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Abstract. We consider a viscous incompressible fluid enclosed in a region of
IR?, and subject to boundary conditions. We obtain explicit bounds (depending
only on the data) for the entropy (Kolmogorov-Sinai invariant) and the
Hausdorff dimension of attracting sets.

1. Introduction

We consider a viscous incompressible fluid enclosed in a region Q of IR2. The time
evolution of the fluid is described by the Navier-Stokes equations with boundary
conditions. Two kinds of boundary conditions are investigated: a given velocity
and an imposed force on the boundary I' of Q.

Ruelle ([7]) has obtained rigourous bounds on the entropy (Kolmogorov-Sinai
invariant) and the Hausdorff dimension of attracting sets, involving the rate of
energy dissipation in the fluid. These bounds have been improved by Lieb ([5]) and
a complete statement of available results is given in [8] (see also [ 1, 2]). Using these
estimates, we derive explicit bounds on these quantities (i.e., bounds depending
only on the data).

2. Given Velocity on the Boundary

Let 2 a bounded open region of R?, with a C* boundary I'. Let ¢ € H¥?(I')? [we

recall H3%(I')=y,H?(Q), where the linear operator y, is defined on H'(Q) by

you=u|r] such that [¢-ndl'=0, n being the unit outward normal on I'. The
r

evolution of a viscous fluid enclosed in 2, subject to the boundary condition ¢, is

* This work has been mostly performed at Centre de Physique Théorique, Ecole Polytechnique,
F-91128 Palaiseau Cédex
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described by the following Navier-Stokes equations:

Z—:+(v- Yo+ Vp=vdav

V.-v=0
1
vr=¢
U(O) =g,
where the initial condition v, satisfies:
volr=¢, V-v,=0. )

Letv={we 2(Q)%,V-w=0}, where 2(Q)is the space of C* real functions with
support in Q. Let H (respectively V) the closure of v in [*()* [respectively

2 1/2
H(2)*], endowed with the norm |w|= (}: fwf(x)dx) [respectively wll
2 1/2 i=10
=<Z |Djw|2> ] Finally, if f is a scalar function, we define curlf

j=1

=(02f, =0, f).

The evolution equation (1) admits a good existence and uniqueness theorem
([3]). In particular, there exists a universal attracting set K C H, compact, of finite
Hausdorff dimension. In fact, from [5, 8], it follows:

dingAlell/zv_3/2sup<f8,,(x)dx>1/2, 3)
u Q2

u

where ¢,(x) = %Z (0;v;+ 0v;)* (x) is the rate of energy dissipation, 4, is an absolute
i,j

constant with 4, <0.5597, || is the volume of 2, { ), denotes an average over an
invariant ergodic measure y, and sup the supremum on such measures.

"
From [5, 8] we have also the following estimate on the topological entropy h:

h< A5v ™ 2sup <?f) £,(%) dx> 4

u
with 4% <0.1201. Furthermore, we have
[e,<2v[v]?. (5)
o]
Therefore, to get an explicit bound on dim K and h, we shall estimate {|v||?> . For
this purpose, we need the following proposition:
Proposition. There exists G € H*(Q)?, such that:
V-G=0
Glr=¢ )

> [ww,d,G < % lwl? forallwinV.
i,j R
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Proof. The idea of the proof is closely related to an argument given in [6]
(pages 103-105). First, we define a stream function y associated to the Stokes
problem: _AF4+VP=0
V-F=0 ™)
Flr=0.

We know (see [9] p. 33) the existence (and unicity) of F in H*(Q)?; so there is a
constant ¢,(22) (depending only on ) such that we can choose y € H3(Q) with
F=curly and

Ivllas@ = (D) @ llasngy- t)
Let now G =curl(6,yp), where 6, is defined in the following lemma:

Lemma. For all ¢>0, there exists a positive function 0,€ C*(Q), with partial
derivatives of degree 3 in L*(Q) and such that:

0(x)=1 for o(x)<35;
0.)=0 for o(x)=20,

sug 0.(x)=1
10,0.00)| £ €5(Q) — ©)

o(x)
1 ..
” 612]95 ||L°°({_2) = 02(9)5_4 for all L], ke {15 2}

&
>
9

where g(x) =distance of x fromI', ,=exp(— 1/¢), c,(Q) being a constant depending
only on Q.

||6i3jk05“L°°(Q) Sc,(Q)

For the proof of this lemma, see the appendix.
Defining now Dy(x)= <Z |6i1p(x)|2>1/2 we get, for all w in Hy(Q):

|(wG,-)(x)|§|(ww)(x)|q(@% +lwDy) (x)| for o(x)<26,
IwG;) (x)|=0 for o(x)>26,.
Therefore
WG, |2y < €2(Q) 1] oncay | +[ I, WDy 10
2llL2 ) o(x) <26,

Using 0;p € H*(2) C L*(Q) (continuous embedding), hence Dy € L*(Q), and
the Hardy inequality (see [6] p. 104), (10) yields:

||WGj”L2(Q)§8C3(Q) ||1P||L°°(Q) ||W||H},(Q)+ ”Dw”Lm(Q)[ j Wz(x)]l/2

o(x) =26
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and, by Holder and Sobolev inequalities:
||WGjHL2(Q)§303(Q) Ilwlle(Q) \|W||H6<Q)+5sl/3c4(9) ||D1P||Lw(m “WHH(‘)(Q)'
Therefore, for all w in H5(), we get
WGl L2 S ¢5(2, @) | Wll i) » (11)

where ¢5(£, @) depends on Q and [|@||gar2(r)2-
We conclude now the proof of the proposition. First, we notice that G satisfies
V-G=0 and G|p=¢. Let, then, we V; (11) yields:

> I WiwjaiGj =2 f WiGjain Sdes(Q, (0)8||W||2 >
i,jQ i,j @
and we get (6) by the choice
v
= 12
8@ 9) 42

Corollary. There exist two constants cg(Q, @), ¢7(Q, @) such that G satisfies
Gl =ce(€2, @) exples(2, @)/V],
|f1=¢7(2, p) exples(2, 9)/V],
where f=vAG—(G-V)G.

(13)

Proof. (13) follows from (8), (9), (12). We have, for instance | G|>= X 0,G;7q)
Then (9) yields ?

0:G) ()| S4ex(2) 55 DY+ €(D) 55 ()| + D2 (o)

where D?y(x)= [Z (0Fp)? (x)]” 2,

i,

By (8), (12) we ;;etl
Gl = co(2, @) expes(€2, 9)/V].

In the same way, we obtain the second inequality given in (13). Now, we can
state the main result of this section:

Theorem?. For the two-dimensional Navier-Stokes equations in a bounded open
region Q, with a boundary condition ¢ (on the velocity) belonging to H**(I')?, there
exists a universal attracting set K, of finite Hausdorff dimension with

dimK = a(®, @) exp[b(Q2, ¢)/v], (14)

where a(Q, @), b(Q, @) are two finite positive constants depending only on Q and
”(P||H3/2(r)2-

1 We are interested in the case v< 1, which occurs in turbulence, so that v<e!’”
2 This result (with a sketch of the proof) was given in [4]
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The topological entropy (rate of information creation on the attractor K) is
bounded in the same way.

Proof. Let u(t)=uv(t)— G, where v(¢) is the solution of (1). The energy equality for
u(t) yields:

3 i HOP+ 2 [usd,6,= =Vl + 2 fon.

It follows from (6):
& W + IO S23 ] S <2111 o)
B

Furthermore, for all ue V, Ju|*< — ||u||2 So

d Q|

—u@®)P+ = Ju@® L —|f*.

o) +2nu(>u <=/
Averaging over an invariant ergodic measure u, we get

21 |
lul?>, < —If1%. (15)
Finally (15), (13) together with (3)~(5) conclude the proof of the theorem.

Remark. We notice that (14) displays an exponential behaviour in 1/v while for the
case of homogeneous boundary conditions — with an external volumic force in the
right-hand side of the Navier-Stokes equations — Ruelle [8] has obtained estimates
in 1/v? for the Hausdorff dimension and 1/v3 for the entropy (see also [2]).

3. Imposed Force on the Boundary

We consider now the evolution of a viscous incompressible fluid in a tube,
0= x, <a with the following boundary conditions:

v(xy + L, x5) =0(xy, X3)
p(x; +L, x,) =p(xy, X,)
v(x4,0)=0

2-n);=F, and v-n=0 for x,=a,

M)

where X'=(0;;) is the stress tensor: ¢;;= —pd;;+v(0,v;+0v;) and F,; a given
tangential force applied on the upper boundary I'*.

X2
S
a r*
r-
0 L Xy
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We write: Q=[0, L] x [0, a], ' =0Q and, as before, g,(x) = Z 0+ 0v)* (x).
We have

Je,=vllv]l*+ X v (0 (ajvi)="”0”2+"j v(0w)n;.
Q i,j Q r
Therefore, with the boundary conditions (1) we obtain
[e,=vllv]?. @
2
Furthermore, the energy equality yields
lv(t)|2+2fvv Ui i+ X [ v0p=vY [v,dv;. 3)
2 dt e i
But
Sividv=—v|*+3 | v;1;0; .
i iL,jIr+

Using 3 | vni(0w;)=0, we get
i

1 1
Y vdv=—|v)*+ 3~ | o= —|lv]* + = | Fiv,.
i i,jvyr+ vr+
Returning to (3), we have finally

1d
27 — (@) +v[o(@®)]1>= FL Fv,. “)
Let a>0, then

1/2
“F11)1<—|F|2+ Ivl, where |F|= (fF(xde) )

Using v,(x;,0)=0, we get
P ¢ 0 2 2 1/2 aU1 12
I V1= jd?ﬂ j—“a Ul(xl,xz)dx2§2[[ vi(x) dx] ) (x)dx .
0 00X, Q Q

F+
Therefore Io]2
) i< v +allv|?
Furthermore r

X2 6 . 2
o=t =3 fax] T2 | ax faxT(2) o
) gy 7o o0\0z
which yields
[v]* <a?|v]?.
Finally, setting o= ~2v—a, we get

JFI+F101< |FI*+ Ilvllz. ®)

Then (4), (5) yields

&lg_‘

1 2V 2 A
- - <
5 7 IPOI7+ 3 @2 TIFP.
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Averaging over an invariant ergodic measure u, we obtain
a
<VHUIIZ>,é2;IFI2‘ ©)
Let now K an attracting set for our problem. By a slight modification® of

arguments given in [5, 7], we have

dim K < A,v™1(1+2) 12/ sup < J 300+ 6,~vi>2> v
u Q i,j u
s L'+ 9sup (45 @yt 0p)7)
w2 i u
Therefore (6) yields
2 1/2 F 2
aimk s 24, 9L 3y

b
> v3

with 4, <0.5597 and L, ,<0.24008.

Appendix

We give here the proof of the lemma stated in Sect. 2. This lemma is clearly a
consequence of the following proposition:

Proposition. There exists A: R —[0,1] such that
LeC*R,)
A"e L*(IR})

52
=1 if y=s—

y)=0 if y=25 (A1)
<l
| (y)ISCy

€
o*

&
5?)

where ¢>0 is fixed (arbitrary), 6 =exp(—1/¢) and ¢ an absolute constant.

14w =c

14" ==

3 The estimates given in [5, 7] follow from bounds on the eigenvalues of a Schrdédinger operator
(which appears when one studies the growth of a perturbation ¢ of a solution). In the present
problem, the component &, of ¢ satisfies ¢, =0 on I'” and a Neumann condition 0,¢; =0on I'*;
we notice, now, that if ¢, is an eigenvector for our Schrédinger operator, then &, (defined on
Q=T[0, L] x [0,2a] by: &,(x)=¢&,(x) for xe 2 and &,(x, x,) = &(xy, x, —a) for a< x, < 2a) is an
eigenvector — for the same eigenvalue — of a Schrédinger operator with Dirichlet boundary
conditions on I'” and I'* * (defined by : x, = 2a) and, for this last operator, we can use the bounds
given in [5] (Ruelle, private communication)
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Proof. We set 52
1 if y<_
=2
52 3 52
—— ] (agy+bg)+1 if —=y=y,
2 2
1) .
Ay)= alog; if yosy=sy,
(y—20)*(a,y+by) if y,=y=s26
0 if y=26
with ) .
0r<y, <3<y, <6. (A3)

A straightforward calculation shows that we can choose y,, y, satisfying (A 3) such
that A defined by (A 2) ensures the first four conditions (A 1), with ay, by, a,, b, given

> o SOR=8) =)
4y8(yo—6%/2)° 1T 4yi(y, —26)°
e(16y3 — 4L 6%y, +64/4) e(8yF —11y,6+26%)
1203 —0%/2)° 62y, —20)°

Then, the three last conditions (A1) are a consequence of (A 3), (A4).

(A4)

b0= b1=

Acknowledgements. 1 am indebted to P. Collet, J.-P. Eckmann, and D. Ruelle for very helpful
discussions pertaining to these subjects.

References

1. Babin, AB., Vishik, M.I.: Attractors for partial differential equations of evolution and
estimation of their dimension. Usp. Mat. Nauk 38, No. 4 (232), 133-187 (1983)

2. Constantin, P., Foias, C.: Global Lyapounov exponents, Kaplan-Yorke formulas and the
dimension of attractors for 2D Navier-Stokes equations (to appear)

3. Foias, C., Temam, R.: Some analytic and geometric properties of the solutions of the evolution
Navier-Stokes equations. J. Math. Pures Appl. 58, 339-368 (1979)

4. Lafon, A.: Borne sur la dimension de Hausdorff de l'attracteur pour les équations de Navier-
Stokes a 2 dimensions. C.R. Acad. Sci., Paris t. 298, série I, n° 18 (1984)

5. Lieb, E.: On characteristic exponents in turbulence. Commun. Math. Phys. 92, 473-480 (1984)

6. Lions, J.L.: Quelques méthodes de résolution des problémes aux limites non linéaires. Paris:
Dunod 1969

7. Ruelle, D.: Large volume limit of the distribution of characteristic exponents in turbulence.
Commun. Math. Phys. 87, 287-302 (1982)

8. Ruelle, D.: Characteristic exponents for a viscous fluid subjected to time dependent forces.
Commun. Math. Phys. 93, 285-300 (1984)

9. Temam, R.: Navier-Stokes equations. Amsterdam: North-Holland 1977

Communicated by O. E. Lanford

Received May 17, 1984





