
Communications in
Commun. Math. Phys. 105, 337-361 (1986) Mathematical

Physics
© Springer-Verlag 1986

The Problem of a Self-Gravitating
Scalar Field

Demetrios Christodoulou*
Department of Mathematics and Physics, Syracuse University, Syracuse, New York USA

Abstract. In this paper we begin the study of the global initial value problem for
Einstein's equations in the spherically symmetric case with a massless scalar field
as the material model. We reduce the problem to a single nonlinear evolution
equation. Taking as initial hypersurface a future light cone with vertex at the
center of symmetry, we prove, the local, in retarded time, existence and global
uniqueness of classical solutions. We also prove that if the initial data is
sufficiently small there exists a global classical solution which disperses in the
infinite future.

Section 0. Introduction

The global initial value problem is the fundamental problem of any classical physical
theory. In general relativity this problem has not been solved even in the small, as the
stability of Minkowski spacetime is still an open question. This is the question of
whether initial data for the Einstein equations, which is in some sense sufficiently
close to the trivial data, gives rise to a geodesically complete spacetime which is
asymptotic to the Minkowski spacetime in the infinite future. The Penrose-
Hawking singularity theorems show that if a spacetime contains a closed trapped
surface, then it cannot be null or timelike geodesically complete [1-3]. Perhaps the
most fundamental open problem in general relativity is the so-called cosmic
censorship question, which may be formulated as follows: whether, given arbitrary
asymptotically flat initial data, there exists a solution of the Einstein equations
which is a globally hyperbolic spacetime posessing a complete future null infinity.
This question is part of the global initial value problem in the large. A further part, of
great interest, is the study of the formation of event horizons.

We believe the study of these problems under the simplifying assumptions of
spherical or axial symmetry is important in order to develop methods which may
ultimately lead to the resolution of the general problems. With this motivation, we
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begin here the study of the Einstein equations in the spherically symmetric case with
a massless scalar field as our material model. The material equation in a given
spacetime is then the linear wave equation in that spacetime. The problem is
however nonlinear in an essential way, as the spacetime, metric is itself determined
through the Einstein equations by the scalar field. Many of the difficulties involved
in solving the basic problems which we have stated are already present in our model.
Among spherically symmetric models, this model is most analogous to the axially
symmetric problem for the vacuum Einstein equations. The role of the scalar field is
played there by the dynamical degrees of freedom of the spacetime itself, namely the
gravitational radiation field.

The plan of the present paper is the following: In Sect. 1 we introduce in a
geometrical way a coordinate system which exactly covers the domain of outer
communications. In Sect. 2 we give the components of the curvature tensor, the Ricci
tensor and the energy-momentum tensor, and using the Bianchi identities we reduce
Einstein's equations to three equations, two for the two metric functions and one for
the scalar field. In Sect. 3 we eliminate the metric functions in terms of the scalar field
and we reduce the whole problem to a single nonlinear evolution equation. In Sect. 4
we define the local mass and give its evolution law. In Sect. 5 we derive the properties
of the incoming light rays which are the characteristics of the problem. In Sect. 6 we
consider the limiting hypersurface u = oo, where u is the retarded time, and we show
that the part of this hypersurface exterior to a certain sphere represents future
timelike infinity. In Sect. 7 we set up the initial value problem for the nonlinear
evolution equation taking as initial hypersurface a future light cone with vertex at
the center of symmetry. We then prove the local, in retarded time, existence of
classical solutions to the problem. In Sect. 8 we prove the global uniqueness of
classical solutions. Finally, in Sect. 9 we prove the main result of this paper (Theorem
3), the global existence of classical solutions for sufficiently small initial data. These
solutions decay in a certain way as u -> oo, and the corresponding spacetimes are
timelike and null geodesically complete and are asymptotic to the Minkowski
spacetime in the infinite future. The proof of this result is based on the use of the
Banach space X' defined there.

In a subsequent paper we shall study the global problem for arbitrarily large
initial data.

Section 1. The Coordinate System

We consider a spacetime, which is the manifold U4 together with a Lorentz metric,
which is time and space oriented and on which the rotation group SO(3) acts as an
isometry group. We assume that there is a central (timelike) world line which is
invariant by the group, and that the group orbits through any point not on the
central world line are spacelike 2-spheres. These 2-spheres are then metric 2-spheres.
Through each point on a given 2-sphere there passes a timelike half-plane, the
boundary of which is the central world line, which is orthogonal to the group orbits
and intersects each group orbit at a single point. The rotation group maps these half-
planes isometrically onto each other. The quotient of the spacetime by the group is
the Lorentzian 2-manifold with boundary represented by any one of the half-planes.
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Let A denote the area of the group orbits. We assume that the future directed null
geodesies through any point on the central world time are complete, and that the
area A of the group orbit through each point on such a null geodesic is a
monotonically increasing function of the affine parameter, tending to infinity as the
affine parameter tends to infinity. We define then a coordinate r by setting A = Aπr2.
(The central world line is the set r = 0.) We assume that the world lines r = r0

(constant) in each half-plane are all timelike. We define then a coordinate u by
requiring that u is constant on the future light cone of each point on the central world
line, and that on a world line r = rOiu tends to the proper time as r 0 -• oo. With the
above assumptions, the metric of the spacetime can be expressed in the form:

ds2 = - e2vdu2 - 2ev + λdudr + r2dΣ2, (1.1)

where the first part is the metric on the quotient and dΣ2 is the canonical metric of
S2. Here v and λ are functions of u and r and v -• 0 for r -• oo at each u. As we shall
consider only spacetimes which are asymptotically flat at future null infinity, we
require also λ -> 0 for r -• oo at each u. As we are interested only in the future of some
initial future light cone with vertex at the center, the coordinates u and r shall range
in the quadrant 0 ^ w < o o , 0 ^ r < α o , where u = 0 corresponds to the initial future
light cone.

The coordinate system we have constructed is known as a Bondi coordinate
system [4]. The spacetime we are considering will in general be extendible to a larger
spacetime of which it will be the domain of outer communications (see Sect. 6).

We introduce now the null tetrad (n9l9ζί9ζ2), where

n = e-*A-±e-*A, l = e~λ^ (1.2)
du dr dr

and (ζx, ζ2) is a (locally defined) orthonormal frame on S2. The vector fields n and /
are null, the integral curves of n are the incoming light rays and the integral curves of
/ are the outgoing light rays. Both n and / are orthogonal to ζ1 and ( 2 and g(n, I) =
— 1. The inverse metric can then be expressed in the form:

fl^-nT-ZW + ίΐCϊ+CSCS. (1.3)

Section 2. The Einstein Equations

The only nonvanishing components of the Riemann curvature tensor of the metric
(1.1) with respect to the null tetrad (w, l,ζί9 ζ2)are: 1)The sectional curvature K(n, I) of
the (n, /) plane:

r duor

λΓd2v
\_dr2

fdv dλ\dv

\dr dr J dr

2) The sectional curvatures K(n,fi): = R(n, ζ1,ft,Ci) and K(n,ζ2): = R(n,ζ2,ft,ζ2) of
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the (n,d) and (n,C2) planes:

ί [ « (* « )] ,2,,
3) The sectional curvatures K{1, ζj. = R{1, ζlt I, ζ,) and K{1, ζ2): = R{1, ζ 2 ,1, ζ2) of the

(/,d) and (/,C2) planes:

^ ^ ^ ) (2.3)

4) The sectional curvature K(d,ζ 2 ) : = R(ζι,ζ2,ζ1,ζ2) of the (ζuζ2) plane:

And finally,
5) The components

_ -e~2λ). (2.4)

(2.5)

The only nonvanishing components of the Ricci tensor are then given by:

1) + K(n,ζ2), (2.6)

Λ(C 1,Ci)=-2Λ(w,C 1,U 1) + K(C1,C2),
Λ(C2, ζ2) = - 2R(n, ζ29l, ζ2) + K(ζx, C2),

and the scalar curvature is:

R=-2R(nJ) + R(ζuζι) + R(ζ2,ζ2).

Thus, the only nonvanishing components of the Einstein tensor Gμv = Λμv — i # μ v Λ
are:

1Γ Al /Λ. ΛΛΊ

(2.7)

and

+ e " 2 Λ ?2v /δv dλ\f\
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The energy-momentum tensor of a massless scalar field is given by:

Tμv = dμφdvφ-±gμvσ, (2.11)

where

f* (2.12)

In the case considered here the scalar field is invariant under the rotation group.
Thus, in the coordinate system of Sect. 1, φ is a function of u and r alone and

In the null tetrad of Sect. 1, the only nonvanishing components of the energy-
momentum tensor are:

du - <W ( 2 J 4 )

^ J (2.15)

and

T(ζl9ζ1)=T(ζ29ζ2)=-$σ. (2.16)

Let Eμv be the tensor,

Eμv = Gμv-SπTμγ. (2.17)

The Einstein equation are Eμv = 0 or, equivalently, Rμv = Sπdμφδvφ. In the present
case the only nontrivial components of the tensor Eμv are E(n, n), E(n, /), £(/, /) and
E(ζi,ζi) = E(ζ2,ζ2).

By virtue of the twice contacted Bianchi identities: VμGμv = 0, the integrability
condition of the Einstein equations is the conservation of the energy-momentum
tensor VμTμv = 0. For the energy-momentum tensor (2.11) we have:

. (2.18)

Therefore, the integrability conditions is the wave equation for φ in the metric g,
\Z\gφ = 0, which in the case under consideration reads:

If the wave equation is satisfied, the twice contracted Bianchi identities become

V £ μ v = 0. (2.20)

If, in addition, the Einstein equations £(/, /) = 0 and E(n, /) = 0 are satisfied, (2.20)
yield £(C1,ζ1) = £(ζ2,C2) = 0, and

dE(n,n) ^fδv l \ , ,,,„«>
+ 2 — + - £(«,«) = 0. (2.21)dr \δr r
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From (2.21) we obtain

£(*, n)(w, r) = Jjexp [2(v(ι/, r0) - v(κ, r))]£(π, n)(w, r0). (2.22)

If regularity at the center is assumed, (2.22) implies E(n, ή) = 0. We conclude that the
Einstein equations £(/, /) = 0 and E(n, I) = 0, together with the wave equation, are
equivalent to the full set of Einstein equations if regularity at the center is assumed.

Section 3. The Nonlinear Evolution Equation

The equation £(/, /) = 0 reads

dv dλ
(3.1)

This is an ordinary differential equation at each u. The solution which satisfies the
asymptotic condition v + λ->0 as r-> oo is:

J ^ r . (3.2)

The equation E(n9 /) = 0 reads:

£-£-V-l) = 0. (3.3)
or dr r

This is also an ordinary differential equation at each u. We can write it in the form

dev~λ 1

The only solution of this which exists for all re[0, oo[ is

ey-χ = -\ev + λdr. (3.5)

Thus at each u, ev + λ is expressed in terms of φ by (3.2), and ev ~ λ is expressed in terms
of ev + λ by (3.5). We can therefore substitute these expressions for the metric
coefficients into the wave equation (2.19) obtaining a nonlinear partial integro-
differential equation for φ. However, for reasons that will become evident in the
sequel, we prefer to use as our principal unknown function the function h defined by:

h = γr(rφ). (3.6)

We now introduce the following notation which will be used throughout: if/ is a
function of u and r, we denote by/the function of u and r which is at each u, the mean
value of / between 0 and r:

T(u,r)==l-]f(u,r')dr'. (3.7)
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We have

fφr)otfJIzΔ. (3.8)
or or r

Thus in virtue of (3.6) we have:

φ = Tι. (3.9)

Setting then
ev + λ = g, (3.10)

We have from (3.2):

^ p | (3.11)

and from (3.5)

ev~λ = g. (3.12)

We also define the differential operator

Since (see (1.2)) D = evn, the operator D is the derivative along the incoming light
rays parametrized by u. The wave equation (2.19) then becomes the nonlinear
evolution equation

Dh = ̂ (g-g)(h-Ttl (3.13)

By Sect. 2, this equation (with g defined by (3.11)) has the whole content of the
Einstein equations if regularity at the center is assumed: if h is a solution of this
equation, then φ, v and λ defined by (3.9), (3.10) and (3.12) solve the Einstein
equations. Conversely, if a spacetime satisfies the assumptions of Sect. 1, and
together with a scalar field φ, is a solution of the Einstein equations, then h defined
by (3.6) solves the nonlinear evolution equation (3.13).

Section 4. The Mass Equation

The nonlinear evolution equation (3.13) gives the evolution law of the principal
unknown function h along the incoming light rays. From this equation we can derive
the evolution law of any quantity which at each u can be expressed in terms of the
function h at that u. We shall now derive the evolution law of ft. We have:

= is* -^ -
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and Dr = —\g. Now for any function /which is continuous with respect to r at r = 0,
we have [/ — /] r =o = 0 Thus, assuming regularity at the center, we conclude from
the above that the evolution law of Ji is:

Dh = γ 9 (4.1)

where

h-Ji)-. (4.2)

Let us now define the function m by:

m = r-(\-g/g). (4.3)

Since (see (3.11)) g is a monotonically nondecreasing function of r at each w, we have
g ^ g. Therefore m is nonnegative. Also, m vanishes at r = 0 and m < r/2 for r > 0. We
have

d^ = 2J-(h-W. (4-4)
or g

Thus m is a monotonically nondecreasing function of r at each u, and we can write:

m = 2π\^-(h-Tι)2dr. (4.5)
00

The function m an important physical meaning: m(u, r) is the mass which at retarded
time u is contained within the sphere of radius r.

In terms of m the Einstein equation E(n, n) = 0 reads:

Dm=-—{DTί)\

which, by virtue of (4.1) is

Dm=--ξ2. (4.6)
g

This is the evolution law of m, which according to our previous discussion, can be
derived directly from the nonlinear evolution equation (3.13) if regularity at the
center is assumed. It implies that m is monotonically nonincreasing along the
incoming light rays.

We shall assume that

lim m(0, r): = M o
r-»oo

exists, that is that the initial total mass M o is finite. Then since m{u,r) is
monotonically nondecreasing with respect to r at each u and is bounded by M o , the
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limit

lim m(u, r): = M{u)
r-*oo

exists for all u ^ 0. M(u) is the total mass at retarded time u; this is the Bondi mass,
first introduced in [4]. Equation (4.6) implies Bondi's theorem that M is a
monotonically nonincreasing function of u, dM/du ^ 0. In the present work the
evolution law (4.6) of the local mass m plays a very important role.

The finiteness of M o implies that at each w, r(l — g) -• 0 as r -> oo. It then follows
that we can express M in the form:

I OO

M = -\{\-g)dr. (4.7)
£ o

Using now Eqs. (3.10), (3.11), (3.12), (3.13), (4.1), (4.2), (4.3) and (4.6), the
nonvanishing components of the curvature tensor (see Sect. 2) are given by:

= K(n,ζ2) = ~ , (4.8)

4^(h-Έ)ξ-27, (4.9)

(hζ2) = ̂ (h-Jt)\ (4.10)

ζ) ^ (4.11)

and

R(n9ζl9l,ζι) = R(n,ζ29l,ζ2) = ^. (4.12)

The nonlinear evolution equation (3.13) is covariant under the scaling group
(u, r) -> (u/a, rja\ a being a positive real number. That is, if h is a solution, then the
function h! is defined by

h'{u,r) = h(u/a,r/a) (4.13)

is also a solution and we have:

7i(M, r) = Jι{u/a, r/a\ g\u, r) = g(u/a, r/a), g'(u, r) = g{u/a, rja\

and therefore

m'(u, r) = am{u/a, r/a\ (4.14)
and

M'(u) = aM(u/a). (4.15)

Section 5. Properties of the Characteristics

It is evident from the nonlinear evolution equation that the incoming light rays are
the characteristics of our problem. They satisfy the ordinary differential equation

^=-Ϊ9(uΛ (5-1)
du
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Let us denote by χ(u;r0) the characteristic through r = r0 at u = 0. From (5.1) we
obtain:

1Ul _
fi: = X("i r0) = r 0 - ^ | £(", X(«; ̂ o))^ (5.2)

Since g^g^ί (see (3.11)), this implies

Γ o g Γ i + K . (5.3)

Differentiating (5.2) with respect to r0 we obtain

It follows that the function f (w, r) defined by

du^J-ψ^ (5.4)

satisfies along the characteristics the evolution law

Dζ=-±(g-g)ζ, (5.5)

and takes at u = 0 the initial value C(0, r) = 1. Hence:

ifT-( f lf-^)l dill. (5.6)
2 o | _ r Λ(u;r0) J

We have ζ ̂  1 and also ζ(uί, rx) > 0, if r1 > 0, since the integral can blow up only if
rι = 0; in fact we have:

( ( u ^ r O ^ e " " 1 ^ 1 . (5.7)

Consider now two characteristics χ(u; r'o) and χ(u; r0) through r = r'o and r = r0 at
M = 0 respectively, where r0 > r'o. Then rx ^ r'x and

_ .,X(«i;s))}^l. (5.8)
r0-VΌ r0~rΌ se[r'0,r0]

We conclude that the characteristics converge toward the future and the conver-
gence factor is ζ. The convergence factor plays a very important role in our work.
The development of singularities in the domain of outer communications depends
on the presence of points on the central line where ζ vanishes.

Let us return now to the mass equation (4.6). Integrating this equation along a
characteristic, we obtain the mass-flux relation:

)• (5.9)

The second term on the left represents physically the flux crossing the characteristic
χ{w,r0) for u between 0 and uί.
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Section 6. The Limiting Hypersurface u = oo

Since the Bondi mass M(u) (see Sect. 4) is a nonegative monotonically nonincreasing
function of u, the limit

limΛφ^Mi (6.1)
u~* oo

exists. Mx is the final Bondi mass. We shall now show:

Proposition 1. For r0 > 2MX the timelike lines r = r0 are complete toward the future.

Proof. The proper time element along the line r = r0 is

ev{u'0)du.

From (3.10) and (3.12) we have e2v = gg. Thus v ^ 0 and

ev^g. (6.2)

Now since at each w, log#(w,r)->0 for r-> oo, we can write (see (4.3))

2m/ 2 m \ - 1

Thus, since m(u, r) ^ M(u), if M(u) < ro/2, we have

»2M(κ)Λ 2 M ( M ) V 1 / 2JW
-logfl((ii,ro)gj——I 1 — ) dr=-log 1

Hence

ev(u,r0) ̂  ^ M j r0) ^ 1 - ? ^ 1 . (6.3)

Given now r0 > 2MU since M(w) -• M t for M -• oo, there exists a «2 such that for all
w ^ w2, we have M(u) ί§ i(ro/2 + Mj). Thus for all w ^ M2 it holds:

2Mj

Let then ux>u2. From (6.3) and the above we obtain:

wi «i «i /

0 \U2

^ - ( 1 ){u1 - u2)-• oo for wx —• oo. •
2 r /

Consider now the limiting hypersurface u = oo. By the above proposition the
points of this hypersurface for which r ^ 2 Mi are at future timelike infinity I + . As
will be shown in a subsequent paper, if M1 φ 0 the timelike lines r = r0 for r 0 < 2MX

are incomplete, and the part of the limiting hypersurface u = oo for which r < 2Mί

represents the future event horizon H+.
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Section 7. Local Existence of Classical Solutions

In the following we shall study the initial value problem for the nonlinear evolution
equation (3.13). Given initial data at u = 0, that is a function /i(0, r)eCι [0, oo[ and of
finite initial Bondi mass M o , we shall seek a solution to the equation for u > 0, taking
the given data at u = 0. This means here that we are giving data on a future light cone
with vertex at the center and we seek a solution in the interior of the cone. In this part
of our work a "solution" will mean a "classical" solution, that is a differentiable
function h(u, r) whose derivatives are continuous even on the central line r = 0, and
which satisfies the equation.

For a classical solution of the nonlinear evolution equation the curvature tensor
is continuous even at r = 0, and the Einstein equations are satisfied in the classical
sense. As we are interested in obtaining the fastest possible falloff toward null
infinity, we shall assume that the initial data satisfies h(0, r) = O(r~3) and dh/dr(O, r)
= 0(r~4). This is the fastest falloff class which is preserved by the evolution. The
results can easily be generalized to the case when we only assume the much weaker
condition that M o be finite. The aim of this paragraph is the proof of:

Theorem 1. For every initial data Hfd,r)eCι [0, oo[ such that h(0,r) = 0(r~3) and
δh/dr(O, r) = 0(r~4) as r -• oo, there exists auo>0 and a classical solution h(u, r)eCι

[0, UQ] x [0, oo\_ofthe nonlinear evolution equation, taking atu = 0 the given data and
such that at each we[0,wo], h(u,r) = O(r"3) and dh/dr(u,r) = 0(r~4) as r->αo,
uniformly in u.

To prove this theorem we establish three lemmas. Let X denote the space of
functions / defined on [0, w0] x [0, oo[, which are continuous and posess a
continuous partial derivative with respect to r and for which

ue[0,uo]
11/11*:= sup sup<Ul+r)3|/(M,r)|+(l+'f (7.1)

is finite. X is a Banach space normed by || ||^. The proof of Theorem 1 uses an
iteration method. Given hneX we define hn + 1 to be the solution of linear equation

Onhn+ι - —(gn - gn)hn + 1 = - —{gn - gn)hn, (7.2)

taking the given data at u = 0. Here gn is the ^-function corresponding to hn and Dn is
the D-operator corresponding to gn. Starting from a 0th iterate hoeX, we shall
generate in this way a sequence {hn}. We choose the 0th iterate to be:

λo(M,r) = Λ(0,r). (7.3)

Then || ho\\x = d, where

(7.4)

Lemma 1. For any x1>2d there exists an η > 0, η = η(x1 d), such that ifuo<η the
sequence {hn} is contained in the closed ball of radius x1 in the space X.
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Let now Y denote the space of functions /eC°[0,wo] x [0, oo[ such that

\\F\\X: sup sup{(l + r)3 |/(w,r)|}
ue[0,uo] r^O

is finite. Y is a Banach space normed by || || γ, and we have Y => X. In the following
lemma it is assumed that x1 and u0 satisfy the inequalities of Lemma 1.

Lemma2. There exists a δ>0, δ = δ(x1), such that if uo<δ the sequence {hn}
contracts with respect to the space Y.

From (7.2) it follows that the sequence {dhjdu} is equibounded:

(7.60)
du

in [0,κ0] x [0,oo[.

Lemma 3. The sequence {dhjdr} is equicontinuous. Sketch of proof. Let O^^Kr^^
and let χjiμ r^ and χn(n;r\) denote the characteristics χn through r = rι and r = r\
respectively at u = ux. We define

Ψ(u): = ^ r - ( " > Xn(u; r j ) - dh^1(u, χn(u; Λ)). (7.61)

We derive an ordinary differential inequality for ψ, which allows us to estimate the
modulus of continuity with respect to r oϊdhn+1/dr atu = uί in terms of the modulus
of continuity of the data dh(0,r)/dr. This establishes the equicontinuity of the
sequence {dhjdr} with respect to r. The equicontinuity with respect to u then
follows, as, in view of Lemma 1, the sequence {Dn(δhn + ι/dr)} is equibounded.

Proof of Theorem 1. If u0 <min {η,δ}, the sequence {hn} is contained in the closed
ball of radius x1 in the space X and contracts with respect to Y. Also, the family {hn}
is equicontinuous and the family {dhjdr} is equicontinuous as well. By the Ascoli-
Arzela theorem we can select a subsequence {hn.} such that hn.^>Jί and dhjdr->
dTi/dr uniformly in compact subsets [0, w0] x [0, r 0 ] , r0 arbitrary; Tι and dJi/dr are
continuous functions in [0, w0] x [0, oo[. It follows that

and

sup(l
dr

iu,r)

Hence KGX and the convergence of hnχ and dhjdr to K and dΐt/dr respectively, is
uniform in [0, w0] x [0, oo[. On the other hand, the contraction principle gives hn -• h
in the space Y. Therefore h = TίeX. We deduce further that Άnι, gn., gn. and their
derivatives with respect to r converge uniformly to \ g, g, and their derivatives with
respect to r.

We shall now show that the characteristics χn. converge uniformly to the
characteristics χ. The characteristics Xnjiu r^ and χiu rj through r = rx at u = uγ
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satisfy the ordinary differential equations

^ = - i , - π , and * ifc
du du

respectively, together with the condition:

χni(uι;rι) = χ(uι;rι) = rί.

We have

^ = -llβmiu, X«) ~ #("> %Ώ>

and (χn. -χ)(u1) = 0. Thus, integrating, we obtain:

(Xni ~ X)(u) = \] [βniiμ\ χni) - g(u\ χy\du'

2;

+ ~ ί [^πf(
w?Xni(u'))~gni(u>x(u'))~\du'. (7.76)

We set

Then yni(u1) = O. By the uniform convergence of gn. to g we have l ^ ^ , ^ ' ) ) —
#(w',Z(w'))l ^εM f, where επ.->0 for i->co. Also by the equiboundedness oίdgjdr we
have:

lίU"',Xn ί(w')) - 9nίM'>X(u'))\ ύ ayni(u').

Hence we obtain from (7.76) the inequality:

- u) + \a J yni(u')du'.

It follows that:

We conclude that yn. -• 0 uniformly in u for i -• oo and therefore the characteristics χn.
converge uniformly to the characteristics χ.

We have:

(1/2) \ Udgnjdr)-]χndu

Ul (1/2) Z
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Since hn->h in the space Y, the left-hand side converges to h(uι,ri) for i->oo,
uniformly in (ux, r^e[0, w0] [0, oo]. We now know also that for i -• oo the right-hand
side converges to:

\ l ) \ Uι

h{0,χ{0,r,))e ° + f
o

where

We conclude that the nonlinear evolution equation is satisfied in the integral sense in
[0, M0] x [0, oo [. In view of the fact that dh/dr is known to be continuous, it follows
that h is continuously differentiable with respect to u and satisfies the nonlinear
evolution equation in the differential sense. D

From this point, it can easily be shown that, for any k ^ 1, if the initial data is of
class C\ then the above solution belongs to Ck ([0,ι/0] x [0, oo[).

Section 8. Global Uniqueness of Classical Solutions

Theorem 2. Let h^ and h2 be two classical solutions of the nonlinear evolution equation
in a strip 0 ^ u ^ w0, u0 arbitrary, whose initial data coincide, /ẑ O, r) = h2(0, r). Then,
assuming that at each uh1,h2 = O(r~3) and dhjdr, dh2/dr = O(r~*) uniformly in u, we
have hx=h2.

The proof is by deriving a linear homogeneous integral inequality for the
quantity

4(M): = sup{(l+r) 3 | (fc 1-Λ 2)(ιι,r) |}.

Section 9. Global Existence of Classical Solutions for Small Initial Data

Theorem 3. We consider initial data hφ^ήeC1 [0, oo[ such that h(0,r) = O(r~3) and
dh/dr(O,r) = 0(r" 4 ) . Let d0 denote

do:=infsup|Λ+^Y|Λ(0,r)|

Then, there exists a δ > 0 such that if d0 < δ, there exists a global classical solution
h(u, r)eCι [0, oo [ x [0, oo[ of the nonlinear evolution equation taking atu = Q the given
data. This solution has the decay property:

\h(u,r)\^C(\ +w + r ) " 3 , \δh/dr(u,r)\ ̂  C (1 + w + r)~ 4.

The corresponding spacetime is timelike and null geodesically complete toward the
future and

Mi:= lim M(tι) = 0.
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The quantity d0 is a norm for the initial data which is invariant under the scaling
group (see Sect. 4). The proof of Theorem 3 is based on two lemmas. Let X' denote
the space of functions / defined on [0, oo[ x [0, oo[, which are continuous and
possess a continuous partial derivative with respect to r and for which

x: = sup sup ^j \h(u,r)\ +
dh( (9.1)

is finite. X' is a Banach space, normed by || \\x>. The proof of Theorem 3 uses the
same iteration method as that of Theorem 1. Here however we choose the 0th iterate
to be:

(9.2)

Then we have hoeXr and || h0 \\x, = d, where d is defined by (7.4). Let G(x), x g; 0, be
the function:

G(x): = 7-(4π/3)χ2_ 2 + -; (9.3)

The function G vanishes at x = 0 and attains a maximum value G = Go > 0 at
x = χ0 > 0. It is strictly monotonically increasing in the interval [0, x 0 ] .

Lemma 4. For each xe]0, x 0 ] the sequence {hn} is contained in the closed ball of radius
x in the space X' if d^ G(x).

Proof Let || hn \\x. ̂  x. We shall first derive global pointwise estimates for \ (w, r),
(hn — Jtn)(u, r), (gn — gn)(u, r), and a lower bound for gn(u9 0) for each u ̂  0. We have

l]K \

<
= r 2

1

ds

Also

(9.4)

ds

(9.5)
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and therefore:

x ' 1

<L
2/ «VΛ «

Γ'X.

We then have

dr x1 rdr 1 1

. +

Hence

Taking into account (9.6) we find:

πx

and therefore

1 r fr da

πx 2 1

iιV4

353

(9.6)

(9.7)

(9.8)

dr'

dr'
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— /+ J* / \ ^ / \Ά* v 7

Let /„ denote the right-hand side of (7.2), /„: = - l/2r (#„ - ^Λ)Sn. From (9.9) and

(9.4) we obtain:

and we can estimate /„ by a monotonically decreasing function of r at each u:

Since by (9.7) it holds:

π x2

we conclude that the characteristics χn of the linear equation (7.2) obey the inequality

where fe: = e~
{π/6)χ2. We shall now estimate the integral oϊfn along the characteristics

χn. From (9.10) we have:

= 6 *
3 "ί

Now since fc ̂  1, it holds:

l + ^ + ' i + ^ ( « i - « ) ^ / c n + ^ - + /-Λ (9.11)

Thus, using the fact that

du
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we obtain:

Since by (9.9) it holds:

1

we have:

Λ2. (9.13)

+

2
Also, taking into account the fact that r 0 ^ rx + f̂cwx and k ̂  1, we obtain:

+ τ + r

We now integrate the linear equation (7.2) along the characteristics χn to obtain:

j C/Jχ>, (7-20)
0

w h e r e r o : = r(0). U s i n g (9.13), (9.14) a n d (9.12), w e t h e n c o n c l u d e t h a t for a l l uί9

r{ ^ 0 , it h o l d s :

(9.15)

Differentiating now the linear equation (7.2) with respect to r we obtain:

D (δhn+Λ_K -Λt! =j, ( 9 1 6 )

"V δr J r " δr

where

We have

~δr=~2~δ?r "~Yδr r '
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We have
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From (9.9) and (9.6) we then obtain:

<πx2

dr2

Taking this into account together with (9.4), (9.9) and (9.6), we obtain

dr M VΛ u

1 +

(9.17)

Also the estimate (9.15) gives:

d2gn

dr2 18
(9.18)

From (9.17) and (9.18) we conclude that we can estimate /'„ by a monotonically
decreasing function of r at each u,

\f'\<
I J n\ =

A'
(9.19)

where

1 8
(9.20)

Using now (9.11) we can estimate the integral off'n along the characteristics χn,

du
J [(/;)],> ^/I'j

1

"F

Also, as in (9.14) we have:

1 V du A'
(9.21)

dh

dr ' o)

d
<

d

k*
(9.22)



Self-Gravitating Scalar Field 357

Integrating (9.16) along the characteristics χn we obtain:

fiU fih \KVr){gn-gn)\ndu

MI l[XVr)(gn-gn)\ndvt

0

Using (9.13), (9.21) and (9.22), we then conclude that for all uu rx ^ 0 it holds:

"1 \ 4 ^^»+i .

Adding finally the estimate (9.15) and (9.23) we conclude:

II Γ

We simplify to

\\K+ί \\x- ϊ (2 + Ixήe^^d + ̂ xή. (9.24)

Hence if \\h\\x>^x, this inequality implies that also ||/in + i l l ^ x , provided that
d g G(x), where G is the function given by (9.3). Since then x > Id, the 0th iterate (9.2)
is such that | | f t o | | ^^x. We conclude by induction that the whole sequence of
iterates is contained in the closed ball of radius x in the space X'. •

Let now Y' denote the space of functions feC° [0, oo[ x [0, oo[ such that

(9.25)

is finite. Y' is a Banach space normed by || | | r and we have Y' => Xr. Let s(x), x ^ 0,
be the function

5(x): = i π x 2 ( ^ + 2πx2)e(5π/9)x\ (9.26)

The function 5 is strictly monotonically increasing and vanishes at x = 0. Let x be the
solution of s(x) = 1. Then x : is a positive real number. In the following lemma it is
assumed that x and d satisfy the inequality of Lemma 4.

Lemma 5. If x < x 1 ? the sequence {hn} contracts with respect to the space Y'.

Proof. We have

Dn(hn + 1 - K) - \d^(hn+! - K)= ±(ά, - gn-j^
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and

Now, from (9.6),

D. Christodoulou

and we can estimate

Thus, multiplying,

- * . - , ! , - (9.29)

We then obtain

2dr

and therefore

u vί u

It follows that

Using now (9.29), (9.30) and (9.6), we obtain:

1 »-»»-I)

dr

(9.30)

(9-31)

(9.32)
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Since
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ds

2/ iΛΛ u

we obtain from (9.32):

dgn dgn.1

dr dr ds
dsu

^ 2πx(2 + nx2) \\ hn -hH.11| r

W \ / tί
(9.33)

Taking into account this, we deduce from (9.28):

u\η(. u
, (9.34)

Also, by (9.33) and (9.31) we have

l\Qn ~ On-l I ~Γ~

and

(9.35)

dr dr

Using now (9.35), (9.36) and (9.34), we obtain from (9.27):

5*

(9.36)

u\ηί ΰ
(9.37)

Integrating this inequality along the characteristics χn we obtain, in a way similar to
that in the first part of the proof of Lemma 4, that for all uγ, r1 ^ 0, it holds:
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Since here (hn+ι— hn)(0,r) = 0, we conclude that

(9.38)

where 5 is the function given by (9.26). If x < χί9 then s(x) < 1 and (9.38) implies that
the sequence {hn} contracts with respect to the space Y'. •

Proof of Theorem 3. We define

δ:= max {G(x)}.
xe[0,xi]

δ is a positive real number and if d < δ, then we can find x < xx such that d ^ G(x).
Then by Lemma 4 the sequence {hn} is contained in the closed ball of radius x in the
space X\ and by Lemma 5 the sequence contracts with respect to the space Y'.
Under these conditions the argument of Lemma 3 will show that the sequence
{dhjdr} is equicontinuous. Then the argument in the proof of Theorem 1 will show
that the limit h of the sequence {hn} belongs to the space X' and is continuously
differentiate with respect to u and satisfies the nonlinear evolution equation in the
differential sense. Thus h is a global classical solution.

Let us now be given initial data /ι(0, r) such that

do<δ.

Then there exists an a > 0 such that

sup h(0,r)
or

We define new initial data /i'(0, r) by:

Then

Sr'

= sup

Thus we have d' < δ. By the above this implies that we have a global classical
solution h'(u, r) which belongs to the space X' and takes at u — 0 the data /z'(0. r).
Hence, by the scaling group covariance (see Sect. 4), the function h defined by
h(u, r) = h'(u/a, r/a) is a global classical solution taking at u = 0 the given data
/j(0, r). This solution has the decay property:

\h(u,r) ^ \ \dh(u,r)\ ^

The remaining conclusions of the theorem follow from the corresponding decay
properties of the metric functions and their derivatives.
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