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The Effective Potential as an Energy Density:
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Abstract. An explicit formula is given relating the effective potential in a finite
volume P(φ)2 quantum field theory to the expected energy density under the
constraint of a fixed average field. In the one phase region, i.e., where the classical
potential equals its convex hull and has nonvanishing second derivative, it is
shown via a central limit theorem that in the infinite volume limit the effective
potential is equal to the constrained energy density, provided h is sufficiently
small.

1. Introduction

The effective potential in a quantum field theory is the Legendre transform of the
generator of the connected Feynman vacuum graphs. In [2] it is argued that the
physical meaning of the effective potential evaluated at the classical field a is the
expected energy density under the constraint that the average field has value a. In [6]
a heuristic argument using functional integrals is given in support of this physical
interpretation. Steps are taken towards making this interpretation rigorous in [9].

Since the constrained energy density is in general not convex in finite volume,
while the effective potential is convex, the two quantities cannot in general be equal
in finite volume. In Theorem 1 below, an explicit formula is given relating the
effective potential of a finite volume P(φ)2 theory to the expected energy density
under the constraint of a fixed average field. In Theorem 2 below, it is shown using a
central limit theorem that in the infinite volume limit the two quantities are equal in
the one phase region, provided h is sufficiently small.

We now introduce the notation. Let P be a polynomial of degree greater than or
equal to four which is bounded below, and let m > 0. For μelR, let

The classical potential of the model is then U0. The one-phase region is the
complement of the set B, defined as follows:

B = (αeR: U0(a) / (conv(70(α)} " u {αe(R: t/S(α) = 0},

where convU0 denotes the convex hull of ί/0. Let dμ be the Gaussian measure on
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^'(IR2) with mean zero and covariance ( — Δ + w2)" *, where Δ is the Laplacian on
(R2 with periodic boundary conditions on the boundary of a rectangle Λ c [R2. The
partition function is given by

ZΛ(μ) = j exp [ - j (: Uμ(φ(x)): - ±m2 : φ(x)2:)dx\dμ,
A

where the Wick dots are with respect to ( — A + w2)"1.
The finite volume pressure

(1.1)

is the (negative) expected energy density in the presence of an external field μ. The
finite volume effective potential corresponding to the classical potential C/0 is given
by

FΛ(α) = supDια-pΛ(μ)], (1.2)
μeR

where the classical field a is a real parameter. In the infinite volume limit, the
pressure is given by

p(μ)= limpΛ(μ),
Λ T R 2

(the limit is shown to exist in [8]), and the effective potential by

V(a) = lim VΛ(a) = sup [μa - p(μ)]. (1.3)
Λ|R 2 "eR

(It is not hard to see that the limit and supremum may be interchanged.)
The dependence of the effective potential on h has not been made explicit, but

since we will want to consider small ft, we point out that VΛ depends on h through
pΛ, whose h dependence is obtained by multiplying the covariance in ZΛ by ft,
multiplying the interaction in Z A by ft ~ 1 , and multiplying the logarithm in ( 1 . 1 ) by ft.

Since pΛ and p are strictly convex by Holder's inequality and results of [5]
respectively, and since ±DμpΛ(μ) and ±Dμp(μ) can be made arbitrarily large by
taking Λ and ±μ large [12], the suprema in Eqs. (1.2) and (1.3) are attained
respectively at the unique μΛ(a) and μ(α) satisfying DμpΛ(μΛ(a)) = a and
αe[D~p(μ(α)), Dμp(μ(ά))~], where D(

μ

±} denotes the (right) left derivative with respect
to μ. It is not difficult to show that lim μΛ(a) = μ(ά).

Λ\R2

Let

dvμtΛ = ZΛ(μΓ l exp[- f (: Uμ(φ(x)): - ±m2:φ(x)2:)dχ-]dμ.
A

Denote expectations with respect to dvμtΛ by < >μ,Λ an<^ ^et
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where φ(Λ) = J φ(x)dx. Let
A

and define distribution functions

Fμ.Λ(4 = <ΪDA(a}>μ.Λ and GμιΛ(a) = ̂ AμtΛ{a)yμ,Λ. (1.4)

These distributions have analytic densities,

d d
/μ,/ι(0) = ̂ FM,Λ(«) and 0μ>Λ(α) = ̂ Gμ,Λ(α),

as can be seen by translating the field in (1.4) to move the a dependence from the
characteristic function to the action, see Sect. 4.

Formally fμ.A(a) = (δ((l/\Λ\)φ(Λ)-ά»μtA, i.e., -(1/|Λ|) ln/0,» is the
expected energy density under the constraint (l/\Λ\)φ(Λ) = a. The main results of
this paper are the following two theorems.

Theorem 1. FΛ(α)= -(l/|Λ|)ln[/0.Λ(α)//μΛ(β>)],/or all αeR.

Theorem 2. Fix aφB. For h sufficiently small,

In particular, V(a) = — lim ——-ln/0ιΛ(α).

The proof of Theorem 1 is elementary and is given in Sect. 2. We now discuss the
method of proof of Theorem 2. For aφB and small ft, UμΛ(a) has a uniquely attained
global minimum, with positive curvature. Decreasing ft corresponds to increasing
the difference between the location and value of a local minimum of h~1U {a)(hil2φ)
and the respective quantities for the global minimum (scaling φ -> hll2φ removes the
ft dependence from the covariance). In this situation, the cluster expansion of [11]
(see [4] for related results) applies, and the field variables are weakly dependent in
the sense that σΛ(μΛ(a)) ~ \Λ |1/2. Using this behavior of the standard deviation, a
central limit theorem is proved in Sect. 3 for fluctuations of φ(Λ) around its expect-
ed value a\A , i.e., for Gμ (a)Λ. The linear volume divergence of more general
truncated correlation functions is used to obtain a local central limit theorem of the

form gμ (aιλ(0)-> l/^/2π. This proves Theorem 2 since

Theorem 2 shows that in the one phase region f0tΛ(a)~exp[- V(a)\A |]. In the
two-phase region different behavior is expected. For example, for small ft there is

spontaneous magnetization approximately equal to 1/^/8 in the P(φ)2 model with

classical potential (φ2 - 1/8)2 [7], so V(a) = 0 on an interval close to B = [- 1/^/8,

l/ y/8]. It is expected that — (1/|Λ |)ln/0ιΛ(α) is a double well whose barrier flattens
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out to V(ά) = 0 in the infinite volume limit. However, the methods of this paper do
not apply to the study of the two-phase region.

In the two-dimensional Ising model, numerical computations [10] support
asymptotic behavior of the form exp[ — c\Λ |1/2] for an analogue of/0>/1(α), in the
two-phase region.

2. Proof of Theorem 1

The proof uses the approach used in [9]. Fix aeU and ε>0, and let CE(a) =
{φ:a^(l/\Λ\)φ(Λ)<a + ε}. For any μ,

and hence, if μ ̂  0 then

If μ < 0 the upper and lower bounds are reversed. Taking μ = μΛ(a) and letting εj.0
gives

3. The Central Limit Theorem

Differentiating the equation

with respect to α and setting μ = μΛ(a) gives

For h small, it follows from results of [11] that μ(α) (and hence, for large A, μΛ(ά)) is
close to its classical value. For aφB this classical value is the unique μ such that Uμ

attains its uniquely attained global minimum at α, and there is positive curvature at
that minimum. Hence, for aφB and h small, the high-temperature cluster expansion
of [11] implies that σΛ = σΛ(μΛ(a))~\Λ\1/2, and as we show below, that |0Λ(0)|,
|g'Λ(0)| and |0'^(x)l are bounded uniformly in A and x in a compact set, where here
and in the following we use a subscript A to denote the pair μΛ(a), A. The fact that
σΛ~ \A |1/2 will be used to prove a central limit theorem for GΛ(a\ which together

with the bounds on the density gΛ will be used to show that lim#Λ(0) =

In view of Eq. (3.1), the fact that σΛ~\Λ 1/2 and lim0Λ(0)= l/Λ/2π proves
A

Theorem 2. In this section we show that lim#Λ(0) = l/>/2π given the above bounds
A

on gΛ and in the next section we establish these bounds.
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Proposition 1. Fix aφB. For h sufficiently small,

Proof. This type of result is discussed in [1]. As above, we write GΛ for GμΛ(a]Λ, etc.
By Taylor's theorem, the characteristic function gΛ of GΛ satisfies

Now σΛ~\Λ\il2 and

(φ(Λ} φ(A) φ(A)yμ(a)+(ίkΊσΛ)Λ = 0(\Λ I),

if h is sufficiently small, by results of [11]. Taking Λ |R 2 in Eq. (3.2) gives lim

gA(k) = e~k2/2 (uniformly on compact sets) and hence Λ

t 1 ί

lim f gΛ(x)dx = -r— ί e
• s J2π Λ,Λ — oo

Proposition 2. In the setting of Proposition 1, suppose that 10^(0)1, Io6i(0)l and I
are bounded uniformly in Λ and x in a compact set. Then

Λ

Proof. By Fourier inversion,

1 A

= — lim j (gA(k) - <

A

We show below that l/2π lim J gΛ(k) = gA(G) uniformly in A. Thus given ε > 0, B
A-* ao — A

can be chosen large enough that

1

The proposition now follows from the fact that §Λ(k) -> e k2/2 uniformly on compact
sets. Λ

We now verify that l/2π lim J gΛ(k) dk = gΛ(0) uniformly in Λ. To begin,
Λ-»oo -A

1 A 1 oo

— J 8Λ(Wk-gΛ(0) = - ί toΛ(x)-»Λ(
Z7C - ^4 7Γ - oo

π -α x

1 sin yίx
+ - ί (^W
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Now,
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l/2|£-
9A(x] dx+-gΛ(ΰ)

I oo I

= ™L9*(x]dX + π

sin,4x

ί
s n x

(3.3)

By choosing α large the right-hand side of (3.3) can be made arbitrarily small,
independently of A and A ^ 1, provided gΛ(0) is bounded. To deal with I ί 9 let

Then

IΛI=- J hΛ(x)sinAxdx

hΛ(x)cosAx + τ ί f c '

which can be made arbitrarily small by choosing A large if | h Λ( ± α) | and | h'Λ(x) \ are
bounded, |x| ^α. These bounds follow from the hypotheses on gΛ,

4. Bounds on gΛ

In this section we complete the proof of Theorem 2 by establishing the bounds on gΛ

used as hypotheses in Proposition 2. As discussed in the last section, there is a
convergent cluster expansion for small ft, and hence [3]

We show how this linear divergence of the truncated correlation functions implies
the bounds on gΛ.

Translation of φ in GΛ(x) by xσΛ/\Λ |, followed by differentiation with respect to
x and translation of φ by — x σ Λ / \ Λ \ , gives

(4.2)

Further differentiation with respect to x performed before the second translation,
followed by translation of φ gives

and
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+ <1W-W>)(0:)>J. (4-4)
Λ

Each term on the right-hand side of (4.2)-(4.4) can be bounded uniformly in x and Λ
using the Cauchy-Schwarz inequality to separate the characteristic function from

the derivatives of UβΛ(a)9 Eq. (4.1), and the fact that <J: 1/^(0): >M = 0 (because
Λ

< J:l/;W>):>μ > / l is proportional to (d/dx^e-ί^^^'-1^2'^ dμ = (d/dx) ZΛ(μ) = Q).
Λ

For example,

Using the abbreviation ' ' = — J : U'μ'^a)(φ):, the right-hand side of (4.5) is bounded
Λ

above by

using (4.1) in the last step.
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