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Abstract. A Lax pair for a new family of integrable systems on SO(4) is
presented. The construction makes use of a twisted loop algebra of the G2 Lie
algebra. We also describe a general scheme producing integrable cases of the
generalized rigid body motion in an external field which have a Lax
representation with spectral parameter. Several other examples of multi-
dimensional tops are discussed.

Introduction

Starting with the work of Arnold [1], the study of multi-dimensional tops has
already a rather long history with the well-known paper of Manakov [2] as one of
its highlights. In recent years much effort was spent on the classification of
integrable cases. The case of the four-dimensional top is particularly interesting
since it has direct physical significance [3]. Some of the integrable cases discovered
recently are new even in the classical setting, e.g. the motion of a top in an arbitrary
quadratic potential [4] (This case was considered earlier, along with several others,
in [5] but passed practically unnoticed. Another interesting system indicated in
[5], a pair of interacting tops, was rediscovered in [6]).

In this paper we shall describe a new integrable case of the four-dimensional
top. Our construction is based on the so-called Kostant-Adler scheme and on the
use of affine Lie algebras. This technique has already been applied to the study of
multi-dimensional tops and related systems in [7, 5] and independently in [8, 9].
Our main technical tool consists in twisting the loop algebra of a simple Lie
algebra by a Cartan automorphism which leads precisely to Hamiltonian systems
of the generalized rigid body type. (This was already indicated in [7] but was
missed in [8, 9].)

Our principal example is connected with the split real form of the G2 simple Lie
algebra. Recently Adler and van Moerbeke [10] announced a classification of left-
invariant metrics on SO(4) that are algebraically completely integrable. Our
example fits into their list, thus providing a Lax pair for the last case of the
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classification theorem. A comparison of our case with the results of [10] is given at
the end of Sect. 2, where we also discuss the necessary conditions for complete
integrability obtained by Veselov (see [13] which contains a corrected version of
[14]). We shall also present a few other cases equally covered by the general
construction. These include tops in quadratic potential, two interacting tops in R",
and systems of three and four interacting tops in RA The latter systems
presumably have a physical meaning in connection with the motion of a rigid body
with elliptic cavities filled with ideal fluid. For the reader's convenience we also
sketch the general scheme and describe how to single out the phyiscally meaningful
Hamiltonians which are quadratic in momenta.

1. Integrable Systems on Γ*K

We shall proceed in this section in a somewhat dogmatic way, the proofs being
postponed until Sect. 4. To motivate our general theorem, recall that the natural
set-up for the Hamiltonian Lax equations is provided by the affine Lie algebras.
Any such algebra may be equipped with a linear Poisson structure, and integrable
Lax systems are supported on its Poisson submanifolds. It is convenient to avoid a
too detailed description of the corresponding stratification by adding some extra
variables (the "generalized Clebsch variables," cf. [11]), i.e. by replacing Poisson
subspaces by their symplectic models. For the Lax systems we have in mind, a
uniform model is provided by the cotangent bundle of a compact Lie group, which
allows for an easy mechanical interpretation of these systems.

Let G be a Lie group, g its Lie algebra, g* the dual space of g. Let σ be an
involution in G, K C G its fixed subgroup. We denote the corresponding involution
in g by the same letter. Let g = ϊ + p be the corresponding Cartan decomposition,
i.e. σ = id on ϊ and σ= —id on p, g* = ϊ* + p* the dual decomposition.

Let g*[/l, λ~*] be the space of Laurent polynomials with coefficients in g*. We
fix a trivialization of the cotangent bundle T*K = Kxϊ* by means of left
translations. For any α,/eg*, we define a mapping μaf\ T*K->Q*[λ,λ~lw] by
assigning to each point ξ = (/c, ρ), k e K, ρ e ϊ*, the polynomial

μ^iξ^aλ + ρ+k^k-' fλ-'. (1.1)

Let J(g) be the ring of Ad*-invariant polynomials on g*. For any φ e J(g),
λ,λ~1], we can consider φ(X(λ)), which is a well defined element of

Theorem 1. Let a,fep*. Functions on T*K given by

φ^Res^oλWaJξ)), (1-2)

φ e /(g), i e Έ, are in involution with respect to the canonical Poisson bracket in T*K.

Our next goal is to determine those combinations of the functions (1.2) that are
quadratic in momenta and so may be regarded as Hamiltonians for natural
dynamical systems (generalized tops in an external field). This is easily achieved.
Let

MCM^μ1) (1.3)
(1.30
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Put b = dφ(a), h = dφ(f), and let π = — Ad* k ρ be the right invariant momentum
on T*K. It is not hard to see that

>, (1.4)

/^ /z,α>, (1.40

where ΩCtφ: ϊ*->ϊ is an angular velocity operator depending on φ e /(g) and c e p*.
In the most interesting case when g is a simple Lie algebra and σ its Cartan

automorphism, there is an explicit formula for Ωaφ. It is particularly simple when g
is split and α e p * is a regular element. Let us identify g* with g by means of an
invariant inner product which is positive definite on ϊ. Then

Ωβiφ = adft(adfl)-1, b = dφ(a). (1.5)

Hamilton's equations of motion generated by the functions (1.2) have the Lax

form -j~L= — ad*M L, where the Lax operator L is given by L = μa f(ξ) and M

depends on the choice of φ{. In particular, the Lax representation for the
d

Hamiltonians φ± is — L = — a d * M ± L with
OIL

, (1.6)

where s = Ad* k ~ ίff and

ρ, (1.7)

-hλ-ί. (1.70

Remark that under the involution fci-^fc"1, ρi—>π on T*X combined with the
permutation α<->/, the functions φ+ are carried into φ_ and vice versa. Hence the
corresponding Hamiltonian systems are equivalent. However, their Lax represen-
tations are very different. We shall focus on this in Sect. 4.

We also point out that the second term (potential energy) on the right-hand
side of (1.4), (1.40 vanishes if / = 0 or a = 0, respectively. The equations of motion in
this case reduce to equations in ϊ*.

Theorem 1 indicates that the corresponding Hamiltonian systems are com-
pletely integrable. In fact, in most cases this can easily be proven (cf. [5, 7]).

2. A New Four-Dimensional Top

In this section we apply the general construction of Sect. 1 to the Riemannian
symmetric pair (G2, SO(4)).

Let g be the real split form of the G2 simple Lie algebra. There is a natural
realization of g as a subalgebra of SO (4,3). Specifically, let a quadratic form of
signature (4,3) in R 7 be given by

(χ,χ)=Σ*?-Σ*?. (2.1)
i=ί ί=5
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The subalgebra g C so(4,3) has dimension 14; it will be convenient for us to choose
the following parametrization of the matrices in g

X(u, w, a9 y, z)

=

where

/ 0
/

W3+W3

2

W2 + W2

2

2

1 ~yf
\ αi

u = (ul9u2,

M3 + W3

2

0

U1+W1

2

u2-w2

2

a2

Z3

u3) etc., and

M2 + W2

2

2

0

U3-W3

2

α 3

-z2

3
^ ^̂  = 0.

2 > 2 > 3 Λ l \

w 2 - w 2

2 > 1 ^ 2 " 3

W 3-W 3

2 ^ 3 " 1 " 2

0 3;3 Z3 yi zi 3;i ^1

y3 — z3 0 Wj —w2

y2-Z2 -w1 0 W3 J

yi~zi W2 - w 3 0 /
(2.2)

The involution X\-^—Xt restricts to a Car tan automorphism of g. Its fixed
subalgebra, the maximal compact subalgebra I of g is clearly isomorphic to so(4)
= so(3)0so(3). The variables ub wt in (2.2) are chosen so that if we define the

3 3

matrices eh e[ by Σ *¥?t = X(u, 0,0,0,0), Σ w&'i = * ( 0 , w, 0,0,0), then {et} and
i=ί i=l

{e } are standard bases in the so(3) components of ϊ, i.e. \e{, ej] = είjkek, [e , e'j]
= £ijke'k. Symmetric matrices of the form a = X(0,0, α, 0,0) make up a split Cartan
subalgebra of g (contained in the symmetric subspace p).

Let G be the connected subgroup of SO(4,3) that corresponds to the Lie
algebra g. Clearly, the maximal compact subgroup K of G with the Lie algebra ϊ is
isomorphic to SO(4) and its representation on R 7 is the direct sum of
representations of dimension 4 and 3.

We are now in a position to write explicit formulae for the tops associated with
the pair (G, K). As was pointed out in Sect. 1, the Hamiltonians (1.4) and (1.40 a r e

equivalent on T*K, so we shall only consider (1.4).
Fix an inner product on g by setting

(X9Y)=-tτXY. (2.3)

Using the expression (1.5) for the angular velocity operator, we can easily compute
the kinetic energy E(u, w) of the top. Now the point is that since we identify I* and ί
by means of the inner product (2.3), the Poisson brackets of linear coordinates xμ

relative to some basis in ϊ have the form {xμ, xv} =YJc
σ

μxx(n where the cσ

μv are the
σ

structure constants of ϊ in the dual basis with respect to the inner product (2.3). We
therefore obtain {uu u}) = εijkuk, {wi9 Wj} = 3Sίjkwk. Taking the normalized variables
u and v = 3w and assuming that the matrix a [and hence b = dφ(a)] lies in the
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Cartan subalgebra, we come down to the following expression for the kinetic
energy:

E(u9v)=& Σ {(9c, + 3^K2 + 6(di-ci)uiυi + (ci + 3di)υf}, (2.4)

where

C ί=A dt=b^h, Σai = 0=Σbi, (2.5)

(ij9 k) being a permutation of (1,2,3).

Let us first consider the case of zero potential [i.e. / = 0 in (1.4)]. The quadratic

Hamiltonians given by (1.4) form a two-dimensional linear involutive family a is

fixed and b is subject to Σ i>

i = 0). But if b is proportional to α, the corresponding
i = l / 3 3

E is proportional to the Casimir function 3 Σ uf + Σ ϋ?. Thus, for fixed α, (2.4)
i = 1 i = 1

gives a unique (up to a factor and the addition of a Casimir function) quadratic
Hamiltonian. A result due to A. Veselov (see below) shows that the system defined
by (2.4) has no additional quadratic integral of motion. Still, there is a quartic
integral,

J 4 = Res/Γ3trL(/l)6. (2.6)
Observe that when a and b vary in the Cartan subalgebra, (2.4) gives a three-
parameter family of integrable systems. However, two of these parameters are
killed by adding a Casimir function and multiplying by a number. Hence (2.4)
effectively defines a one-parameter family of integrable systems.

Let us now discuss the potential energy term which in general has the form

V(k)=-tv(kbktf). (2.7)

The 7 x 7 matrix k splits into two blocks of dimension 4 and 3; the first block is
just the standard realization of SO(4) and the second one, which we denote by π(/c),
is the representation of SO(4) in the space of self-dual skew-symmetric tensors in
R 4 . Recall that b lies in the Cartan subalgebra. Now in terms of SO(4), i.e. of the
matrix elements kμv, μ, v = 1,2,3,4, the potential V becomes

V(k)=-2 Σ Σ bj^+jk^jt-jk) (2.8)

(notice that without loss of generality / may also be taken in the Cartan
subalgebra). The matrix coefficients πy(fe), ij= 1,2,3 are quadratic forms of the
kμv, so that (2.7) is a cubic form of the matrix elements of SO(4). Clearly, this form
does not descend to the quotient group SO(3) x SO(3) = SO(4)/(.+ 7).

For the reader's convenience we shall write explicit expressions for the Lax
matrices of the G2-top given by (1.6)-(1.7). With the notation (2.2) me have
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where u\ υ' are related to w, υ by

and s = s(k) = k*fk, where / is a fixed symmetric matrix in g.
To close the section, let us compare (2.4) with the known examples of integrable

quadratic Hamiltonians on so(4). There are two explicit families, the so-called
Manakov and Steklov cases, characterized by the property that there exists an
additional quadratic integral. It is not hard to show that (2.4) is not contained in
either of these families. To this end it is appropriate to recall a result due to A. P.
Veselov: If a quadratic Hamiltonian H on so(4) admits an additional analytic
integral, then (under mild nondegeneracy assumptions) it can be reduced to
diagonal form 3

H(μ, v)=Σ (oψf + 2βiUiυt + ytυf), (2.11)

and the coefficients satisfy the relations

μγ - α2) (α2 - α3) (α3 - ax) = 0,

+ n2(y1-γ2)(γ2-γ3)(γ3-yί) = O

for some (odd) integers m and n. For both Manakov and Steklov cases m = n= 1,
while (2.4) satisfies (2.12) with m = 1, n = 3, so that there are no additional quadratic
integrals in this case.

On the other hand, Adler and van Moerbeke [10] announced a classification of
algebraically completely integrable Hamiltonians of the form (2.11). They claim
that besides the Manakov and Steklov cases there is only one integrable family, for
which the additional integral is quartic. In that case the coefficients of (2.11) are
subject to the following system of equations

βt - («i" «;) («* - «*) (Vt ~ Vj) (7i ~ 7k), (2.13)

(i,j, k) being a permutation of (1,2,3), and, moreover, either the ratios δf =—
y j 7 k

or their inverses satisfy

δ1δ2 + δ2δ3 + δ3δ1 = -l and 3δίδ3 + δί-δ3=-l. (2.14)

It can be shown that (2.4) satisfies (2.13)—(2.14), so that we get a Lie-algebraic
derivation of the hitherto mysterious case of the classification.

3. Integrable Systems Connected with the Groups SL(w, R), SO(w, n), SO(n, 1)

To illustrate the general scheme, let us consider three other Lie groups. The group
SL(n,R) leads to a system that describes an n-dimensional top in a quadratic
potential, while SO(n,n) and SO(n, 1) give a pair of interacting tops and a
symmetric heavy top (the Lagrange case), respectively.
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For G = SL(n,lR) the maximal compact subgroup is SO(rc). Hence formulae
(1.4)-(1.5) give rise to a system on T*SO(w) with the Hamiltonian

H(k,Q)= Σ bjZ^1Qfj+ Σ bjfakn, (3.1)
iKjCli-dj ij,i

describing the motion of an n-dimensional top in an arbitrary quadratic potential.
For G = SO(π, ή) the maximal compact subgroup is SO(n) x SO(rc). Hence we

get a system on T*SO(rc) x T*SO(w) described by the Hamiltonian

-2 Σ ^Γ^Sifi^ Σ bJfoWu. (3.2)
i<j a{ —cij ij,ι

This Hamiltonian includes interaction of two tops by means of their kinetic
momenta and also by means of a bilinear potential. In a special case when b = a this
amounts to a pure potential interaction of two spherical tops. If, moreover, all at

are equal to 1, our system reduces to a spherical top in a linear potential field which
may be regarded as a superposition of n homogeneous fields of different nature.

For G = SO(n, 1), the maximal compact subgroup is SO(π), so our phase space
is again the same as for the n-dimensional top. Since so(n, 1) is not split, the simple
formula (1.6) is no longer valid. The general formula given in the lemma of Sect. 4
easily yields R ^ ρ)==octrρ2 + β tΐρ2 + 2 α ( / ? ka) ( 3 3 )

Here <3,/e]Rn, ρa = PaρPa, Pa is the orthogonal projection operator onto the
hyperplane in ]R" orthogonal to a. The Hamiltonian (3.3) describes the motion of a
heavy top in a homogeneous gravitational field. It corresponds to the so-called
Lagrange case, the inertia tensor of the top being symmetric with respect to the a
axis. Here / is the gravity strength, a is the center-of-mass vector in the moving
frame, hence ka is the center-of-mass vector in the rest frame.

There are also some interesting cases of interacting so(3)-tops which are
connected with the splitting so(4) = so(3) + so(3). For example, a pair of interacting
so(4)-tops connected with so(4,4) may be regarded as a system of four so(3)-tops. In

4

the normalized variables w, υ, w, z on 0 so(3), the kinetic energy term has the form

E(u, v, w,z)=Σ {(cjk + c4i) (μf + vf + wf + z?)

(3.4)

i aubn~aχbv j a b v — avb . .

where cμv=-^—ξ ^—, dμv=-^ Y^, and the subscripts {ιj,k) ίorm a

permutation of (1,2,3). The potential energy
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4

k, kr e SO(4) may be regarded as a function on the product Π SU(2) covering the
1

group SO(4) covering the group SO(4) x SO(4) and is a 4-linear form in its entries.
Another case is connected with SO(4,3). Its maximal compact subgroup is

3

SO(4) x SO(3) and is covered by Π SU(2). This gives a system of three interacting
1
3

tops. In the variables w, v , w o n φ so(3), the kinetic term is given by

E(u,v,w)=Σ \(cjk + ϊη(uf + vf) + cjkwf
/ = i ^\ aj

+ 2 [cjk - — 1 ufii - 2djk(uiwi + ViWi), (3.5)
\ aiJ

where cip d^ are the same as above, (ij, k) is a permutation of (1,2,3). The potential
energy is now a tri-linear function on SU(2) x SU(2) x SO(3).

4. Affine Lie Algebras and the Proof of Theorem 1

We recall briefly a general group-theoretic construction of integrable systems
[7, 5], Theorem 2 below generalizes the Kostant-Adler-Symes commutativity
theorem (cf. [12]).

Let g be a Lie algebra, R a linear operator on 9. We say that R defines the
structure of a double Lie algebra on g if

lχ,ylκ=ί(lRX,y]HX,RYΊ) (4.1)

is a Lie bracket, i.e. it satisfies the Jacobi identity. In that case, the space g* is
equipped with a second Lie-Poisson bracket which will be referred to as the
^-bracket. The operator R is called the classical R-matrix. Let J(g) be the algebra
of Ad*-invariant functions on g* (here Ad* denotes the coadjoint representation
with respect to the original Lie bracket).

A typical example of the .R-matrix is constructed as follows. Let g+, g_ Cg be
Lie subalgebras such that g = g + +g_ as a linear space. Let P± be the projection
operators onto g± parallel to the complementary subalgebra. Put

R = P+-P_. (4.2)

In that case (which is the most important one for applications) the iΐ-bracket is the
difference of the Lie-Poisson brackets for g+ and g_.

Theorem 2. (i) Functions from /(g) Poίsson commute with respect to the R-bracket on
g*. (ii) Hamilton's equations of motion defined by φel(g) with respect to the
R-bracket have the form
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// R is given by (4.2), the equations of motion can be written as

ξj t . ξ , (4.3)

where M+ = ±P + dφ(ξ).

Proof. The i^-bracket of two functions φ, ψ on g* is

{φ9 ψ}R(ξ) =$<lRdφ(ξ), dψ(ξ)l O +Kldφ(ξ), Rdψ(ξ)l ξ> .

The invariance of φ is equivalent to (\_dφ(ξ),X], ξ} = 0 for all l e g . This implies

(i). Now, if φ is an invariant Hamiltonian, the equations of motion — ψ = {φ, ψ}R

reduce to

ξ> = -Kdψ(ξ), ad* Rdφ(ξ) • ξ}.

Hence — ξ = — \ ad* Rdφiξ) ξ. Since ad* dφ(ξ) ξ = 0, the right-hand side can be
αί

replaced by -iad*(jR±l)dφ(ξ) £= - a d * M ± ξ. D
If there is a non-degenerate invariant inner product on g, then g* can be

identified with g and Eq. (4.3) takes the Lax form

jL=\_UM±Λ (4.4)

To demonstrate the assertions of the previous sections, we apply Theorem 2 to
the Lie algebras defined as follows. Let σ be an involution in g. Let £(g)
= g(χ)IR[/l, λ~x] be the loop algebra of g, i.e. the algebra of Laurent polynomials
with values in g. We extend the involution σ to fi(g) by setting (σX) (X) = σ(X( — λ)).
By definition, the twisted loop algebra fi(g, σ) is the fixed subalgebra of σ. In other
words, £(g,σ) consists of Laurent polynomials X(λ) = Σxiλ

ι such that σxt

= (— 1)%. Recall the decomposition g = ϊ + p, where ϊ is the fixed subalgebra of σ,
and the dual decomposition g* = I* + p*.

If g is a simple Lie algebra, then the twisted loop algebra £(g, σ) is an example
of an affϊne Lie algebra.

We identify the dual space fi(g, σ)* with the subspace of Laurent polynomials
ξ(λ) = Σξiλ

i with coefficients in g* such that σ*ξi = (—ϊ)iξi. The pairing between
£(g, σ) and £(g, σ)* is given by

, ξ) = Resλ-\X(λ), ξ(λ)) . (4.5)

The standard decomposition fi(g,σ) = £ + + £ _ is defined by the natural
Z-grading in powers of λ,

z+ = ΪΣχΆ, β- = ί Σ ^ l . (4.6)
l ^ o J \ί<o j

It is easy to see that the polynomial functions

φk(X) = Resλ-kφ(X(λ)), φ e J(8) (4.7)

are invariant functions on fi(g, σ)*.
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In order to derive Theorem 1 from Theorem 2 it remains to prove the following
assertion (cf. [7, 11]).

Theorem 3, Let α,/ep*. The mapping μ: T*i£->£(g,σ)*,

is a Poisson mapping with respect to the R-bracket in £(g, σ)* defined by the splitting
(4.6), with R given by (4.2).

Proof. Let X, 7e£(g,σ) be linear functions on £(g,σ)*. We must check that

{IoμJoμ} = [ I J ] , o μ . (4.8)

It is sufficient to consider three cases, X = sλ~1, X = π, and X = sλ, where sep,
net, and similar alternatives for Y It is easy to see that the function sλ~x

commutes with all the others. Moreover, for X = sλ, Y=s'λ, both sides of (4.8) are
zero. Now, observe that the mapping T*X->I, (k,ρ)\->ρ preserves the Poisson
brackets, since it is the moment map for the natural action of K on T*K by right
translations. This implies (4.8) for the case X = π, Y= π\ π, π' e ϊ. Finally, let X = π9

Y=sλ. In that case, X°μ is the Hamiltonian of right translations from the
subgroup expίπ. Hence we get

{X o μ9 Yo μ] (k, ρ) = l-\ ^ 7° μ(ke<\ Ad*e" ίπρ)

To complete our argument, notice that in this case [X, Y]Λ = [X, Y]. •

Remark. The range of μ may be naturally identified with (a Poisson submanifold
of) the dual space of the semidirect product g0 = ϊocp equipped with its natural Lie-
Poisson bracket. It is easy to include μ in the dual pair in the sense of [11]. Namely,
let Kf be the stationary subgroup of/, lf its Lie algebra and let v: T*K^>t} be the
moment map corresponding to the natural action of Kf on T*K by left

translations. One checks without difficulty that IJ <— T*K—• c$ is a dual pair. In
particular, symplectic leaves in the range of μ are obtained by Hamiltonian
reduction with respect to the action of Kf. Note that the Hamiltonians (1.4) are
clearly right Kα-invariant and left Kf-invariant. Under the involution /ci-^fe"1,
ρι—>π= — Ad*fc ρ, α<->/ the functions φ+ go into φ_. The difference between
the two Lax representations for these equivalent systems stems from the fact that
the associated mappings μ are different and correspond to reductions with respect
to the action of different groups Ka, Kf.

Let us now derive (1.5) along with a more general expression for Qaφ valid for
any real simple Lie algebra g. Let g = ϊ + p be the Cartan decomposition, let la be
the stationary subalgebra of a point a e p, ϊ« its orthogonal complement. Consider
the function φa(ρ) = φ(ρ + α) on ta and let d2φa e Endϊfl be its second derivative at
ρ = 0. Put b = dφ(a).
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Lemma. Ωaφ = d2φa on la and Ωaφ = adb(ada)~1 on Ij .

Proof. The expression above is unambiguous since keradαckeradb. Let us
consider the function φ + . Since it is defined as the coefficient of λ~2 in the
polynomial φia + ρλ'1+sλ~2), s = Adk~1f, we have φ + (L)=^d2φ(ά)(ρ)
+ (dφ(a),s). To compute the quadratic form d2φ(a)(ρ), put Q = Qi+Q2, QIE^Φ
Q2 e Ij- (note that adα p = ϊj-), and let X = (adα)" 1 ρ 2 , i.e. X e p, adα X = ρ2. Then
for g = expεX, we have

ε2

up to terms of higher degree in ε. Here i; is determined by the ε2-term in the
expansion of g. Since φ is invariant, we have φ(a + ερ) = φ(Adg(u + ερ)). Comput-
ing the coefficient of ε2, and taking into account that (dφ(a% [α, v]) = 0, we get

d2φ(a) (ρ) = (d2φaQu Ql) + (dφ(a), [X, ρ])

= (d2φaρu β l ) + ([dφ(α), X], ρ) = (Ωβfφρ, ρ) . D

We now give the proof of (1.7). Consider the function φ + (L) = Resλφ(L(λ)λ~x)
on the whole space fi(g,σ). Clearly, its gradient is dφ + (L) = λdφ(L(λ)λ~ι), where
dφ is the gradient of φ on g. For L(A) = α/l + ρ + 5/l~1, we have dφ(L(λ) -A"1)
= rfφ(α) + ί2α ^ρ/ί ~x + . . . plus terms of lower degree in λ. Since M + is the projection
of dφ + (L) to £+, we get Af+=dφ(α)Λ, + Ωαfφρ. The proof of (1.7') is quite
similar. D

There is a criterion of when the kinetic energy in (1.4) is positive. Let α C p be the
split part of the Cartan subalgebra containing the point aep, and let α+ be the
closure of the Weyl chamber containing a. If dφ(ά) ea+ and the quadratic form
d2φa is positive definite, the form {Ωaφρ, ρ) is positive. It is positive definite if the
centralizers of a and dφ(ά) in ϊ coincide.

Finally, let us point out that the problem of solving equations (4.3) can be re-
duced to the following factorization problem. Let G+ be the subgroups that cor-
respond to the subalgebras g+, and let g±(i) be the solution of the factorization
problem expίM = 0 + (ί)~ 1#-(O ? M = dφ(ξ)9 where g±(t) are smooth functions
with values in the subgroups G±,g+(0) = L Then the solution of (4.3) is given by
ξ(t) = Ad*g±(t) - ξ. In the context of affine Lie algebras this immediately implies
that the equations of motion linearize on the Jacobian of the spectral curve of the
Lax matrix (cf. [7]). Therefore their solutions (in particular, the solutions of the
G2-top equations) can be expressed in terms of the associated theta functions and
are meromorphic functions of the time variable.
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