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Supersymmetry in a Space with Auxiliary Dimensions
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Abstract. The purpose of this paper is to clarify the geometrical constructions
leading to unconstrained superfields in extended supersymmetry.

1. Introduction

Recently great progress was made in constructing off-shell superfield theories in
the case of extended supersymmetry. Galperin, Ivanov, Kalitzin, Ogievetsky, and
Sokatchev succeeded in finding unconstrained superfield formulations for super-
symmetric N = 2 matter, supergravity, and N = 2 and 3 Yang-Mills theories [1, 2].
The crucial point that allowed them to overcome the N = 3 barrier (for maximum
spin one, and N = 2 barrier for maximum spin one half) was the use of special
superspaces with auxiliary variables. These superspaces emerged previously in an
analog of Ward's twistor construction [3] which was suggested in [4] for the
purpose of solving N = 2 and N = 3 superspace constraints. As a matter of fact, the
description of N = 29 3 unconstrained superfields and their relations with
superfields in the usual Minkowski superspace can be made very close to the Ward
construction (as well as to some other twistor constructions based on Ward's idea;
see [5-7]). The purpose of the present paper is to clarify the geometrical origin of
new unconstrained superfields introduced by Galperin et al. and to show how to
come naturally to the results of [1,2] starting from an analog of Ward
transformation considered in [4]. This study has led us also to the construction of
an unconstrained off-shell formulation for the general N = 2 supersymmetric
hyper-Kahler sigma model, which will be described elsewhere. (Interestingly
enough, the treatment of the hyper-Kahler manifold proper toN = 2 supersymme-
try demonstrates once again a close analogy with twistor constructions - this time
with a description of gravitational instantons due to Penrose [5].)

The key idea of introducing auxiliary dimensions borrowed from twistor
constructions is based on the following simple observation. It turns out that if the
extra dimensions added to some space form a compact complex manifold, then
there is no actual increase of dimension for those fields, which are holomorphic
with respect to these extra variables. This follows from the statement that any
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holomorphic function on a compact complex manifold is contant. (This can be
derived, in turn, from the Liouville theorem which states that any bounded
holomorphic function is constant.) The space P with auxiliary dimensions relevant
to extended supersymmetry will be just an example of that nature. This space was
named by Galperin et al. the harmonic superspace [1,2]. We will not use, however,
the harmonic expansion with respect to extra variables on P (which is still
important if one is to obtain an off-shell component formulation in the usual
Minkowski space 1 with the group SU(ΛΓ) realised linearly). Instead, we shall use
geometrical constructions of [4]. Therefore, we prefer here to call the space P the
isotwistor space (for reasons that will be clear later). The superspace P is related to
the ordinary Minkowski superspace M in a way analogous to the relation, for
example, of CP3 to the Euclidean space-time S4 in the original construction of
Ward. (One is only to consider isospinors instead of spinors.) Note, however, that
we will not be concerned with the questions global in M (in particular, M will not
be compactified). Thus we shall deal with P = M x {compact complex bosonic
manifold} and our considerations will always be local with respect to coordinates
in M. (For an appropriate global description of isotwistor space and its use see
[14].) Nevertheless, it must be stressed that the treatment of auxiliary complex
variables should be global (as is clear from the above remarks).

Let us review briefly the basic points of constructions that will be descirbed in
detail in subsequent sections. Let

be the gauge covariant derivatives in Minkowski superspace. The first step is to
notice [4] that if we define the operators Pα = pl|7.5 \7ά — Ui^ά\ then the usual N = 2
and N = 3 constraints [8, 6] on the superfields «s/αί, jtfj are equivalent to the
condition2

{Fβ,F/,} = {Fd,F/ί} = {Fβ,F/ί} = 0, (1.1)

satisfied for arbitrary given values of complex numbers p\ w ί5 provided p'w—O.
This suggests, in analogy with Ward construction, to extend the usual Minkowski
superspace M by adding the parameters pl and ut taken (separately) as
homogeneous coordinates. Thus we obtain a superspace P = M x Q (the isotwistor
space) with auxiliary dimensions which correspond to a compact complex
manifold Q. For M — 2 we have Q = CP1, while for N = 3, Q is a three-dimensional
complex submanifold in CP2xCP2 defined by the equation plut = Q. The
operators Va, Vά defined above can be considered as operators on P. (These
operators act on functions which have definite degree of homogeneity with respect
to homogeneous coordinates in P; they alter the degree of homogeneity of a
function by one.) On this way one obtains a correspondence [4] between the gauge

1 Note, that for theories beyond the N — 3 (or N = 2) barrier the corresponding manifestly
supersymmetric component formulation necessarily involves an infinite number of gauge and/or
auxiliary degrees of freedom; see [1,2]
2 In the complexified Minkowski superspace this condition means that the field strength restricted
to certain (0 |4)-dimensional complex submanifolds vanishes. This is analogous to the vanishing of
the self-dual field strength on the so-called α-planes [3]
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fields satisfying the N = 2, or N = 3, constraints in M and certain geometrical
objects on the isotwistor superspace P. To describe these objects it is convenient to
use the notion of partial gauge field. When one has a usual gauge field, one can
gauge all derivatives, that is all first order differential operators. If instead one
introduces gauging only for a part of differential operators, we will say that the
partial gauge field is defined. In the case considered, one can reformulate the
original constraint equations in M as the condition of vanishing field strengths for
certain partial gauge fields3 on P.

Let zs be the auxiliary variables in P = M x Q corresponding to complex
coordinates in Q. (Thus s = l,2,3 for N = 3 and 5 = 1 for N = 2.) To gauge the
derivatives ds = d/dzs means to introduce the corresponding partial gauge field jtfs

on P with an obvious transformation law that makes the operators ds + j/s gauge
covariant. We shall see that the constrained gauge fields in M correspond to partial
gauge fields j/s on P which satisfy a sort of chirality condition (i.e. the superfields
£/s do not depend on some fermionic variables) along with the condition of
vanishing field strength. The latter condition means that

3X - δX + [X, .β/J = 0. (1.2)

To obtain this correspondence, consider partial gauge fields of zero field
strength on P related to gauging of differential operators Da = plDai, Da = utDa\ ds.
From every constrained gauge field j/α/, jtfά

l on Minkowski superspace one can
construct such a partial gauge field on P by setting Fα = Da + j/α, Vά = Dά + X*, Vs

= ds (that is j/α = p'Xχj, X* = t^X*1, stfs = 0). Conversely, if a partial gauge field on
p, Pα = Dα + j3/α, V^Di + j/i, Ps = δs + j/s, has vanishing field strength, then
generically it is gauge equivalent to a field with jtfs = 0. In this particular gauge, the
condition of vanishing field strength implies that 3sj/α — ds£/ά = 0. It follows from
the last relations that <$/0[ = pl£/oli(x, θ, ff) and j/ά = u^l

a(x, θ, ff) for some functions
j/αι , j/ίj depending only on x, θ, θ. The remaining equations of vanishing field
strength amount to (1.1). Consequently, the functions X^,XJ correspond to a
gauge field on Minkowski superspace satisfying the usual constraints. On the
other hand, a partial gauge field j/α, j/ά, &ίs having zero field strength in P is gauge
equivalent to a field with «a/a = j/ά = 0. In this gauge, we deal with components
Xs which enter covariant derivatives Vs = ds + stfs and satisfy (1.2) and Da<$/s

= Dά£/s = 0. The latter equations can be solved in a manner similar to the case
of N = 1 chirality constraints.

For N = 2, the partial gauge field has only one component, because the
complex dimension of Q ̂ CP1 equals one. Hence Eq. (1.2) is trivially satisfied in
this case and one gets the unconstrained superfield formulation for N = 2 super
Yang-Mills theory [1].

It must be pointed out that the Minkowski superspace constraints [8, 6]
implicit in our discussion above are kinematical only for N = 2, while for N = 3
they are equivalent to the equation of motion. The crucial observation made by the
authors of [2] is that the N = 3 equations of motion rewritten in the form (1.2) can

3 This interpretation of constraints was described in [4] in terms of so-called CR-bundles over P.
In fact, partial gauge field gives us a well-known alternative description of such bundles, as will be
explained in the present paper (see Sect. 10)
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be derived from a Lagrangian. This yields an off-shell formulation of N = 3 theory
in terms of superfϊelds on the space P. The action which leads to Eqs. (1.2) is as
follows

S = J rf10/ViMtr«5XM+f^XXJ + c.c, (1.3)

where d10/8μ is an appropriate measure on the (10|12)-dimensional superspace
P = M x Q which does not include integration over 4 of θ's. Note, however, that the
complex coordinates, zs, used above cannot be introduced globally on the
manifold Q. Thus one has to use either a number of coordinate patches, or the
homogeneous coordinates (pl\ (u^ constrained by pX = 0. The correct meaning of
the measure dμ in (1 .1) will be explained later in terms of homogeneous coordinates
in Sect. 9. Note, finally, that the manner of how the gauge invariance is realized in
N = 3 Lagrangian (super) field theory and the very form of the action (1.2) are
similar to the familiar topological mass (or Chern-Simons) term in three-
dimensional (ordinary) gauge theories [9].

The paper is organised as follows. In Sect. 2, we deal with a geometrical
interpretation of constraints in N = 2 super Yang-Mills superfield theory. This
leads us to introduction of auxiliary variables. The basic superspace with auxiliary
variables, in particular, the isotwistor space, relevant to the N = 2 case are
described in Sect. 3. In Sect. 4, a reformulation of N = 2 super Yang-Mills
constraints is constructed in terms of superfϊelds on isotwistor space. The resulting
unconstrained superfield formulation of this theory is described in Sect. 5. In
Sect. 6 we show that the N = 2 hypermultiplet can be dealt with in an analogous
manner. Starting from the superfield equations of motion for a hypermultiplet in
Minkowski superspace we construct a formulation of these equations in terms of
superfields on isotwistor space. (Note that for the N = 2 hypermultiplet the only
superfields available in Minkowski superspace are on shell.) Then, in Sect. 7, an
off-shell formulation of this theory is discussed following [1]. Sections 8 and 9 deal
with the N = 3 super Yang-Mills theory in a manner described briefly above.
Section 10 contains some mathematical matter which explains the use of the
language of holomorphic bundles and CR-bundles. (It is this language which is
often used in various twistor constructions [3, 6, 7] as well as considerations of
[4].) After that we will be able to discuss on a more accurate level, in Sect. 11,
certain non-perturbative features of new superfield theories. This discussion
reveals, in particular, that the off-shell superfield formulation of N = 3 super Yang-
Mills theory (in contrast to N = 2) seems to be not equivalent (even on the mass
shell, but beyond perturbation theory) to the usual Minkowski space formulation.

2. Constraints in N=2 Super Yang-Mills Theory

In the N = 2 and N = 3 super Yang-Mills theories the following constraints are
used [8,6]:

(2.1)
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Here VΛi = Dαι + «s/αί, V£ = Dά

l + X*1 denote the gauge covariant derivatives with the
gauge field («β/αί, ĵ ). The coordinates in Minkowski superspace will be denoted by
xa, 0αί, θάi (where B&

i is complex conjugated to 0αί and 0 = 1,... ,4; α = l,2;
i = 1 , . . . , JV) . As usual, Dαί are super covariant derivatives, DΛi = d/d θ™
+ i^βθ^id/dxa, while Z)^ are their conjugates. Our aim is to solve the constraints
(2.1) for N = 2. (Note that for N = 2 these constraints are kinematical.) At first we
represent these constraints in a different form. Namely, we introduce the operators

where p' are arbitrary complex numbers, p; = s^p*, and

A, = p'Arf, D4=Pί!J4', (2-3)

j/β=p'Xri, Xj = pXi'. (2.4)

It is easy to check that constraints (2.1) are equivalent to the condition

{^Hί^Hί^Ho, (2.5)
satisfied for every (pl,p2). Geometrically the constraint (2.5) means that the field
strength vanishes on the (0|4)-dimensional subspace spanned by the vectors (2.3).
(Such tangent subspaces will be called isosubspaces.) This remark permits us to
give a slightly different interpretation of constraints.

Let us consider the complexified Minkowski superspace Mc with coordinates
xα, 0αι, θάi, where xa are now complex, and 0^ may be not conjugated to θΛί. The
following surface of complex dimension (0|4) can be defined in this superspace by
means of the parametric equations,

xa = f + iεV

(2.6)

Here εα, εά are independent complex (fermionic) parameters, while ya, ηa\ ηai and pl

are arbitrary complex constants. The surfaces of the form (2.6) will be called
isoplanes. It is easy to see that at every point of the surface (2.6) the tangent
subspace is spanned by the vectors (2.3), i.e. every tangent space is an isosubspace.
This means that the restriction of the field strength of a super gauge field satisfying
(2.1) to the arbitrary isoplane vanishes. Conversely, the vanishing of the field
strength on isoplanes implies the constraints (2.5) and, hence, (2.1).

It follows from (2.5) that for every p1, p2 the operators Fα, Γά can be represented
in the pure gauge form

V. = g-lDj, V^g^D.g, (2.7)

where the function g taking values in the gauge group G depends on parameters p1,
p2 and variables x, θ, θ. Let us note that when one replaces pl by λp\ the operators
Fα, Fd and Dα, Dά are multiplied by the same complex number λ. We see that the
transformation p^λp1 does not violate (2.7) considered as an equation on g.
Therefore the function g can be chosen in such a way that it is invariant under the
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transformations pl^>λpl with λ φ 0. This suggests that it is natural to consider p1, p2

as homogeneous coordinates. In other words, we assume that the coordinates pl

and λpl represent the same point. (We shall assume throughout that /IΦO and p1,
p2 do not vanish simultaneously.)

The space with homogeneous coordinates p1, p2 is called the complex
projective line and is denoted by CP1. This space can be interpreted as the plane of
a complex variable z with a point at infinity added to it. In other words, CP1 is the
Riemann sphere. (The point with homogeneous coordinates p1, p2 corresponds to
the complex number z = pί/p2.}

3. Basic Superspaces

The considerations of the last section explain that it is natural to introduce
superspaces which have the parameters p1, p2 as additional coordinates. (As it was
mentioned above, these parameters must be considered as homogeneous coordi-
nates.) The most important role for our aims will be played by the space P obtained
from Minkowski superspace M by the addition of homogeneous coordinates p1

to xa, #αί, 9ά

f. In other words, P = M x CP1. As we have seen in Sect. 2, the function
g in (2.7) can be considered as a function on P. Geometrically, the superspace P can
be interpreted as the manifold of all tangent isosubspaces at all points of M. We
call the superspace P the isotwistor space.

It is useful to consider also the superspace J^M'xCP1. (To define 3F we
replace M by its complexification M° in the definition of P.) Finally, we define the
superspace £P as the manifold of all isoplanes [i.e. of all (0|4)-dimensional surfaces
(2.6) in Mc]. To introduce coordinates in ̂  we observe that the equations of
isoplane (2.6) can be rewritten in the following form:

(3.1)

where ya, <9α, <9ά, p1 are constants that fix an isoplane uniquely. (Here Pi = (p1)*, p1

= (Pi)* = είJPp and \P\2 - PlPi =1= 0.) This means that one can consider /, <9α, <9ά, p1 as
coordinates in the space of all isoplanes, ̂ . One must take into account though
that p1, <9α, Θά multiplied by a common number still correspond to the same
isoplane. Thus one must treat p1, <9α, Θά as homogeneous coordinates (while ya are
usual coordinates).

Let us point out that there is one and only one isoplane that passes through a
given point in complex Minkowski superspace and which is tangent to a given
isosubspace at that point. This implies that for every point of the space ̂  (which is
the space of all isosubspaces) there is a corresponding point in 3P. The relation
between the spaces S7 and ̂  can be clarified using a coordinate, change in 3F . Let
us pass from the coordinates xα, 0α', 0\ p1 in <F = Mc x CP1 to the following ones:

α = \p\ ~ ipfi™ 9 0ά - |p| - 2p^ , (3.2b)

ϊfid* ~ i&σlβθϊ . (3.2c)
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Now the projection of J^ onto & described above can be given by mapping a point
(/, Θα, <9ά, <9α, Θά, p') in ̂  to the point with coordinates (/, 6>α, Θ\ p') in ̂ . [This
can be checked using (3.1) and (3.2).]

It is obvious from our definitions that the space P can be considered as a
submanifold in J .̂ In coordinates xa, θa\ θ*h p

l this submanifold can be singled out
by means of reality conditions: xa = (V)*, ffd

t = (#αί)*, while in coordinates (3.2) this
can be expressed as

Θά = |p|2(<9α)* , <9ά - \p\ ~ 2(6>α)* ,

On the other hand, the space P can be thought of also as being embedded in 0>.
Indeed, every point (xfl, θΛi, θ*^ p\ pt) of P can be considered as a point in J^ and,
hence, there is a point in & corresponding to it with coordinates given by (3.2a, c).
It follows from the relations (3.2a, c) that different points of P are mapped to
different points in ̂ 4, thus giving an embedding of P into 3P.

We proceed now to a discussion of various functions and differential operators
on the isotwistor space P that will be of most importance for us. First of all, let us
point out that a function defined on P can be considered in terms of coordinates xfl,
θΛi, θά

b p', pi as a function of these variables subjected to the requirement of
homogeneity of degree zero (i.e. it must remain unchanged when pl ^λpl). It will be
useful also to deal with functions of xfl, θαί, θ% p\ pί? which are homogeneous of
degree n, that is they satisfy by definition

/(*, θ, θ, λp, λp) = Λ"/(x, 0, $ p, p) .

Such functions will be called homogeneous (of degree n) functions on P5.
Now the differential operators Dα and Dά introduced earlier [see, (2.3)] can be

considered as acting on functions on P and transforming a homogeneous function
of degree n to a function of degree n + 1 . An important role will be played also by
the operator D, which is defined by the formula,

D = \p\2

Pi^. (3.3)

This operator increases the degree of homogeneity of a function by two. The
operator D is intimately connected with the well known operator d, which acts on
differential forms on (DP1. [Applied, for example, to a function /(p, p) on (DP1, it
gives a 1-form which can be expressed in terms of homogeneous coordinates as
follows : df = (df/dpjdpi = (Df) - ω, where ω = \p\~ 4p^pf =\p\~ 4ε%Jpί.]

In what follows we shall have to deal with (complex) functions on P, subjected
to the following conditions:

DΛφ = 0, Dάφ = 0. (3.4)

4 Geometrically, this means that an isoplane of the form (3.1) in Mc intersects the real Minkowski
superspace M in at most one point
5 Note that homogeneous functions of two variables p1, p2 are in one-to-one correspondence with
certain functions of one variable z = pi/p2: /(p1, p2, pl9 P2)=(p2)nf(pί/p2, 1, Pι/ϊ>2> 1)
— (P2)nd(z> z)> where g(z, z) ~ zn as z-» oo, and such asymptotic behaviour of g(z9 z) defines the class
of functions of one variable that correspond to homogeneous functions of two variables
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Such functions will be called isochiral functions. It is essential that Eqs. (3.4) can be
solved explicitly. (The situation is quite familiar from N = ί chiral superfields.) In
order to describe the solution of (3.4) let us continue analytically the function φ
with respect to the variables corresponding to Minkowski superspace. Then we
obtain a function on (a domain of)6 the space J^ which is holomorphic in the
variables xα, 0αί, θ .̂ It can be easily seen that Eqs. (3.4) expressed in terms of
coordinates /, <9α, Θ*, <9α, <9ά, p1 on ̂  become

-0' (3'5)

This means that an isochiral function continued analytically to the space 3F yields
a function there which is holomorphic in ya, Θα, (9α, but does not depend on <9α,
Θ*. It is seen from the connection between the spaces 3F and 9 described above,
that the functions on J^ which do not depend on <9α, Θά can be considered as
functions defined on .̂ We obtain thus a correspondence between isochiral
functions on P and those functions on ̂ , which are holomorphic in ya, <9α, Θά.

Till now we did not consider conditions which might restrict the dependence of
funtions on the complex variable corresponding to homogeneous coordinates p1,
p2. Let us consider the solution of the equation

Dφ = 0 (3.6)

on the space P. [The operator D was defined in (3.3).] It is easy to see that Eq. (3.6)
amounts to the condition that the function is holomorphic with respect to
homogeneous coordinates p1, p2. It is well known (and can be proved using the
Liouville theorem), that every function defined for all values of the variables p1, p2,
except p1 =p2 = 0, and depending on them holomorphically and homogeneously
of degree n is equal to a polynomial of order n in p1, p2, (In particular, there are no
holomorphic functions which are homogeneous of degree n<0.) Thus, for
instance, the solution to (3.6) with n = 1 is simply an arbitrary linear function of p1,
p2 if it is to be defined for all p1, p2, |p|2φO.

4. Conversion of N=2 Super Yang-Mills Theory to a Theory
in Superspace with Auxiliary Dimensions

We shall show here how to convert the super Yang-Mills theory to a field theory in
the isotwistor space P. For this purpose we need a generalisation of the notion of a
gauge field. Commonly, to introduce a gauge field means to define covariant
derivatives. [That is to say, one has to define instead of the usual derivatives, say dμ

= d/dxμ, the covariant ones, Vμ = dμ + <$/μ(x).~] One can gauge not only the
derivatives with respect to coordinates, but also any first order differential
operator X = aμ(x)dμ. (Gauging X gives Vx = aμ(x) [3μ + j^(x)].) It will be
convenient, for our purposes, to consider a kind of partial gauge field, that is we
shall deal with a situation, when one gauges not all differential operators but only a

6 Our considerations are always local with respect to coordinates of (possibly complexified)
Minkowski superspace, although this is not always mentioned explicitly
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part of them. In fact, it will be useful to assume that in the space P only the
operators Dα, Dά and D are gauged. Thus we are to consider a partial gauge field
(j/α, j/ά, j/) in P, which corresponds to introducing gauge covariant operators
Pα = Dα + J/α, V& = Dά + Xi, P7 = /) 4- j?/. As discussed in Sect. 3, the operators Dα, Dά

raise the degree of homogeneity of a function by 1, while D raises it by 2. Hence we
have to assume the functions «β/α, j/ά and j/ on P (taking values, as usual, in the Lie
algebra of the gauge group) to be homogeneous of degrees 1, 1 and 2 respectively.

We will say that a partial gauge field has vanishing strength if the covariant
derivatives (anti)commute with each other. Thus the field strength of (j/α, j/ά, j/)
vanishes if

17,̂  = 17,̂  = 0. (4.1b)

The gauge equivalence of partial gauge fields is defined in the conventional
manner: the field (j/α, j/α, j/) is called gauge equivalent to (j/α

x, j/a

7, si*) if the
corresponding covariant derivatives are connected by

r'^g-'rά, r^Γ1^, r^r'rg, (4.2)
where g denotes the operator of multiplication by a function g taking values in the
gauge group. As a matter of course, a (partial) gauge field which is gauge equivalent
to zero (i.e. a pure gauge) has vanishing strength. In the case of partial gauge fields,
however, the inverse is valid only locally7. We wish to emphasize here that
although our considerations are always local with respect to coordinates
corresponding to Minkowski space, the dependence on (homogeneous) coordi-
nates p1, p2 corresponding to (CP1 in P = M x CP1 is to be considered globally.

Even in the case of a single operator V = D + «£/, the field strength of which
vanishes identically, it is not always possible to find a gauge function defined
globally with respect to CP1, such that V = g~^Dg. For an Abelian gauge group
such a function does, in fact, always exist. But in non-Abelian case, the equation

g~lDg = ̂  (4.3)

has a solution not for any given function jtf. Nevertheless, it is true that generically
this equation still has a solution. That is to say, if Eq. (4.3) is compatible for some
field <£/, it is also compatible for all fields sufficiently near to j/. In particular, Eq.
(4.3) is compatible if si is sufficiently small. [This fact, well known in mathematics,
can be proved using power expansions. See Sect. 1 1 for more details about the
solution of (4.3).]

Let us note, however, that the operators Pα = Dα + ̂ /α, VΛ = DA + X*> if they
anticommute, can be gauge transformed to Dα, Dά [because, in this case, the
variables p1, p2 enter only as parameters). The same statement (in terms of
Minkowski superspace) was already pointed out in Sect. 2].

The main conclusion we will reach in this section is that instead of gauge fields
in Minkowski superspace satisfying the constraints (2.1), one can use partial gauge

7 Note that even for ordinary gauge fields on a non-simply connected manifold the vanishing of
the field strength does not also imply that the field is a pure gauge. In what follows we shall be able,
however, not to be concerned with such a situation
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fields (Xχ, j3/ά, j/) on P, which have vanishing field strength and satisfy the
condition of compatibility of Eq. (4.3). To be more precise, the gauge equivalence
classes of fields on the Minkowski superspace M are in one-to-one correspondence
with gauge equivalence classes of partial gauge fields on P, provided all the above-
mentioned requirements are satisfied.

To prove this, let us note first of all that for every gauge field, (^/αι , j^
1) on M,

one can construct a field on P, setting

(4.4)

All the (anti)commutators of the covariant derivatives Pα, Fά, V, corresponding to
(4.4), among themselves vanish if the field (siΛi, stf£} satisfies on P the constraints of
the super Yang-Mills theory (2.1). [A part of this statement concerning Fα, V& was
already discussed in Sect. 2; now one has thus to check only the commutators with
V = D using the definitions (2.2) and (3.3).]

Conversely, let some field (ĵ , j/α , jaΓ) with vanishing field strength be given in
P satisfying additionally the condition that Eq. (4.3) has a solution. Then we are
able to make a gauge transformation giving a new field (j/α, j/ά, j/), such that
j/ = 0. The field strength of the transformed field still vanishes, of course; that is the
operators Pα, Pά, V=D (anti)commute. From [D, Pα] = [D, Pά] =0 we find that in
the new gauge Ds/0[ = D^ά = Q. As discussed in Sect. 3, these equations imply that
the functions j/α, jtfά (which by definition are homogeneous of degree one) are
holomorphic in p1, p2 and, hence, linear in these variables. Thus they are of the
form (4.4) for some functions j/αι , j/ά

l, which can be considered as fields defined on
Minkowski superspace M. Exploiting further the condition (4.1), we find that, for
the fields (4.4), it follows from (4. la) (as it was in Sect. 2) that the gauge field («s/a/,
X*') on M satisfies the constraints (2.1). We have thus described how to come back
from the gauge fields on P to the fields on Minkowski superspace.

It remains only to point out the by now obvious fact that when passing from P
to M and from M to P - in both cases - the gauge equivalent fields go into the
gauge equivalent ones.

The arguments used above are complete if the gauge fields considered are
assumed to be complex. If the gauge fields (X^ , j/ά

l) on M satisfy a reality
condition, e.g. X*1— — (Xχ/)+ for SU(n) as the gauge group, then the reality
condition for the corresponding gauge field (j/α, j/ά, j/) on P is as follows:

- (4.5)

Here p = (x, $, θ, p1) denotes a point in the space P, while the transformation ρ acts
on P as p^ρ(p) = (x,θ,θ,pί], where according to our conventions pl = sijpj

5. Unconstrained Superfield Formulation
of N=2 Super Yang-Mills Theory

In order to find such a formulation we will use the reduction of the usual
constraints (2.1) to certain conditions on the fields in the space P, as described
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before. According to Sect. 4, from the gauge field subjected to (2.1) on Minkowski
superspace, we can construct on P a partial gauge field (j/a, j/ά, si\ the field
strength of which vanishes, and vice versa. [The extra condition, used in Sect. 4,
that the field si is represent able in the form (4.3) can be neglected here, because it
does not constrain essentially the fields on P; namely, this condition holds for
generic J3/, as we already mentioned.] Using the vanishing of the field strength of
(j/a, X*, j/) we conclude that this field can be always transformed to a gauge where
Xχ = X< = 0. (Note that this is the case, because our consideration is local with
respect to coordinates of Minkowski space; note also that the component si
cannot be in general gauged away simultaneously with st^ jtfά since we have
required the domains of definition of the functions considered to be global in
homogeneous coordinates p1, p2.) Thus after the gauge transformation we are led
to a field of the form (0,0, j/) which still has vanishing strength. The last condition
reduces, in the case of the field (0,0, j/), merely to

0^ = 0^ = 0 . (5.1)

That is to say, the field j/ must be an isochiral function on P.
Our gauge condition, sίΛ = j/ά = 0, restricts the group of gauge transformations

(4.2) requiring that the gauge function g must be also an isochiral function.
We have thus constructed a correspondence between the gauge equivalence

classes of gauge fields on M satisfying the kinematical constraints (2.1) and gauge
equivalence classes of homogeneous isochiral fields of degree 2 on P. (Gauge
transformation for the isochiral field £/isjtf-^3/' = g~'L(D + stf)g with g being an
isochiral function on P.) As we have seen, Eq. (5.1) on P can be easily solved using
the space £P. (This equation and its solution are perfectly analogous to what is
usually done with N = ί chiral superfields.) This means that the correspondence
described here gives us unconstrained superfields for N = 2 super Yang-Mills
theory. To conclude, the Lagrangian for this theory must be described. Unfortu-
nately, there is no simple way known to write down a Lagrangian directly in terms
of the unconstrained superfield j/. On the other hand, an expression for the
Lagrangian in terms of gauge fields X^ , X/ constrained by (2.1) is well-known [8].
Hence, one has to express constrained superfields, X^, X/, in terms of the
unconstrained one, j/, and substitute into the Lagrangian of [8]. [As one can see
from the consideration of the present section, this procedure involves solving Eq.
(4.3); if a solution g to (4.3) is known, then the fields X^ , X/ can be restored from
Pi^Λi = 9~1Dag9piJ^&

i = g~1Ddtg.'] The resulting expression for the Lagrangian [1]
looks non-local with respect to the axuiliary variables p1, p2.

6. Equations of Motion of the N=2 Hypermultiplet

In this section we consider the so-called hypermultiplet [10], which is an N = 2
supermultiplet consisting of one isodoublet scalar and two isosinglet (Weyl)
spinors. Until recently only an on-shell superfield was known for the hypermulti-
plet. This is the isodoublet scalar superfield φt(x, θ, θ) satisfying the following
constraints.

= 0, Djφj-ϊδpfφ^O. (6.1)



656 A. A. Rosly and A. S. Schwarz

Equations (6.1) imply free massless equations of motion for the component fields.
Here we shall first convert the equations of motion (6.1) into equivalent equations
[4] on the isotwistor space P (see Sect. 3) and then, in Sect. 7, we shall show
following [1] how to separate the resulting equations on P into kinematical
constraints and Lagrangian equations of motion. It is important to point out that
such unconstrained superspace formulation of the hypermultiplet allows one to
introduce also interaction terms into the Lagrangian [1]. In a forthcoming paper
we shall describe an off-shell formulation that can be constructed on the
superspace P for an arbitrary N = 2 supersymmetric hyper-Kahler sigma model.

Let us recast Eqs. (6.1) into a different form. If we consider the superfield
φ = plφi, then the constraints (6.1) on φt imply

Dαφ = 0, Dάφ = 0, (6.2)

where the operators Dα and Dά (depending on pl) are the same as in Sect. 2.
Equations (6.2) satisfied by φ=plφi for all pl are obviously equivalent to (6.1). The
superfield φ = φ(x,θ,θ,p,p) can be considered as a function homogeneous of
degree one on the superspace P. The condition of linearity in the variables pl can be
interpreted as the requirement that φ is holomorphic with respect to these
variables, that is

Dφ = 0 (6.3)

(cf. Sect. 3; as we have already said, a holomorphic function homogeneous of
degree one with respect to pl is always linear). Thus we reach the conclusion that
the equations of motion (6.1) of the hypermultiplet are equivalent to the system of
Eqs. (6.2), (6.3) on the homogeneous field of degree one on P8.

7. Off-Shell Formulation of the Hypermultiplet

Now it is natural to consider Eqs. (6.2) as kinematical constraints, while the
remaining Eq. (6.3) as a true equation of motion to be derived from an action. This
was done in [1]. The relevant expression for the Lagrangian is φDφ, where

(See the definitions at the end of Sect. 4.) The two points must be noted in
connection with such a candidate Lagrangian. Firstly, since φ satisfies kinematical
constraints (6.2) (that is to say, it is an isochiral function in the terminology of
Sect. 3), so does the conjugated field φ and, hence, the Lagrangian density φDφ.
Secondly, the full degree of homogeneity of φDφ is + 4. The former remark means
that the action involving the Lagrangian φDφ must be an integral not over the
whole (6 1 8)-dimensional superspace measure on P, but over some (6|4)-
dimensional measure which implies integration only over the half of fermionic
coordinates. The second remark above means that φDφ must be integrated with a
measure that has the degree of homogeneity equal to minus four to compensate for

8 One can show that such fields on P correspond to fields on the space & (see Sect. 3) that are
holomorphic with respect to all the variables in & [4,14]
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the degree of φDφ (since the integral of a function homogeneous of degree zero
only can be defined unambigously when one deals with integration over (DP1 in
P-MxCP1).

Now, in coordinates /, <9α, Θά, <9α, <9α, p\ pt the constraints (6.2) mean merely
that φ does not depend on Θ" and Θά (see the discussion in Sect. 3). Consequently,
we are led naturally to the fermionic measure d4Θ which has the correct degree9

and does not include d<9α, dΘά. Thus we arrive at the following expression for the
action for the isochiral field φ,

where the superscripts in brackets indicate the degrees of homogeneity of the
entries. The symbol d2q in (7.1) stands for integration with respect to auxiliary
variables over the sphere S2^CP1. Here the usual measure on two-dimensional
sphere is understood:

2 _ Pidplpjdpj _ dzdz
q = \P\4 =(l + W 2 ) 2 '

where z = pί/p2 is an ordinary (i.e. not homogeneous) complex coordinate which
parametrises CP1 with one point, p2 = 0, excluded. As one can check directly, Eqs.
(6.3) indeed follow from the action (7.1). (In doing this it is useful to convince
oneself that one can integrate by parts with respect to the "derivative" D.) Thus the
use of isotwistor superspace P allowed one to obtain an off-shell unconstrained
formulation for the N = 2 hypermultiplet as well.

8. N=3 Theory

The N = 3 super Yang-Mills theory can be dealt with in a manner analogous to
what we discussed in the preceding sections in connection with N = 2 theories. A
relevant interpretation of N = 3 equations of motion in terms of a superspace with
auxiliary variables was suggested in [4]. Using this interpretation one is able to
find an unconstrained off-shell formulation of N = 3 theory. This formulation was
found first in [2]. (The results of [2] will be recapitulated in the next section,
though using a different notation.)

Let us consider, in analogy with the N = 2 case, the differential operators

where Dαί, Dά

l* are the usual spinorial derivatives in the N = 3 Minkowski
superspace M (so i = 1 , 2, 3), while p\ ut are complex parameters constrained by the
relation

^ = 0. (8.2)

The vectors (8.1) span a (0|4)-dimensional isosubspace at each point of M. It was
pointed out in [4] that the equations of motion of N = 3 gauge fields (j/αι , j/ά

l) in M

9 The degree of ΘΛ and <9ά is plus one, while integration with fermionic measure d4Θ means
differentiation with respect to these coordinates. Hence the degree of d4Θ is minus four, as
required
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are equivalent to the requirement that their field strengths vanish on each
isosubspace. That is to say, if we consider the operators

constructed from the gauge covariant derivatives [̂  = Dαί

then the constraints (2.1) on Vab VI (which, for N = 3, are just the equations of
motion) are equivalent to

{« = {« = {« = 0 (8.4)

satisfies for arbitrary values of p', ut subjected to (8.2).
This suggests, just as in the N = 2 case, that one is to pass to the space of all

isosubspaces in all points of M, i.e. to the isotwistor space P. Then the operators
(8.3) will define a (partial) gauge field on P. For N = 3wQ have P = M x β, where Q
is a compact complex three-dimensional manifold, defined as quadric (8.2) in (DP2

x CP2, in terms of homogeneous coordinates (p') and (ut). The dimension of P
equals, thus, 10|12. The use of isotwistor space allows us to obtain a corre-
spondence between gauge fields in M satisfying the constraints (2.1) and certain
partial gauge fields in P which have zero field strength.

Before proceeding further it will be useful to consider certain convenient
coordinate choices. First of all, in P = M x Q, we have coordinates xα, ΘΛ1

9 θ
Λ

i9 p\ pi9

ui9 ΰ\ where (p') and (u^ are homogeneous coordinates constrained by plUi = 0,
while pi = (p1)*, ΰl = (ut)*. It will be useful to introduce also coordinates for which
the operators Dα, Dά given by (8.1) become partial derivatives with respect to some
variables. For this purpose, it is instructive to consider the manifold of isoplanes.
An isoplane is defined as a (0|4)-dimensional complex submanifold in the
complexified Minkowski superspace Mc generated by the vector fields (8.1). Such a
submanifold can be given by the following parametric equations:

ί,

= η--εp9 —r. ui.

Here ya, ηΛl

9 77% p\ ut are constants, while the independent complex (fermionic)
variables εα, εά parametrise this isoplane. The isoplane (8.5) can be fixed
conveniently also by the following equations:

1̂  = 0", (0,1);
2ftθβ< = 0β, (-1,0);

pΦ~θά

9 (1,0); (8.6)

-W; = <9ά, (0, -1);

|PΓ2ε^p>/\^Φά, (-1,1);

where |p|2Ξp%Φθ and |w|2Ξ^Ml>0, and now /, Θ\ Θ\ Φ\ Φ\ p\ u{ are the
constants that define an isoplane uniquely, while <9α, Θά are the parameters on it.
Thus ya, <9α, Θά, Φα, Φά, p\ HI build up a coordinate system in the manifold & of all
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isoplanes in Mc. Note, that these coordinates in & have certain degrees of
homogeneity10 indicated in brackets in Eqs. (8.6). The space P can be considered
as a submanifold in .̂ Geometrically, the embedding Pc^ can be defined as
follows. As one can see from (8.6), every isoplane in Mc intersects the real
submanifold M of Mc in at most one point. Hence, such an isoplane is defined
uniquely by a tangent isosubspace (at some point) in M. This gives us just an
embedding of P into &. The resulting submanifold P in 9 can be defined also by
means of the following equations:

,

Φά=\u\2\p\-2(Φ«)*,

where

Θά = \u\ ~ 2(<9α)* , Θά = \p\2(Θ«)* . (8.7b)

In terms of coordinates y, Θ, Φ, <9, p, p, M, ύ, the operators (8.1) become

(8.8)

Thus, if we consider an N = 3 isochiral function on P, that is a function / which
satisfies

then these constraints will mean that / does not depend on Θ. (In other words, an
isochiral function on P can be continued to a function on ̂  holomorphic with
respect to the variables y, (9, Φ.)

Let us consider now the three-dimensional compact complex manifold Q
introduced above. As in the case of the manifold (CP1 (dealt with in Sect. 3), we may
consider various homogeneous functions on Q. In the present case we have also the
following useful proposition. Every homogeneous holomorphic function of degree
(m, ή) on Q is a homogeneous polynomial of mth order in pl and of nth order in ut. Let
us introduce the differential operators

ίuj~, (-1,2); (8.9)

which obey the following algebra:

In (8.9) the degrees of homogeneity were indicated in brackets. If z5, 5 = 1, 2, 3, are
some arbitrary complex coordinates defined locally on Q, then one has for a

10 In the present case the degree of homogeneity must be characterized by two integers (m, n)
corresponding to two subsets of homogeneous coordinates, respectively (pl) and (u^. The rest is
quite analogous to dealing with homogeneous functions on CP1, as explained in Sect. 3
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(homogeneous of any degree) function / on Q

where (ωs) is the following set of three homogeneous 1-forms on Q,

= \u\-4εijkp
lffdi?, (8.11)

Thus the requirement that a function / be holomorphic on Q is equivalent to the
equations

XJ = 0, s = l,2,3. (8.12)

We shall use also the operators Xs on the space P = MxQ. [In terms of
coordinates xα, 0αί, Θά

ί9 p
l, pi9 ui9 ΰ

l these operators are defined on P by Eqs. (8.9).]
We are ready now to reformulate the N — 3 equations of motion (2.1) in terms of

the isotwistor space. This reformulation uses the partial gauge field (j/α, j/ά, jtfs)
that gauges the differential operators (8.1), (8.9) on P giving

lζ = Dα + Λ/β, rά = Dά + s/A, Vx=Xs + stfs. (8.13)

As for JV = 2, we obtain a one-to-one correspondence [4] between (the gauge
equivalence classes of) gauge fields (stfΛi9 £#ά

l) satisfying Eqs. (2.1) on M and (the
equivalence classes of) partial gauge fields (jtfΛ9 jtfά9 j/s) on P = M x Q, which have
vanishing field strengths11. The latter condition means that the operators (8.13)
satisfy the same (anti)commutation relations as do the "flat" operators (8.1), (8.9).
That is to say, the relations (8.4) must hold along with

!7jr.,E] = l7τ.,ιa=o, (8.14)
[rXί,rxJ = rX3, \yχι,Vχ3 = Wx*Vχ3=* (8-15)

There is a convenient gauge choice; namely, s/a = jtfά = 0. Then Eqs. (8.14) become

J>X, = 0, (8.16)

which means merely that, in this gauge, stfs are isochiral functions on P. [Note also,
that Xs have certain degrees of homogeneity, namely, those of corresponding XS9

cf. (8.9).]
It remains to specify the reality conditions on the partial gauge fields on P that

must be imposed if the gauge group G is real. If, for example, G = SU(n), then the
gauge fields on Minkowski superspace M satisfy s/ά

l = — (^αί)
 + . The correspond-

ing reality condition on the isotwistor space P turns out to be as follows:

, (8.17a)

11 In fact, we should have imposed an additional condition that ^a = g 1Xsg for some gauge
function g on P. As for N = 2, this condition can be neglected in perturbation theory. The
difference between the N = 3 and N = 2 cases beyond perturbation theory will be discussed in
Sect. 11
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and for components j/s, s = 1,2, 3,

^ι(p) = - [̂ 2(β(p))] + , ^S(P) - IXafeίp))] + , (8 i7b)
where p denotes a point in P with coordinates (xa, θαί, Θ*i9 p\ pi9 ub ΰl) and the
transformation ρ replaces pl by ΰ\ that is p^>ρ(p) = (xa, θa\ 0α

t , ΰ\ ut, pίy pl).

9. N=3 Theory Off-Shell

In the last section we saw that the N = 3 equations of motion can be reformulated
as Eqs. (8.15), (8.16) on the superfields jtfs defined on isotwistor space P. In order to
obtain an off-shell formulation of this theory it remains, as suggested in [2], to find
an action from which Eqs. (8.15) can be derived as the Euler-Lagrange equations.
Then the remaining Eqs. (8.16) must be interpreted as kinematical constraints that
are easy to solve, as we have already mentioned. Equations (8.15) can be rewritten
as

3̂] = 0, (9.1)

3̂] =0 .

Let us look for an action which satisfies

δS = J dμsstu trFstδ^u + c.c. , (9.2)
p

where Fst are defined in (9.1), and dμ is an appropriate measure on the superspace
P. Note, that since j/s has the same degree of homogeneity as that of XS9 the degree
of the integrand in (9.2) equals the sum of degrees of Xί9 X2 and X3 [cf. (8.9)].
Thus the degree of εstuFstδ^u equals (2, -l) + (-l,2) + (l,l) = (2,2). This implies
that the integration measure dμ in (9.2) must be of degree ( — 2, —2). [Otherwise,
the integral (9.2) over P — MxQ could not be defined unambiguously.] Moreover,
since the superfields j/s (and, hence, Fst) are isochiral, the measure dμ cannot
include d&, as one can see from Eqs. (8.16) using (8.8). Thus we are forced to
choose12

dlol8μ = d4yd6qd4Θd4Φ, (9.3)

where we assume the use of coordinates y, Θ, Φ, <9, p, p, u, ΰ (defined in Sect. 8). The
symbol d6q in (9.3) stands for integration with respect to auxiliary variables over
the manifold Q of real dimension six. The measure d6q on Q can be defined either
using the embedding βc(CP2xCP2, or, equivalently, as the unique (up to a
constant factor) SU(3) invariant measure on Q. (Note, that Q is isomorphic to
SU(3)/[U(1) x U(l)]). Let us introduce on Q local complex coordinates zs,
5 = 1,2,3, by means of relations z1=p1/p3, z2 = p2/p3, Z3 = u1/u2. Then

d6q= -\p\4\u\4ωlω2ω*ώlώ2ώ3

\2 '

12 Note that for any fermionic coordinate, say, 0, the degree of homogeneity of dΘ is minus the
degree of Θ
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where the 1 -forms ωs are defined in (8.11). Now the action obeying (9.2) can be
found and turns out to be as follows:

S= I dμtr {-$*/% + s/3(Xls/2-X2j*ι)
p

. (9.4)

Remember, that <$/s in (9.4) are the components of the partial gauge field
corresponding to differential operators Xs; see (8.9). Using local coordinates zs one
can rewrite the action (9.4) in terms of components of the partial gauge field
corresponding to differential operators ds = d/dzs as well. Then the action acquires
a Chern-Simons-like form of Eq. (1.3).

The gauge transformations of superfields &is which are compatible with
kinematical constraints (8.16) and leave the equations of motion (9.1) invariant are
obviously as follows:

<-><rX0+<r%0, (9.5)
where the gauge function g on the space P is isochiral, i.e. Dag = Dάg = Q, and
satisfies a reality condition corresponding to (8.17):

The action (9.4) is invariant under gauge transformations (9.5), although the
in variance is non-manifest: the integrand in (9.4) transforms by a total derivative
under (9.5). This property of the action (9.4) is analogous to that of the Chern-
Simons term [9]. It can be shown, however, that in contrast to the Chern-Simons
term the action (9.4) is invariant even under "large" non-Abelian gauge transfor-
mations13. Thus there is no topological quantisation of the coefficient in front of
the action (9.4) (as one probably could expect from the analogy with the Chern-
Simons term, which yields the topologically quantised mass to three-dimensional
non-abelian gauge theories [9]).

10. Gauge Superfields as CR-Bundles

As it was already pointed out in Sect. 1, the way of constructing various superfield
theories we dealt with in this paper is based on an idea due to Ward. As a matter of
fact, the original work of Ward [3] establishes a one-to-one correspondence
between self-dual gauge fields and certain holomorphic bundles over a special
space with auxiliary dimensions. (In that case the space with auxiliary dimensions,
namely, the projective twistor space (CP3, emerges, when one adds in a definite way
an auxiliary manifold (CP1 to each point of the sphere S4). Other works exploiting
Ward's idea in different situations also used the language of holomorphic bundles
(e.g., [6,7]) or CR-bundles14 [4]. There exist various ways well known in
mathematics (e.g. [11]) to give the formal definitions of such bundles. One of these

13 This is due to the fact that the set of homotopy classes of maps of Q into G (the gauge group) is
finite
14 The difference in using holomorphic bundles or CR-bundles is purely technical, as it will be
explained below
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definitions uses just the geometrical objects that were referred to in preceding
sections as partial gauge fields. It is this manner of description of holomorphic
bundles which leads directly to unconstrained superfield formulations of [1, 2], as
we hope we have shown in this paper 15. The present section is intended to explain
the interrelations between various definitions of holomorphic bundles. After that it
will be clear, in particular, that the results of [4] expressed there in terms of CR-
bundles over the isotwistor superspace P imply the formulation of super Yang-
Mills constrains in terms of partial gauge fields on P.

Let us recall [11], that a complex vector bundle over some manifold M can be
defined by gluing together (with the help of gauge transformations) the direct
products Ut x C". Here Ut are open subsets covering Jt. If Jt is a complex
manifold, it is natural to consider the case when the transition functions (i.e. gauge
transformations used for gluing) are holomorphic. In that case the vector bundle
under consideration is called holomorphic. To get another useful definition, let us
consider sections of a vector bundle (with (C" as a fibre). Locally, a section \p can
always be represented by an rc-component complex field φα(x), α = l, ...,n, and
there is still the possibility to make a gauge transformation ψa(x)-+g*β(x)ψβ(x) with
g"β(x) being a function with values in GL(n, C) (or in some subgroup of it). If Jt is a
complex manifold, let zs, 5 = 1, ...,w, be some local complex coordinates in it. A
holomorphic function /(z) on (a domain in) Jt satisfies by definition the equation
δ s/ΞΞ 3/73^ = 0. Suppose, one wishes to define the notion of a holomorphic
section. For this definition to be gauge invariant, it has to be of the following form:

^V = β + aϋV> = 0, (10.1)

where ψ is a section, and in every gauge ψ is represented by some fields φα, while
s$s are represented by n x n matrix valued fields j^. The transformation law of
s/s must be obviously

That is to say, the definition of holomorphic sections requires us to introduce a
partial gauge field corresponding to the differential operators ds. We observe
immediately, that the definition of holomorphic sections (10.1) will provide us
with a reasonable set of such sections if

[Fs,rr]=0 (10.2)

for any 5, r = 1 , . . . , m. Indeed, Eq. (10.2) is the integrability condition for the system
of partial differential equations (10.1). If it were not imposed, there might be, even
locally, too little (possibly no) holomorphic sections.

The discussion above justifies the following definition. A holomorphic vector
bundle over complex manifold M is a vector bundle (with (C" as a fibre) provided
with a partial gauge field which enters co variant derivatives Vs = ds

jr^s satisfying
(10.2) 16. (This is equivalent to the definition given above in terms of holomorphic

15 Such treatment of holomorphic bundles was successfully used also previously in twistorial
constructions; see [12]
16 If the vector bundle under consideration is topologically non-trivial, one has to consider, as
usual, a number of local charts related by gauge transformations on the intersections. Being
topologically trivial, a bundle can be still non-trivial holomorphically (see below). In what follows
we shall deal mainly with holomorphic bundles which are topologically trivial
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transition functions, as we shall see shortly.) A holomorphic bundle over Ji is said
to be trivial if the corresponding partial gauge field is a pure gauge; that is

^g-^g, (10.3)

where g is an n x n matrix function defined globally on the manifold Jt. In fact, one
can see that Eq. (10.3) can always be satisfied locally, for the field jtfs is assumed to
obey (10.2), the integrability condition for (10.3).

If the field j/s is not a pure gauge globally though, one can still use a number of
open subsets U{ covering Jt> such that on each of them a solution gt to Eq. (10.3)
does exist. Then the matrix valued functions φij = QιQ]v defined on the intersec-
tions UtnUj satisfy obviously ^̂ . = 0 and <${$>$. = <$&. In fact, a set of functions
(called transition functions) satisfying these conditions defines a holomorphic
bundle uniquely. This yields an alternative formal definition of the notion of a
holomorphic bundle formulated in terms of holomorphic transition functions17.

We observe that locally one can always choose a gauge in which the partial
gauge field defining a holomorphic bundle vanishes; such different gauge choices
are related by holomorphic gauge transformations. A holomorphic section ψ is
represented then in such a gauge by an w-component holomorphic field \p\z) (i.e.
dsιp« = Q).

The notion of a holomorphic function has a natural generalization. Let us
consider first a real surface Ω in a complex manifold Jf. The functions on Ω that
can be analytically continued to a neighbourhood of Ω will be called CR-functions.
Every operator of the form X^tήd/dz1 gives zero on any holomorphic function on
Jf. (Here u denotes a point in N with complex coordinates zl.) If, for u in Ω, the
vector with components X\u) is tangent to Ω, then the action of the operator
X = Xl(u)d/Szl is defined also on the space of functions on Ω. This allows us to give
an internal definition of CR-functions, using the fact that these functions satisfy
Xf = Q for any operator X of the type considered. Namely, let us consider a
manifold Jt on which a set of complex vector fiels Ys, s = 1,..., p, is fixed. (Here we
assume that these vectors span at each point a p'-dimensional complex subspace in
the complexified tangent space, and that the conjugated vector 1̂ , for any s, cannot
be expressed as a complex linear combination of Yr, r = 1,..., p.) In such a case one
says that the manifold Jt is provided with a CR-structure (i.e. Cauchy-Riemann
structure). A CR-structure is called integrable if

17 This definition is parallel to the definition of a topological bundle by means of transition
functions which are required to be continuous. For a given topological (respectively holomorphic)
bundle, one can alter the transition functions by making arbitrary continuous (respectively
holomorphic) gauge transformations on any open subset U^ If by means of these transformations
all the transition functions can be simultaneously set to unity (i.e. constant unit matrix), the bundle
under consideration is trivial. It may happen that the holomorphic transition functions of a given
holomorphic bundle can be gauged away by means of continuous transformations, but cannot by
means of holomorphic ones. This is just the case we have already mentioned, when a bundle is
trivial topologically, but non-trivial holomorphically
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for some function cj. on Ji. In this case Jt is called a CR-manifold18. A function /
on M is called a CR-function if Ysf = 0 for any s = 1,..., p. Note, that the condition
(10.4) is intended to ensure that on CR-manifolds there exist (locally) sufficiently
many CR-functions. It is worth noticing that a generic real surface Ω in a complex
space can be considered as a CR-manifold. (One must take a maximal set of
linearly independent vectors X on Ω of the form considered above as vectors Ys

defining CR-structure.) In fact, any CR-manifold can be represented in such a way,
provided the vector fields Ys are real-analytic.

On a CR-manifold it is natural to consider CR-bundles, a proper generaliza-
tion of holomorphic bundles over the complex manifold. Namely, one can define
CR-bundles as such that the transition functions are CR-functions. The definition
of holomorphic bundles in terms of partial gauge fields we have discussed above
can also be generalised to the case of CR-bundles. A vector CR-bundle over a CR-
manifold Jt is a complex vector bundle for which a partial gauge field si&

s = !,...,/?, corresponding to gauge covariant operators VS=YS+ ^s is fixed,
provided

[?„%} = ctf. (10.5)

We are able to give also the definition of CR-sections of a CR-bundle. These are the
sections, ψ, which satisfy

r8ψ = (Ys + s/Jψ = Q. (10.6)

This definition is reasonable because of the integrability condition (10.5). Other
properties of CR-bundles as well as the proof of equivalence of two ways of
defining them are straightforward analogs of those for holomorphic bundles. In
particular, one can consider the gauges in which j/s = 0 (locally) and the remaining
gauge freedom is given by CR-functions.

Now it is easy to see that the whole of constructions used to convert the
Minkowski space superfields into superfields on isotwistor space can be translated
in terms of CR-bundles. Let us explain, for simplicity, the case oΐN = 2 super Yang-
Mills theory. First of all, we observe that for N = 2 the isotwistor superspace P = M
x CP1 (see Sect. 3) has the following CR-structure. This CR-structure is defined by

complex vector fields Dα, Dβ, D on P (the dimension of the corresponding complex
subspace being, thus, 1|4). Note, that since these vector fields form an algebra
closed under the (anti)commutator, the space P is a CR-manifold. The rest is
straightforward. Namely, the partial gauge fields j/α, «s/d, si on P, which substitute
the usual superfields on Minkowski superspace M (see, Sect. 4), satisfy the
condition of vanishing field strength. That is to say, these partial gauge fields define
a CR-bundle19 over the CR-manifold P. For non-trivial gauge fields the

18 Note that the notion of a CR-structure (respectively integrable CR-structure, respectively CR-
manifold) is a direct analog of the notion of an almost complex structure (respectively complex
structure, respectively complex manifold). Note, also, that one usually assumes that the two sets
of vector fields, say Ys and Y^, correspond to the same CR-structure if they generate the same
tangent subspace at each point
19 Since we consider uncompactified Minkowski superspace, the bundles under consideration are
topologically trivial
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corresponding CR-bundles are non-trivial over P, but simultaneously they must
be trivial over every submanifold (CP1 in P = M x CP1 corresponding to each fixed
point in M. The latter condition was expressed in Sect. 4 as the requirement that
the component s$, which enters V = D + jtf, is a pure gauge (4.3) globally on P.

Let us note, that the resulting interpretation of constrained gauge fields on M
in terms of CR-bundles over P also yields a solution of N = 2 kinematical
constraints. Indeed, an arbitrary CR-bunlde over P = M x (CP1 can be defined by
means of a single transition function (which must be a CR-function). This is related
to the fact that CP1 can be viewed as two copies of one dimensional complex space
(C1 glued. This transition function can be used as an unconstrained superfield of
N = 2 super Yang-Mills theory.

Finally, it must be noticed that in general one can consider holomorphic (or
CR) bundles satisfying some reality conditions. In particular, the condition (4.5) for
the partial gauge field defining a CR-bundle on P can be interpreted as a reality
condition on this bundle. [For N = 3, an analogous reality condition was given by
Eqs. (8.17).]

Let us mention also a proper geometrical setting of isochiral superfields on P
corresponding to the N = 2 hypermultiplet. Evidently, since an on-shell superfield
representing the hypermultiplet satisfies Eqs. (6.2), (6.3), it is just a CR-field on P.
(An off-shell superfield which satisfies only the isochirality condition (6.2) on P, can
also be viewed as a CR-field, if one uses a CR-structure on P defined by the vector
fields Dα, Dά only.) It remains to point out that since the superfields in this case have
a non-zero degree of homogeneity, they correspond not to ordinary CR-functions
on P, but to CR-sections of a fixed CR-bundle with one-dimensional fibres over P.

As we have already pointed out a CR-manifold can always be realized as a
surface in certain complex space. Analogously, CR-bundles over this CR-manifold
can be described as restrictions to the corresponding surface of holomorphic
bundles defined over a neighbourhood of this surface in the ambient complex
space. This follows from the fact that CR-functions correspond to holomorphic
functions restricted to a real surface. (To be more accurate, all the statements of
such a kind in general are valid locally and under the assumption of real
analyticity. In case of present interest, it is straightforward to check that the CR-
structure, defined, as above, by the vector fields Dα, Dά, δs on P (for N = 2 and N = 3)
is equivalent to the CR-structure arising on the real surface in complex manifold20

2P. Consequently, all the constructions of the present paper (as well as of [4]) can
be reformulated also in terms of holomorphic bundles over & (see [14] for details).

11. Discussion of Equivalence Between Minkowski Space
and Isotwistor Space

Let us consider partial gauge fields δ~s + sfs of zero field strength on a complex
manifold. As we have discussed in Sect. 10, the gauge equivalence classes of such
fields are in one-to-one correspondence with holomorphic bundles over Jί
considered up to holomorphic equivalence. The fields J3/S are assumed to be

20 The supermanifold ̂  is a complex supermanifold, for it is defined as the manifold of complex
submanifolds, isoplanes, in complexified Minkowski superspace (cf. Sects. 3 and 8)
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defined in terms of local coordinates zs on Jt. If in a domain of M there are two
coordinate systems, corresponding fields must be gauge equivalent. If, moreover,
the differential form stf — j^dz8 remains the same under the changes of local
coordinates, then the corresponding holomorphic bundle is topologically trivial. It
is just the case in those constructions involving partial gauge fields on (CP1 and g,
which we discussed in Sects. 4, 5 and 8, 9. The classification of holomorphic
bundles over (DP1 is well known [11]. Every one-dimensional bundle over (DP1 is
holomorphically equivalent to a bundle defined by the transition function φ(z) = zn

for an integer n. [That is to say, this bundle can be built up from two copies of the
direct product C1 x C1 by identifying (z, u) with (z~1, zV).] Every fc-dimensional
bundle over (DP1 is holomorphically equivalent to a direct sum of one-dimensional
bundles. The equivalence class of this bundle is defined by k integers, (n l 5..., nk). A
bundle is topologically trivial if ni + ... + nk = 0. It follows that for k> 1 there exist
topologically trivial bundles which are holomorphically non-trivial. This means
that a gauge transformation which sets the given field si of Sect. 4 to zero may not
exist for some ja/. However, the fields, j/, on CP1, for which such gauge
transformations do exist, can be shown to constitute an open dense subset in the
space of all fields.

There is no known classification of holomorphic bundles over the manifold Q
that arises in the case of N = 3 gauge theory (Sect. 8), unless the dimension of fibres
equals one. All the one-dimensional topologically trivial bundles over Q are
holomorphically trivial. Indeed, discussion of Sect. 10 implies that such one-
dimensional bundles over any complex manifold M are in one-to-one corre-
spondence with equivalence classes of 1-forms ω = ωsdzs obeying the condition
dω = 0 (here ω and ω + dρ are assumed to be equivalent). The set of equivalence
classes of such 1-forms is denoted in mathematics as HQΛ(Jί). It can be derived
from some known mathematical facts that £Γ0> l(Q) = 0. In the case of an arbitrary
dimension of fibres, it follows from the theory of deformations of complex bundles
[13] that any holomorphic bundle sufficiently close to a holomorphically trivial
bundle over Q is itself holomorphically trivial. In other words, if a sufficiently small
field stfs on Q has vanishing field strength, then it is gauge equivalent to zero. (One
can prove this by means of a perturbation theory.) Thus the set of partial gauge
fields corresponding to holomorphically trivial bundles over Q is open in the space
of all fields. However, it is not a dense subset in the present case, unlike the case of
the manifold CP1 relevant toN = 2 theory. To see this, let us consider the following
partial gauge field, s4s, s = 1,2,3, which defines a holomorphic bundle over Q with
C6 as a fibre:

|p|2|«f τ N4 " |«|2|t>|2 J'

vj&Z + vvv^ + ϋ^pj; (11.1}

Here A = (i,j) = (j,ί), B = (k,S) = (S,k), vl = (v^ = \pr2BiJkpjuk9 \v\2 = \u\2/\p\2. The
functions j/s^ in (11.1) are the matrix elements of the 6 x 6 matrix valued fields sέs.
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One can verify that the six-dimensional holomorphic bundle corresponding to the
partial gauge field (11.1) is topologically trivial, but non-trivial holomorphically.
Moreover, it can be shown that every bundle sufficiently close to that one is
holomorphically non-trivial as well.

The above discussion seems to imply that beyond perturbation theory the
superfϊeld formulation of N = 3 theory on isotwistor space may be not equivalent
to the usual Minkowski space formulation. We hope to return to this issue in a
future publication.
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