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Abstract. We consider a viscous incompressible fluid moving in a two-
dimensional flat torus. We show a particular external force f;, for which there is
a globally attractive stationary state for any Reynolds number R. Moreover,
for any fixed R, this stability property holds also for a neighbourhood of f,.

We consider a viscous incompressible fluid moving in a two-dimensional flat torus.
The Navier-Stokes equations governing the motion are

ou

a—'t+(u~|_7)y=—i.7p+f+vAy, u(0)=u,, (1)
ou,  Ou,

Em +W_0’ V)

[ udx=0, | fdx=0, ?3)
T2 T2 ~

TZ:[O’Q'TC]X[O,?'TC]’ -?_CE(xay)zx§1+y§2eT2>

where u(x, t) is the velocity, p(x,t) € R the pressure, v>0 the viscosity, f(x) the
external force. All functions involved are periodic in x, y of period 2z.

In our problem we fix a time scale and we assume as a reasonable Reynolds
number

R= sup LS/

In general the behavior of the solutions depends on R: if R is small there exists a
stationary state stable and attractive. When R increases this state loses its stability
and, for large R, the motion becomes chaotic. This fact is related with the
turbulence. (On this subject there is a lot of literature: see for instance [1].)

In this paper we want to show particular forces f(x) for which the stationary
state remains attractive for every Reynolds number R. These forces are not
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completely exceptional in the sense that they have a neighbourhood (depending on
R) for which this stability property holds.
We assume [ smooth

f=l+fi 4)
where
Jo=ci[v(A;cosy+ A, siny)+(A;cosx+ Aysinx) (—A; siny+ 4, cosy)]
+c,y[v(A5cosx+ A, sinx)+ (A, cosy+ A, siny) (— A5 sinx + 4, cosx)],

Ay, Ay Ay, A eR 5)
We define
Ro=14,]+[A42]+ 45|+ 144/, (6)
= szlfllz/vz dx, (7
ry= TI Fify*dx, ®)
where
Fi=0,f1,=0,f1,x )

The result of this paper is stated in the following theorem:

Theorem. For any R, there exist £,(Ry)>0, £,(Rg) >0 such that for any ri<eg,
r, <e, there is a stable stationary state which attracts exponentially each solution.
More precisely we put

u=u+v, (10)
where 1 is the stationary state.
Then
E@®)=3 | v- vdx———0 exponentially . (11)
T2 @

Proof. For sake of simplicity we first give the proof for f; =0. Then we consider the
general case.
When the external force reduces to f; the stationary state is

d=uy=c (A, cosy+A,siny)+c,(A;cosx + A, sinx),

(12)
p=const.
We introduce the vorticity
0= 0,U,— 0. (13)
Equation (1) becomes
@+(y-l_7)w=F+vAw, (14)

ot
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where
F=0.f,—0,f.. (15)
For the stationary state g,
O=w,=—Azsinx+ A, cosx+ A, siny— A, cosy (16)
We define
N=%1!2(52 dx, 17
where
o=0—0. (18)

We study the variation in time of E and N. By a direct computation we have

iE_—I v, (— Ay siny+ A, cosy— Ay sinx+ A, cosx)dx—v | (Vv)%dx,

dt T2 (1 9)
= —szz)xvy(—A1 siny+ A, cosy— A;sinx + A, cosx)dx —v Tz(' )2dx.
(20)
Hence
d
- B=—v [ [(P0)*—(Vv)*1dx. (21)
T2
We study the right-hand side of (21) and we show that
[ [(70)*—(Vv)*]dxZ4(N —E). (22)
T2
To prove this inequality, we develop v,, v, in Fourier series
Z a,,cosmxcosny+ > > b, cosmxsinny
=0 n=0 m=0 n=1
+ Z Z Cpun SINMX COSRY + Z Z d,mSinmxsinny . (23)
m=1n=0 m=1n=1
Condition (3) and Eq. (2) give
QOO=0; max,mn=ndy,mn; mbx,mn= —NCy mn 5 (24)
mcx, mn— nf;), mn > mdx,mn = nay,mn
Hence
7132 ) o
7 21 ;1 (‘gmnlz + |bmn|2 + Igmnl2 + |dmn|2)

+7I2 z (af,m0+c§,m0)+n2 z (a§,0n+b.%,0n)‘ (25)
m=1 n=1
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In a similar way we compute the other term in (22),

n2 ©

N_ —2_ Z Z [(may mn+ndx mn)2
m=1n=1
+(_mby mn+ncx mn) +(mc _n X, mn)2

(mdy mn T 10y, mn)2]+n Z m ( ym0+c)’ mo)

+7'C z nz(ax 0n+b§ On)2

n=1

[ (Pv)’dx=2N,
T2
[ (Po)ydx=n Z Pl (m?+n?) {(may, y+ndy )
T2
+ (= by, iy + 1C ) + (MCy, i — 1 )
+ (mdy,mn + nax, mn)z} + 27'52 { 2 m4(a)21, mO + C§,m0)
m=1
+ Z n4(a§, On + ba%, On)} .
n=1

Hence, using (2), we have

2

J L0707 = (7o) hdx =7

g} Y
Z > (m*+n*—1)
=1 n=1
n 2
| (2] @ B G )

2
m
+ <n + ;) (0326, mn + b.>2c, mn + c.)zc, mn + d.%, mn):,

C. Marchioro

(26)

27)

(28)

+2n2[ S mm? = 1) (@ ot G o) + X 07— 1)<a§,0,.+b§,o,,)], 29)

and
g & 2 2 2
N— 7"1; g — —1 (ay,mn+by,mn y mn+d mn)
1 m 2 2
+1z n+ ; _1 (ax mn+bxmn+cxmn+dxmn)

[ S M=) (@ o+cne)+ S <n2—1><a§,0n+b§,0n>]. (30)
m=1 n=1

A comparison between (29) and (30) gives inequality (22).
We put (22) in (21), we observe that N—E =0, and we obtain

%(N—E)§—4V(N-E).

(1)
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A second inequality can be obtained by (19) controlling its right-hand side. We
have

| (Fv)*dx=2E. (32)
T2
We write
vxzax,OICosy+bx,018.iny+q)(xs }’), (33)
U,=4d, 19COSX+C, 1o8iNX+P(X,)),
where
| 9*dx<2(N—E), (34)
T2
| $?*dx<2(N—E). (35)
T2
Hence
d

EEéRO |:<1.‘:2 w2d26>1/2 <Tj‘z vi dzc)l/l + <i!‘2 (pldzc>1/2 (1!‘2 U§d2C>1/2:|
—2yE<4R,(N —E)'2E'2 —2yE , (36)

Differential inequality (31) and (36) are linear in (N —E)'/? and E'/?, can be
easily solved, and give the statement of the theorem.

General Case. First we discuss the stationary state. We prove that

sup |#|=H, <o, @37
xeT?
[ [#Pdx=H, <o, (38)
T2
sup || = sup |04, — 0, |=H3 < 0. (39)
xeT? xeT?
In fact
fo[—@@-V)d+F+vAd]dx=0, (40)
T2
hence
v | (Fo)dx=| @Fdxécle[f F? dx]”z- (41)
T2 T2 T2
By the Cauchy-Schwartz inequality
[ (Y@)zdzc;cz<§ |l_7ca|dz<>zzc3H§. 42)
T2 T2
So
H3§c4<f Fz/v2d>.c>”2- (43)
T2

From now on we indicate with ¢; a numerical constant.
Equation (37) is a consequence of (43) and (27). Equation (38) can be proved in a
similar way using (1).
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Now we put

U=ug+u,; u =ty+i, (44)

where u, is defined in (12).
We consider the Fourier development of u;. i, is given by the first terms of the
form

o =010008X +dg; €OSy+boysiny+cyosinx,

(45)
divi, =0,
and ¢ contains all remaining terms.
We note that
sup |0;lpjl=G< 0, (46)
xeT2,i,j
as we can see by (38) and the explicit form of .
Moreover
sup |4|=Dy, 47)
xeT2
su]p2 1A= su%)2 0,1, — 0,0, | =D, , (48)
and D, D, go to zero when r,r, vanish.
We prove (48).
[ u-[—@ V)a+f+vAaldx=0. (49)
T2 -
Hence
vTIZ(lZyl)Zdzc=szu1 fi dzc—Tf2 [uy - (uy - Vugldx. (50)
For the vorticity we obtain
| n[—(@- V) +F+vA]dx=0, (51)
T2
where
N=04uy,— 0y, (52)
Hence
v [ (Fn)’dx=— | n(u, - V)wodx+ [ nFdx. (53)
T2 T2 T2
We subtract (50) from (53):
v IO =(Vu)*Ydx =] [nFy—u,-fdx
§Cs(2R0+G+H3)[<I F} dZC)UZ'i' (f f12)1/2], (54)
T2 T2~

hence
sz (Vi) ?dxZcs(2Ro+ G+ H,) (r{> +137), (55)
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and then
D, <c;[(2Ro+G+H;) (ri>+13/*)]'. (56)

So (48) is proved. Equation (47) is a consequence of (56) and (27).
We consider now the non equilibrium problem. By a direct computation

dE

d—=—fy-(y-l_7)udzc—VI(l_79)2d>_c, (57)

t T2 T2

B o [ 50 Dody—v | (7). (58)
t T2 Tz

Hence
SN —E)=— [ [ V)i~ (- Dildx— | (737 ~(F2)"1dx
= TI [0 V)6 — 1 (0200, +,0,05)
— (00,0, +0,0,0,)]dx — v TI [(V0)*—(VPv)*]dx. (59)
Using (47), (48), (27), and (22), we have
%(N—E) <cgD,E'? [ 15 (l_75)2d>_c]1/2 +coDEY2NY2 —4(v—cgD,) (N —E)
—cgD, T§ (V5)%dx +2cgD,N

<c¢10(D1+Dy)N—4(v—cgD,) (N—E). (60)
We divide v as in (44),
’TIZ 0 V) (wo+1o)dx

= 'szy'(y' ) (Ho+ﬁo)dlc‘

7‘!. vay[ay(qu + an) + ax(uo,v + ﬁOy)]dZCl

<c¢;1(Ry+G)E'*(N—E)'?. (61)

Hence

dN
o Scu(Ro+GEVAN —E)'2 4 ¢gD,E'? [sz (1_75)2dzC]‘/2

—v sz (Vo)’dx=<c,;(Ry+G)NY* (N —E)"? —2(v—cgD,)N . (62)
When D,, D, are small enough differential inequalities, (60) and (62) imply
N -0 and (N — E)—0 exponentially. For a proof we note that the more difficult

case is realized when the equality is reached. We combine the two equations so
obtained,

d
E[N'HX(N_E)] =ac;o(Dy 'f'Dz)I\]‘Fcu(Ro'*‘G)NI/Z(N_E)I/2

—2(v—cgD,) [N+2(N—E)]. (63)
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We can choose o>0 such that 3y >0,
d
E[N+o¢(N——E)] Zoaco(D;+D,)[N+a(N—E)]—y[N+a(N—E)]

for
v>cgD,. (64)

For D,, D, small enough the theorem is proved. [

In conclusion, we have proved that this model has no turbulence for a
particular force f,. Moreover, for any fixed R, the stability property remains valid
for a neighborhood of f;,. Of course this does not exclude that for fixed f=f,
and large R chaotic motion may appear. For instance, for truncated Navier-Stokes
equation numerical studies proved that our model with a convenient force,
although simple and without boundary, can produce a rich phenomenology [2].

Remark. The same result of Theorem 1 can be obtained in an asymmetric flat torus
[0,L] x[0,2n] when L<2mand f=c,v (4, cosy+A,siny) A,, A, € R. The proof
is similar to the previous one. Note that with our technique the condition L<2nr is
essential for the nonnegative definiteness of N —E.
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Note added in proof. For L< 27 it is possible to show a set of attractive stationary states of size
and radius of attraction independent of R. The proof will be given elsewhere.





