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Abstract. We consider a viscous incompressible fluid enclosed in a region of
R2, and subject to boundary conditions. We obtain explicit bounds (depending
only on the data) for the entropy (Kolmogorov-Sinaϊ invariant) and the
Hausdorff dimension of attracting sets.

1. Introduction

We consider a viscous incompressible fluid enclosed in a region Ω of R2. The time
evolution of the fluid is described by the Navier-Stokes equations with boundary
conditions. Two kinds of boundary conditions are investigated: a given velocity
and an imposed force on the boundary Γ of Ω.

Ruelle ([7]) has obtained rigourous bounds on the entropy (Kolmogorov-Sinaϊ
invariant) and the Hausdorff dimension of attracting sets, involving the rate of
energy dissipation in the fluid. These bounds have been improved by Lieb ([5]) and
a complete statement of available results is given in [8] (see also [1, 2]). Using these
estimates, we derive explicit bounds on these quantities (i.e., bounds depending
only on the data).

2. Given Velocity on the Boundary

Let Ω a bounded open region of R2, with a C3 boundary Γ. Let φ ε ίf3/2(Γ)2 [we
recall H3/2(Γ) = γ0H

2(Ω), where the linear operator y0 is defined on Hί(Ω) by
γ0u = u\Γ] such that $φ ndΓ = Q, n being the unit outward normal on Γ. The

r
evolution of a viscous fluid enclosed in Ω, subject to the boundary condition φ, is

* This work has been mostly performed at Centre de Physique Theorique, Ecole Poly technique,
F-91128 Palaiseau Cedex
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described by the following Navier-Stokes equations:

— +(
όt

(1)

l?(0) = VQ ,

where the initial condition v0 satisfies:

Let Ό = {w e ^(Ω)2, V - w = 0}, where ®(Ω) is the space of C°° real functions with
support in Ω. Let H (respectively V) the closure of Ό in L2(Ω)2 [respectively

/ 2 \ l / 2 Γ

H1(Ω)2], endowed with the norm | w | = l Σ ί w2(:x;) dx 1 respectively ||w||
/ 2 \ι/2-ι \ i - i « / L

= 1 Σ \DjW\2 } . Finally, if / is a scalar function, we define curl/

The evolution equation (1) admits a good existence and uniqueness theorem
([3]). In particular, there exists a universal attracting set KcH, compact, of finite
Hausdorff dimension. In fact, from [5, 8], it follows:

ε^x) dx
H \Ω I μ

1/2
(3)

where εv(x) = ~Σ (d/^i + d^ )2 (x) is the rate of energy dissipation, A2 is an absolute
2i, j

constant with ^42 = 0.5597, |Ω| is the volume of Ω, < >μ denotes an average over an
invariant ergodic measure μ, and sup the supremum on such measures.

μ
From [5, 8] we have also the following estimate on the topological entropy h:

(4)

(5)

Therefore, to get an explicit bound on dimK and /z, we shall estimate < || v || 2>μ. For
this purpose, we need the following proposition:

Proposition. There exists Ge#2(Ω)2, such that:

with A'2 ^0.1201. Furthermore, we have

G\Γ = (6)

= ^ l l w l l 2 for all w in V.



Hausdorff Dimension of Attractors for the 2-D Navier-Stokes Equations 521

Proof. The idea of the proof is closely related to an argument given in [6]
(pages 103-105). First, we define a stream function ψ associated to the Stokes
problem:

(7)

We know (see [9] p. 33) the existence (and unicity) of F in H2(Ω)2; so there is a
constant c±(Ω) (depending only on Ω) such that we can choose ψeH3(Ω) with

and

(8)

Let now G — cuή(θεψ\ where θε is defined in the following lemma:

Lemma. For all ε>0, there exists a positive function θεeC2(Ω), with partial
derivatives of degree 3 in L°°(Ω) and such that:

β(x) = l far

ε(x) = 0 for

(9)

w/iere ρ(x) = distance of x from Γ, δε = exp( — 1/ε), c2(Ω) foeingr α constant depending
only on Ω.

For the proof of this lemma, see the appendix.

Defining now Dψ(x)= (Σ\dίψ(x)\2\ίl2 we get, for all w in H^(Ω):
V i

;.) 001 ̂ | c2(β) for ρ

for ρ(x) > 2δε.

Therefore

(10)

Using diιpeH2(Ω)cLCG(Ω) (continuous embedding), hence DιpεL™(Ω), and
the Hardy inequality (see [6] p. 104), (10) yields:

\\Dψ\\ Loΰ(Ω} \ f
Lρ(x)^
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and, by Holder and Sobolev inequalities:

o(Ω}

Therefore, for all w in f/J(Ω), we get

(11)

where cs(Ω,φ) depends on Ω and \\φ ||#3/2(Γ)2.
We conclude now the proof of the proposition. First, we notice that G satisfies

V G = 0 and G\Γ = φ. Let, then, w e F; (11) yields:

and we get (6) by the choice

Corollary. There exist two constants c6(Ω, φ), c7(Ω, φ) such that G satisfies

||G||gc6(Q,φ)exp[c6(Ω,φ)/v],

where f = vA G - (G - F) G.

Proof. (13) follows from (8), (9), (12). We have, for instance ||G||2 = Σ ll^-GJ2

2(i2).

Then (9) yields

KdiGj) (x)\ ^4c2(Ω)-p- \Dιp(x)\ + c2(Ω)-^ \ψ(x)\ + \D2ψ(x)\,
^ε ^ε

where D2

Ψ(x)= |~Σ(%>)2 (x)Ί1/2.

By (8), (12) we get1

In the same way, we obtain the second inequality given in (13). Now, we can
state the main result of this section:

Theorem2. For the two-dimensional Navier-Stokes equations in a bounded open
region Ω, with a boundary condition φ (on the velocity) belonging to //3/2(T)2, there
exists a universal attracting set K, of finite Hausdorff dimension with

dim K ̂  α(Ω, φ) exp [b(Ω, φ)/v] , (14)

where a(Ω, φ), b(Ω, φ) are two finite positive constants depending only on Ω and

1 We are interested in the case v«41, which occurs in turbulence, so that v<e1/v

2 This result (with a sketch of the proof) was given in [4]
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The topological entropy (rate of information creation on the attractor K) is
bounded in the same way.

Proof. Let u(t) = v(t) - G, where t (ί) is the solution of (1). The energy equality for
u(f) yields:

2dt

It follows from (6):

-
at

Σ I upjdjG^ -v||κ(ί)H2+ Σ ί fa.
i j Ω ί Ω

\Ω\
Furthermore, for all uεV, u\2^^ \\u\\2. So

^HOI2

+*IWOII2^I/I2.
dt 2 ~ v

Averaging over an invariant ergodic measure μ, we get

f | 2 . (15)
V

Finally (15), (13) together with (3)-(5) conclude the proof of the theorem.

Remark. We notice that (14) displays an exponential behaviour in 1/v while for the
case of homogeneous boundary conditions - with an external volumic force in the
right-hand side of the Navier-Stokes equations - Ruelle [8] has obtained estimates
in 1/v2 for the Hausdorff dimension and 1/v3 for the entropy (see also [2]).

3. Imposed Force on the Boundary

We consider now the evolution of a viscous incompressible fluid in a tube,
e following boundary conditions:

(1)

and F1 a given

v(xl90) = 0

(Σ n)1=F1 and v-n = 0 for

where Σ = (σij) is the stress tensor: σtj=—pδij-\-v(djVi + ~
tangential force applied on the upper boundary Γ+.

X2

Γ~
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We write :Ω = [0,L] x [0, ά],Γ = dΩ and, as before, ευ(x) = ̂
We have 2 ί > j

Ω ίj Ω Γ

Therefore, with the boundary conditions (1) we obtain

Furthermore, the energy equality yields

1 d
~ Tt KOI2 + Σ ί vfljdjot + Σ ί «»3iP=v Σ f M»,
2 flί ij Ω i Ω i Ω

But
ΣίM^=-INI 2+Σ rί+t?Mϋi-

Using Σ ί vίnj(diVj) = 0, we get

Σ- ί ^Vi=-l l ϋ H 2 + - ί
i,j V Γ+ V Γ +

Returning to (3), we have finally

2 at
Let α > 0, then

= ί *>!•
r+

^ l ^ + i * where

Using vl(xί,ΰ) = 0, we get

2 - f f d

r+ o lodx

Therefore

Furthermore

i Ω i Ω I 0

which yields

v
Finally, setting α= --, we get

2a

S2 I v [ /a | ;

ί(fe

FίVl '2m

Then (4), (5) yields

1/2

(2)

(3)

(4)

l/2

(5)



Hausdorίf Dimension of Attractors for the 2-D Navier-Stokes Equations 525

Averaging over an invariant ergodic measure μ, we obtain

<v|H|2> <2-\F\2. (6)

Let now K an attracting set for our problem. By a slight modification3 of
arguments given in [5, 7], we have

Therefore (6) yields
μ \β

31/2

2 2

with Λ2 ^0.5597 and L12 ̂ 0.24008.

Ω U

2 \ l / 2

3 α|F|2

-2 12~v^

Appendix

We give here the proof of the lemma stated in Sect. 2. This lemma is clearly a
consequence of the following proposition:

Proposition. There exists /1:1R+->[0,1] SMC/I that

ΊeC2(]R+)

/reL°°(]R+)

-0 if v^

ε

y

(Al)

where ε>0 /5

cβ '
(arbitrary), δ — exp( — 1/ε) and c an absolute constant.

3 The estimates given in [5,7] follow from bounds on the eigenvalues of a Schrόdinger operator
(which appears when one studies the growth of a perturbation ξ of a solution). In the present
problem, the component ξx of ξ satisfies ξ1 =0 on Γ~ and a Neumann condition d2£ι — 0 on Γ+

we notice, now, that if ξ1 is an eigenvector for our Schrόdinger operator, then ξ1 (defined on
Ω = [0, L] x [0,2α] by: &(*) - ί^x) for x e Ω and ̂ (x^ x2) - ̂ (x^ x2 - α) for αg x2 ̂  2a) is an
eigenvector - for the same eigenvalue - of a Schrόdinger operator with Dirichlet boundary
conditions on Γ" and Γ+ + (defined by: x2 = 2ά) and, for this last operator, we can use the bounds
given in [5] (Ruelle, private communication)
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Proof. We set

A. Lafon

λ(y) =

if ^

if

βlog-

if

if ^

with
(A3)

A straightforward calculation shows that we can choose yθ9 yί satisfying (A3) such
that λ defined by (A2) ensures the first four conditions (A 1), with aθ9 fe0, α1? bi given

Y _ ε(3yQ-δ2/2) _ ε(3yι-2δ)

4y2

1(y1-2S)3

(A4)

•Ό —

Then, the three last conditions (Al) are a consequence of (A3), (A 4).

Acknowledgements. I am indebted to P. Collet, J.-P. Eckmann, and D. Ruelle for very helpful
discussions pertaining to these subjects.
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