
i,j=1,2, of WPAR=91, :

911 =@APHD) ",  H,=FRALHD)", (6.4a)
532 1= (ﬁ(QISLART)é) o 522 = (fC(QIgAR T)é) T (6-4b)

where & is the cyclic representative vector for the state ¢. It can be combined into
two irreducible Fock representations of ACAR=UAR+ AR on §,=H,,+ 91>
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and $,=9,,+ 9., associated with Fock states ¢ and ¢, g, , respectively. By
Lemma 5.1 of [5], these two representations are equivalent, i.e. there exists a
unitary mapping w;, from §, onto §,, intertwining 7% (4) =7(A)|5, of A € AR,
j=1,2. The operators #(T)w¥, and w,,7(T) on $H, both implement the automor-
phism @_ of AR, Since #(AF)s, is irreducible, they can differ only by
multiplication of a complex number: #(T)w¥, = e“w,7(T). By redefining ey

as new wy,, we obtain the equality A(T)wi, =w;,%(T) on $,.

Defining W(¢&; + &) =wi, & +wy,&, for &€ §;, we obtain a selfadjoint unitary
operator W, which commutes with #(A4), 4 € QAR (by the intertwining property of
w,, and w¥,) and with 7(T) [by #(T)w*, =w,,7(T)]. Therefore, W is in 7(2). We
have an orthogonal decomposition:

$=5.@05, H:=1£W)H, (6.5)
d=(b.@8.))2, &,=2"121+W)d, (6.6)
#(A) =7, (A)®7_(4), Ae¥, 6.7)
Pp=(Pps +P5)2,  Pp(A)=(D.,7(A)SB,). (6.8)

The cyclic representations 7 .. associated with states ¢ of 91 can be constructed
on 9, by
(A + A, T)=F(A) T R(ATIW)|g,, A UAR, (6.9)

with the same cyclic vector &: (&, 7 (4)P) = ¢, (A4), A€ A Each 7, isirreducible
as 7. (WCAR) = #(ACAR)|¢ is already irreducible.

Since A(AAR)|g is 1rredu01b1e there exists a net 4, AR such that #(4,)
—>TC(T)W12—W127'E(T) on $,. Since w,, intertwine n(?ICAR) on H, and H,, we
obtain #(A,)->A(T)W [=#(T)wk,®@#(T)w,, on H,®H,]. This means 7, (4,T)
— +(A(T)W)*=+1 and hence 7, are mutually disjoint irreducible represen-
tations. Since ¢y is &, invariant by (6.3) due to the at*R-invariance of ¢y, the
decomposmon (6.8) into disjoint pure states implies the o,-invariance of each of
¢p+- The associated operator U, for (N, d,, ¢ ) is already determined on the dense
set A(AARYP = m(AAR)P in §, and hence its generator L coincides with LCAR
associated with the Fock state ¢ of AR, It then satisfies (i), (i), and (iii) with
0=2(KT—I|K3)).

We now restrict 7, to ACU. We are considering Case (A) in Sect. 6 of [5].
Therefore,w,, maps the even part $,, of Z(A*R)H, onto the even part §,, of
A(AAR)S, and A(T)W e Z(UALRY”. Consequently, ¢y (AT) = + (D, A(A)R(T)W P)
=0 for A UR and we obtain

P (A)=¢ps(4), Ae. (6.10)

Since $,, and H,, yield mutually non-equivalent irreducible representations of
AP =A, due to Lemma 4.1 (1) of [6], for example, and since 7#,(AT)
= +7(A) (A(T)W) bridges §,, and H,, for 4 € AR [due to #(T)W e A(ALY)],
@ is cyclic for 7 , (W) = n+(QICAR)+n (ACART). Therefore, (H,, 7 ,, D) provides the
GNS representation for ¢? and the U, for ¢” (in this concrete representation)
coincides with the U, for (2, d,, ¢ ) discussed above. Hence L in this case satisfies
(i), (ii), and (iil) with 6 =2(K¥ —|K,|). Q.E.D.
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We now consider a state y on the two-dimensional system which is related to ¢

by
(&, 1y).. Lk, 1))
=(@,n(0,(I)))e” " n(0,(I))...e” E "k Vln(g (I1,)®) (6.11)

for k, <k, <...<k, We note that

oo, (41)...04,(Ay))
=(®,m(A,)e'>"ln(4,).. et - Vly(4 D) (6.12)

by (6.1). By L =0, ¢"** is continuous for Imz > 0 and holomorphic for Imz >0 with

leX||=1 for Imz=0. Hence the right-hand side of (6.12) defines a bounded

continuous function of (¢, ...,,) €3, in the tube domain
3.={(ty,....t,)eCIm(t;—1;_,) 20, j=2,...,n}

satisfying two conditions: (1) it is holomorphic for (z4, ..., z,) € 3, = the interior of
3, and (2) it coincides with ¢(e,,(4,)...a, (4,)) for real values of t’s. The right-hand
side of (6.11) is then the value of this function for ¢;=ik; and is called the (n-point)
Schwinger function of ¢.

Let us recall that 7 ,, is the lattice translation automorphism of the two-
dimensional system:

Ta,m(&(k, 1)) =E(k+ 1, 1+ m), (6.13)

where I +m={j+m;je I}, and 1, is the lattice translation of the one-dimensional
system:

00) =g,
We now discuss consequences of the properties (ii) and (iii) for L separately.

Proposition 6.3. If ¢ is a pure ground state of (W, a,) and L satisfies (ii), then the
state p related to ¢ by (6.11) is invariant under the translations (1,0), le Z, and
satisfies

ll_lfg W(FIT(I,O)(F2))=w(F1)w(F2) (6.14)

for any elements F, and F, in the C*-algebra € generated by &'s.

Proof. The invariance is a direct consequence of (6.11). Let
Fi=11 &k, I;y),  Fr= 131 &(kia, 1) (6.15)

i=1

with ky;<k,;<...<k, ;for j=1,2. For sufficiently large [>0, we have I'=k,,+
—k,,1>0 and by (6.11)

W(Fﬂ(z,O)(Fz)):(d’p e_llLépz) s (6.16)
¢1 = 7t(“x(lnl 1))6_(’("11 _knl o l)L' . 'n(ax(ll 1))¢ s (61 7)
D,=n(0(I,,))e" (k22 =ks2)L (0 (1,,2))P . (6.18)
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Since lim e~ 't
'+
which is the one-dimensional projection on @ by the assumed property (ii) for L,

we obtain

=the spectral projection E;(0) for the point spectrum O of L,

lim w(FIT(l, 0)(F2)) =(D;, D) (D, D,) =y (F Jyp(F,). (6.19)

-+

The same argument works for [— — co. By linear combination and approximation
in norm, we obtain (6.14) for a general F; and F,. Q.E.D.

Corollary 6.4. If [, 7,]1=0, ¢ ot,= @ and L satisfies (ii), then y is invariant under
Ta,m and satisfies

lim 1P(Fx'f(l,m)(Fz)) =p(F)yp(F,). (6.20)

(I,m)— o

Proof. By the translational invariance of ¢, there exists a unitary operator U such
that
U'n(A)® =7(t,(A))D. (6.21)

By [o,7,] and (6.1), we obtain [¢'*, U]=0. Thus the invariance p =1, is
immediate from (6.11):
w(T(l,m)(f(kp I1,)...¢(k,, 1))
=&k, + 11, +m)...Ek,+ 1, [,+m))
=(@, Un(a,(I,))U me kemkil o= ®n=kn-0lymp(g (1)U~ "®)
=(@,7(0,(I))e” *27* e~ En=tn-0ln(g (I,))®)
=w(£(k1’11)"'é(kn’ In))a (6.22)

where the third equality is due to U "®=® and U "e “Um=e L
Given ¢>0, there exists a 4 >0 such that

{EL([0, AD—E (0)}]| <&'*  (j=1,2), (6.23)

where @, and @, are given by (6.17) and (6.18), and E,([0, 4]) is the spectral
projection of L for the interval [0, 4]. For any [> N, with a natural number N,

N zA " og(|®, [ 15]1/e)+ Ky, s —kKis,

we obtain
[w(Fy, T(z,m)(Fz))‘V’(Fl)W(Fzﬂ

=|(@,, EL((4, c0))e ¢ Tri2"kn 0Ly mep )
+({E([0, A1) — EL(0)}@,, e~ ¢ k12 =kn, LU E, ([0, A]) — E(0)} )|
2
<@ [ @yfle” R TR0t TT {E(0, AD—EL (0@} <26 (6:24)

A similar estimate holds for any I < — N _ with a suitable natural number N _. For
each le[—-N_,N,], we obtain

1}11_1& W(Flf(z,m)(Fz))ZW(F1)1P(T(1,0)(F2))
=p(F)w(F,) (6.25)
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due to (2.3) for ¢, and due to (2.3) for ¢, when ¢, is pure. Therefore, we obtain
(6.20) for F, F, of the form (6.15). By linear combination and approximation in
norm, we obtain (6.20) for any F, and F,. Q.E.D.

Proposition 6.5. Assume (iii) for L.
(1) If F, is any function of &, ,,’s with IS N and F, is any function of &, ,’s
with [=N +d, then

[w(F,F,)—w(F)pF)| S e p(IF|?) ! Py(IF,*)?. (6.26)

(2) For any polynomials F{ and F, of &'s
lim eméhP(Fﬂ(z,O)(Fz))_W(F1)W(F2)|=O- (6.27)

1=

(3) There exist polynomials F, and F, of £s for any given ¢>0 such that
lim e®*y(F,, T, 0(F2) —w(F Jp(F )| =0 . (6.28)

1>+
A similar statement holds for - — co.

Proof. (1) It is enough to prove (6.26) for a dense set of F’s given by
nj n(i, j)
Fj= glcu ‘11:[1 f(kii/j, Iii'j)’ j:1,2, (6.29)
with ki, 191 <...<k;j;; SN and ki 202> ... > k1,2 N +d. We obtain
[p(F (F ) —w(F )Y(F )= (@1, 1~ EL(0))e ™ d,)|
Se ¥, || |0, (6.30)

due to L=6 on (1—E;(0))$, where
qu: ZJ Cije~aijLn(ax(Ii1j))e—Sj(knj_k“j)Ln(a.x(IiZj))'--¢a (6.31)
i=1

J=1,2, a3 =N—kyyy, ap=ki,—N—d, e, =—1, e,=1.
In order to compute |®;|, we introduce a conjugate linear automorphism
F—F?' of the C*-algebra € generated by £’s by

(C ﬁ é(kjalj)>T =C fl E(—k;1)). (6.32)
i=1 ji=1
For F= [1 &k; 1), ky <ky<...<k,, we obtain
j=1
(FN) =(®, n(a(l,)e” *n*n-VE e~ 2 ln(g(1,))D)
=(®, m(o(I,))e” ®27kIL o~ Un~kn-Olr(4(] ))P)*

=yp(F)*. (6.33)

This equality extends to all F in € by conjugate linearity and approximation. [We
also have the reflection positivity p(F'F)=0 for any function F of &; ,’s with
1=0.]
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We now obtain
@, ”2=1P(T(—N,0)(F1) {T(—N,O)(Fl)}T)
éW(lT(—N, 0)(F1)|2)1/21P(|T(—N, 0)(F1)T|2)1/2 5
”¢'2”2=1P({T(—N—d, 0)(F2)}TT(—N—d,O)(F2))
§1P(|T(—N~d,0)(F2)T|2)1/21P(|T(—N—d,0)(F2)|2)”2 ,
where Cauchy-Schwarz inequality is used. Because
1P(|T(—N,0)(Fj)|2)=1P(T(—N,0)(|Fj[2))=1P(‘Fj|2),
1P(|T(~1v, 0)(Fj)T|2) =w(7:(—N,O)(IFj|2)T)=w(‘Fj|2)
due to the translation invariance of y and (6.33), we obtain
12,1 Sw(F{», j=1,2.

Combining (6.30) and (6.36), we obtain (6.26).
(2) For >N, we have

ela(W(Fﬂ(z,O)(Fz)) —p(F)w(F5))
= (@1, A—Eg(0))e ™"V, )e

261

(6.34a)

(6.34b)

(6.352)
(6.35b)

(6.36)

(6.37)

with @, and &, given by (6.31), N=N;—N,, N;= max k;;;, N,= min k;;,,

a;;=N;—k; ,, and a;,, =k;;,— N,. Since @, and @, are fixed vectors, and (L— )

has a positive spectrum without a point spectrum at O when restricted to

(1—EL0))9, we have lim (1—E;(0))e ¢ VE~9=0 and we obtain (6.27) for
I->+ow

I— +00. The same argument works for /- —oo.

(3) By Lemma 7.5 of the next section, there exists F= [ &(k;, I,), 0=k, <k,
i=1

<...<k,, such that

EL((4,6+(e/2))Pr+0,
Pp=e *ln(g (I,))e”*27 L n(g (I,)D.
For =0,
1.U(FTT(L 0(F))=(Pp, e " op)
2 (Pp, e EL((9, 6 +(2/2)))Pr)
2e IO EL((6,0+(2/2)))Pr ]
Hence

lim €'+ Oy(Flr o (F))=+ .

-+

A similar estimate holds in the case of |- — oo for

w(FT(l,O)(FT))zle(FT‘C(—l, o). QED.

Specializing to the case of ¢, and ¢, we have Theorem 2.

(6.38)
(6.39)

(6.40)

(6.41)

(6.42)
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7. The Unique Correspondence

The main purpose of this section is to prove the following where € is the C*-
algebra generated by &s.

Proposition 7.1. If a state y =v; of € is related to a ground state ¢; of A by (6.11)
forj=1,2,witha,=of, theny, =, implies ¢, = @, sothat ¢, + @, implies p, +,.

Since we know ¢, ¢, (for |[K,|>K¥>0), we immediately obtain
wp+ Fw,_ by this proposition. As a preparation, we prove the following lemma,
in which we use the fact that «(o,(I)) is an entire function of z as well as its
explicit form.

Lemma 7.2. In the situation of Proposition 7.1, p, =1, implies

(Pl(az;(o-x(Il))' . OCz,.(olx(ln))) = (pZ(az‘(o-x(Il))' . o‘z,.(o-x(In))) (7 1)
for all I,...1, and complex z, ..., z,.

Proof. We consider the following functions of z=(zy, ..., z,_{):
Fi(2)= (D), n)(0,(I,)e" n o (I,))... e im0 (1,)D), (7.2)

where (9,7, ®;) is the GNS triplet associated with ¢, and e*lin(A4)®;
=nja(A)P; AU, j=1,2. Since ¢; is a ground state, F,(z) is a bounded
continuous function of z for Imz;20, j=1, ... and, for any subset I of (1, ..., n—1),
F(2) is holomorphic in z;, jeI if Imz;>0 for jeI and Imz;=0 for all jeI.

For any real t’s we have

(Pj(atl(o-x(ll))‘ . 'atn(o-x(ln))) = Fj(tZ - tl’ cees tn - tn - 1) . (73)
In view of entire analyticity of «(c,(I)), we have
(pj(azl(o-x(ll))- . -azn(o-x(ln))) = Fj(zz T2y e Zy T 2y 1) (74)

whenever Im(z;—z;_,)20, j=2,...,n. On the other hand,

IPj <1_[1 i(kjs I])) = Fj(l(kZ - k1)> (RS i(kn_kn— 1)) (75)
j=
for any integers k, <k,<...<k,. Therefore, v, =1, implies that F(z)=F(z)
—F,(z) is a bounded continuous function of z for Imz;>0, holomorphic for
Imz; >0 and vanishing at z;=in;, n;e N.

We now use the following corollary of Carlson’s theorem [8].

Lemma 7.3. If f(2) is a bounded continuous function of a complex variable z in the
upper half plane Imz =0, holomorphic for Imz>0, and if f(ik)=0 for k=1,2, ...,
then f(z)=0 for all z.

By applying Lemma 7.3 to fi(z2)=F(z,ik,,...,ik,_;), we obtain
F(zy,iky,...,ik,_1)=0 for all z, with Imz,=0. Recursively, if we obtain
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F(zy,...,z;-1,ik;, ...)=0 for Imz;20, j=1,...,I-1 and for natural numbers
k,, ..., we apply Lemma 7.3 to f(z)=F(z¢,..,2—1,2,1k;+1,...) and obtain
fiz)=0 for Imz;=0, j=1, ...,] and for natural numbers k; , , ... . By mathemat-
ical induction, we obtain F(z) =0 for Imz; = 0. Therefore, we obtain (7.1) in view of
(74). Q.ED.

Proposition 7.1 follows from Lemma 7.2 if we prove the following.
Lemma 7.4. {0;(c¥); keZ, jeZ} generates .

Proof. Let A, be the C* subalgebra of A generated by oy(c¥’). Since
69 =ao(0¥) e Wy, afM2(4) e W, if AW, where a’M? is defined by (4.2). Since
a0 = of2afaf?(c{) by (5.27) and since it belongs to A, and is strictly local by
Lemma 4.1, we obtain

of o2 (o) =oa0?)= lim o(a(0¥)) € U. (7.6)

M-
Since *‘T’z.’)Mz,(aiz") =¥, we obtain ¢f'(c?)eU,. Since of'(c?)=Ad( ") (¢?)
=e?K17760) we obtain
2K — 5160 g0 e 9L . (7.7)

Since ¢2X19Y = (cosh2K¥) + (sinh2K*)0¥ and sinh2K* =0 for K¥+0, we obtain
o e Ay. Hence 6 =ic?e¥ € A, and we have W, =A. Q.E.D.

By a similar method, we obtain the following lemma used in the preceding
section:

Lemma 7.5. The set of vectors

e Mln(o (1,))e *e7kil o= kn=kn-dlp(q (I1,))® (7.8)
with nelN, 0<k, <k, <...<k, and arbitrary finite subsets I, ..., 1,, is total.
Proof. Let ¥ be orthogonal to all vectors éf the form (7.8). Define

F(2)= (¥, e Ln(a (I,))e"...e* n(a(1,)D). 7.9

By assumption, F(ik}, ik5,...ik;,)=0 whenever ki, k3, ...k,e N, where k| =k,,
kKi=k;—k;_; (j=2,...,n). By exactly the same argument as before, we obtain
F(z)=0. Hence

(lPs n(“zl(ax(ll)))' . ﬂ(OCz"(O'x(I,,)))qs)
=F(z1,2y— 21y s Zy—2,1)=0. (7.10)
By Lemma 7.4, we obtain (¥, n(4)®)=0 for all AU and hence ¥=0. Q.E.D.

8. The j-Symmetry

For conventional representation of Pauli spin matrices, the complex conjugation
of matrix elements is a conjugate automorphism, leaving ¢, and o, invariant and
changing g, to —o,. Extending it to tensor products, we obtain an involutive
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conjugate automorphism j of the (spin) C*-algebra ¥, satisfying

j(6W)=e,0®, e.=¢e=1, g=—1. (8.1)
By (4.1) and (4.2), j commutes with o™ (j=1,2), and hence
JFp=(F), (8.2)

where F is the complex conjugate of the function F(¢). The following proposition
shows that j is an analogue of the time reversal operator.

Proposition 8.1. Let a linear functional w on the C*-algebra generated by &’s be
defined by
w(F)=¢(Fp)

with a ground state ¢ of (U, of). Then w is hermitian [i.e. o(F)=w(F) for all F] if
and only if @ is j-symmetric, i.e.

p(j(A)=0p(4), AeU. (8.3)
Proof. Let ¢ satisfy (8.3). Then, for any F, we obtain

o(F)=@((F)g) = @(i(Fp)) = ¢(F ) = o(F)

by (8.2) and (8.3). Hence w is hermitian.
Conversely, let  be hermitian. By the same computation

@(i(F )= p((F)p) = o(F) = (F) = o(Fy).
By Lemma 7.4, {F;} is dense in 2. Therefore, we obtain (8.3). Q.E.D.

In the present case, y; is a state and hence ¢ is j-symmetric. For |8 > f,, we
have

@p(A)=(9p+(A) + 95— (A)/2=,(j(4)) = (9;.+ ((A) + ¢, -(/(4)))/2

by the j-symmetry of @, Since ;. are mutually disjoint (in the sense of the
associated representations) pure states, @, (j(A4))= ;. (i(4%)), A€, are also
mutually disjoint pure states and we have the following alternatives for ¢ . =g :

M) @:((A")=0.(4), AeU. (8.4)
(i) @.((4*)=0:(4), AeU. (8.5)

Namely both ¢, are j-symmetric or else j interchanges them. The condition (ii) is
equivalent to the j@-symmetry of ¢, due to ¢ .(O(A4))=¢@z(4):

(i) ¢.(jOAU*)=0¢.(4), Ae. (8.6)

A=0,(I)o,(1,)0.(1;) (8.7)

with mutually disjoint finite subsets I, I,, I, of Z are total in U, where o ,(I)
denotes ] o (u=x,y,z). Since 4*=A4,
Jjel

The monomials

jAN=(=)M4,  jo*)=(-1"4, (8.8)
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where |I| denotes the cardinal of the set I. Thus

(i) holds if and only if ¢, (4)=0 for |I,| odd,

(ii) holds if and only if ¢, (4)=0 for |I,| odd.

Consider a domain of parameters in which ¢,(A4) are (real) analytic in
parameters for all 4 [of the form (8.7)]. If ¢ . (4) +0 for one parameter value and
for one 4, with odd |1,], then ¢ , (A4) is not identically 0 and (ii) is excluded [except
possibly for zeros of ¢ . (4) when parameters vary]. Since (i) or (ii) holds, ¢ . (4) =0
for |I,] odd holds for all 4 and all values of parameters in the domain, for which
¢ +(A;)#0. By analyticity of ¢ , (4) (for |I,| odd), ¢ . (4) =0 holds for all 4 with |I |
odd for all values of the parameters in the domain.

If this is not the case, the same argument proves that ¢ ,(A4)=0 for all 4 with
|I,| odd holds for all values of the parameters in the domain. Therefore, the choice
between cases (i) and (ii) can be decided at one value of the parameters in the
domain of analyticity.

For K¥ =0, ¢, are the pure ground state of the Hamiltonian —K, 3" ¢{gy*

and can be characterized by the property that it is annihilated by 1 -i_io-g), JEZ,
where the same sign is taken for all j if K,>0 and an alternate sign is taken if
K, <0. Since ¢ is j-invariant, the state so characterized has the j-symmetry. This
proves the following.

Proposition 8.2. ¢, are j-symmetric.

The same argument leads to the following for the one-dimensional X Y-model
(61

Proposition 8.3. (1) if {4 <1 and y>0 in the one-dimensional X Y-model, then two
pure ground states are j-symmetric and vanishes on A of the form (8.7) with odd |I |.

2) If |Al<1 and y<O0, then two pure ground states are jO-symmetric and
vanishes on A of the form (8.7) with odd |I|.

This shows occurrence of both cases (i) and (ii). The vanishing of states on
specific A’s of the above form has been given in an explicit evaluation in [14].

Proposition 8.2 can also be proved from the commutativity of j with &(U,,) of
Sect. 3 via the automorphism method of [9]. (A comment due to D. E. Evans.) The
alternatives (i) and (ii) can also be judged according to whether the following index
takes the value 1 or —1:

ind ¢ o ,E=det(I'0_C|P)(—1)@imP)21, (8.9)

Here C is the componentwise complex conjugation of h € [,(Z)®1,(Z) and induces
j on AR by j(B(h))=B(Ch) (j(T)=T). The linear operator I'_C leaves the
projection P=E A (1—0_Ef_) invariant and its restriction to the range of P is a
finite matrix '8 _C|P. The bracket denotes the integer not exceeding (dim P)/2.
This index takes the value 1 or —1 due to (I'f _C)*=1, and can be shown to be
invariant under any continuous deformation of E (as long as TE=1—E,
[E,C]=0,and E—0_E@ _ is compact). Hence the alternatives (i) and (ii) can be
judged at a particular value of parameters (K%, K,) or (4,7).

In this connection, we note a computational error in [5]: U and U* in (6.8) of
[5] are to be interchanged and, as a consequence, f; and g, are to be interchanged
in (6.9), (6.10), and (6.11) of [5].
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