Hausdorff Dimension of Attractors for the Two-Dimensional Navier-Stokes Equations with Boundary Conditions

André Lafon*
O.N.E.R.A., Direction de l'Aérodynamique, B.P. 72, F-92322 Châtillon Cedex, France

Abstract

We consider a viscous incompressible fluid enclosed in a region of \mathbb{R}^{2}, and subject to boundary conditions. We obtain explicit bounds (depending only on the data) for the entropy (Kolmogorov-Sinaï invariant) and the Hausdorff dimension of attracting sets.

1. Introduction

We consider a viscous incompressible fluid enclosed in a region Ω of \mathbb{R}^{2}. The time evolution of the fluid is described by the Navier-Stokes equations with boundary conditions. Two kinds of boundary conditions are investigated: a given velocity and an imposed force on the boundary Γ of Ω.

Ruelle ([7]) has obtained rigourous bounds on the entropy (Kolmogorov-Sinaï invariant) and the Hausdorff dimension of attracting sets, involving the rate of energy dissipation in the fluid. These bounds have been improved by Lieb ([5]) and a complete statement of available results is given in [8] (see also [1, 2]). Using these estimates, we derive explicit bounds on these quantities (i.e., bounds depending only on the data).

2. Given Velocity on the Boundary

Let Ω a bounded open region of \mathbb{R}^{2}, with a C^{3} boundary Γ. Let $\varphi \in H^{3 / 2}(\Gamma)^{2}$ [we recall $H^{3 / 2}(\Gamma)=\gamma_{0} H^{2}(\Omega)$, where the linear operator γ_{0} is defined on $H^{1}(\Omega)$ by $\left.\gamma_{0} u=\left.u\right|_{\Gamma}\right]$ such that $\int_{\Gamma} \varphi \cdot n d \Gamma=0, n$ being the unit outward normal on Γ. The evolution of a viscous fluid enclosed in Ω, subject to the boundary condition φ, is

[^0]described by the following Navier-Stokes equations:
\[

\left\{$$
\begin{array}{l}
\frac{\partial v}{\partial t}+(v \cdot \nabla) v+\nabla p=v \Delta v \tag{1}\\
\nabla \cdot v=0 \\
\left.v\right|_{\Gamma}=\varphi \\
v(0)=v_{0}
\end{array}
$$\right.
\]

where the initial condition v_{0} satisfies:

$$
\begin{equation*}
\left.v_{0}\right|_{\Gamma}=\varphi, \quad \nabla \cdot v_{0}=0 \tag{2}
\end{equation*}
$$

Let $v=\left\{w \in \mathscr{D}(\Omega)^{2}, \nabla \cdot w=0\right\}$, where $\mathscr{D}(\Omega)$ is the space of C^{∞} real functions with support in Ω. Let H (respectively V) the closure of v in $L^{2}(\Omega)^{2}$ [respectively $\left.H^{1}(\Omega)^{2}\right]$, endowed with the norm $|w|=\left(\sum_{i=1}^{2} \int_{\Omega} w_{i}^{2}(x) d x\right)^{1 / 2}[$ respectively $\|w\|$ $\left.=\left(\sum_{j=1}^{2}\left|D_{j} w\right|^{2}\right)^{1 / 2}\right]$. Finally, if f is a scalar function, we define $\operatorname{curl} f$ $=\left(\partial_{2} f,-\partial_{1} f\right)$.

The evolution equation (1) admits a good existence and uniqueness theorem ([3]). In particular, there exists a universal attracting set $K \subset H$, compact, of finite Hausdorff dimension. In fact, from [5, 8], it follows:

$$
\begin{equation*}
\operatorname{dim} K \leqq A_{2}|\Omega|^{1 / 2} v^{-3 / 2} \sup _{\mu}\left\langle\int_{\Omega} \varepsilon_{v}(x) d x\right\rangle_{\mu}^{1 / 2} \tag{3}
\end{equation*}
$$

where $\varepsilon_{v}(x)=\frac{v}{2} \sum_{i, j}\left(\partial_{j} v_{i}+\partial_{i} v_{j}\right)^{2}(x)$ is the rate of energy dissipation, A_{2} is an absolute constant with $A_{2} \leqq 0.5597,|\Omega|$ is the volume of $\Omega,\langle \rangle_{\mu}$ denotes an average over an invariant ergodic measure μ, and sup the supremum on such measures.

From [5, 8] we have also the following estimate on the topological entropy h :

$$
\begin{equation*}
h \leqq A_{2}^{\prime} v^{-2} \sup _{\mu}\left\langle\int_{\Omega} \varepsilon_{v}(x) d x\right\rangle_{\mu} \tag{4}
\end{equation*}
$$

with $A_{2}^{\prime} \leqq 0.1201$. Furthermore, we have

$$
\begin{equation*}
\int_{\Omega} \varepsilon_{v} \leqq 2 v\|v\|^{2} \tag{5}
\end{equation*}
$$

Therefore, to get an explicit bound on $\operatorname{dim} K$ and h, we shall estimate $\left\langle\|v\|^{2}\right\rangle_{\mu}$. For this purpose, we need the following proposition:

Proposition. There exists $G \in H^{2}(\Omega)^{2}$, such that:

$$
\left\{\begin{array}{l}
\nabla \cdot G=0 \tag{6}\\
\left.G\right|_{\Gamma}=\varphi \\
\left|\sum_{i, j} \int_{\Omega} w_{i} w_{j} \partial_{i} G_{j}\right| \leqq \frac{v}{2}\|w\|^{2} \quad \text { for all } w \text { in } V
\end{array}\right.
$$

Proof. The idea of the proof is closely related to an argument given in [6] (pages 103-105). First, we define a stream function ψ associated to the Stokes problem:

$$
\left\{\begin{array}{l}
-\Delta F+\nabla P=0 \tag{7}\\
\nabla \cdot F=0 \\
\left.F\right|_{\Gamma}=\varphi
\end{array}\right.
$$

We know (see [9] p. 33) the existence (and unicity) of F in $H^{2}(\Omega)^{2}$; so there is a constant $c_{1}(\Omega)$ (depending only on Ω) such that we can choose $\psi \in H^{3}(\Omega)$ with $F=\operatorname{curl} \psi$ and

$$
\begin{equation*}
\|\psi\|_{H^{3}(\Omega)} \leqq c_{1}(\Omega)\|\varphi\|_{H^{3 / 2}(\Gamma)^{2}} \tag{8}
\end{equation*}
$$

Let now $G=\operatorname{curl}\left(\theta_{\varepsilon} \psi\right)$, where θ_{ε} is defined in the following lemma:
Lemma. For all $\varepsilon>0$, there exists a positive function $\theta_{\varepsilon} \in C^{2}(\bar{\Omega})$, with partial derivatives of degree 3 in $L^{\infty}(\bar{\Omega})$ and such that:

$$
\left\{\begin{array}{l}
\theta_{\varepsilon}(x)=1 \quad \text { for } \quad \varrho(x) \leqq \frac{1}{2} \delta_{\varepsilon}^{2} \tag{9}\\
\theta_{\varepsilon}(x)=0 \quad \text { for } \varrho(x) \geqq 2 \delta_{\varepsilon} \\
\sup _{x \in \Omega} \theta_{\varepsilon}(x)=1 \\
\left|\partial_{k} \theta_{\varepsilon}(x)\right| \leqq c_{2}(\Omega) \frac{\varepsilon}{\varrho(x)} \\
\left\|\partial_{i j}^{2} \theta_{\varepsilon}\right\|_{L^{\infty}(\bar{\Omega})} \leqq c_{2}(\Omega) \frac{\varepsilon}{\delta_{\varepsilon}^{4}} \quad \text { for all } \quad i, j, k \in\{1,2\} \\
\left\|\partial_{i j k}^{3} \theta_{\varepsilon}\right\|_{L^{\infty}(\bar{\Omega})} \leqq c_{2}(\Omega) \frac{\varepsilon}{\delta_{\varepsilon}^{6}}
\end{array}\right.
$$

where $\varrho(x)=$ distance of x from $\Gamma, \delta_{\varepsilon}=\exp (-1 / \varepsilon), c_{2}(\Omega)$ being a constant depending only on Ω.

For the proof of this lemma, see the appendix.
Defining now $D \psi(x)=\left(\sum_{i}\left|\partial_{i} \psi(x)\right|^{2}\right)^{1 / 2}$ we get, for all w in $H_{0}^{1}(\Omega)$:

$$
\begin{cases}\left|\left(w G_{j}\right)(x)\right| \leqq|(w \psi)(x)| c_{2}(\Omega) \frac{\varepsilon}{\varrho(x)}+|(w D \psi)(x)| & \text { for } \varrho(x) \leqq 2 \delta_{\varepsilon} \\ \left|\left(w G_{j}\right)(x)\right|=0 & \text { for } \varrho(x)>2 \delta_{\varepsilon}\end{cases}
$$

Therefore

$$
\begin{equation*}
\left\|w G_{j}\right\|_{L^{2}(\Omega)} \leqq c_{2}(\Omega)\|\psi\|_{L^{\infty}(\Omega)} \varepsilon\left\|\frac{w}{\varrho}\right\|_{L^{2}(\Omega)}+\left[\int_{\varrho(x) \leqq 2 \delta_{\varepsilon}} w^{2}(x) D \psi^{2}(x)\right]^{1 / 2} . \tag{10}
\end{equation*}
$$

Using $\partial_{i} \psi \in H^{2}(\Omega) \subset L^{\infty}(\Omega)$ (continuous embedding), hence $D \psi \in L^{\infty}(\Omega)$, and the Hardy inequality (see [6] p. 104), (10) yields:

$$
\left\|w G_{j}\right\|_{L^{2}(\Omega)} \leqq \varepsilon c_{3}(\Omega)\|\psi\|_{L^{\infty}(\Omega)}\|w\|_{H_{0}^{1}(\Omega)}+\|D \psi\|_{L^{\infty}(\Omega)}\left[\int_{\varrho(x) \leqq 2 \delta_{\varepsilon}} w^{2}(x)\right]^{1 / 2}
$$

and, by Hölder and Sobolev inequalities:

$$
\left\|w G_{j}\right\|_{L^{2}(\Omega)} \leqq \varepsilon c_{3}(\Omega)\|\psi\|_{L^{\infty}(\Omega)}\|w\|_{H_{0}^{1}(\Omega)}+\delta_{\varepsilon}^{1 / 3} c_{4}(\Omega)\|D \psi\|_{L^{\infty}(\Omega)}\|w\|_{H_{0}^{1}(\Omega)} .
$$

Therefore, for all w in $H_{0}^{1}(\Omega)$, we get

$$
\begin{equation*}
\left\|w G_{j}\right\|_{L^{2}(\Omega)} \leqq c_{5}(\Omega, \varphi) \varepsilon\|w\|_{H_{0}^{1}(\Omega)} \tag{11}
\end{equation*}
$$

where $c_{5}(\Omega, \varphi)$ depends on Ω and $\|\varphi\|_{H^{3 / 2}(\Gamma)^{2}}$.
We conclude now the proof of the proposition. First, we notice that G satisfies $\nabla \cdot G=0$ and $\left.G\right|_{\Gamma}=\varphi$. Let, then, $w \in V$; (11) yields:

$$
\left|\sum_{i, j} \int_{\Omega} w_{i} w_{j} \partial_{i} G_{j}\right|=\left|\sum_{i, j} \int_{\Omega} w_{i} G_{j} \partial_{i} w_{j}\right| \leqq 4 c_{5}(\Omega, \varphi) \varepsilon\|w\|^{2},
$$

and we get (6) by the choice

$$
\begin{equation*}
\varepsilon=\frac{v}{8 c_{5}(\Omega, \varphi)} . \tag{12}
\end{equation*}
$$

Corollary. There exist two constants $c_{6}(\Omega, \varphi), c_{7}(\Omega, \varphi)$ such that G satisfies

$$
\begin{align*}
\|G\| & \leqq c_{6}(\Omega, \varphi) \exp \left[c_{6}(\Omega, \varphi) / v\right] \\
|f| & \leqq c_{7}(\Omega, \varphi) \exp \left[c_{7}(\Omega, \varphi) / v\right] \tag{13}
\end{align*}
$$

where $f=v \Delta G-(G \cdot \nabla) G$.
Proof. (13) follows from (8), (9), (12). We have, for instance $\|G\|^{2}=\sum_{i, j}\left\|\partial_{i} G_{j}\right\|_{L^{2}(\Omega)}^{2}$. Then (9) yields

$$
\left|\left(\partial_{i} G_{j}\right)(x)\right| \leqq 4 c_{2}(\Omega) \frac{\varepsilon}{\delta_{\varepsilon}^{2}}|D \psi(x)|+c_{2}(\Omega) \frac{\varepsilon}{\delta_{\varepsilon}^{4}}|\psi(x)|+\left|D^{2} \psi(x)\right|
$$

where $D^{2} \psi(x)=\left[\sum_{i, j}\left(\partial_{i j}^{2} \psi\right)^{2}(x)\right]^{1 / 2}$.
By (8), (12) we get ${ }^{1}$

$$
\|G\| \leqq c_{6}(\Omega, \varphi) \exp \left[c_{6}(\Omega, \varphi) / v\right] .
$$

In the same way, we obtain the second inequality given in (13). Now, we can state the main result of this section:

Theorem ${ }^{2}$. For the two-dimensional Navier-Stokes equations in a bounded open region Ω, with a boundary condition φ (on the velocity) belonging to $H^{3 / 2}(\Gamma)^{2}$, there exists a universal attracting set K, of finite Hausdorff dimension with

$$
\begin{equation*}
\operatorname{dim} K \leqq a(\Omega, \varphi) \exp [b(\Omega, \varphi) / v] \tag{14}
\end{equation*}
$$

where $a(\Omega, \varphi), b(\Omega, \varphi)$ are two finite positive constants depending only on Ω and $\|\varphi\|_{H^{3 / 2}(\Gamma)^{2}}$.

[^1]The topological entropy (rate of information creation on the attractor K) is bounded in the same way.
Proof. Let $u(t)=v(t)-G$, where $v(t)$ is the solution of (1). The energy equality for $u(t)$ yields:

$$
\frac{1}{2} \frac{d}{d t}|u(t)|^{2}+\sum_{i, j} \int_{\Omega} u_{i} u_{j} \partial_{j} G_{i}=-v\|u(t)\|^{2}+\sum_{i} \int_{\Omega} f_{i} u_{i}
$$

It follows from (6):

$$
\frac{d}{d t}|u(t)|^{2}+v\|u(t)\|^{2} \leqq 2 \sum_{i} \int_{\Omega} f_{i} u_{i} \leqq 2|f||u(t)|
$$

Furthermore, for all $u \in V,|u|^{2} \leqq \frac{|\Omega|}{2}\|u\|^{2}$. So

$$
\frac{d}{d t}|u(t)|^{2}+\frac{v}{2}\|u(t)\|^{2} \leqq \frac{|\Omega|}{v}|f|^{2} .
$$

Averaging over an invariant ergodic measure μ, we get

$$
\begin{equation*}
\left\langle v\|u\|^{2}\right\rangle_{\mu} \leqq \frac{2|\Omega|}{v}|f|^{2} . \tag{15}
\end{equation*}
$$

Finally (15), (13) together with (3)-(5) conclude the proof of the theorem.
Remark. We notice that (14) displays an exponential behaviour in $1 / v$ while for the case of homogeneous boundary conditions - with an external volumic force in the right-hand side of the Navier-Stokes equations - Ruelle [8] has obtained estimates in $1 / v^{2}$ for the Hausdorff dimension and $1 / v^{3}$ for the entropy (see also [2]).

3. Imposed Force on the Boundary

We consider now the evolution of a viscous incompressible fluid in a tube, $0 \leqq x_{2} \leqq a$ with the following boundary conditions:

$$
\left\{\begin{array}{l}
v\left(x_{1}+L, x_{2}\right)=v\left(x_{1}, x_{2}\right) \tag{1}\\
p\left(x_{1}+L, x_{2}\right)=p\left(x_{1}, x_{2}\right) \\
v\left(x_{1}, 0\right)=0 \\
(\Sigma \cdot n)_{1}=F_{1} \quad \text { and } \quad v \cdot n=0 \text { for } x_{2}=a
\end{array}\right.
$$

where $\Sigma=\left(\sigma_{i j}\right)$ is the stress tensor: $\sigma_{i j}=-p \delta_{i j}+v\left(\partial_{j} v_{i}+\partial_{i} v_{j}\right)$ and F_{1} a given tangential force applied on the upper boundary Γ^{+}.

We write: $\Omega=[0, L] \times[0, a], \Gamma=\partial \Omega$ and, as before, $\varepsilon_{v}(x)=\frac{v}{2} \sum_{i, j}\left(\partial_{i} v_{j}+\partial_{j} v_{i}\right)^{2}(x)$.
We have

$$
\int_{\Omega} \varepsilon_{v}=v\|v\|^{2}+\sum_{i, j} v \int_{\Omega}\left(\partial_{i} v_{j}\right)\left(\partial_{j} v_{i}\right)=v\|v\|^{2}+v \int_{\Gamma} v_{i}\left(\partial_{i} v_{j}\right) n_{j}
$$

Therefore, with the boundary conditions (1) we obtain

$$
\begin{equation*}
\int_{\Omega} \varepsilon_{v}=v\|v\|^{2} . \tag{2}
\end{equation*}
$$

Furthermore, the energy equality yields

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}|v(t)|^{2}+\sum_{i, j} \int_{\Omega} v_{i} v_{j} \partial_{j} v_{i}+\sum_{i} \int_{\Omega} v_{i} \partial_{i} p=v \sum_{i} \int_{\Omega} v_{i} \Delta v_{i} \tag{3}
\end{equation*}
$$

But

$$
\sum_{i} \int_{i} v_{i} \Delta v_{i}=-\|v\|^{2}+\sum_{i, j} \int_{\Gamma^{+}} v_{i} n_{j} \partial_{j} v_{i} .
$$

Using $\sum_{i, j} \int_{\Gamma^{+}} v_{i} n_{j}\left(\partial_{i} v_{j}\right)=0$, we get

$$
\sum_{i} \int v_{i} \Delta v_{i}=-\|v\|^{2}+\sum_{i, j} \frac{1}{v} \int_{\Gamma^{+}} \sigma_{i j} n_{j} v_{i}=-\|v\|^{2}+\frac{1}{v} \int_{\Gamma^{+}} F_{1} v_{1}
$$

Returning to (3), we have finally

Let $\alpha>0$, then

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}|v(t)|^{2}+v\|v(t)\|^{2}=\int_{\Gamma^{+}} F_{1} v_{1} \tag{4}
\end{equation*}
$$

$$
\left|\int_{\Gamma^{+}} F_{1} v_{1}\right| \leqq \frac{1}{2 \alpha}|F|^{2}+\frac{\alpha}{2} \int_{\Gamma^{+}} v_{1}^{2}, \quad \text { where } \quad|F|=\left(\int_{0}^{L} F_{1}^{2}\left(x_{1}\right) d x_{1}\right)^{1 / 2}
$$

Using $v_{1}\left(x_{1}, 0\right)=0$, we get

$$
\int_{\Gamma^{+}} v_{1}^{2}=\int_{0}^{L} d x_{1} \int_{0}^{a} \frac{\partial}{\partial x_{2}} v_{1}^{2}\left(x_{1}, x_{2}\right) d x_{2} \leqq 2\left[\int_{\Omega} v_{1}^{2}(x) d x\right]^{1 / 2}\left[\int_{\Omega}\left(\frac{\partial v_{1}}{\partial x_{2}}\right)^{2}(x) d x\right]^{1 / 2} .
$$

Therefore
Furthermore

$$
\int_{\Gamma^{+}} v_{1}^{2} \leqq \frac{|v|^{2}}{a}+a\|v\|^{2}
$$

$$
|v|^{2}=\sum_{i} \int_{\Omega} v_{i}^{2}=\sum_{i} \int_{\Omega} d x\left[\int_{0}^{x_{2}} \frac{\partial v_{i}}{\partial z}\left(x_{1}, z\right) d z\right]^{2} \leqq a \sum_{i} \int_{\Omega} d x \int_{0}^{x_{2}}\left(\frac{\partial v_{i}}{\partial z}\right)^{2}\left(x_{1}, z\right) d z
$$

which yields

$$
|v|^{2} \leqq a^{2}\|v\|^{2}
$$

Finally, setting $\alpha=\frac{v}{2 a}$, we get

$$
\begin{equation*}
\left|\int_{I^{+}} F_{1} v_{1}\right| \leqq \frac{a}{v}|F|^{2}+\frac{v}{2}\|v\|^{2} . \tag{5}
\end{equation*}
$$

Then (4), (5) yields

$$
\frac{1}{2} \frac{d}{d t}\|v(t)\|^{2}+\frac{v}{2}\|v(t)\|^{2} \leqq \frac{a}{v}|F|^{2}
$$

Averaging over an invariant ergodic measure μ, we obtain

$$
\begin{equation*}
\left\langle v\|v\|^{2}\right\rangle_{\mu} \leqq 2 \frac{a}{v}|F|^{2} . \tag{6}
\end{equation*}
$$

Let now K an attracting set for our problem. By a slight modification ${ }^{3}$ of arguments given in [5, 7], we have

$$
\begin{aligned}
& \operatorname{dim} K \leqq A_{2} v^{-1}(1+2)|\Omega|^{1 / 2} \sup _{\mu}\left\langle\int_{\Omega} \frac{1}{8} \sum_{i, j}\left(\partial_{i} v_{j}+\partial_{j} v_{i}\right)^{2}\right\rangle_{\mu}^{1 / 2}, \\
& h \leqq L_{12} v^{-1}(1+2) \sup _{\mu}\left\langle\int_{\Omega} \frac{1}{8} \sum_{i, j}\left(\partial_{i} v_{j}+\partial_{j} v_{i}\right)^{2}\right\rangle_{\mu} .
\end{aligned}
$$

Therefore (6) yields

$$
\operatorname{dim} K \leqq \frac{3 \sqrt{2}}{2} A_{2} \frac{a L^{1 / 2}|F|}{v^{2}}, \quad h \leqq \frac{3}{2} L_{12} \frac{a|F|^{2}}{v^{3}}
$$

with $A_{2} \leqq 0.5597$ and $L_{12} \leqq 0.24008$.

Appendix

We give here the proof of the lemma stated in Sect. 2. This lemma is clearly a consequence of the following proposition:

Proposition. There exists $\lambda: \mathbb{R}_{+} \rightarrow[0,1]$ such that

$$
\left\{\begin{array}{l}
\lambda \in C^{2}\left(\mathbb{R}_{+}\right) \tag{A1}\\
\lambda^{\prime \prime \prime} \in L^{\infty}\left(\mathbb{R}_{+}\right) \\
\lambda(y)=1 \quad \text { if } \quad y \leqq \frac{\delta^{2}}{2} \\
\lambda(y)=0 \quad \text { if } \quad y \geqq 2 \delta \\
\left|\lambda^{\prime}(y)\right| \leqq c \frac{\varepsilon}{y} \\
\left\|\lambda^{\prime \prime}\right\|_{L^{\infty}} \leqq c \frac{\varepsilon}{\delta^{4}} \\
\left\|\lambda^{\prime \prime \prime}\right\|_{L^{\infty}} \leqq c \frac{\varepsilon}{\delta^{6}}
\end{array}\right.
$$

where $\varepsilon>0$ is fixed (arbitrary), $\delta=\exp (-1 / \varepsilon)$ and c an absolute constant.

[^2]Proof. We set

$$
\lambda(y)= \begin{cases}1 & \text { if } y \leqq \frac{\delta^{2}}{2} \\ \left(y-\frac{\delta^{2}}{2}\right)^{3}\left(a_{0} y+b_{0}\right)+1 & \text { if } \frac{\delta^{2}}{2} \leqq y \leqq y_{0} \\ \varepsilon \log \frac{\delta}{y} & \text { if } y_{0} \leqq y \leqq y_{1} \\ (y-2 \delta)^{3}\left(a_{1} y+b_{1}\right) & \text { if } y_{1} \leqq y \leqq 2 \delta \\ 0 & \text { if } y \geqq 2 \delta\end{cases}
$$

with

$$
\begin{equation*}
\delta^{2}<y_{0}<\delta^{3 / 2}<y_{1}<\delta \tag{A3}
\end{equation*}
$$

A straightforward calculation shows that we can choose y_{0}, y_{1} satisfying (A3) such that λ defined by (A2) ensures the first four conditions (A1), with $a_{0}, b_{0}, a_{1}, b_{1}$ given by

$$
\begin{cases}a_{0}=\frac{\varepsilon\left(3 y_{0}-\delta^{2} / 2\right)}{4 y_{0}^{2}\left(y_{0}-\delta^{2} / 2\right)^{3}} & a_{1}=\frac{\varepsilon\left(3 y_{1}-2 \delta\right)}{4 y_{1}^{2}\left(y_{1}-2 \delta\right)^{3}} \tag{A4}\\ b_{0}=-\frac{\varepsilon\left(16 y_{0}^{2}-\frac{11}{2} \delta^{2} y_{0}+\delta^{4} / 4\right)}{12 y_{0}^{2}\left(y_{0}-\delta^{2} / 2\right)^{3}} & b_{1}=-\frac{\varepsilon\left(8 y_{1}^{2}-11 y_{1} \delta+2 \delta^{2}\right)}{6 y_{1}^{2}\left(y_{1}-2 \delta\right)^{3}} .\end{cases}
$$

Then, the three last conditions (A1) are a consequence of (A3), (A4).
Acknowledgements. I am indebted to P. Collet, J.-P. Eckmann, and D. Ruelle for very helpful discussions pertaining to these subjects.

References

1. Babin, A.B., Vishik, M.I.: Attractors for partial differential equations of evolution and estimation of their dimension. Usp. Mat. Nauk 38, No. 4 (232), 133-187 (1983)
2. Constantin, P., Foias, C.: Global Lyapounov exponents, Kaplan-Yorke formulas and the dimension of attractors for 2D Navier-Stokes equations (to appear)
3. Foias, C., Temam, R.: Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations. J. Math. Pures Appl. 58, 339-368 (1979)
4. Lafon, A.: Borne sur la dimension de Hausdorff de l'attracteur pour les équations de NavierStokes à 2 dimensions. C.R. Acad. Sci., Paris t. 298, série I, n ${ }^{\circ} 18$ (1984)
5. Lieb, E.: On characteristic exponents in turbulence. Commun. Math. Phys. 92, 473-480 (1984)
6. Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris: Dunod 1969
7. Ruelle, D.: Large volume limit of the distribution of characteristic exponents in turbulence. Commun. Math. Phys. 87, 287-302 (1982)
8. Ruelle, D.: Characteristic exponents for a viscous fluid subjected to time dependent forces. Commun. Math. Phys. 93, 285-300 (1984)
9. Temam, R.: Navier-Stokes equations. Amsterdam: North-Holland 1977

Communicated by O. E. Lanford

[^0]: * This work has been mostly performed at Centre de Physique Théorique, Ecole Polytechnique, F-91128 Palaiseau Cédex

[^1]: ${ }^{1}$ We are interested in the case $v \ll 1$, which occurs in turbulence, so that $v \ll e^{1 / v}$
 ${ }^{2}$ This result (with a sketch of the proof) was given in [4]

[^2]: ${ }^{3}$ The estimates given in [5, 7] follow from bounds on the eigenvalues of a Schrödinger operator (which appears when one studies the growth of a perturbation ξ of a solution). In the present problem, the component ξ_{1} of ξ satisfies $\xi_{1}=0$ on Γ^{-}and a Neumann condition $\partial_{2} \xi_{1}=0$ on Γ^{+}; we notice, now, that if ξ_{1} is an eigenvector for our Schrödinger operator, then $\tilde{\xi}_{1}$ (defined on $\tilde{\Omega}=[0, L] \times[0,2 a]$ by: $\tilde{\xi}_{1}(x)=\xi_{1}(x)$ for $x \in \Omega$ and $\tilde{\xi}_{1}\left(x_{1}, x_{2}\right)=\xi_{1}\left(x_{1}, x_{2}-a\right)$ for $\left.a \leqq x_{2} \leqq 2 a\right)$ is an eigenvector - for the same eigenvalue - of a Schrödinger operator with Dirichlet boundary conditions on Γ^{-}and Γ^{++}(defined by: $x_{2}=2 a$) and, for this last operator, we can use the bounds given in [5] (Ruelle, private communication)

