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Abstract. We give a necessary topological condition on a cohomology class of
any Lie group ,̂ modelled on a Frechet space, to be representable by a bi-
invariant form on ̂ . As a corollary, we show that if 772d(^)(X)^ ̂  0 f°r some

z
d>0, then there exists a cohomology class in H2d(^, (R) which cannot be
represented by any bi-invariant form. In particular, we conclude that there are
'many' cohomology generators, in general, in the case of gauge groups and also
Kac-Moody groups which cannot be represented by bi-invariant forms,
although, very often, they are representable by left invariant forms.

Introduction

Using a mixture of (very simple) topological and geometrical arguments, we show
that certain cohomology classes of infinite-dimensional Lie groups (modelled on
Frechet spaces) cannot be represented by bi-invariant forms.

Our main (and the only) theorem gives a necessary topological condition on a
cohomology class, of a fairly arbitrary infinite dimensional group ,̂ to be
representable by bi-invariant forms. An interesting corollary of the theorem is that if
xG//2d(^,[R), with d>0 and x is not decomposable (i.e. xφH+(^,R)Ή+(^, R))
(such a x always exists if Π2d(^)^)R ^0) then x cannot be represented by bi-
invariant forms. z

We apply this corollary to the particular (and important) examples of based loop
groups, gauge groups and Kac-Moody groups to conclude that these groups, often,
have many cohomology generators which cannot be represented by bi-invariant
forms, although, in many cases, they can be represented by left invariant forms.

1. Definition. Let M be a smooth (= C°°) Frechet manifold [M]. By Λ^(M\ we mean
the smooth singular chain-complex// of M. More explicitly; by a smooth singular

^-simplex in M, we mean a continuous map s:Δn = < (ί1,...,ίM)e[R":ί l ^0 and
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Y ti 5g 1 > -> M, such that 5 extends to a smooth map on an open neighborhood of
f = l J

Δn(m Rn). We put ΛJM) = £ ̂ (M), where 4^(M) is free abelian group on the set

of all the smooth singular n-simplexes in M. We further define the smooth singular
co-chain complex (of M) by CJM, R) = £ Homz(4^(M), R).

n^0

2. Lemma. Lei & be a connected Lie group, modelled on a Frechet space, (i.e., Ή is a
paracompact, Hausdorfftopological group with a C™ -Frechet manifold structure on it
such that the map & x ^ -> $, defined by(g1,g2)-+glg21>is smooth) with Lie algebra
3?(y) = JSP, and /et ί: ̂  -> ̂  be the inversion map, defined by t(g) = 0~ *. Then, we have
the following commutative diagram:

__ - __ » Γ (^ [Rfi
* ^OOV^5 "^/J

where C(JSP) denotes the continuous co-chain complex of the Lie algebra JSP, C(JSP )^
denotes the JSP invariants in C(JSP) under the adjoint representation, σ is the map which
multiplies a homogeneous form of degree n by (—1)", Fis the map induced by t and J is
the integration map, defined by (Jω)s = J4n5*ω, for any n-form ω and any smooth
singular n-simplex s:Δn->(&.

Further, the canonical restriction map y: C0(^, R) -> CJ^§, [R)(C0(^, 1R) denotes the
usual continuous singular co-chain complex of 3?) induces isomorphism in cohomology.

Proof. Since the map t: (&, e) -+ (&, e) (where e is the identity of ^) induces — 1 at the
tangent Te(&) « JSP level and, for any g0 e ̂ , the map Int (g0): ($, e) -> ($, e), defined by
Int(00)0 = #0000 1' induces the map Ad(^0):^-^^f, the commutativity of the
diagram follows easily. Caution! if we take all the left-invariant forms, instead of bi-
invariant forms, in the above diagram, it is no more commutative in general.

The assertion, that y induces isomorphism in cohomology, follows easily from
the usual sheaf theoretic argument [W], if we observe that ^ (by assumption) is
paracompact and is locally smoothly contractible (i.e., there exists a local smooth
contraction). Π

In the above diagram, Γis a co-chain map and so is J (by Stokes' theorem), hence
any ω e C(3?Y is closed. (In fact, it can be easily seen that any ω e C(ί£ Y , for arbitrary
Lie algebra JSP, is closed.) (This remark is due to M. S. Raghunathan.)

3. Corollary. Let ω<=Cn(^)^ (be a cocycle) then the cohomology class [Jω]e#n(^, R)
(we identify H($, R) with the cohomology of the complex C00(^, R) under the canonical
restriction map y) transforms according to (—1)" under t* (ί* is the induced map on
cohomology by t).

An element xe//"(^, R) is said to be representable by a bi-invariant form if there
exists a cocycle ωεC"(^f such that [Jω] = x, as elements in Hn(&, R).

4. Remarks, (a) One important class of Lie groups (modelled on Frechet spaces) is
the Gauge group (̂P), associated to a principal G-bundle (in the C°° -category)
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P-+X (where G is a finite dimensional Lie group and X is a finite dimensional
smooth manifold), defined as the group of G-equivariant smooth automorphisms of
P, which cover the identity map of X. One can also take various Sobolev
completions of (̂P). See, e.g., [MV], [U].

(b) Another important class of groups, for which the above lemma is true (with
appropriate definitions of the associated Lie algebra JSf , integration map J and
CJ^, U))9 is the standard unitary form of Kac-Moody Groups/C. One particular
example, of these (standard unitary form of) Kac-Moody groups, is one dimen-
sional central extension of the loop group Ω(G\ where G is a finite-dimensional,
compact, connected, simply-connected, simple Lie group and Ω(G) denotes the set of
all the (unbased) loops: S'1^G with finite Fourier series. (Although these Kac-
Moody groups are not smooth in any "reasonable sense," still Lemma (2) holds for
them, as can be seen from [Ku;§l].)

5. Lemma. Let $ be any path-connected topological group. Fix afield F. Assume that
H\^, F) is finite dimensional, for all i. Then the inversion map t:^ -+$ induces the map
- 1 (multiplication by - 1) on H + (%, F)/H + ($, F)'Ή + (%, F), where H + (%, F) denotes

Σ wα
i>0

Proof. Consider the maps 0: ̂  -» $ x ^ and m: <$ x $ -> ̂ , defined by 0(0) = ( g , g ~ 1 )
and m(0, h) = gh, for 0, hε^. Of course, the induced map m*: H*(«) -> H*(&) ® H*(&)

satisfies, for any xeH+(^),m*(x) = x® 1 + 1 ®x + Σxi®^i' f°r some (possibly

empty) xhy^H+(^\ Also, the induced map 0*: H*(0)<8) H*(0) -> H*(&) is given by
0*(x® y) = x-t*(y) (- denotes the cup-product).

Since mθ = e, we get that 0*m*(x) = 0, for all xeH +(^), i.e., x + t*(x) + Σ*i '**(#)
i

= 0. This proves the lemma.

6. Corollary. IfF is afield of characteristic Φ 2 and if<& is as in the above lemma then
(from complete reducibility) we can find a space of indecomposables, i.e., a graded
section π of the canonical projection: H + (^)-^H + (^ίF)/H+(^,F) H + (^,F\ such
that t*π(x)= -π(x),/or any xeH+(^)/H+(^) H+(^).

We make the following

7. Definition. An element x eH*(y, F) is said to be primitive-like/F (respectively anti
primitive-like/F) if t*(x) = —x (respectively t*(x) = x).

Clearly, primitive elements are primitive-like.
Putting all these together, we get the following

8. Theorem. Let & be a path-connected topological group with all its Betti number s/Q
being finite such that Lemma (2) holds for $ (e.g., any connected Lie modelled on a
Frechet space with finite Betti numbers/Q, in particular, identity component of the
gauge groups and also the standard unitary form of Kac-Moody groups).

Let xGHn(&, (R) be representable by a bi-invariant form. Then
(1) If n is even, x is anti primitive-like element.
(2) // n is odd, x is primitive-like element.
Further, there always exist primitive-like elements { xf ( I )}i=ι,2,...> sucn that

x$(i>eHd(i>(<l?9R) and H*(0,R) is freely generated (in the graded sense), as an
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algebra, by {xf°}ί = 1,2,.... Of course, άim.(Πn(^)(^)U) = #{i:d(i} = n}, since

£Homz(Πn(4ί), R)« H+(^, R)/Ή+(^, [R) # + (̂ , R), and ίfce isomorphism is a graded
n

vector space isomorphism. (Πn(^) denotes the n-th homotopy group of <&.)

9. Corollary. With assumptions, as in the above theorem, on $, let xeH2d(3?, R) with
d>0. If x is indecomposable, i.e., xφH+(&, R)Ή+(^, R), then x cannot be
represented by bi-invariant forms. In particular, if there exists a d such that

O, then there is a xεH2d(g,R) which cannot be represented by bi-

invariant forms.

10. Examples, (a) Based loop groups Ωe(G) (G is a finite dimensional, compact,
connected, simply-connected Lie group). As is well known, H*(Ωe(G\ (R) is generated
by {*!,..., xj, where all the x/s are of even degree. Hence, by the above corollary,
none of the generators xf can be represented by bi-invariant forms, where as it is
known that any class in H*(Ωe(G), R) can be represented by a left-invariant form.

(b) Standard unitary form of Kac-Moody groups. It is known that for the
standard unitary form K of the Kac-Moody group G, associated to any inde-
composable / x I generalized Cartan matrix A, except in the case when it is finite
dimensional or / = 2, we have £ /I2w(K)(χ)IR ̂  0. This follows from [Ku; Theorem

n > l Z

3.8] together with [GS; Theorem 2] and also from [K;§2.6]. Hence for any such K
(i.e., except when it is finite dimensional or / = 2), there always exist classes in
H*(K, (R) which cannot be represented by bi-invariant forms. In contrast, all the
cohomology classes can be represented by left-invariant forms. See [Ku; Theorem
1.6]. Hence the canonical inclusion Qg1)8 c+Cfe1) does not induce surjection in
cohomology, where g1 is the Kac-Moody Lie algebra/C (or more precisely its
commutator sub-algebra) associated to the group K.

(c) Identity component &°(P) of the gauge group &(P) (associated to a principal G-
bundle P-*X9 with G a compact connected Lie group). Take a (R-basis {x"ω}ι^fe of
H*(X,U) (degree χn^ = n(j)) and let {cf1*,...,^0} be a set of free algebra
generators of H*(BG, R) (m(i)'s are necessarily even). Then, by rational homotopy
theory, ff*(^°(P), R) is a free (in the graded sense) algebra on a set of generators

{Vi jJonly those l^/ and 1^/c satisfying «(,)-«(,)> 1" MOΓCOVCΓ, ttlβ degree Of ^ =

m(i) — n(j) — 1. (A proof of this, in a particular case, is given in [AB; §2].)
Hence any \l/itj9 such that n(j) is odd, cannot be represented by bi-invariant forms.

In contrast, it is known that any ij/^ with m(i) > 2n(j) can, indeed, be represented by
a left-invariant form, at least in the case when G = U(l). (This was proved by Quillen
in his lectures at M.I.T. during 1984-1985.)

Acknowledgement. My sincere thanks are due to Prof. D. Quillen for his very interesting course on gauge
theory and related topics at M.I.T., which motivated the question (partially) answered in this paper.
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