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Abstract. Analyticity of correlation functions for the two-dimensional Ising
model as a function of the inverse temperature except for the singularity at the
critical temperature is proved. A crucial step is the establishment of the
correspondence between extremal equilibrium states of the model and pure
ground states of a one-dimensional spin system below the critical temperature
Tc. An exact decay rate of the clustering property along axes is also determined
for all ΓΦ Tc.

1. Main Results

We consider the two-dimensional Ising model with the Hamiltonian

~~ Σ (J ζ ζ +J ζ ζ ) j (l l)

where ξij= ±1, (iJ)eZ2, and J's are real constants. We are interested in the
thermodynamic limit (L, M-κχ))

Ύ—I "SΠ cvK\st — βHLM(ξ) (Λ OΛ
t-^LMZ^Ϊ(ζ)e j (1-2)

ξ

-βHLM(ξ), (1.3)
ξ

in which HLM denotes (1.1) with the sum over ξkl with (k, /) e [ - L, L] x [ - M, M]
and we consider an arbitrary polynomial F(ξ) of a finite number of <f s, which we
call a strictly local observable.

There is a critical inverse temperature βc such that t/^ is the unique equilibrium
state for \β\<βc while there exist two extremal equilibrium states ψβ± with

for \β\>βc [1, 12]. Our main result is as follows:



242 H. Araki

Theorem 1. For any strictly local F9 ψβ(F) for \β\ + βc and ψβ±(F) for \β\>βc are
real analytic in /?, J1? and J2.

Let τ(Z m) be the lattice translation automorphism: τ ( l 9 m } ( ξ i j ) = ξί + lj+m.

Theorem 2. (1) Let

ψ = ψβ, δ = 2(K*-\K2\) for \β\<βc,

or ψβ_, δ = 4(\K2\-K*} for \β\>βc,

where K1=j8J1, K2 = βJ2, and Kf -(l/^logcothlKil. (βc>Q is a solution of
KΪ = \K2\.) Then

Z-»oo

for any local F1 and F2, and there exists Fεl and Fε2 for any ε>0 such that

lim eμi(δ+ε)|tp(Fεlτ(,0)(Fε2))-φ(Fεl)φ(Fε2)|^(X) .
Z-+00

(2) For any continuous functions F \ and F2 on the configuration space supported
in {(l,m)eZ2;l^N} and {(/,m)eZ2; l^N + d}, respectively,

(3) For any continuous functions F1 and F2 on the configuration space

{i,-i}z2,
lim φ(fΊτ{,,m)(F2)) = ψ(F1)ψ(F2) .

(Z,m)-»oo

By the transfer matrix method, the state ψβ is related to a state φβ of a spin
lattice system (of spin 1/2) in one-dimension by

(1.5)

where F is any-function of a finite number of ξ's and Fβ is a corresponding strictly
local operator belonging to the C*-algebra 21 generated by Pauli spin matrices at
all sites of the one-dimensional lattice Έ. [See Eqs. (4.4) and (4.5) of Sect. 4.] In [5],
it has been shown that, for |j8| < βc, φβ is pure, while

for \β\>βc where states φβ± of 91 give rise to disjoint representations of 91. A key
result is the following:

Proposition 1.1.

ωβ±(F) = φβ±(Fβ) (1.7)

defines states ωβ± on the abelian C* -algebra generated by ξ's which are ergodίc and
mixing equilibrium states for the Hamiltonian (1.1). (Ergodicity and the mixing
property refer to lattice translations as usual.)

Equations (1.5) and (1.7) imply the ergodic decomposition of equilibrium
states:

\pβ = (ωβ++ωβ.)/2. (1.8)
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This much can be established without any outside information on ψβ. However, we
do not know at this point how to decide whether ωβ± are extremal equilibrium
states. Thus we refer to the result of [10] that the decomposition (1.4) is an ergodic
decomposition, to obtain the following identification.

Corollary 1.2. ψβ±=ti>β±.

We note that the labelling ± of ωβ± for varying β is fixed by analytic
continuation except for the overall choice of the labelling. Since ± ψβ ± (ξ^) > 0, the
analyticity of the quantity φβ±(σ(

z

j}) in β then requires the labelling on two sides of
Corollary 1.2 to be independent of β(\β\>βc). The over- all labelling of ωβ± is
adjusted to coincide with that of ψβ±.

We may also use the clustering property oϊψβ± [10] to obtain an alternative
direct proof of Corollary 1.2 (see Sect. 2). We are indebted to Dr. D. E. Evans for
this direct and simple proof.

By using the same method as the case of the XY model [7], we prove the
analytic dependence of φβ± on βJ1 and jβJ2:

Proposition 1.3. φβ(A) and φβ±(A) are real analytic as a function of K1=βJί and
K2 = βJ2 (hence as a function of β) except at β = βc for any strictly local A e 91.

As will be seen in Sect. 4, Fβ is a linear combination of local observables with
entire function of β as coefficients. Equation (1.5) for |j8| <βc and Corollary 1.2 for
\β\>βc together with Proposition 1.3 prove our main Theorem 1.

We present a proof of Proposition 1.1 in Sect. 2, a proof of Proposition 1.3 in
Sect. 3 and the strict locality of Fβ along with a preparation for subsequent sections
in Sect. 4.

The states φβ, φβ± are actually ground states of 21 with respect to a one-
parameter group of automorphisms αf of 21 defined from the transfer matrix. For

F= Π ξ(kj9Ij), ξ(kj9Ij)=U ξkji (1.9)
j = l i e / j

with k1<k2< ..<kn, the corresponding operator Fβ e 21 is given by

ie/

Thus the relation (1.5) tells us that ιpβ and ιpβ± are obtained as Sch winger functions
of ground states φβ and φβ±. This view point is used (1) to prove the hermiticity
co|± =ωβ±, (2) to prove Theorem 2, and (3) to prove ω^ + φ ω^ _ [without using the
identification with ψβ± and without explicitly computing ωβ±(A) for some A].

The dynamical system (21, αf) will be introduced and the relation (1.10) will be
established in Sect. 5, clustering properties will be proved in Sect. 6 and the last
point ωβ+ φ ω^_ will be discussed in Sect. 7. In the final Sect. 8, we use a conjugate
automorphism) of 2ί, which is the time reversal symmetry in the sensey'α, = α_ j, to
deduce the hermiticity of ωβ±. The same method has an application to the one-
dimensional XΓ-model, as is given in Proposition 8.6.

By the automorphism (of the classical configuration space), changing ξitj to
— ξtj for i odd while keeping ξ ί t j for i even unchanged, J1 changes to — J1 in H. A
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similar statement holds for J2. By another automorphism changing ξitj to ξjti for
all (ij) e Z2, J1 and J2

 are interchanged. The equilibrium states depend on real
parameters Kί=βJί and K2 = βJ2 Therefore, except for the point Kl = K2 = Q,
we may assume K± > 0, which means Kf defined by (1.5) of [5] is real and positive.
At the same time we may assume —&<K2 for any ε>0. (For analyticity at K2 = 0,
we have to consider slightly negative K2, too.) The analyticity of correlation
functions at β = 0 is immediate, for example from the unique determination of the
correlation functions by Kirkwood-Salzburg equations [11]. Thus the point
Kί = K2 = 0 is taken care of and we assume Kl > 0, K2 > — Kf in the following. We
also assume K2^Kf (i.e. βφβc), because we are proving analyticity and
exponential clustering, which fail for K2 = K^.

2. From States of the Non-Commutative Algebra in One-Dimension to States
of the Commutative Algebra in Two-Dimensions

The map F-+Fβ will be studied in Sect. 4 and the following property will be basic
for the present discussion.

Lemma 2.1. (1) Fβ is linear in F and 10 = 1.
(2) Fβ satisfies (^(Q,n)F)β

:=τn(Fβ) and the clustering property

lim ^^^^-(F^τ^F^ =0 , (2.1)«-> oo

where τ(0>n) is the lattice translation automorphism ξij-*ξij+n of the C* -algebra (£
generated by ξ^ and τn is the lattice transformation automorphism of 91.

(3) For the automorphism Θ of 9ί determined by (2.9) of [5] and the
automorphism Θ of the abelian C*-algebra (£ generated by ξtj determined by

. (2.2)

The states φβ± of 21 are lattice translation invariant and pure [5]. Hence they
have the clustering property

lim φβ±(Aτn(B)) = φβ±(A)φβ±(B). (2.3)
n-> oo

We also use the result of Sect. 8 that φβ + (Fβ) is real if F is real (as a consequence
of the "j-symmetry" of φβ± proved in Sect. 8).

Lemma 2.2. // F^O, then φβ±(Fβ)^0.

Proof. By (1. 5), F^O implies

(2.4)

By (2.2), (F1Θ(F2) + Θ(F1)F2)0 is Θ invariant. Since F^O and F2^0 imply
F2^0, we obtain

= 2ιpβ(F1Θ(F2) + Θ(F1)F2)^0 . (2.5)
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By (2.1), (2.3), and (2.5),

2φβ + (Fβ)φβ + (Θ(Fβ)) + 2φβ _ (Ff)φβ - (Θ(Fβ))

= lim {φ
«->oo

+ φβ-((FΘ(τ(0>n)(F)) + Θ(F)τ(0,n)(F))β}} ^ 0 . (2.6)

Since φβ±pΘ=φβ+,WQ obtain

(2.7)

As quoted before the statement of the lemma, φβ±(Fβ) is real for F^O.
Combining (2.4) and (2.7), we obtain

(2.8)

forF^O. Q.E.D.

Proof of Proposition 1.1. Lemma 2.2 means that the restriction of ωβ ± to the finite
dimensional subalgebra (£(/) generated by ξi>p (ίj) e /, for any finite subset / are
states [the linearity from Lemma 2.1 (1), the positivity from (2.8) and the
normalization by ωβ±(l) = φβ±(l) = 1 due to Lemma 2.1 (1)]. Hence \\ωβ± \\ ̂  1 and
ωβ± extends to a state on the C* algebra (£ generated by (£(/). (Alternatively, we
may refer to the Kolmogorov theorem.)

By Lemma 2.1 (2) and the translational in variance of φβ±,

ωβ±(τ(0,n)F) = ωβ±(F). (2.9)

Furthermore, by (2.1) and (2.3)

lim ωβ±(Flτ(QtnyF2) = ωβ±(Fl)ωβ±(F2). (2.10)
«-*• oo

Going over to the cyclic (GNS) representation πβ± on ξ>β±, τ(Q^n} will be
represented by a one-parameter group of unitaries l/(0j l l) j and (2.10) means

lim (y,l7(0fl l)Φ) = (y,0/
«->oo

for Ψ, Φ G ξ>β±, where Ωβ± is the canonical cyclic vector corresponding to F = 1.
[Equation (2.10) implies (2.11) for a dense set of vectors Ψ and Φ, which then
implies (2.1 1) for general Ψ and Φ by L2 approximation.] This is the strong mixing
property, which implies ergodicity (all relative to the group of one-dimensional
lattice translation).

The mixing property relative to the two-dimensional translations will be
shown later, but the properties relative to τ(0,n) are sufficient for the proof of our
main theorem indicated in Sect. 1.

Finally, we prove that ωβ± are equilibrium states. Because of the cluster
property (2.10), we have

(2.12)

on ξ>β± for each strictly local F. Since ωβ is a vector state by 2~ 1/2(Ωβ + ®Ωβ_) on
ξ>β = ξ)β + ®ξ)β_, we have

w-lim τ(Qtn)(F) = ωβ + (F)P++ωβ-(F)P- , (2.13)
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where P± are projections on ξ>β±. Thus (2.13) for all possible F are observables at
infinity according to Lanford and Ruelle [13] and induce the decomposition (1.8)
(if ωβ+ φcθ0_). By the result of [13], ωβ± are equilibrium states (i.e. satisfies the
DLR equations). (Note that iίωβ+=ωβ^> then coβ±=ιpβ is an equilibrium state. If
this happens, ψβ would be ergodic and mixing. In the present model, this is not the
case.) Q.E.D.

A Direct Proof of Corollary 1.2. For any (9-even element F, Fβ is (9-even and

(2.14)

Next we note that ψβ+ (and ψβ-) has a clustering property [10] and the state
φβ+ also has a clustering property by τM-asymptotic abelian property of the
algebra as it is pure. For (9-odd JFX and F2, we obtain

by the clustering properties of

ψβ+(GJ = ψβ(GJ = φβ((Gn)β) = φβ + ((Gn)β) (2.16)

for Gn = Fίτ(0in)(F2) as n-xx>. (2.15) with F1=F2 implies

Fβ) (2.17)

with the sign ± common for all F again by (2.15). The labelling has been already
discussed. Q.E.D.

In spite of this simple proof (due to D. E. Evans), we retained the argument via
Proposition 2.1 as it shows which information on the two-dimensional classical
lattice model can be obtained by working only with a one-dimensional quantum
system, i.e. we can obtain an ergodic decomposition of ιpβ into equilibrium states
without any input on the property of ψβ.

3. Analyticity

First we describe φβ in more detail, following [5]. We recall that an extension of 91
to a larger C*-algebra 91 = 91 + T9I by an addition of a new element T satisfying
(2.1) of [6] (or (2.10) of [5]). The algebra & contains the Fermion algebra 9ICAR on
the one-dimensional lattice ΊL. The involution automorphism Θ of 91 is extended to
the automorphism Θ of & (denoted by the same letter here) by <9(T) = T. Both 91
and 9ICAR are Θ invariant subalgebras of 91 with the following decompositions into
(9-even and (9-odd parts:

Then
9I+=9T;AR, 9I_ = T9ΓιAR. (3.2)

Strictly local elements of 91 ± are exactly strictly local elements of 9I+AR except that
T is to be multiplied in case of (9-odd elements.

Annihilation and creation operators are denoted in a unified manner by B(h),
h E 12(%) + 1 2^) = ̂  in the selfdual formalism of the canonical anticommutation
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relations (CAR) [3]. A Fock state φE of 2ICAR is specified by a projection operator E
on ft [satisfying ΓEΓ + E = l, where B(h)* = B(Γhy] through the relation
φE(B(h1)*B(h2)) = (hί,Eh2). The state φβ is a Θ-invariant extension (to 9ί) of the
restriction of a Fock state φE of 2ΪCAR to 21+AR = 21+, where E is a multiplication of

E(θ) = (l + 7(θ))/2 (3.3)

on the Fourier transform of ft - /2(Z) + /2(Z) with y(0) and 7(0) defined by (3.8) and
(3.7) of [5].

From (3.8) of [5], y(0) is an analytic function of Kf, K2, and elθ, if sinhy(0)Φθ,
and so is eίm by (3.9) of [5]. Therefore, E(0) is an analytic function ofKf, K2, and
eίθ if Kf and K2 are real and unequal (i.e. βφ/?c for real values of parameters).

The rest is exactly the same as [7]. Let Kf ΦK2 and let E' be the projection
operator corresponding to another value (K'^K'i) in a sufficiently small
neighbourhood of (Xf, X2). Let t/12 be given by (3.3) of [7] where E1 and £2

should now be replaced by E and E'. Then 1712(0) is analytic in Xf, K2, K'fK'2,
and eίβ. By Lemma 2 and (2.17) of [7] E71 20_ E/ j^ f l - -1 is in the trace class and
with sufficiently small norm so that the Bogoliubov transformation α(l/12) of 2I+AR

can be extended to a ^-automorphism of &(U12) commuting with θ due to the
Evans-Lewis criterion (see Lemma 1 of [7]) and we obtain

φ^A) = φβ(&(Ul2)A) (3.4)

because φJB,(Λ) = φE(α(l/12)(A)) for AG^R = ̂ + and φ^) = 0 = φ/ά(l/12)A)
for AE^&_ [and then ά(t71 2)Ae2t_] by definition of φ'β and φ^, where φ'β
corresponds to the parameters K'f, K2.

Defining Lby U\2θ-Uϊ2θ- =eίL, with \\L\\ <π, we see that Lis holomorphic
in (K'j*, K2) (relative to the trace class norm) and hence u = el(B'LB)/2 is holomorphic
in (K'f,K'2) (relative to the operator norm), where (B,LB) is the bilinear
Hamiltonian. Thus ά(l/12) (Γ) = uT is holomorphic in (KΊ*, K2). Since any strictly
local observable A in 21 is a polynomial of β(fι)'s and T, the analyticity of
α(l/12)(B(ft)) = B(l/12Λ) and ά(t/12)(Γ) just proved implies the same for a(l712)4
and we obtain the analyticity of (3.4) and hence Proposition 1.3.

Remark. Equilibrium states ψβ of the Ising model can be related to a ground state
of the X 7-model in one dimension (with a different definittion ofFβ) [15]. Then the
proof of this section can be entirely omitted by referring to results of [7]. We have
not done so here because our results in Sect. 5 and later would require an
introduction of αf different from the ZY-model and different from [5], so that it
would lengthen the paper.

4. Strict Locality of F^

For Q E $, let

= Ad Γ
L

(4.1)

exp -izK2 *Σ ^+1}β (β), (4.2)
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where Ad[F](β) = VQV~l. Then

α?M(β) s TMβTM

 1 = αf 2Mαf 1Mαf 2M(Q) , (4.3)

where TM is the transfer matrix given by (1.4) of [5].
Any polynomial of a finite number of ξ^ is a linear combination of the

monomials F of <f s given by (1.12). The corresponding element F^ e 21 is defined as
follows:

Fβ= lim F^M, (4.4)
M->oo

= {(αf ̂ 'σΛ/i)} {(αf M) V(/2)} . . . MM?"σx(In)} . (4.5)

We denote the subalgebra of 21 generated by σ^ with |/|5Ξn by 9ίn. The
following lemma shows the strict locality of Fβ.

Lemma 4.1. For

= lim αf1M(0 = αf ln(ρ)eaίn, (4.6)

o£2(β) = lim αfM(Q) = αf<"+1)(ρ)e<HM + 1. (4.7)
M-+OO

Proof. By commutativity of summands, we obtain

exp ( - izK* Σ ^}] = Π exp( - izKlσψ) , (4.8)
J

exp ( - izK2 Σ σ^+ « \ = Π exp( - izK2(τ<M+ ̂ ) . (4.9)

By commutativity of Q e 3IM and the factors in (4.8) with j>n, (4.6) follows from
(4.8). Similarly (4.7) follows from (4.9). Q.E.D.

By (4.6) and (4.7), Fβ can be explicitly calculated as a polynomial of σ's with
analytic functions of K's as coefficients by

(4.10)

exp( - izK2σ
(^+ 1}) = coshzK2 - iσ</)σ</+ ̂  sinhzK2 . (4.1 1)

Corollary 4.2.

α'(β)Ξ lim αfM(ρ) = αf2αf^f2(0? (4.12)
M^oo

f β = {(αV'^/i)} {(α")fc2^(/2)}...{(αV"σx(/H)} . (4.13)

Proof of Lemma 2.1. (1) Since monomials (1.9) are linearly independent, the
linearity holds by definition.

(2) From the proof of Lemma 4.1, it immediately follows that τn commutes
with αf1 and αf2. Hence (τ(0fll>F)^ = τll(jF/,).

From the proof of Lemma 4.1, it is also clear that for sufficiently large n (and
local Fs), (F^o^^^^F^τ^n^^β. Therefore, (2.1) follows.
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(3) From (4.1) and (4.2), Θ (in one-diemnsion) commutes with aβ

z

 1M and αf2M.
Thus, for F given by (1.12),

= {(of "^βσΛ/i)} - {(of ")*"»*,(/„)}

By taking limit M->oo, we obtain (2.2). Q.E.D.

5. The Dynamical System (21, of)

The aim of this section is to define a dynamical system (21, αf ) for the one-
dimensional lattice spin system, identify φβ and φβ± as ground states of this
dynamical system and identify the quantities φβ(Fβ) and φβ + (Fβ) appearing in (1.5)
and (2.7) as their Schwinger functions. For this purpose, we first introduce a
dynamical system (2tCAR, αf AR) and then extend it to (21, αf ) so that as its restriction
to 2Ic2ϊ we obtain the desired dynamical system (21, αf).

Let TM be the transfer matrix given by (1.4) of [5] and used in the preceding
section. We define

xlM(A) = TM

izAT£, AeW, (5.1)

which is consistent with notation αfM of (4.3). Since TMe2I+ =2ϊ+AR, αfM leaves
21CAR invariant. Its restriction to 2ICAR is determined by

αf M(£(/0) - B(e " 2ίzHM h) (5.2)

which follows from the expression (2.23) of [5] for TM up to a constant factor. Here
HM is defined by (2.22) of [5] and tends to H defined by (3.5) of [5] in the strong
operator topology. Hence

lim κβ

z

M(B(h)) = B(e-2izHh), (5.3)
M-»oo

where the limit is in the norm topology of 2ICAR. Therefore,

αf

CAR(^)Ξ lim αfMG4), ^e2ICAR (5.4)

CAR ARexists for real t and defines a dynamical system (2ICAR, o

Proposition 5.1. (1) The action ίeR->αfA RG Aut2ICAR extends to an action ίeIR
-»άfeAut2Ϊ.

(2) The extension αf of of AR to & continuous in t is unique,
(3) For any strictly local A in 2ί ( i. e. A = A1 + TA2, where A1 and A2 are strictly

local elements o/2ICAR (equiυalently of $1)), άfG4) is entire analytic in t.

Remark 5.2. We are avoiding the question of whether (5.1) has a limit for A e 21 as
M-κx).

Proof. (1) We will use the criterion of Evans and Lewis [9] that if the
automorphism αf AR<9 _α?.ARΘ _ of 2ICAR is implementable by a unitary ut in 2I+AR

t = αt

CARβ_α?ίRθ_ , (5.5)

then ut can be chosen to satisfy

Mtβ_(uί) = l (5.6)
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and άf defined by
Sξ(A, + TA2) = ̂ (A1) + utT^(A2) (5.7)

is an automorphism of 91 coinciding with of AR on 9ICAR (Lemma 1 of [7]).
Let α(ί/) denote the Bogoliubov automorphism of 9ΪCAR such that α((7) (B(h))

= B(Uh). Then αt

CAR = α(e"2ftfl) by (5.3) and

αCAR0 αCAR0 =a(e-™Πθ-e2itHθ-). (5.8)

After the Fourier transform of the test function space K = /2(Z)0/2(Z), H is a
multiplication operator of the function

H(0) = y(θ)(l-2E(θ)) (5.9)

which is a holomorphic function of z = e'θ at the unit circle |z| = l if |jβ|φβc as
indicated in Sect. 3. By Lemma 2 and (2.17) of [7] again, e~2itHθ_e2ίtHθ_ - 1 is in
the trace class. For a Bogoliubov transformation Ut = e~2ίtHθ^e2itHθ_, its
determinant is 1 or — 1 depending on the even-oddness of the multiplicity of its
eigenvalue —1 (due to ΓUtΓ = Ut). Since Ut is continuous in the norm topology
and since Ut — 1 is compact, this is constant in t and hence must be 1 due to Ut — 1
for t = 0. Therefore, the criterion of Evans and Lewis is satisfied, and αf for each t
can be extended to ά re Aut$L

We finish the proof of (1) by showing that άf can be chosen to be an action (of
t e R). We first prove that άf can be chosen to be continuous in ί, then we prove that
such άf is automatically a one-parameter group.

By the same argument as above, the operator

Δ = θ_HΘ_-H=-2(q+Hq_+q^Hq+) (5.10)

is in the trace class (q± =(\ ±0_)/2) if βφβc. Therefore,

I7( = l + 2i } e-2isHAe2ίsθ-HΘ-ds (5.11)
o

is continuous in t relative to the trace class norm. For sufficiently small δ > 0,
\\Ut-l\\<l for \t\£δ. Then

17, = *«•*, L,( = log(l + [7t-l))=-J (-1)"- ̂ -ly/n, (5.12)
w - l

where Lt is continuous in ί relative to the trace class norm. Therefore, the choice
Ut = <?'<*• L«*>/2 is continuous in t and satisfies (5.5) (by (8.23) and (8.24) of [3]) as well
as (5.6) (by Θ_(B,LtB) = (B, θ_Ltθ_B) due to (7.12) of [3] and by θ_Lβ_ = -Lt

due to θ_Utθ- = Uϊ~ί), where (B,LtB) is the bilinear Hamiltonian and the
continuity of Lt-+(B, LtB) is by (7.1 1) of [3]. For larger values of ί, we define ut by
the following cocycle equation:

For example for (n — l)δ<\t\^nδ, we use ί1 = ... = ίn_1=(signί)δ and
tn = t — tί — ... — tn^ί. Then ut so defined is continuous in t e IR. Such ut automati-
cally satisfies (5.5) [by (5.5) for tij and (5.6) [by 0_(tιt>/) = Mί~

1 and by
Ad(wίj.)Θ_αfj.0_=α?j.]. Then the group property &^2 = ot^1+t2 follows from the
uniqueness argument, i.e. the proof of (2), which will be presented now.

(2) For the proof of this part as well as for a later use, we need the following
lemma to be proved immediately after the present proof.
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Lemma 5.3. Any element of $1 commuting with all elements ofςϋ+= 91 +AR must be a
multiple of the identity operator.

Let άί be another extension of αt. Then a't(T)T = uf

t also has the property (5.5)
and hence u'tuf commutes with all elements of 2ICAR. By the above lemma we have
u't = ctut for a complex number ct. Since u't and ut are unitary, \ct\ = 1. Since &'t(T)
= u'tT=ct&t(T), and since both &'t(T) and &t(T) are selfadjoint, ct= ±1. By the
continuity in ί, ct = 1 and we obtain the uniqueness.

(3) By (5.3), &t(A) is entire analytic for any polynomial A of J5(Λ)'s. Therefore,
we have only to prove the entire analyticity of άf(Γ) = utTor equivalently that oίut.

Using the trace class operator A of (5.10), we define

A=(B,AB). (5.14)

It is a selfadjoint element of 2I+AR = 2t+ and satisfies

by (7.9) and (7.1) of [3] due to ΓAΓ= -A (= -A*). By (7.12) of [3],

A(t) = ̂ (A} = (B,e~2itHAe2itHB) (5.15)

is entire analytic in t as A(z) = e~2izHAe2ίtH is an entire function of z with values in
the trace class operators (cf. (7.11) of [3]).

We define ί t

vg = l+ £ (izγίdt,... T dtnA(tίZ)...A(tnz) (5.16)
n=\ 0 0

(see Expj defined in [4]). For z - ί real, vt is unitary by (2. 1 4), (2. 1 5), (2. 1 7), and (2. 1 8)
of [4]. Furthermore, Proposition 12 of [4] implies that j8ί = (Adt;ί*)αfAR is an
automorphism of 9ίCAR

in the notation of [4] ) with the generator given by

ά_

at i uz js=0

Jt ) 7 ^S

[ds

This implies that βt(B(e2ίθ~HΘ~thJ) has an identically vanishing ί-derivative and
hence is equal to its value B(h) for ί = 0. Hence

^e2iHtθ_K) = a?

(5.18)

This implies the same equality with JB(/ι) replaced by an arbitrary element of 2ICAR.
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(5.10), we have Θ_(J)= - Δ. Therefore,

(5.19)

f t \
by definition (3.7) of [4] because t>* = Expr f; -ίA(f)dt). By (3.11) of [4],

\o /
vtΘ _ (fr) = 1. Since vt is continuous in ί, we conclude by the uniqueness proof of (2)
that

ut = υt. (5.20)

For \z\^δ, ||J(fz)||^e4<5| |H| l||zl||tr for |ί|^l by (7.11) of [3], where we have
ΓΔ(tz)*Γ = -Δ(tz) due to ΓH*Γ= -H and ΓΔ*Γ= -Δ. Therefore,

(iz)n\ dt,...tnΓ dtnΔ(t,z)...Δ(tnz)
0 0

(5.21)

and the sum in (5.16) is uniformly and absolutely convergent. By the entire
analyticity of J(ί), ut = vt given by (5.16) is entire analytic in ί. Q.E.D.

Proof of Lemma 5.3. Let Q e 91 commute with all elements of 91 +. We have

/ M \ / M \
Θ(Q)= lim Π <&)Q( Π <#> =β (5.22)

M-^oo \ j=-M / \ j=-M /

/ M Λ
because Π σ ί ] belongs to 91 + and its square is 1. Let 6L be the automorphism

y=-M /
of 91 satisfying

2T (5.23)

for Al9 A2e
(Ά. (The dual automorphism of Θ_ E Aut9I.) Then

}= lim σ(

x

MV~M)Xσ(-MVx

M\ Xe9ί, (5.24)

dueto lim [σ '̂U] = 0 for ̂  6 91, σf >Tσ^M ) = Tandσ<c"^Tσ<;"
Jlf)= -TforM>0.

Since σ\M^"M)e?I+, we have

Θ-(Q) = Q. (5.25)

The two equations (5.22) and (5.25) imply Q e 91 +. Since 91+ =9l+AR is known to
have a trivial center, we have Q = cl. Q.E.D.

Remark 5.4. Lemma 5.3 implies that any unitary w e 91 satisfying w9I + w* = 9I +

must belong to one of 91 +, T9I+, 91 _, and T9I_, because uΘ(u*) and uΘ(u*}
commute with all elements of 9ί+ and hence are multiples of identity.
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We now want to identify the analytic continuation of vfz(A) to z = i with vf(A)

defined by ^(A}= ̂  TuAT-1 = a?2^^(A)t (5.26)

M-»oo

where A is a strictly local element of 2Ϊ, and αf 7' (z = i here), 7 = 1,2, are defined in
Lemma 4.1.

Proposition 5.5. For any strictly local A e 2Ϊ,

αf(4) = α'Gl). (5.27)

Remark 5.6. For y4 6 2ICAR, αf (A) (including the case z = ί) is defined by the same
type of limit as (5.26). However, this is not the case for A e 21 (or equivalently for
A = T) and we present a proof avoiding the discussion of such a limit in the
following.

Proof. Let 21(0) be the algebra of all strictly local elements of 2Ϊ and 23 be a
subalgebra of 21 generated by 21(0) and T or equivalently by T and B(h) with
strictly local ft's. We now extend αf 7' defined on 2l(0) by Lemma 4.1 to 95:

αf ̂ (/O) - lim αf 1M(5(/0) - HmB(e " 2MϊHf Λ)

= B(e-2izK*Hιh), (5.28)

αf (E(/0) - lim αf M(β(fc)) - limB(e " ίzK2fί^/ί)

= B(e~izK2H2h). (5.29)

In view of (3.5) of [5] and (5.2) in this section, we obtain

αf(4) = αf
2
αf

1
αf

2
(4) (5.30)

for A = B(K). For Λ6/2(Z)φ/2(Z) with components (/O^^/J), B(Λ) = C! + C?
}. Hence Γ=B(fc)41) for such /z. Thus αf2αf1αf2(T) is well-defined. Let

. (5.31)

Since T2 = l, w'1- Tαf2αf1αf2(T). We compute

- 2K\R^ - K2H2Q _ JΛ

, (5.32)

where we obtain the last equality by the analytic continuation of

vzB(K) = B(e-2izHθ_e2ίzHθ_K)vz (5.33)

from z = ί real to z = i. Therefore, w~ ̂  e 21+ = 2t+AR commutes with all B(ft) and
hence is a multiple of the identity, for example by the simplicity of 2ICAR (or by
Lemma 5.3): w = π;. (5 34)

Since υzΘ_(vz) = 1 and Θ_(υz) = TvzT, we have (vzT)2 = vzTvzT=vzΘ_(vz) = 1.
We also have (wT)2 = αf 2αf xαf 2(T)2 - 1 due to T2 = 1. Thus c2 - 1 and we obtain

w=±vt. (5.35)



254 H. Araki

We now start varying Xf and K2. Since we are interested in the situation
\β\ > βc, i.e. |X2| > X? (Xf is taken to be positive), we change X? to 0 with fixed K2,
although a similar argument works for the case |X2| < X*, in which case we change
K2 to 0 with Xf fixed. We prove the continuous dependence of w and vt on Kf and
-f sign in (5.35) in the limit of Xf = 0. This would prove

w = ϋ f . (5.36)

By (3.7), (3.8), and (3.9) of [5], H(θ) is a continuous function_of e* and the
parameters (K\ , X2). Hence, if ίί(θ) denotes ff(0) for other values (Xf , X2) of these

parameters, then sup |jff(θ)-ff(θ)| tends to 0 as (Xf,X2)->(X?,X2) (assuming
e

\β\ή=βc). Therefore, the operator H (on the test function space) is continuous in
(Xf,X2) relative to the norm topology. Furthermore, \H(Θ) — H(Θ)\ tends to 0 as
(X? , X2)->(Xf , X2) uniformly over complex values of z = eiθ in a sufficiently small
neighbourhood of the unit circle \z\ = I . Thus by the same estimate as the proof of
Lemma 2 in [7],

J9 (5.37)

c= sup |Jff(0)-H(0)|-*0 as (X*,X2)-»(K*,K2). (5.38)
M = ι±β

By the proof of Lemma 2 of [7], this implies that the operator A of (5.10) is
continuous in the parameters (Xf, X2) relative to the trace class norm. Therefore,
A(z) defined by (5.15) is continuous in (Xf , X2) relative to the norm topology, the
continuity being uniform in z over a compact set in the complex plane. By (5.16), vt

is continuous in (Xf,X2) relative to the norm topology.
Next we prove the continuous dependence of w on (Xf,X2). We use the

definition (5.31) and the expression T=B(h)σ(

x

l\ By (5.28) and (5.29),
αf 2αf xαf 2(B(K)) is entire analytic in (Xf , X2) relative to the operator norm. On the
other hand, Lemma 4.1 implies the entire analyticity of αf 1(A) and aβ

z

2(A) in the
parameters zXf and zK2 for any strictly local A. Therefore αf2αf 1αf2(σξc

1)), and
hence w is entire analytic in (Xf,X2).

Finally, we compute v{ and w for Xf = 0. Then H = K2H2 and

αf(A) = (αf2)2(X) (5-39)

for 4 e 2ICAR by (5.29) and (5.3). We have seen that the limit (4.7) exists for Q in a
total subset of $, namely for strictly local Q e 91 in (4.7) and for Q = B(h) in (5.29).
Therefore, restricting for z = t real, we obtain the existence of the limit (4.7) for all
Q e $1 and it defines a one parameter group of ^-automorphisms αf 2 of $t By
Proposition 5.1 (2), we obtain

<2? = (αf2)2 (5-40)

in the present case. As we know the existence of analytic continuation for άf (T) and
of 2(T), we obtain

w. (5.41)

(In the case of X2 = 0, αf commutes with T and vt = w = l.) Q.E.D.
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Proposition 5.7. φβ and φβ + are ground states of (91, αf ). // K^ ̂  \K2 > 0, φβ is the
unique ground state. If 0<K* < \K2\, φβ± are the only pure ground states and the
cyclic representations of 91 associated with φβ± are mutually disjoint.

Proof. The time translation of AR is a quasifree dynamics of 9ICAR determined by
ofAR(B(K)) = B(e~2itHh) and the projection operator E described by (3.3) is the
spectral projection of the generator — 2H for the interval (0, + oo). Since H does
not have an eigenvalue 0 if Kf , K2 Φθ by Lemma 3.1 of [5], the Fock state φE is the
unique ground state of (9ICAR, αfAR) (by Theorem 3 (1) of [6], for example). The
restriction of φE to 91 +AR = 91 + is the unique ground state of (91 + , αf ) if Kf φ 0 and
K2 Φ 0 by Theorem 4 (1) of [6]. Note that H has a continuous spectrum if Kf Φ 0
and K 2 ΦO. Hence φβ is the only Θ-invariant ground state. We can then find all
ground states of (9ί, αf ) according to the scheme described in Theorem 5 of [6]. The
relevant criterion has been worked out in [5] and the conclusion is that φβ is the
unique ground state of (91, αf) if K* ̂  \K2\ > 0 and that φβ = (φβ+ + φβ _)/2 if 0 < Kf
<|X2|, where φβ± are the only pure ground states of (91, αf) and yield mutually
disjoint representations of 91. Q.E.D.

Remark 5.8. If K2 = 0, the original system is the same as the tensor product of one-
dimensional Ising model and a time independent spin-lattice system. The
corresponding one-dimensional system (91, αf ) has a unique ground state [though
(9ί+,αf) has an infinite number of ground states].

The case Kf = 0 does not correspond to any finite parameter values of the
original two-dimensional system.

6. Clustering Properties

Let φ be a pure ground state of (91, αf) and (§, π, Φ) be the (GNS) triplet of a Hubert
space, a representation of 91 and a cyclic vector for the state φ : φ(A) = (Φ, π(A)Φ).
Let Ut be the canonical one-parameter group of unitaries on § implementing αt:

(6.1)
Let Ut = eltL.

The following properties of the generator L will be relevant for the general
discussion in this section:

(i) L^O.
(ii) The multiplicity of the point spectrum 0 of L is 1.

(iii) There is a gap of δ > 0 between 0 and the rest of the spectrum of L [namely
(0, <5)nSpecL— 0 and oeSpecL] and δ is not a point spectrum of L.

First, we discuss the validity of these properties. Then we discuss its
consequence. Combining these discussions, we obtain finally our conclusion about
clustering properties of φβ± and φβ.

The property (i) is a definition of an αrin variant state φ being a ground state.
The property (ii) follows from an abstract property of φ, which is satisfied by φβ

(when 0<\K2\<,Kf) and by φβ± (when \K2\>K% >0) due to Proposition 5.7:

Proposition 6.1. Assume that φ is a pure ground state and the associated
representation is disjoint from representations associated with any other pure ground
states, then (ii) is satisfied.
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Proof. If Φ' is a vector annihilated by L, then ω'(A) = (Φ', π(A)Φ') is a ground state
and the associated (GNS) representation [is contained in (π, §) and hence] must be
the same as (π, §) because of the irreducibility of π. Therefore, α/ is a pure ground
state with the associated representation coinciding with that of ω. By assumption
α/ = ω. By the irreducibility of π, Φ' = cΦ with a complex number c. Q.E.D.

The property (iii) requires a concrete computation.

Proposition 6.2. (1) For \K2\>Kf >0, pwe ground states φβ± satisfy (iii) with
δ = 4(\K2\-K*).

(2) For 0<|K2 |<Kf, ^e Pure ground state φβ satisfies (iii) with
δ = 2(K*-\K2\\

Proof. From the formula (5.9) for H(θ) and the definition (3.8) of [5] for y(θ\ H has
an absolutely continuous spectrum of multiplicity 1 on

. (6.2)

For the ground state φE of (9ICAR, αf AR), we may define LCAR in exactly the same
manner as above. Since ofA\B(hJ) = B(e'2ίmh), LCAR satisfies the property (i), (ii),
and (iii) with δ = 2\ \K2\ - Kf |. Furthermore, the restriction L<+AR of LCAR to the even
subspace, which is the same as L constructed for the restriction of φE to
(^AR,αfARH(5l+,αf), satisfies the property (i), (ii), and (iii) with δ = 4\ \K2\-Kf\.
/ 00

These follow from the formula l/ f= Σ (e~2ίtH)®n on a Fock space
\

n = 0

When \K2\>K% >0, we can apply Proposition 5.1 (2) of [6] and obtain the
GNS representations for (9ϊ,αf, ̂ ±) in the GNS representation space of
(9l+,αf, φ^) = (91 +AR, αf AR, φE) with the identical cyclic vector and with the
identical representation of 21+ C2ί. Since Ut is determined already by the cyclic
vector and the representation of 91+ [via (6.1) valid on a dense set π(9I+)Φ], we
obtain L-L^.AR, which satisfies (i), (ii), and (iii) with δ = 4(|K2|-Kf).

Now we consider the case 0 < \K2\ < K%. We imitate Proposition 5.1 of [6] and
perform an irreducible decomposition of the cyclic representation π of 31
associated with the state φE of 1̂ given by

, + TA2) = φ^AJ , Al9A2ε 9ICAR . (6.3)

Like (4.2) ~ (4.4) of [6], the cyclic representation (π, §) of 21 associated with this
state can be decomposed as a sum of 4 irreducible representations (π^^^ ),
U = l,2,of2ίc+A R=2I+:

5ιι =(^0^)^)- , §12-(π(3ίc_AR)Φ)- , (6.4a)

§21 =(π(9Ic+ART)Φ)- , §22^π(9Ic_ARΓ)ΦΓ , (6.4b)

where Φ is the cyclic representative vector for the state φE. It can be combined into
two irreducible Fock representations of 2ίCAR - 2ί^AR + SI^AR on £1=£
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and |>2 =θ2i + S22> associated with Fock states φE and φΘ_Eβ-> respectively. By
Lemma 5.1 of [5], these two representations are equivalent, i.e. there exists a
unitary mapping w12 from §2

 onto Sι> intertwining π^ AR(^4) = n(A)\%. oίAe 3ICAR,
7 = 1,2. The operators π(T)wf2 and w12π(T) on §t both implement the automor-
phism <9_ of 2ίCAR. Since π(9ίCAR)|^1 is irreducible, they can differ only by
multiplication of a complex number: π(T)wf2 = eiawl2π(T). By redefining eί"/2wl2

as new w12, we obtain the equality π(Γ)wf2 = w12π(Γ) on §18

Defining W(ξ1 + £2) = wJ2^ι + w12£2 f°
r ζj e B/> we obtain a selfadjoint unitary

operator VF, which commutes with π(A)9 A e 3ΪCAR (by the intertwining property of
w12 and wJ2) and with π(T) [by π(Γ)wf 2 = w12π(T)]. Therefore, W is in π($)'. We
have an orthogonal decomposition:

(6.5)

(6.6)

(6.7)

(6.8)

The cyclic representations π+ associated with states φE± of 21 can be constructed
on §! by

R, (6.9)

with the same cyclic vector Φ: (Φ, π±(A)Φ) = φE±(A)9 A E 21. Each π± is irreducible
as 7i±(2ICAR)-7r(2rCAR)|^ is already irreducible.

Since π(?ICAR)|^l is irreducible, there exists a net Av e 9ίCAR such that π(Av)
^π(Γ)wf2 = w12π(T) on ^ la Since w12 intertwine π(9ICAR) on H2 and Hί9 we
obtain π(ylv)^π(T)^ [=π(T)wί2θπ(Γ)w12 on H^®H2~\. This means π±(v4vT)
-+±(π(T)W)2= ±1 and hence π+ are mutually disjoint irreducible represen-
tations. Since φE is ά, invariant by (6.3) due to the αfAR-invariance of φ£, the
decomposition (6.8) into disjoint pure states implies the o^-invariance of each of
φE + . The associated operator Ut for (91, &t9 φE±)is already determined on the dense
set π(2ICAR)Φ = π(2!CAR)Φ in ξ^1 and hence its generator L coincides with LCAR

associated with the Fock state φE of 9ICAR. It then satisfies (i), (ii), and (iii) with
δ = 2(K*-\K2\).

We now restrict π± to 2lc2I. We are considering Case (A) in Sect. 6 of [5].
Therefore,w12 maps the even part §X 1 of π(2lCAR)δι onto the even part §21 of
π(9ICAR)§2 and π(T)W E π^ί^Y . Consequently, φE±(AT) = ± (Φ, π(A)π(T)WΦ)
= 0 for A E 9I^AR, and we obtain

φβ(A) = φE±(A)9 A 6 81. (6.10)

Since §n and §12 yield mutually non-equivalent irreducible representations of
2ί+AR = 2I+ due to Lemma 4.1 (1) of [6], for example, and since π+(AT)
= ±π(A)(π(T)W) bridges §11 and §12 for AεW?* [due to π(T)W e π(9ί^AR)/x],
Φ is cyclic for π+(2I) = π±(2I^.AR) + π±(9I?.ARΓ). Therefore, (§19 π + , Φ) provides the
GNS representation for φ^ and the Ut for φ^ (in this concrete representation)
coincides with the Ut for (ίί, άt, φE±) discussed above. Hence L in this case satisfies
(i), (ii), and (iii) with δ = 2(K* - \K2\). Q.E.D.
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We now consider a state ψ on the two-dimensional system which is related to φ
by

vK«fci,/i)...«M»))
= (Φ,n(σx(l^e-^-^Ln(σx(I2}\..e-^-k- (6.11)

for k1 < k2 < . . . < kn. We note that

φ((x,tί(A1)...oίtn(Any)

= (Φyπ(Aί)ei(t2-tύLπ(A2)...eί(tn~tn-ί}Lπ(An)Φ) (6.12)

by (6.1). By L ̂  0, eizL is continuous for Imz ̂  0 and holomorphic for Imz > 0 with
||eteL|| = l for Imz^O. Hence the right-hand side of (6.12) defines a bounded
continuous function of (ίl5 ..., ίπ) e5n in the tube domain

5BΞ{(ί1,...,g6C";Im(ίJ.-ίJ.. 0^0,7 = 2,...^}

satisfying two conditions: (1) it is holomorphic for (zl9 . . ., zπ) e 3Π = the interior of
5n and (2) it coincides with φ(atΐ(Aί)...atn(An)) for real values of ί's. The right-hand
side of (6.1 1) is then the value of this function for ί,- = ikj and is called the (n-point)
Sch winger function of φ.

Let us recall that τ(/ w) is the lattice translation automorphism of the two-
dimensional system:

τ(ltm)(ξ(k,l)) = ξ(k + l,I + m), (6.13)

where / + m = {/' + m; j e I}, and τn is the lattice translation of the one-dimensional
system:

τ>lΛ) = σrπ>.

We now discuss consequences of the properties (ii) and (iii) for L separately.

Proposition 6.3. If φ is α pure ground state of (21, at) and L satisfies (ii), then the
state ip related to φ by (6.11) is invariant under the translations (/, 0), ίe2, and
satisfies

lim φ(F1τ(i>0)(F2)) = φ(F1MF2) (6.14)
Z-» oo

for any elements Fl and F2 in the C* -algebra (£ generated by ξ's.

Proof. The in variance is a direct consequence of (6.11). Let

Fι=Π ξ(kn,IιJ, F2= ft ξ(ki2,Ii2) (6-15)
ί=l i=l

with kίj <k2j< ..< kn j for j = 1 , 2. For sufficiently large / > 0, we have I'=k12 + l
-fc n ι l >0andby(6.lί)

(i>0)(f2)) = (Φ1,e-ί'LΦ2), (6.16)

(6.18)
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Since lim e~l'L = ihQ spectral projection EL(0) for the point spectrum 0 of L,
Z'-» + oo

which is the one-dimensional projection on Φ by the assumed property (ii) for L,
we obtain

lim ψ(F1τ(lt0)(F2)) = (Φl9 Φ) (Φ, Φ2) = ψ(F1)ψ(F2} . (6.19)
f^ + oo

The same argument works for ?-> — oo . By linear combination and approximation
in norm, we obtain (6.14) for a general F± and F2 Q.E.D.

Corollary 6.4. // [αf, τ J = 0, φ o τn = φ and L satisfies (ii), then ψ is invariant under
τ(i,m) and satisfies

lim ψ(F1τ(lιm)(F2)) = ψ(F1)ψ(F2). (6.20)
(Z,m)->oo

Proof. By the translational invariance of φ, there exists a unitary operator U such
that

Unπ(A)Φ = π(τn(A))Φ . (6.21)

By Cαf> τJ and (6-1), we obtain [eiL\ 17] = 0. Thus the invariance t/> = V τ (z f m) is
immediate from (6.11):

σ,(/̂

where the third equality is due to U~mΦ = Φ and U~me~kLUm = e~kL.
Given ε > 0, there exists a Zl > 0 such that

||{EL([0, J])-£L(0)}Φy|| <ε1/2 0'= 1, 2) , (6.23)

where Φ t and Φ2 are given by (6.17) and (6.18), and JEL([0,Λ]) is the spectral
projection of L for the interval [0, A}. For any 1>N+ with a natural number iV +

we obtain

L^^ I I Φ i l l ||Φ2||β-(l+k«-k»ι^+ Π ||{£:L([0,zl])-£L(0)}Φ;.||<2ε . (6.24)
7=1

A similar estimate holds for any 1<—N_ with a suitable natural number N _ . For
each ίe[ — J V _ , J V + ] , we obtain

lim φ(F1τ(Zfm)(F2)) = tp(F1)τ/;(τ(Ifo)(F2))
m-^oo

(6-25)
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due to (2.3) for φβ± and due to (2.3) for φβ when φβ is pure. Therefore, we obtain
(6.20) for Fί9 F2 of the form (6.15). By linear combination and approximation in
norm, we obtain (6.20) for any F^ and F2. Q.E.D.

Proposition 6.5. Assume (iii) for L.
(1) // Fl is any function of ζ(i>m)S with l^N and F2 is any function of ξ(/,w)'s

with l^N + d, then

) 1/ 2. (6.26)

(2) For any polynomials F± and F2 of ξ's

lim eW \ψ(F,τ(lt 0)(F2)) - ψ(Fί)ψ(F2)\ = 0 . (6.27)

(3) There exist polynomials Fl and F2 o f ξ ' s for any given ε>0 such that

lim el(δ+^\ψ(Fi,τ(l^(F2))-ψ(F1)ψ(F2)\ = ̂  . (6.28)

A similar statement holds for /-» — oo.

Proof. (1) It is enough to prove (6.26) for a dense set of F's given by

Fj = Σ ctj "tl ξ(ktiΊ9 IiΓj) , j = 1 , 2 , (6.29)
i = 1 (" = 1

with fcίn(ίjl)1<...<feίll^JV and kίn(ί<2)2> ...>kίl2^N + d. We obtain

^-^IIΦJHΦJ (6.30)

due to L ̂  δ on (1 — £L(0))§, where

Φ, = Σ cij.e-
a«Lπ(σ;cαίl>-ε^^-'t ^Lπ(σ;c(/i27.))...Φ, (6.31)

i= 1

In order to compute ||Φ7 ||, we introduce a conjugate linear automorphism
^Ff of the C*-algebra C generated by <f s by

c I ξ ( k j j i =c Π ^(-fcj,/J ). (6.32)
j=ι

For F = Π ^(fc;» Ij), kl < fc2 < . . . < kn, we obtain

= (Φ, π(σ(I t))e - fc - w^ .. .e -<*--*-- »ί-π(σ(

. (6.33)

This equality extends to all f in G by conjugate linearity and approximation. [We
also have the reflection positivity φ(FtF)^0 for any function F of £(i,m)'s with
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We now obtain

ll<M2 = V(τ<W*I

1MV*.θ)(*'ι)}t)
1'̂  W*1!)'!2)1'2 ' (6 34a)

-N-d,v(F2))

T)1/2V(|T(-W-d.o)(i' ι)l2)1/2 , (6-34b)

where Cauchy-Schwarz inequality is used. Because

V(IVN,o)W) = ̂ ^^ (6.35a)

^l^-^o)^)^2)^^-^^)!^/)1)-^^/) (6.35b)

due to the translation invariance of ψ and (6.33), we obtain

\\Φ^2£Ψ(\Fj\2), 7 = 1,2. (6.36)

Combining (6.30) and (6.36), we obtain (6.26).
(2) For 1>N9 we have

(l"N)(L"ί)Φ2)eJva (6.37)

with Φj and Φ2 given by (6.31), N = Nί—N2, N1= max fcfll, JV 2 = min fcfl2,
i i

ail=N1-kilί, and ai2 = kil2 — N2. Since Φx and Φ2 are fixed vectors, and (L—δ)
has a positive spectrum without a point spectrum at 0 when restricted to
(1-EL(0))§, we have lim (l-£L(0))e~(/~N)(L"5)-0 and we obtain (6.27) for

ί-> + oo

/-> + CXD. The same argument works for /-> — oo.
n

(3) By Lemma 7.5 of the next section, there exists F = Π £(&;> ^i)? 0 ̂  k x < k2
i = l

< . . . < kn, such that

EL((δ,δ + (ε/2)))ΦFΦθ, (6.38)

ΦF = e-
kίLπ(σx(I1))e-(k2-k^L...π(σx(In))Φ. (6.39)

For /^O,

|2. (6.40)

Hence

lim βl<*+βV(Ftτ(Ii0)(ίί))= + oo . (6.41)
/-> + oo

A similar estimate holds in the case of /-» — oo for

ψ(^(ί,0)(ft)) = v(Ftτ(_ί>0)(F)). Q.E.D. (6.42)

Specializing to the case of φβ + and φ^ we have Theorem 2.
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7. The Unique Correspondence

The main purpose of this section is to prove the following where (E is the C*-
algebra generated by £'s.

Proposition 7.1. // a state ψ = ψj of (E is related to a ground state ψj of 91 by (6.1 1)
f o r j = 1,2, with α, = of, thenψί — ψ2 implies φ± = φ2so that φl φ φ2 implies ψ± Φ φ2.

Since we know φβ+ή=φβ_ (for |K2|>K^>0), we immediately obtain
ω^+ Φω^_ by this proposition. As a preparation, we prove the following lemma,
in which we use the fact that <x,z(σx(I)) is an entire function of z as well as its
explicit form.

Lemma 7.2. In the situation of Proposition 7.1, ψί = ψ2 implies

<Pι(αZlfo(/ι)). - -«*>,(/»))) ̂  Φife^σ^/O). . .αz>,(/J)) (7.1)

/or α// /!.../„ 0nd complex z l s ...,zπ.

Proo/. We consider the following functions of z = (zl5 ..., z n _i) :

F/z) - (Φ,, π{σx(IJ)el*ίL>π{σx(I2)). . . ete- ̂ π/σ.OΦ,.) , (7.2)

where (ξ>j9πj9Φj) is the GNS triplet associated with φy , and eitLjπj(A)Φj

= πj(ttt(AJ)Φp y4e9ϊ, j=l,2. Since φ7 is a ground state, F/z) is a bounded
continuous function of z for Imz^ 0, j = 1, . . . and, for any subset / of (1, . . ., n— 1),
F/z) is holomorphic in z; , 7 e / if Imz7 > 0 for 7 e / and Imz^ ̂  0 for all 7 e /.

For any real ί's we have

^ίl(σx(/1))...αJσ,(/J))^F/ί2-ί1,...,ί/J-ίn_1). (7.3)

In view of entire analyticity of αf(σx(/)), we have

φK^σι))..^Jσx(/π)))-F/z2-z1,...,zπ-zπ_1) (7.4)

whenever Im(z7 — z; _ j) ̂  0, 7 = 2, . . . , n. On the other hand,

for any integers fe1<fe2<...</cπ. Therefore, Ψι = ψ2 implies that F(z) = F^z)
— F2(z) is a bounded continuous function of z for Imz^O, holomorphic for
Imzj^O and vanishing at z7 = m/5 n/eN.

We now use the following corollary of Carlson's theorem [8].

Lemma 7.3. // /(z) is a bounded continuous function of a complex variable z in the
upper half plane Imz ̂  0, holomorphic for Imz > 0, and if f ( i k ) = 0 for k = 1 , 2, . . . ,
then /(z) = 0 for all z.

By applying Lemma 7.3 to /1(z) = F(z, ifc2, ...,ίfcn_ 1), we obtain
F(z1,//c2, . . . ,zfc l l _ 1 ) = 0 for all zx with Imz^O. Recursively, if we obtain
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F(z 1,...,z z_ 1,ifc z,...) = 0 for Imz ^O, 7' = !, ...,/-! and for natural numbers
/Cj, ..., we apply Lemma 7.3 to fl(z) = F(zi9...9zl_l9z9ikl+l9 ...) and obtain
fl(z) = 0 for Imz^ 0,7 = 1, ...,/ and for natural numbers fcI + 1, ... . By mathemat-
ical induction, we obtain F(z) = 0 for Imz7 _• 0. Therefore, we obtain (7.1) in view of
(7.4). Q.E.D.

Proposition 7.1 follows from Lemma 7.2 if we prove the following.

Lemma 7.4. {αίk(σ5/}); keZ.jeZ} generates 21.

Proo/. Let 2ί0 be the C* subalgebra of 21 generated by αίfc(σ^-)). Since

σω = αo(σω)G9Io? αjw*2^e8ίo if ΛeSlo, where αfM2 is defined by (4.2). Since

α.(σ^))-αf2αf1αf2(σ^)) by (5.27) and since it belongs to 2I0 and is strictly local by
Lemma 4.1, we obtain

αf1αf2(σϊ)) = α??ίαi(σϊ))= lim α?.Jf2(αί(σ$/))) e 2I0 . (7.6)
M-+OO

Since ofM2(σ^) = σ?, we obtain σf1(σ^'))e2I0. Since σf1(σS/)) = Ad(βxfσ")) (σ</>)
-^^Vω, we obtain

Since β2X*^) = (cosh2K*) + (sinh2K*)σ^) and sinh2Kf Φθ for K*ΦO, we obtain
a® e 2I0. Hence σf - iσ^σ^ ε 2I0 and we have 2Ϊ0 - 21. Q.E.D.

By a similar method, we obtain the following lemma used in the preceding
section:

Lemma 7.5. The set of vectors

e~klLπ(σx(I1))e~(k2~kl)L...e~(kn~kn-ί}Lπ(σx(In))Φ (7.8)

with n G N, 0 < k{ < k2 < . . . < kn and arbitrary finite subsets Il9...9In9 is total.

Proof. Let Ψ be orthogonal to all vectors of the form (7.8). Define

F(z) = (Ψ, e^Lπ(σx(Id)e^L. ..e^π(σx(I^Φ) . (7.9)

By assumption, F(ik\, ίk'2, ...ife^) = 0 whenever fci, k'2, ...fc^eN, where fcί = fcl9

k/'j = kj — kj_ί (j = 2,...,ri). By exactly the same argument as before, we obtain
ί'(z) = 0. Hence

= F(z1,z2-z1,...,zn-zn_1) = 0. (7.10)

By Lemma 7.4, we obtain (Ψ, π(A)Φ} = 0 for all A ε 21 and hence y = 0. Q.E.D.

8. Thej-Symmetry

For conventional representation of Pauli spin matrices, the complex conjugation
of matrix elements is a conjugate automorphism, leaving σ^ and σz invariant and
changing σy to — σy. Extending it to tensor products, we obtain an involutive
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conjugate automorphism j of the (spin) C*-algebra 91, satisfying

J(W = *^, βχ = «, = l , β,= -l (8-1)

By (4.1) and (4.2), j commutes with αfjM (j = l 9 2 ) 9 and hence

where F is the complex conjugate of the function F(ξ). The following proposition
shows that j is an analogue of the time reversal operator.

Proposition 8.1. Let a linear functional ω on the C*-algebra generated by ξ's be
defined by

with a ground state φ of (21, αf). Then ω is hermitian [i.e. ω(F) = ω(F) for all FJ if
and only if φ is j-symmetrίc, i.e.

(8.3)

Proof. Let φ satisfy (8.3). Then, for any F, we obtain

ω(F) = φ((F)β) = φ(j(Fβ)) = Wβ) = 5(F)

by (8.2) and (8.3). Hence ω is hermitian.
Conversely, let ω be hermitian. By the same computation

φ(j(Fβ)) = φ((F)β) = ω(F) = ̂ (F)

By Lemma 7.4, {Fβ} is dense in 21. Therefore, we obtain (8.3). Q.E.D.

In the present case, ψβ is a state and hence φβ is y'-symmetric. For \β\ > βc, we
have

<PβW = (<Pβ + W + Ψβ - (A))/2 = φβ(j(A)) = (φβ + (j(

by the j-symmetry of φβ. Since φβ± are mutually disjoint (in the sense of the
associated representations) pure states, φβ±(j(Ay) = φβ±(j(A*)), v4e9I, are also
mutually disjoint pure states and we have the following alternatives for φ± = φβ± :

(i) φ±(j(A*)) = φ±(A), ^e9I. (8.4)

(ii) φ±(j(A*y) = φτ(A), AeK. (8.5)

Namely both φβ± arej-symmetric or else; interchanges them. The condition (ii) is
equivalent to the j'Θ-symmetry of φ+ due to

(iii) φ±(jΘ(A*)) = φ±(A), AeK. (8.6)

The monomials
A = σx(Ix)σy(Iy)σz(Iz) (8.7)

with mutually disjoint finite subsets IX9 Iy, Iz of Z are total in 91, where σμ(I)
denotes Π ̂  (^ = ̂ ^y^) Since A* = A,

J'el

= (-l)'H4, (8.8)
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where |/| denotes the cardinal of the set /. Thus
(1) holds if and only if φ + (A) = Q for |/y| odd,

(ii) holds if and only if φ±(A) = Q for \IX\ odd.
Consider a domain of parameters in which φ + (A) are (real) analytic in

parameters for all A [of the form (8.7)]. If φ+(A)ή=0 for one parameter value and
for one A± with odd \IX\9 then φ + (A) is not identically 0 and (ii) is excluded [except
possibly for zeros of φ + (A) when parameters vary]. Since (i) or (ii) holds, φ + (A) = 0
for \Iy\ odd holds for all A and all values of parameters in the domain, for which
φ + (A J Φ 0. By analyticity of φ + (A) (for \Iy\ odd), φ±(A) = Q holds for all A with |/y|
odd for all values of the parameters in the domain.

If this is not the case, the same argument proves that φ+04) = 0 for all A with
\IX\ odd holds for all values of the parameters in the domain. Therefore, the choice
between cases (i) and (ii) can be decided at one value of the parameters in the
domain of analyticity.

For K* = 0, φ± are the pure ground state of the Hamiltonian — K2 Σ σx}σx +1}

j
and can be characterized by the property that it is annihilated by 1 ±σ(j.\ jeTL,
where the same sign is taken for all j if K2 > 0 and an alternate sign is taken if
K2 <0. Since σ^ is j-invariant, the state so characterized has the j-symmetry. This
proves the following.

Proposition 8.2. φβ± are j-symmetrίc.

The same argument leads to the following for the one-dimensional X Y-model
[6].

Proposition 8.3. (1) if \λ\<\ and y>0 in the one-dimensional XY-model, then two
pure ground states are j-symmetrίc and vanishes on A of the form (8.7) with odd \Iy\.

(2) // \λ\<ί and y<0, then two pure ground states are jΘ-symmetric and
vanishes on A of the form (8.7) with odd \IX\.

This shows occurrence of both cases (i) and (ii). The vanishing of states on
specific ,4's of the above form has been given in an explicit evaluation in [14].

Proposition 8.2 can also be proved from the commutativity of) with ά(l/12) of
Sect. 3 via the automorphism method of [9]. (A comment due to D. E. Evans.) The
alternatives (i) and (ii) can also be judged according to whether the following index
takes the value 1 or — 1:

ind(C5θ_)£-det(ΓΘ_C|P)(-l)[(dimP)/2]. (8.9)

Here C is the componentwise complex conjugation of h e /2(Z)©/2(Z) and induces
j on 2ίCAR byj(B(h)) = B(Ch) (j(T) = T). The linear operator Γθ_C leaves the
projection P = E /\(l — θ_E0_) invariant and its restriction to the range of P is a
finite matrix Γθ_C\P. The bracket denotes the integer not exceeding (dimP)/2.
This index takes the value 1 or — 1 due to (Γθ_ C)2 = 1, and can be shown to be
invariant under any continuous deformation of E (as long as ΓEΓ = \ — E,
[E,C] = 0,and E — Θ_EΘ_ is compact). Hence the alternatives (i) and (ii) can be
judged at a particular value of parameters (Kf, K2) or (λ, y).

In this connection, we note a computational error in [5]: U and 17* in (6.8) of
[5] are to be interchanged and, as a consequence, /x and gi are to be interchanged
in (6.9), (6.10), and (6.11) of [5].
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