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Abstract. We construct the first model of particles in the plane with completely
symmetric, short range, two body interactions which has quasiperiodic, but no
periodic, ground states.

1. Introduction

It is a problem of fundamental importance [1-5] to determine why, at low
temperature, real matter strongly tends to have crystalline symmetry at the
molecular level. The recent discovery [6] of quasicrystalline matter gives further
impetus to understand to what extent, and especially by what mechanism, low
temperature prescribes the symmetry of configurations of many interacting
particles.

Using a grand canonical ensemble for several particle species, the low
temperature distribution is concentrated on configurations with low value of
(e — ΣjiΠjdjX where e is the energy density and m} (respectively dj) is the chemical
potential (respectively particle density) of the jth species. The symmetry of these
configurations is the matter at issue.

Results on this "crystal problem" [7-23] have concentrated on classical
mechanical models, mostly lattice gas models. The problem is essentially solved for
one dimension, both for lattice gas [19] and continuum [20] models. Among two
dimensional models a class with highly symmetric interactions is known [15,21,23]
to have periodic ground states. In contrast, recent results [21,23] have exhibited
lattice gas models with no periodic ground states.

Using these recent lattice gas models we will construct the first model of
particles in the plane (i.e. a continuous model) with completely symmetric, short
range, two body interactions which has quasiperiodic, but no periodic, ground
states. This will require that we also significantly enlarge the class of continuous
models known to have periodic ground states.
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2. Definitions and Notation

A (doubly) periodic configuration of particles in the plane is a "ground state" if it
achieves the minimum value for (e(C) — Σ mjdjiC)) amongst all periodic configura-
tions C; the nij are fixed; see [20]. (From now on energy will mean potential energy,
as kinetic energy is trivially minimized separately.) A configuration is "quasi-
periodic" if, for any ε > 0, with the exception of the part of the configuration in some
area of relative density less than ε, the configuration is (doubly) periodic; the smaller
the ε, the larger the period.

Throughout this paper we use a fixed coordinate system in the (complex) plane.
In particular we will often refer to the unit triangular lattice {mexp(iπ/3) + n\m,
n = 0, ± 1, ± 2...}, and we denote such points by their coordinates; (m, n) stands for
mexp(/π/3) + n.

3. The Models

We start with Berger's fundamental result [24]—an example of N unit square "tiles"
with top edges parallel to the real axis, copies of which, using translation alone and
with given matching rules (which describe which edges may abut, corner to corner)
can tile the plane but only quasiperiodically, not periodically (nor even periodically
in a single direction.) (Since Berger's work various persons, e.g. Ammann [25],
Penrose [25] and Robinson [25,26], have produced examples with lower values of
N; the lowest value I am confident of is N = 16, due to Ammann [27,28].)

Using any such example we construct N regular hexagonal tiles of edge length 3,
one hexagon for each of the N squares. Fixing the hexagons with two edges always
parallel to the real axis, we impart to the top (respectively bottom) edge of each
hexagon the matching rules of the top (respectively bottom) edge of the correspond-
ing square, and to the upper left (respectively lower right) edge the matching rules of
the left (respectively right) edge of the corresponding square. Finally we allow any
upper right edge to abut any lower left edge.

It is easy to see that, with the given matching rules, translations of copies of the
hexagons may tile the plane but only quasiperiodically, not periodically.

Next we define 19 different "types" of "atom" for each hexagonal "molecule" as
follows. Centering one of the N hexagons on the point (0,0), the 19 lattice points
covered by the hexagon define the 19 atom types, each one henceforth labelled by the
type of molecule it is associated with and by its defining coordinates with respect to
the center of that molecule. For example (3; (2,0)) represents the atom type
associated with the top right corner of the third type of hexagon. So we have 19N
different types of atoms. Arbitrary numbers of each of these atoms will eventually be
allowed to be positioned independently in the plane, with two body interactions
defined as follows.

The interaction between two atoms will depend only on their types and their
separation; for each pair of types the interaction will be one of the following three
functions of their separation r.

' + oo, 0 ^ r < 1

(r-1.15)/(0.15), 1 ̂ r ^ 1.15

0, 1.15 <r ,
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+ 00, 0 ^ r < l

- 4 ( r - l ) / 1 5 , 1 ̂ r ^ 1.15

(r-7/4)/15, 1.15 < r ^ 7/4

0, 7/4 <r,

+ oo, 0 ^ r < 1

For each given atom type A (e.g. (3; (2,0))) we must define through which of these
interactions such an atom interacts with each other atom type B. To do this, place A
at the point in the plane with A's defining coordinates (i.e. (2,0)) and place one of
each of the other 18 atom types associated with A's molecule (call this molecule T) at
its coordinates. We now place other atoms near these, again in groups of 19
associated with molecules, as follows. The group of 19 atoms associated with tile W
may occupy the 19 lattice sites centered at (5, — 2), each at the position which is the
translation by (5, — 2) of its coordinates, if and only if the bottom edge of tile Wmay
abut the top edge of tile T by the matching rules. Similarly, the 19 atoms associated
with tile U may occupy the lattice sites centered at (2,3) if and only if the lower left
edge of U may abut the upper right edge of T. Continue for sets centered at (— 3,5),
(— 5,2), (— 2, — 3) and (3, — 5). Then atom A interacts through Vγ with an atom of
type B if and only if B appears at distance 1 from (that first) A in any of the above
allowed constructions. Atoms A and B interact through V2 if and only if B appears at
distance 31 / 2. Otherwise A and B interact through V3. The chemical potentials for the
\9N atom species will have a common value m ̂  0.

Now we allow arbitrarily many of each atom type to independently occupy
positions in the plane (not just lattice sites.) For any (doubly) periodic (locally finite)
configuration C the energy density e(C) and particle density d(C) can be computed.
We will show that in a ground state atoms automatically form hexagonal molecules,
which can effectively be thought of as interacting so as to form a nonperiodic array.
Since the atoms have a hard core, the hexagonal molecules (with atoms at the
corners and in the interior) do not actually form a tiling but are separated and shifted
in a simple way from a tiling.

Theorem 1. The infimum f of (e(C) — md(C)) over periodic configurations C is not
attained at any periodic C, but is attained at some quasiperiodic configuration.

Before we begin the proof we need to analyze a simpler system of one species of
"new particles" with interaction Vί + V2 and chemical potential m. The following is
of independent interest.

Theorem 2. Assume one species of particle in the plane with chemical potential m' ^ 0
and interaction V\r) satisfying

K ' ( r ) = + o o , 0 ^ r < l , (1)

V\r) is strictly increasing on the interval [l,c],
where c is some fixed number, 3 1 / 2 < c < 1.9, (2)

V'(r) = 0,c^r, (3)

Πl)= - 1 , (4)

K'(r)^-0.04, 1.15 gr^c. (5)
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Then the inflmum f of(e(C) — m'd(C)) over periodic configurations C is attained at the
C consisting of the unit triangular lattice.

Proof We begin with a lemma.

Lemma. The minimum energy of interaction of a single particle P with arbitrarily
many other particles, all pairs with separation at least 1, is obtained when P interacts
with exactly twelve particles; six at distance 1, six at distance 3 1 / 2 .

Proof of the Lemma. By compactness there exists a configuration C achieving the
minimum interaction energy with P. From the separation restriction C cannot
contain more than six particles within distance 1.15 of P. Using (3) and the
separation restriction a crude area argument shows that P can interact with at most
24 particles. Therefore using (5) C must have six particles within distance 1.15 of P.
From (2) these six must actually be distance 1 from P. Then using the range of V it
follows that P can interact with at most six more particles, one in each "valley"
between pairs of those nearest to P. Finally, again from (2) these second six particles
must be distance 3 1 / 2 from P. •

Now note that in any periodic configuration C

)(0
where {Pj} are the particles in some unit cell of C, E(Pj) is the energy of interaction of
Pj with all other particles in C and N (respectively A) is the number of particles in
(respectively the area of) the unit cell. Using the lemma, the first (negative) factor on
the right-hand side of (6) is minimized and using [29] the second (positive) factor is
maximized, when C is the unit triangular lattice. This proves Theorem 2. •

Proof of Theorem 1. The energy between any pair of atoms at given positions
cannot be lower than the energy between a pair of new particles at those positions.
S o / ^ / ' . However by using a nonperiodic tiling C" it is possible to place the atoms
so as to make e(C") — md(C")=f, so / = /' . We will now prove by contradiction
that there is no periodic configuration C such that e(C) — md(C) =f Assume C is
such a periodic configuration. By the same argument as in Theorem 2 we see that the
positions of the particles in C form a unit triangular lattice with every pair of atoms
separated by 1 interacting through Vγ and every pair separated by 3 1 / 2 interacting
through V2. We have thus reduced the problem to that of a lattice gas version of the
model. The last step is then very similar to that in [23], so we only outline the
argument. We show that C can be decomposed into disjoint "molecular" groups of
19 atoms in the same spatial relationships as in their definitions (with the possible
exception that all the molecules may be rotated and/or reflected in the same way),
and the molecules obey the matching rules. This contradicts the periodicity of C and
completes the proof. •

4. Stability

Though we could generalize the above interactions to some extent, we do not know
whether or not every sufficiently small change in the interactions preserves the
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qualitative result. One way to attack this stability problem, at least for lattice gas
models, is by means of the Fraction Space introduced in [21]. For simplicity we
will work with the two-dimensional triangular lattice, but the ideas generalize
easily. Let vl9v2 and v3 be three unit vectors in the lattice, pairwise 120° apart.
Assume N species of particles can occupy each lattice site, with nearest neighbor
interactions in the directions of the vjt For each doubly periodic configuration C of
particles associate the (3N2 4- ̂ -component vector f(C) whose components are
defined as follows. The first N components are the frequencies with which each of the
N species appears in C. The next N2 components are the frequencies with which each
of the N2 pairs of species appear as nearest neighbors in C in the direction oϊvί (the
order in the pair is important); the next N2 components similarly refer to the
direction v2 and the last N2 to v3. It is easy to check that the closure FofF = {/(C) | C
is periodic} in [R3N2 + iV is bounded and convex. The supporting hyperplanes to F
naturally correspond to the possible nearest neighbor interactions, together with
chemical potentials, and the exposed points of F represent certain features of the
ground states. If, as seems quite possible, F is a polyhedron, this would imply a great
deal of stability in the crystal problem. For instance, converting the lattice gas
version of the main example in this paper into a nearest neighbor model (by defining
new lattice sites in place of sets of three original lattice sites as in [19]), the
supporting hyperplane corresponding to the interaction contains a unique exposed
point in F/F. If F were known to be polyhedral we could vary the interaction
(hyperplane) while preserving the nonperiodicity of the ground state. We note that
the corresponding polyhedron problem for one dimensional models has an
immediate positive solution for all N from [19].
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