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Deduced from Iterations of Circle Maps
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Abstract. Every orientation preserving circle map g with inflection points,
including the maps proposed to describe the transition to chaos in phase-
locking systems, gives occasion for a canonical fractal dimension D, namely
that of the associated set of μ for which fμ = μ + g has irrational rotation
number. We discuss how this dimension depends on the order r of the inflection
points. In particular, in the smooth case we find numerically that D(r) = D(r ~ *)

1. Introduction

Mathematical models for periodically stimulated oscillators are usually for-
mulated as a system of coupled differential equations [1-5]. The associated
Poincare map gives the oscillator state at time n/v as a function of the state at time
(n— l)/v, where v is the external frequency. In appropriate limits it has often been
possible to reduce this map to a one-dimensional map of the form of those we
consider here [2], [6-8].

The investigation of these circle maps has been particularly useful in studying
the transition to chaos [9-11]. The fractal obtained along the critical line defined
by the points where chaos sets in, is described by the fractal dimension [12]
obtained from iterations of a circle map [5], and this dimension seems to be
universal [9,10]. As an example, the transition to hysteresis and chaos of the
resistively shunted Josephson junction modulated by an rf microwave signal [13]
can be modelled by the behavior of a circle map which passes from invertibility to
non-invertibility through development of an inflection point of order three [8,14].
This transition gives occasion for a complete devil's staircase structure [12], where
the fractal dimension of the associated Cantor set is D = 0.87 [10].

In this paper we study numerically maps with inflection points with orders
other than three. In particular we find that the related fractal dimension varies like
the 1/8th power of the order. In Sect. 2 we define a set G of circle maps, and in Sect. 3
we report the results of a numerical investigation of the fractal dimension of the
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non-phaselocking Cantor set for these maps. In Sect. 4 the group G is extended,
and finally in Sect. 5 we discuss some cases where the map does not belong to G.

2. A Group G of Circle Maps

We start with a definition: Let G be the set of real functions g: R->R which satisfy
the following conditions1:

(i) 0(0) = 0,
(ii) g(x 4-1) = g(x) +1,

(iii) g is bijective,
(iv) Both g and #~1 are continuously differentiate on R\Z, and one of them is

continuously differentiable at the integers TL as well.
(v) There exists a positive real number r such that

lim -^r- and lim

exist in R and are non-zero.
In this case, we say that g has order r.
For clarity we have not included functions with the inflection point not placed

at the origin, or functions which have more than one inflection point. We return to
these types later.

It is easy to see that G forms a group under composition; that if g e G has order
r, g~i has order r~1 and that i f/e G has order r and g e G has order s, then /o g
has order r - s. Also if we define ig(x) =—g( — x)ίorge G, then ig e G and has the
same order as g.

3. Two Questions

We now define fμtβ: R->R for μ e [0; 1] and g e G to be given by

/M(*) = μ + flf(*) (3.1)

The rotation number

W,(β) = lim -ff-gfoO-Xo (3.2)
n->oo H

is a continuous function of μ and g (in the C°-topology) and does not depend on x0

[15, 16]. As a function of μ, Wg(μ) creates a devil's staircase with a fractal
dimension D(g)^\ [12].

In this connection a question arises:

I: Does D(g) only depend on the order?

lίge C3(1R) and has the order r = 1, Herman has solved the problem affirmatively
[17]. The points μ with an irrational rotation number have a positive Lebesgue

1 From (ii) and (iv) we get that both g and g 1 are continuous, and by (ii) we conclude that g
induces an orientation preserving homeomorphism of the circle onto itself. The condition (v)
contains the Holder condition of degree r —[r] at zero, see e.g. [15]
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measure and that means D(g) = 1. In the special case where

1 4 1
g(x) = x— — -(sin2πx + αsin32πx),- <a< -, (3.3)

2 π 3 6

i.e. the order r = 3, the question is analyzed in [10], and it seems that D(g) = 0.87
independent of α. 2

We assert the following:

Theorem 3.1. // g E G, then D(g~l} = D(g) = D(ig).

Proof. Call(μ,θί,...,θn)z™cydeϊorgiffμ,g(θi) = θi+1 for ί^ί<n and fμtβ(ΘJ

= θί+m.

The theorem follows then from the next two lemmas, and the fact that a map

has rotation number — if and only if it has a — cycle [16].

Lemma 3.2. // (μ, Θ l 5 ...5θn) is α — cycfe /or #eG, ί/zerc (l—μ,g(θ1),g(θn) — m

--l) i s α ί 1-^j cycle for g~l.

Lemma 3.3. // (μ, Θ l 9 . . . , θn) is a — cycle for geG, then (1 — μ, 1 — Θ1? 2

-Θ2,...,n-θn) is a 1 - J cycle for ig.

The proofs of the two lemmas are left for the reader.
If we accept the answer to question I to be affirmative, we have

where r belongs to #. Under these circumstances we ask another question.

II: Let z^— |ln r|, where r belongs to /e G and z^ = |ln s|, where s belongs to g EG.
Is D(zf + zg) equal to D(zf) - D(zg)?

If / and g both belong to one of the semigroups {# eG| order ̂ 1} or
{# eG| order rgl}, we can reformulate the question:

IΓ: I s D ( f o g ) = D(n.D(g)?

Question I is then the special case where f = h°g~l has zf = Q.
To treat question II we define

ίr is extended to R by the condition (ii). Then gr e G, and gr has the order r.

2 If α is chosen to be 1/6, the related number will be r = 5, and the fractal dimension has been
calculated to be D~0.81 [11]
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To calculate the fractal dimension, we put down a grid of points μt = i/J,
0 ̂  i ̂  J and calculate for each μt an approximation W(μί) to the rotation number
of /μ.50r as follows: It is easy to see that /μ>gr has a ° cycle if 0^μ^ω0 5 and
a j cycle if 1 -ω0>5 ̂ μ^ 1, where

Thus, we put W(μϊ) = 0 for 0 ̂  μf ̂  ω0.5 and W(^) = 1 for 1 - ω0.5 ̂  μt^ 1. For the

remaining μ/s, we put W(μt) equal to — times the integer part of / r̂(0), with M

chosen substantially larger than J (to reduce the round-off error in computing
/μ ĝr(0), we kept successive iterates /μiϊβr(0) in [0, 1] by reducing by 1 whenever the
value exceeded or reached 1 and keeping track of the number of times we did so).

Now let S( J) denote J times the sum of the lengths of all stability intervals of
length greater than 1/J, and put N(J} = J — S(J). Our procedure for estimating the
fractal dimension D is based on the fact that

N(J)~JD. (3.6)

What we actually compute, however, is S"(J), the number of Γs such that W(μί + ί )
= W(μi), which approximate S(J). More precisely: The difference S(J) — S'(J) will
at most go like A(J), the number of stability intervals of length greater than 1/J.
However, it is easily seen that

A(J) = S(J) - ί d J ~ JD . (3.7)
j

τhus> AT V) - J - S'(J) - JD . (3.8)

In Fig. la ΛΓ(J) is plotted versus J in a double-logarithmic plot for several
selected values of the order r. The number of iterations M is consequently chosen
to be ten times the value of J, but this is not essential [in fact, even though M in
some cases has been varied up to 105, a change in N'(J) is never observed]. The
slopes determined from Fig. la are listed in Table 1 together with the fractal
dimensions found for other values of r. It is noticed that the results for r = 3 and
r = 5 are in accordance with [10] and footnote 2.

In this connection we have in continuation of Eq. (3.3) considered the map

(3.9)
2π

in the four cases (α, b, c) = (0, 0, 0), (1/6, 0, 0), (1/6, 3/40, 0) (1/6, 3/40, 5/1 12), where
0 f l > b > c has the order r = 3,5,7,9 respectively. Figure Ib shows N'(J) versus J for
these maps (in the calculation ω0 5 is replaced by the first instability points, i.e. l/2π
for r = 3, 7/12π for r = 5, 149/240π for r = 7, and 2161/3360π for r = 9). The slopes
found are in agreement with the slopes found for gr in Fig. la.

We point out that the branches of gr are connected at x = xc = ̂ , thereby
making \ like a symmetry point, as is the case for the sine map (3.9). We have
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Fig. la and b. N'( J) plotted versus J in a double-logarithmic plot for different values of the order.
The fractal dimensions are obtained as the slopes of the lines found from a least square fit. ag = gr

given by (3.4). b g = ga,b,c given by (3.9)

Table 1. The fractal dimension D for several values of the order r

r 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0
D 1.00 0.950 + 0.005 0.915 0.87 0.83 + 0.01 0.81 0.80 0.78
r 8.0 9.0 12 14 16 20 26 40
D 0.77 0.75 0.73 0.72 0.70 0.68 + 0.015 0.66 0.64

therefore in continuation of question I also calculated the fractal dimension for the
functions

0<x<x,
(3.10)

\hXc is extended to R by (ii)] ;hXceG with order r and with connection point xc. The
fractal dimension was obtained for r = 3, 5 and for xc = 0.1,0.2, 0.3,0.4, and 0.5 (by
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Fig. 2. The fractal dimension D as a function of the number z = |lnr|, where r is the order. The
vertical axis is logarithmic. The slope is determined to be 1/8

Theorem 3.1 we can take xc^0.5) and the results were found to be the same,
namely D(hx) = Q.W for r = 3 and D(hx) = OM for r = 5. [The computation is
performed as before, one just has to replace ω0>5 by ωXe = 2xcω0fS and 1 -ω0 5 by
l-ω^Xc = ί- 2(1 - xc)ω0.?.]

In Fig. 2 the set of points (r, D(z)) given in Table 1 is plotted on double-
logarithmic paper. Within the computational uncertaincy we find that the points
quite nicely follow a straight line with slope α~ 1/8. This means that D(z)~e~αz,
and question II is confirmed.

4. The Extended Group G^

As mentioned earlier there are of course still "relevant" functions which do not
belong to G, e.g. it is evident that the considerations above can be generalized by
allowing the inflection point to be somewhere other than at the origin, the fractal
dimension remains independent of such a removal. This is also the case if the map
is contracted by some integer, e.g. the sine map (3.3) with a= — f is just the sine
map with a = 0 contracted by a factor of three.

In the light of this we can extend G to a larger group of functions G^ by making
the conditions (iv)-(v) weaker; namely by considering maps g with any finite
number of inflection points in [0; 1], each of these inflection points satisfying the
appropriate modification of condition (iv) and (v) but with different orders ri

allowed at the different inflection points. We speculate that, in this case, the fractal
dimension will depend only on the maximum of z = \ln(ri)\.

5. Circle Maps not Belonging to G^

Finally we mention some examples of maps not belonging to G^.
1) /(χ) = 1 -α(l -x) for xe[0; 1[, αe[0; 1[ and / is extended to 1R by the

condition (ii).
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This case has been investigated by Sόderberg [18]. The stability intervals
/m\

Δ ί — 1 can be calculated analytically and turn out to be independent of m:

The sum S of all stability intervals is given by a Lambert series [19]:

with

Φ(α)= £ Φ(n)^-n (5-2)
n= 1 1 — (X

Φ(α) is the generating function of the Euler function φ(n\ g(n) = nis the Mobius
transform n φ(n) and

Σ rcαn = α/(l-α)2. (5.3)
n=l

Hence,

Φ(α)-α/(l-α)2 and S=l , (5.4)

saying that the staircase is complete. Then because Δ ( — ) decreases exponentially,
the fractal dimension is zero. \n'

Once case 1) is solved, case

9\ L( \ _ |° for

2) h(x)- 1)/α for 1_α^

where h(x) is extended to IR as before, is too, because h °f = Id, and Lemma 3.2 will
do.

3) / satisfies (iHϋi)> and is a continuous piecewise linear function with a finite
number of elbows in [0; 1]. Recently, Henley has considered this case [20]. In
particular the situation where the product of the slopes is one was investigated.
Even though / is a limit of a sequence of functions /„ e G all with order r = 1 , the
staircase Wf(μ) will be complete and the fractal dimension will depend on the
slopes. If we, for example, in the unit interval [0; 1[ take

where α< 1 < β and x0 is the connection point, x0 = (/?-!)/(/?-α), we get by the
same procedure as used in Sect. 3 that £>(/) ~ 0.92 for (α, β) = & 2) and D(/) - 0.81
for (α,/?) = (l/8,2). This shows the importance of the condition (iv).

In conclusion, the scaling behaviour at the transition to chaos in phase-locking
systems described by one dimensional circle maps is believed to be universal
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for a large group of functions. For maps belonging to this group there is, in the light
of numerical calculations, suggested a value of the fractal dimension of the devil's
staircase determined by the rotation number.

Acknowledgements. I am indebted to M.T. Levinsen, P.V. Christiansen, and M.H. Jensen for
informative discussions.
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