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Abstract. SU2-valued lattice gauge fields are studied on a 4-dimensional
simplicial lattice. If u has sufficiently small plaquette products, then there is a
unique principal SU2-bundle ξ admitting transition functions, defined on the
intersections of adjacent dual cells, which take values within π/8 of u. An
algorithm is explicitly given which associates an integer to every u off a certain
set of measure zero. This algorithm only involves evaluation of 4x4
determinants and the solution of quadratic equations. When u is as above, the
integer produced is the second Chern number of ξ, i.e. the topological charge
of u.

1. Introduction

This article has a theoretical and a practical side. It analyzes the circumstances
under which an SU2-valued lattice gauge field determines a principal SU2-bundle,
and it also presents an explicit algorithm which then computes the second Chern
number of that bundle, the topological charge, directly from the lattice data. This
algorithm, which involves no more than 4x4 determinants and the solution of
quadratic equations, has been used (in joint work with Gordon Lasher) for a
Monte Carlo calculation of topological susceptibility; the details and results are
reported elsewhere [15].

For early work on this problem, see [5,6], and also [13,17]; our work grew out
of an attempt to find an appropriate mathematical context for Martin Lϋscher's
construction [18]. Lϋscher's algorithm has recently been programmed [9]; other
topological charge algorithms have been given in [14, 24, 30, 31], and have been
discussed in [21, 22].

Lattice gauge fields were introduced by Kenneth Wilson in 1974 [29] (see also
[25]) to represent classical field configurations in Monte Carlo evaluations of path
integral solutions of quantum field theories. Here is the context. (We shall assume
for simplicity in this work that we are dealing with a compact space-time X; as
usual, the time coordinate has been rotated in the complex plane to give X a
Euclidean metric.) Let us fix a compact Lie group G. The set of gauge fields on X
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with group G, which is the set over which the Feynman-type integration would
have to be carried out, has the following properties. It has (in general) infinitely
many connected components, one for each principal G-bundle over X. Each
connected component is the space of gauge fields, or connections, in the
corresponding bundle. As a function space it is infinite-dimensional. Wilson
replaces X with a finite cell complex, or lattice, A (cubical in his formulation),
admitting as variables only the symbols associated to the various-dimensional
cells of A; in all, a finite collection. A gauge field on X is represented, once fiber
coordinates have been chosen at the vertices α, β,... of A, by the parallel transport
it induces along each l-cell <αβ> of A. This corresponds to an element uaβ of G
(these "transporters" clearly satisfy uβ(x = u~β

x) and any such assignment u of group
elements to 1-cells is called a G-valued lattice gauge field on A. Thus the infinite
collection of infinite dimensional function spaces has been replaced by the
compact, finite-dimensional set Gx ...xG, one factor for each l-cell in A.

Mathematically speaking, this procedure is somewhat mysterious, and it
seemed all the more so when for G = SU^ one of the quantities calculated by
integrating over Gx ...xG (i.e., computing the path integral) was the topological
susceptibility <ζ)2>/Volume; Q is the topological charge, which is known to be a
bundle invariant, in fact equal to the second Chern number. Does this mean that a
non-trivial bundle can be defined without reference to coordinate systems? The
answer is almost yes.

First of all it is fairly obvious that since Q is an integer-valued function on the
connected space Gx ... x G, any reasonable algorithm assigning bundles to lattice
gauge fields must be discontinuous on some subset K of G x ... x G, and locally
constant elsewhere. It turns out that once an appropriate set K has been excluded,
then every remaining lattice gauge field can be interpreted as determining a
principal G-bundle over A, and therefore as having a well-defined topological
charge. This is proved in [23] for G=U1 (see also [10]); there the definition of K is
very simple: a lattice gauge field belongs to K if any one of its plaquette products
equals —1.

The corresponding statement for G = SU2 is the main theoretical result of this
work. In this case it is most convenient to work with a simplicial lattice [2-4, 7]
(this greatly simplifies the dual geometry); the plaquettes are now triangular. The
set K still has measure zero, but its definition is less simple and perhaps less
natural, because the algorithm we use to construct a bundle from a lattice gauge
field requires additional information: the choice of a local ordering o of the vertices
of A. The excluded set K depends on o, and a single lattice gauge field may
determine different bundles with different orderings; see Example 3.20. (It may be
that such a choice is unavoidable in working with a non-abelian gauge group; for
evidence, besides the other topological charge algorithms referred to above, see
[16]. This pathology does not occur with lattice gauge fields which are sufficiently
smooth: we will prove that then there is an algorithm-independent closest principal
SU2-bundle. Here is the exact statement. (Complete definitions are given in
Sect. 2.)

Theorem A. Let u be an SXJ2-valued lattice gauge field defined on a 4-dimensίonal
simplicial complex A. Suppose u satisfies hypothesis HI or the stronger H2.
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HI. The product of the transporters along any simple closed edge path in any
simplex of A is within π/8 of the identity.
H2. Each plaquette product ofn is within π/24 of the identity (distances are in the
unit-sphere metric on SU2)

Then there exists a unique principal SU2-bundle ξ with the following property:
ξ can be trivialized over the ^-dimensional dual cells {cμ} of A in such a way that,
for each pair α, β of adjacent vertices, the transition function ι;α/?:cαnc/9->SU2

relating the fiber coordinates over cα and cβ takes values in the ball of radius π/8
about the transporter uaβ.

The proof of this theorem occupies Sect. 2 (existence) and Sect. 3 (uniqueness)
below. The existence proof uses an explicit algorithm to construct a set of
transition functions. In addition we will prove (Theorem 3.6) that, under the
hypothesis derived from HI by replacing π/8 with π/2, the bundle produced by this
algorithm does not depend on the local ordering. The π/2 bound can be weakened
slightly; see (3.19); but Example 3.20 shows a lattice gauge field satisfying HI with
π/8 replaced by approximately 2π/3, to which our algorithm, with two different
orderings, assigns two different bundles.

Our more practical results solve the problem of identifying the bundle
constructed from an SU2-valued lattice gauge field by our algorithm, i.e. of
calculating its topological charge. This work is in Sect. 4. We will show that an
extension of our bundle-algorithm leads to a rule assigning an integer to every
lattice gauge field u in the complement of a larger set Kf (still of measure zero). This
integer is the second Chern number of the corresponding principal bundle, i.e. the
topological charge of u.

From the mathematical point of view, this study of lattice gauge fields yields a
new way of computing the second Chern number of a principal SU2-bundle ξ over
a triangulated 4-manifold M, if ξ has a connection ω; this method works almost
always when the curvature of ω is sufficiently small relative to the triangulation.
Namely, if M is triangulated as a simplicial complex A, there is a straightforward
way of using the linear structure of the simplexes of A and parallel transport by ω
to trivialize ξ over each dual cell cμ, once a fiber coordinate has been chosen at the
vertex μ. The set v of transition functions relating these trivializations is given by
t;α^(χ) = the group element (in the vertex β coordinate) reached by parallel-
transporting I (at vertex α) by ω along the broken path otxβ. Let paβ = {oίβynca

ncβ. If we define a lattice gauge field u on A by u^ = v^(p^) (this is in fact the
standard way of constructing a lattice gauge field from ω) then u and v will be
related as in the conclusion of Theorem A as soon as (*) parallel transport by ω
around the triangular path axβcc takes / back to within π/8 of itself, for every x in
cac\Cβ. Then the uniqueness part of Theorem A guarantees that the integer
calculated by applying the algorithm of Sect. 4 to u is in fact C2(ξ). This should be
compared with the usual calculation [8, 19] of C2(ζ) from ω, namely

ί2) = (-l/4π2) J detΩ,
M M

where Ω is the curvature 2-form of ω. The algorithm rejects a measure-zero set of
u's, hence the "almost always" above.

It is fairly clear that (*) can be guaranteed by controlling Ω. More precisely, let
T represent the triangle with edge-path dT=ocxβa. Then the element reached by
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parallel-transporting / around dT may be written as P J ω, where Pj represents
dT

the path-ordered or "product" integral. There is a product-integral version of
Stokes' Theorem [20,26], which we may write symbolically as (**) P J ω = P j'j" Ω.

dT T

The point is that if we choose a Riemannian metric on M, and let ||Ω||(p)
= sup \Ω(v, w)|, where for A e su2, written as A = ̂ i + α j + ̂ 3^, Ml = (Σ α ?) 1 / 2 a n ( l
the supremum is taken over all orthonormal pairs v, w of tangent vectors at p, then
it is straightforward to deduce from (**) that the distance from I to P J ω is
bounded by JJ||Ω||<L4. dT

T

Remarks on the Method of Proof

It will become clear to the reader that our theoretical and practical results are all
attained by the same general proof-scheme. The scheme is quite simple, although
the details of its implementation become somewhat elaborate. It has three parts.

Part one is the interpretation of a lattice gauge field u as giving, for each pair ca9

cβ of adjacent dual 4-cells, the value of a transition function vaβ: cΰcr\cβ^SU2 at the
point paβ, where the bond <αβ> intersects cancβ:

(see Fig. 2.1). The problem is then to extend this one value to a function defined on
all of cancβ, in such a way as to satisfy the cocycle condition on triple intersections,
while staying as close to uaβ as possible.

Second, one attacks this problem separately inside each 4-simplex σ containing
α and β. Inside cancβnσ the form of the expression giving vaβ depends on the
relative position of a and β in the ordering induced by o on the vertices of σ; the way
it depends is dictated by the "as constant as possible" principle: if α and β are order-
adjacent in σ, then vaf} = u^ on cancβnσ; if there is exactly one vertex y order-
intermediate between them, then vaβ only varies, on car\cβr\σ, as a function of the
(modified) barycentric coordinate corresponding to y; etc.

Third, the way vaβ varies with whatever barycentric coordinates are required by
the second part is determined geometrically and consists in mapping straight lines
in σ to unique shortest geodesies in SU2, proportionally to length. A configuration
will belong to the set K precisely when the unique shortest geodesies required here
do not exist.

This scheme, which will be explained in detail in Sect. 2, is applied to the
complex A in order to define the bundle determined by a lattice gauge field; to the
augmented complex A (the cone on A\ defined by adding a new vertex and
connecting it to all the simplexes of the lattice, in order to calculate its topological
charge (the resulting algorithm is computationally efficient because Parts 2 and 3
of the proof-scheme above are geometrically so simple); and to the product
complex A x [0, 1] whenever it is necessary to prove that two bundles are the same.

2. Statement and Proof of the Existence Theorem

2.1. The main problem underlying the work in this section is the reconstruction
(when possible) of an SU2-gauge field from an SU2-valued lattice gauge field
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A

'aβ

Fig. 2.1. Relationship between an SU2-valued lattice gauge field u and a coordinate SU2-bundle v

defined on a 4-dimensional simplicial complex A. (At the end of Sect. 3 we shall
indicate what modifications are necessary to extend this work to other gauge
groups and higher-dimensional complexes.)

What we actually construct is an intermediate object.

2.2. Definition. Given a simplicial complex A and a Lie group G, a coordinate
G-bundle v on A [27] is the assignment, to each pair α, β of adjacent vertices, of a
continuous map υaβ: cancβ^>G defined on the intersection of the corresponding
dual cells. These maps must satisfy the cocycle condition:

ta(x) = M x ) X f θ Γ X^CaΠCβ, (2.2.1)

A coordinate bundle v is in fact a mixed topological-geometric object: it has an
underlying principal bundle ξ, and it determines a connection in ξ up to the choice
of a partition of unity [1, 23].

2.3. Our construction of v from a lattice gauge field u requires some additional
information: a local ordering o of the vertices of A, i.e. a partial ordering of the
vertices in which the vertices of every simplex are totally ordered.

2.4. Notation. If α, β, γ,..., δ, ε are vertices of a simplex of A, the notation uaβy δε will
represent the product uaβuβy...uδε. Furthermore if σ is a simplex of Λ, uo(σ) will
represent the product uaβ ζα, where a<β<...<ζ are the vertices of σ as ordered
by o.

We identify SU 2 with the group of unit quaternions; geometrically this is the
unit sphere in R4. We denote the distance between X and Y in the unit-sphere
metric by d(X, Y). The identity element of SU 2 is represented by / or 1.

If a and β are adjacent vertices, let paβ = (oίβyncar\cβ be the point where the
bond between them intersects the common face of their dual cells. (Note that we
are using the topological dual, described explicitly in (2.9) below, and not the
metric dual of [2], so each simplex intersects its dual in its barycenter. For the
random lattices of [2], the two duals are isomorphic complexes, but their relative
positions with respect to a given lattice may be different.)

2.5. Theorem. Let u be an SU2-valued lattice gauge field on a simplicial complex A,
and let Abe a positive number, A ^ π/2. Suppose that there exists a local ordering o of
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the vertices of A such that, for every simplex τ of A, d(I, uo(τ)) < A. Then there exists
a coordinate SU2-bundle v on A such that

vaβ(Paβ) = Kβ for every adjacent pair α, β, (2.5.1)

d(vaβ(x), uaβ) < A for every x e cΛncβ. (2.5.2)

2.6. Remarks. 1. The existence part of Theorem A follows from Theorem 2.5 (with
A = π/8). Since balls of radius A < π/2 in SU 2 are geodesically convex, Theorem 2.5
will be an immediate consequence of Theorem 2.8 below.

2. The problem of constructing an SU2-coordinate bundle from u would
become trivial, and its solution meaningless, if we required only that v satisfy
(2.5.1); because in fact, given any principal SU2-bundle ξ on A, such a coordinate
bundle v can easily be constructed for ξ.

3. The variation A of vaβ on cancβ cannot be made arbitrarily small while
preserving (2.5.2) and (2.2.1). Suppose for example that there were a plaquette
(ocβγ) in A such that d(I, uaβyo)^ 3A. Then (2.5.2) and (2.2.1) would imply that, for

x G cancβncγ, d{vaβ{x)vβy{x)vyΰL(x\ uuβya) = d(I, uaβw) < 3A ,

giving a contradiction.
4. The v promised by this theorem is produced by an algorithm with a larger

domain of application (see below). Moreover the exact nature of the functions vaβ

generated by this algorithm is important, since it will allow a simple calculation of
the topological charge of the underlying ξ.

2.7. Definition. Given a 4-dimensional simplicial complex A, and a local ordering o
of its vertices, let K(o) be the set of SU2-valued lattice gauge fields on A which fail
to satisfy the following condition:

Continuity condition with respect too: On every 4-simplex σ = <01234> (the vertices
are o-ordered by their numbers), one or the other of these conditions is met by u: (If
A does not have the property that every simplex is a face of a 4-simplex, additional
analogous conditions should be added for the lower-dimensional simplexes.)

Condition A(o). Each of the following five sets of elements of SU 2 is linearly
independent in R 4 :

U) I 9
 W

0120>
 W

01240?
 W

012340>

(~) <* 5
 W

0140>
 W

01240?
 W

012340>

(3) I,
 W

0140>
 W

01340>
 W

012340>

W I,
 w

03409
 W

01340?
 W

012340?

(5) I,
 w

03409
 W

02340>
 W

012340

Condition B(o). For each 2,3 or 4-face τ of σ,

d(I,uo(τ))<π/2. (2.7.1)

(I.e. the sixteen elements u0120, ...,u1231,..., u012340 are all within π/2 of the
identity.)

Note that K(o) is gauge-invariantly defined; furthermore, it is a set of measure
zero in the space of all lattice gauge fields on A, if that space is metrised as
SU 2 x ... x SU2, one factor for each bond.



Calculation of Topological Charge 605

2.8. Theorem. Suppose u does not belong to K(o). Then there exists a v satisfying

v*β(P*β) = u*β (2-8-1)

and the following condition.

If xecanCβnσ, letn be the number of vertices of σ which are
o-between α and β. Then v^(x)u~^ is in the geodesic convex
hull of the 2n points uo(τ\ where τ = <(α.../?) is a face of a with
lowest-ordered vertex a and highest-ordered vertex β. (2.8.2)

[The B(o) part of the hypothesis can be weakened slightly; see (3.19).] Theorem
2.8 will be proved after we have set down some additional definitions and
conventions about notation.

2.9. Notation Regarding A; Modified Barycentric Coorindates; Geodesies. In this
section we use α, β, γ, <5, ε, and λ, μ, v to denote vertices oϊΛ, and ρ, σ, τ for simplices
of dimension ^ 1. For the sake of simplicity we suppose that dimσ = 4 in the rest of
(2.9), but the terminology will also be used (with appropriate modifications) in case
dimσ<4 (and in later sections, when dimσ = 5). We write σ = (aβyδε}.

We will write τ-<σ to mean τ is a proper face of σ, and τ ^ σ when equality is
also allowed.

Set c% = canσ. With respect to barycentric coordinates ία, ...,ίε on σ, cσ

a

— {{ta, ...,tε):O^tβ, tv tδ, tε^ta}. We introduce modified barycentric coordinates
o n < . :

•Sλ = ί A f o r λ = β,γ,δ,ε.

Now let c°β = cancβnσ; this is the intersection of σ with the domain of the
transition function vaβ to be constructed. In modified barycentric coordinates, cσ

aβ

is identified with the 3-cube {(sγ, sδ9 sε): 0 ̂  sγ9 sδ9 sε ^ 1}. The faces of cσ

aβ are given
by requiring of one or more tλ that it be either 0 or equal to ία and tβ; this is
equivalent to requiring that the corresponding sλ be 0 or 1 respectively. In
particular the vertices of cσ

aβ are the barycenters of those simplexes τ such that
(aβy^τ^σ. The pairs of opposite 2-dimensional (maximal) faces of cσ

aβ can be
described thus (see Fig. 2.2): For each λ = y,δ, ε, set τ(λ) = the face opposite λ and set
cσaβλ = ̂ βncλ; then c ?/ ) = {sλ = 0} and cσ

Λβλ = {sλ = \) are opposite faces of c°β.
Set:

so d(fafi = d°ud\ and d°(cσ

aβ) = (faβ

We will need expressions for the intersections between 2-dimensional faces of
clβ. Let λ, μe{y,δ,s} be distinct, and set τ = τ(λ)9 τ' = τ(μ). Then

clβncτάβ = Caβ> w h e r e τ"

C<xβrλC0Lβμ = Caβμ'>

clβμ = (cancβncλncμ)nσ, denoted cσ

aβλμ.
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γ

Fig. 2.2. Modified barycentric coordinates on σ = (aβyδ)

(0,0,0)

We will also use the linear structure on cσ

aβ provided by the coordinates
(sγ9 sδ, sε) to express cσ

aβ as a cone with vertex the point paβ = (0,0,0), and base dxcσ

aβ

= {(srsδ,sε):m<ϊxsλ=l}. We write clβ = paβ*d1clβ.
When we speak of a geodesic g in SU 2 from X to Y we mean a path g: [0,1]

-> SU 2 such that g(0) = X, g(l) = 7, and g is a geodesic parametrized proportionally
to arc length.

2.10. Proof of Theorem 2.8. The theorem is proved by exhibiting an algorithm
which goes from u and o to a family v of functions υaβ :cancβ->SU2 satisfying
(2.2.1), (2.8.1) and (2.8.2). This algorithm will construct vaβ by piecing together
functions υσ

aβ: c°β-+S\J2, one for each triple σ, α, β, where α and jS are vertices of σ.

These functions will be defined inductively on the dimension
of σ, beginning with all σ of dimension 1. (2.10.1)

For a fixed σ it is enough to construct υσ

aβ when α o-precedes /?. Let n be the
number of vertices of σ which are o-between α and jS.

For a fixed σ, the functions vσ

aβ are constructed by induction
on n. (2.10.2)

The domain cσ

aβ of t;^ is parametrized by (sλ, ...,sμ, ...,sV 5...), where A,...
o-precede α, μ,... are o-between α and jS (there are n of these); and v,... o-follow jS.
(We will continue to use A, μ, v in this sense.) Let ρ = <α, μ,..., β} be the face of σ
whose vertices are α, ̂β and the w vertices of σ that are o-between a and 8̂. Then cQ

aβ is
parametrized by (sμ,...). Our algorithm has the following feature.

l ϊ ρ * σ , v σ

a β ( s λ , . . . , s μ , . . . , s v , . . . ) = v l β ( s μ , . . . ) . (2.10.3)



Calculation of Topological Charge 607

This feature expresses the "as constant as possible" principle mentioned in the
Introduction. In particular

When a and β are o-consecutive in σ, υσ

Λβ is constant and equal
to uaP. (2.10.4)

Finally, when ρ = σ, so that α is the o-first, and β the o-last, vertex of σ, then our
algorithm will use the conical structure c°β = pocβ * dίc^ίβ of (2.7). For every x e d1cσ

0Lβ,
vσ

aβ must map the generator paβx into the shortest geodesic g in SU2 from uaβ

= Kβ(Paβ) t 0 Kβ(*Y> m o r e explicitly,

vσaβ((l-s)paP + sx) = Q(s). (2.10.5)

The features (2.10.1-5) of our algorithm determine it completely. The
remainder of this proof serves to check that the procedure is coherent, that it yields
vaβ's satisfying (2.2.1), (2.8.1) and (2.8.2), and that it can in fact be carried out (i.e.
that the shortest geodesies mentioned in (2.10.5) actually exist).

Checking the coherence of the procedure means verifying

When (aβ}^τ<σ, then υσ

aβ\clβ = υτ

uβ. (2.10.6)

The cocycle condition (2.2.1) becomes

ι £ Λ W on < , , (2.10.7)

vlβ = <μv
σμβ o n <Zμβ, w h e n <κμβ>^σ. (2.10.8)

Conditions (2.8.1) and (2.8.2), describing how close v fits to u, become

vσ*β(p*β) = u a β 9 (2.10.9)

vσ

aβ{x) - u~β e convex hull{wo(τ): <αj8>=<τ=<σ} , for all xecσ

aβ. (2.10.10)

2.11. Checking the Algorithm. According to (2.10.1) and (2.10.2) we must proceed
by a double induction, first on dimσ, and then on dimρ. The initial step, dimσ = 1,
is given by (2.10.4); in that case υσ

aβ = uaβ. When we come to define υσ

Λβ with dimσ > 1,
we find that this function is already defined on some (or all) of the maximal faces of
c°β: by vτ

aβ on cτ

aβ for (<xβ}^τ-<σ and d i m τ ^ d i m σ - 1 [see (2.10.6)]; and by υσ

aμυ
σ

μβ

on cσ

aμβ for μ o-between α and β [see (2.10.8)].

2.12. Lemma. These functions agree on common intersections. Specifically,

vlβ = vτάβ o n cτ

aβncϊp; (2.12.1)

vlβ = vσaμVσμβ on clβncσ

aμβ; (2.12.2)

vσ

aμυ
σ

μβ = υσ

aμ.v
σ

μ,β on clμβncσ

aμ,β. (2.12.3)

In case Q + σ and we define υσ

aβ by (2.10.3), we must check that this is compatible
with the way vσ

aβ was prescribed above.

2.13. Lemma. When a + σ:

<β = vτ

aβ on clβ; (2.13.1)

vσaβ = vσ*μv
σμβ on clμβ. (2.13.2)

In case ρ = σ the only compatibility requirement is:
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2.14. Lemma. When ρ = σ, υσ

aβ — υτ

aβ on cτ

aβ.

2.15. Finally, in order to apply (2.10.5) we must verify that there is indeed a unique
shortest geodesic from uaβ to v°β(x) for every x in dιcσ

aβ\ in other words, that uaβ and
v*β(x) are never antipodal points of S3.

2.16. Lemmas 2.12-2.14 can be straightforwardly proved by an induction
argument following (2.10.1) and (2.10.2). What we shall do now is run through the
inductive construction of v from the beginning, concentrating on the general
position requirement just mentioned, and on checking (2.10.10).

The construction of the vlβs starts with

2.17. Dimσ = 1. This case is covered by (2.10.4): cσ

aβ is simply the barycenter paβ of
β> d 0 )

2.18. Dimσ = 2. We are assuming that every 2-simplex is a face of a 4-simplex, say
<01234> with its vertices so o-ordered. For example, σ = <012>. We first consider
the cases α = 0, β = 1 and α = 1, β — 2, following (2.10.2). In the first of these cases
ρ = <01>, and (2.10.4) applies:

VQί = vf)ί=u01 is the constant map.

Similarly vσ

ί2 = u12 is constant, too. We are left with the case α = 0, β = 2; here we
must apply (2.10.5). The domain of υ%2 is the 1-cube cσ

02, parametrized by sί. Its
boundary consists of two points: st = 0 at p=pO2 = co2> the barycenter of τ = <02);
and Sj = 1 at q = CQ2ι, the barycenter of σ (see Fig. 2.3).

p,

Fig. 2.3. Construction of VQ19 V\2, and vσ

Q2, when dimσ =

Now

by (2.10.6)
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vUΦσΛci) by (2.10.8)

We now need to know that (*) there is a unique shortest geodesic g 0 1 2 from u02 to
u012. The isometry, right multiplication by w20, matches these points with / and
u0ί20; either Condition ,4(o) [line (1)] or Condition B(o) shows that these two
points cannot be antipodal; the existence of g 0 1 2 follows. Finally, (2.10.9) and
(2.10.10) are immediate from the construction. [For the other 2-faces of <01234>,
similar arguments reduce the analogues of (*) to A(o) and J5(o).]

2.79. Dimσ = 3. Again, we assume every 3-simplex is a face of a 4-simplex, say
<01234>. For example, σ = <0123>. We start with vσ

ou where ρ = <01> has
dimension 1. By (2.10.4), VQ1(S29S3) = U01 is constant, and so are vσ

l2 = uί2 and v23

= u23.
Now consider υσ

029 where ρ = <012> is 2-dimensional. By (2.10.3), vσ

02(sus?)
= ^ O i ) = 9012(^1). Similarly, υσ

13(s0,s2) = §123(s2).
It remains to define vσ

03(su s2). Set τ = <013>, τ' = <023>. Then, by (2.10.6) and
(2.10.8), υσ

03 is determined on dcσ

03\

= 9013(^1), on cτ

03;

= υτό3(s2)

= 9023(^2) > o n cτ

03;

l)

3 ? o n cσ

032;

2)

), on cg 3 1 .

It follows from Lemma 2.12 that these maps, defined on the 1-faces of cσ

03, do
indeed agree at its vertices; in fact

To extend vσ

03 over cζ3 we are required by (2.10.5) to regard cσ

Q3 as a cone from
p 0 3 (where sx = s2 = 0) on 3 1CQ3 (where sί = 1 or s2 = 1), and to map generators into
shortest geodesies from VQ3(P03) = U03 to points of VQ3(dιcl3). It must therefore be
shown that (**) u03 is not antipodal to any point of ^ ( δ 1 ^ ) . Now 9 1CQ 3 consists
of two 1-cells, eg3 1 (where sί = 1) and cg3 2 (where s2 = 1). We shall show that u03 is
not antipodal to any point of VQ3(CQ31); the argument for CQ3 2 is completely
analogous. Under υσ

03, c
σ

031 is mapped into the geodesic w019123 from u0ίuί3 = u013

to u0ίu123 = u0ί23. Right multiplication by w3 4 0 takes the three points w03, u0139

u0123 to wO34o? woi34o?

 Moi234o βy Condition ^4(o) (line 4) these last three points,
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CONSTANT ALONG EACH LINE

Fig. 2.4. Construction of vσ

03, for σ = <0123>

and therefore the first three, are linearly independent in R 4; but if the great circle
through u013 and w 0 1 2 3 contained — u03 it would also contain u03, so the first
three points would lie in a single plane through the origin, contradicting linear
independence. Otherwise Condition B(o) implies that u03, uOi3, and u0123 lie *n

an open ball of radius π/2 in SU 2 — S3; and such balls are strictly convex. In
either case, we obtain the desired result. [For the other 3-faces of (01234),
similar arguments reduce the analogues of (**) to Λ(o) and J3(o).].

We may therefore define vσ

03 by (2.10.5). We shall also use the notation
I)oi23(5i>52) f° r Λis map. Its image (see Fig. 2.4) is the union of two geodesic
triangles in S3. As before, (2.10.9) and (2.10.10) are immediate from the
construction.

2.20. Dimσ = 4. Say σ = <01234>. Applying (2.10.3) and (2.10.4) as before, we
obtain the following.

are constant maps.
5 l ? 53? 54-) — 9 θ l 2 ( 5 l ) •>
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We turn finally to the definition of vl4(sί,s2,s3). On dcσ

04, vσ

04 is already
prescribed:

on d°cσ

04 by

VθΛSί > 52> 0) — 9θ 124(51 •> S2J9

on d1cσ

04 by

29s3)9 on c g 4 1 ,

^9012(^1)9234(53), on cσ

042,

1, S2)u3A.9 On Cσ

043.

(To show these are compatible, we appeal to Lemma 2.12.)
To extend ug4 over cσ

Q4 according to (2.10.5) we must join ug4(O,0,0) = u04 to
every point of ί;g4(31cg4) by a unique shortest geodesic; so we must show that no
such point is antipodal to u04. Now rg4(δ1cg4) consists of four geodesic triangles
and a quadrilateral, doubly ruled surface.

A typical one of the geodesic triangles has vertices u014, u0124 and w0i234 [this
one is half of ι;g4(cg41)]. By Condition Λ(o) (line 1) these three points together with
u04 are all in general position; by Condition B(o) all four lie in an open π/2-ball. In
either case it follows that there is, as required, a unique shortest geodesic from u04

to every point of the geodesic triangle. Thus we can carry out the construction of
(2.10.5) to extend vσ

04 over the join of p O 4 = (0,0,0) to the half of cg4 1 under
discussion. This argument shows how vσ

04 can be defined on the entire cone from
P04 on cg 4 1 ucg 4 3 .

2.22. It remains to be verified that there is a unique shortest geodesic from u04 to
each point of ug4(cg42).

Case 1. σ satisfies J3(o). The vertices of ι^04( c042) a r e wo24> woi24> ^0234? a n d woi234
These all lie in the open π/2-ball B about u04; for if we multiply the four vertices by
u40 on the right we obtain four "increasing" loop-products, which by B(o) are all
within π/2 of/. Since B is geodesically convex, the geodesies £0129234(0) from u024

to u0124 and QO129234O) fr°m wo234 to u0ί234 both lie in B. That is, for any s l 5

9012(^1)9234(0) and 9oi2(5i)9234(1) a r e in B. Hence the geodesic 9012(^)9234
between these two points also lies in B. In particular, for any s1 and s3, the point
9oi2(5i)9234(s3) i s i n B'> a n ( i therefore there is a unique shortest geodesic to it from
w04, as required.

Case 2. σ satisfies A(o). Suppose u04 were antipodal to some point of vσ

Q4(cσ

042).
Then we should have

9012(51)9234(53)= -wO4> f or some sγ and s3.
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dissected two ι ι n . / m m i H ι ι two
into simplexes U pyramid U ς i

two geodesic
K)1234 simplexes c o n e

l d

simplexes

two geodesic
simplexes

n e o n

ruled surface

su 2 U 0124-

Fig. 2.5. Geometry of the map f 0 1 2 3 4

 U 0 2 4 * UQ1234

0234

We rewrite this as

Now 9234M4o i s a segment of the geodesic circle S through w24w4O = w24o and
w234w40 = w2340> while ( c j o ^ ) 1 *S P a r t of the geodesic circle S" through UQ2 — ^20
and UQI2 = W2io We are thus supposing that S contains a point antipodal to some
point of S'; this implies that S and S' together lie on some geodesic 2-sphere in S3.
That 2-sphere, which is the intersection of S3 with a 3-plane through the origin in
R4, must contain the points u 2 4 0 ? w 2 3 4 0, w20, and w2 1 0, which thus have to be
linearly dependent. But if we multiply these four points on the left by u012 we
obtain u0ί240, ^012340? w 0 1 2 0, and /, which are independent by Condition ,4(o), line
1. This is a contradiction.

So in either case there is a unique shortest geodesic from w04 to every point of

^04(̂ 042)? a s required.
We will use the symbol t01234. for the extension of v^ to all of cσ

0Ar. Again,
(2.10.9) and (2.10.10) are immediate consequences of the construction. This
completes the proof of Theorem 2.8.

For use in Sect. 4, we remark that implicit in the definition of I 0 i 2 3 4 is a
partition of the cube c£>4 into four simplexes and a square-based pyramid (see
Fig. 2.5). Each simplex is sent by ϊ 0i 234 to a spherical simplex in S3, and the
pyramid to the geodesic cone on a quadrilateral, doubly ruled surface.

3. The Uniqueness Problem

3.1. The last section presented an algorithm (Theorem 2.8) which, given an SU2-
valued lattice gauge field u defined on a 4-dimensional simplicial complex Λ,
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together with a local ordering o of the vertices of A, produces a coordinate
SU2-bundle v with trivializing sets the 4-cells dual to the vertices of A. [u must not
belong to the exceptional set K(o).]

The next section will give an extension of this algorithm, going from v to the
second Chern number C2(ζ) of the underlying principal bundle ξ. We would like to
think of this number as "the topological charge of u," but first we must ask to what
extent the number C2{ζ) really does depend only on u. That is the problem
addressed in this section. We will work on the uniqueness of ξ, an equivalent
problem in this context.

3.2. The coordinate bundle given by the algorithm satisfies the equation

where paβ is the center of the common face of the dual cells ca and cβ\ so the
construction can be thought of as stretching the transporter uaβ over the face cancβ

so as to satisfy the cocycle condition at the edges. It is fairly clear, however, that
unless the stretching is controlled, the topological type of the underlying principal
bundle ξ may be quite arbitrary; the control we will use comes from placing
bounds on the function d(vaβ(x), uaβ), x e cancβ. Working back to the lattice gauge
field we can prove uniqueness results, which can be summarized as follows.

In the space G of all SU2-valued lattice gauge fields on A there is the subset F of
flat fields: those giving transporter product = / around any plaquette, and there are
three increasing open sets containing F: F CA1CA2CA3CG with the following
properties. If u e Au then it has a "best approximation" v in the sense that any v' as
close to u as v is will define an isomorphic principal bundle; this v is produced by
our algorithm. If ueA2, then the principal bundle determined by applying our
algorithm to u does not depend on the local vertex ordering employed. If u e A3,
then the algorithm will produce a coordinate bundle when applied to u and a local
vertex ordering o, although different orderings may give different topological
types; see Example (3.20). The complement of A3 is the union of the sets K(o),
where o runs over the set of all local vertex orderings, and is therefore a set of
measure zero.

3.3. Definitions of Aί9 A2, and A3. The sets K(o) were defined in Sect. 2, and A3 is
the intersection of their complements in G. So A3 consists of those u such that for
every 4-simplex, and for every ordering, the continuity hypothesis [either ^4(o) or
B(o)] holds.

For a simplex τ, let τ = (ocβy...ζ} be any ordering of its vertices, and set uaβy^ζ<x

= uaβuβy...uζa as usual. The set A2 consists of those u such that

(3.3.1)

for every τ = (uβy...ζ} and for every ordering of the vertices of τ. In other words,
B(o) holds for every 4-simplex in every local ordering o.

Finally, let Ax be the set of those u such that, for some ordering o,

d(I, uo(τ)) < π/8 for every simplex τ. (3.3.2)

This is condition B(o), except that the right-hand side has been reduced from π/2 to
π/8. Furthermore, when τ is a 2-simplex, condition (3.3.2) is independent of o (this is
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easy to check). On the other hand for any τ in A and any ordering oc<β<y<...<ζ
of its vertices, the element uaβy^ζa can be decomposed into a product of at most
three terms of the form uaβyoi. This argument shows that (3.3.2) implies (3.3.1), so
A1CA2.

3.4. Proposition. Suppose given an SU2-valued lattice gauge field u and an SU2-
coordinate bundle v, both defined on a 4-dimensional simplicial complex A, such that
for every pair α, β of adjacent vertices.

d(Vaβ(χ)> Kβ) < π/8 for every x e cancβ . (3.4.1)

Suppose v' is another coordinate bundle on A, also satisfying (3.4.1). Then the
principal bundles ξ and ξr determined by v and v' respectively are isomorphic.

3.5. Note that Proposition 3.4 applies in particular when u is in Aγ\ for then the
algorithm of Theorem 2.8 gives us a coordinate bundle v which satisfies the
hypotheses of the proposition.

3.6. Proposition. Given a 4-dimensional simplicial complex A, a lattice gauge field u
on A, belonging to A2, and two local orderings o and o' of the vertices of A, let v and v'
be the corresponding coordinate bundles constructed, according to Theorem 2.8, by
our algorithm. Then the principal bundles ξ and ξf determined by v and v' respectively
are isomorphic.

3.7. The proofs of these two propositions share a common strategy. In both cases
we shall construct a coordinate bundle v* on A x [0,1] which extends v on A x {0}
and v' on A x {1}. Once this is done, v* will determine a principal bundle ξ* over
Ax I which restricts to ξ over A x {0} and to ξ' over A x {1}. It is then standard
that ξ and ξ' are isomorphic (see, for example, [27]).

In the proof of Proposition 3.6, since we shall be working in the context of our
algorithm of Theorem 2.8, it will be possible to construct v* simply by extending
that algorithm. The proof of Proposition 3.4 requires an analogous but different
algorithm.

3.8. Proof of Proposition 3.4. We will abbreviate the notation for the vertices of
A x [0,1] to α = (α,0) and α' = (α, 1). The 5-cells dual to these vertices (see Fig. 3.1)
are c* = ca x [0,1/2] and c*, = cax [1/2,1]. Their 4-dimensional pairwise intersec-
tions are

and

c*β' = caβ x [1/2,1] for every <α/?> in A;

c*a, = ca x {1/2} for every vertex α of A.

These are the domains of the SU2-valued functions v*β9 v*,β, and v*a, to be
constructed.

We define v*β and v*>β>, for every <αβ>, by

vtβix, t) = vaβ(x), v*,β.(x, O = ^ ( x )

for every xecφ te [0,1/2], ί'e [1/2,1].
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< *

r c * C

L
/βl

AAx [0,1]

1/2

α
0

[0,1]
-cβ •-A-

Fig. 3.1. The cell complex A x [0,1] and its dual

The definition of va = v%a>:cΛ^>SU2 (identifying c%nc%> with cα) is made
following the same principles as the definition of the uα//s in (2.8). In order to use
induction we pick, once and for all, a local ordering o of the vertices of A. To
support the analogy with the proof of Theorem 2.8, we may also introduce the
lattice gauge field u* on A x [0,1] defined by

u% = u*,β. = uaβ fo r every <αβ> in A, and

w*α, = / for every vertex α.

3.9. For any simplex containing α, let cl = car\σ. In parallel with (2.10.1) and
(2.10.2), we define vσ

Λ: c£-*SU2 by a double induction, first on dimσ, then in each σ
proceeding from the lowest-ordered vertex to the highest. Each c° is an affme cube
(see Fig. 2.2), with modified barycentric coordinates (sA, ...,5μ,...), where A,...
o-precede α, and μ,... o-follow α. Let ρ = </l, ...,α>. Then in parallel with (2.10.3)
and (2.10.4) we will set v%(sλ, ...,sμ, ...) = vQ

a(sλ,...), and va(a) = I. Finally, when
ρ = (j? so that α is the o-last vertex of σ, we use the conical structure cσ

a = a * d 1 ^,
where 5xcJ is the set on which at least one of the modified barycentric coordinates
is equal to 1. The values of the function vσ

a will already be determined by the cocycle
condition on this set.

3.10. Assertion. The hypotheses and the construction guarantee that these values
lie in the complement of —/.

3.11. This assertion will be proved below. Then in parallel with (2.10.5) we can
define, for each xed1^ and for each 5, 0 ^ 5 ^ 1,

where cj is the unique shortest geodesic from / to vσ

a{x). The coherence of the
procedure is proved by a transposition to this context of Lemmas 2.12-2.14.
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3.12. Proof of Assertion 3.10. Let us consider the worst case, when σ is a 4-simplex,
say σ = (ocβyδε), ordered as listed. Since α is lowest-ordered, the rules above give
vl = I o n cσ

a. F o r vertex β, ρ = (otβ}, a n d o n dγcQ

β we have va

fi = O%aO
a

av*.p. By
hypothesis ϋ | α = vβa is within π/8 of uβa, and i;*,^ = v'afi is within π/8 of uaβ. So on δ 1 ^
the vσ

β values lie in B(π/4)9 the open ball of radius π/4 about /. Since the extension is
performed by coning from /, the new values also lie in B(π/4).

For vertex y, ρ = <α/fy>, and d1cρ

y = (cynca)κj(cyncβ). On the first set, vσ

y

= vyap
σ

av'ar These values lie in B(π/4) just as was shown above. On the second, vy

= VγβVβV'βr The first factor is within π/8 of uyβ; the second within π/4 of/; and the
third within π/8 of uβy. So these values lie within B(π/2), and so do those of their
extension to all of cy.

Proceeding in the same way for vertices δ and ε, we find that the construction
gives v% mapping cσ

d into £(3π/4) and that for υσ

ε (here ρ = σ) the values on dιcσ

ε all lie
in B(π). This completes the proof of the assertion and of Proposition 3.4.

3.13. Proof of Proposition 3.6. It is sufficient to prove the proposition under the
extra hypothesis that o' differs from o merely in the transposition of two
o-consecutive vertices, say y and δ, such that y o-precedes δ.

As in the proof of Proposition 3.4 we denote the vertices of A x [0,1] by
α = (α, 0) and α' = (α, 1). Here, however, we will work on a simplicial subdivision Λ*
of A x [0,1]. This subdivision, which is part of the "prism construction" in
simplicial homology theory [11, 28], does not introduce any new vertices, and is
defined as follows. Let σ = (otβ...ζ) be any simplex of A, its vertices written in
increasing o-order. Then σ x [0,1] is subdivided in A* to

The new 1-simplexes of A* are (see Fig. 3.2)

{<α/?'>|<α/?> EA and α o-precedes β}.

3.14. Next we define a local ordering o* of the vertices of A* by requiring that o*
restrict to o on the vertices of A x {0} and to o' on those of A x {1}; and that all the
vertices of A x {0} precede any vertex of A x {1}. For example there are four
possibilities for the o*-ordering of the vertices of τ* = <α.../U/...C/>.

(1) If y and δ are both vertices of σ, then:
(a) if y o-precedes λ9 then the o*-order is a...yδ...λλ'...ζf\
(b) if y o-follows λ, then the o*-order is ot...λλ/...δy...ζ';
(c) if y = λ, then the o*-order is <x...γδ'y'...ζ'.
(2) If y and δ are not both vertices of σ, then the o*-order is oc...λλ'...ζ'.
We observe that in case (a), λ and λ' are consecutive, and otherwise the

o*-ordering is the same as the o-ordering of the vertices of σ. Similarly in case (b),
except that the o*-ordering is based on the o'-ordering of the vertices of σ. In case
(2), these two descriptions coincide. Case (c) is exceptional in that y and yf are not
consecutive.

We now define an SU2-valued lattice gauge field u* on A* by the rules: u*^ = I
for every vertex α of A; and u*β = u*β> = u*,β, = uaβ for every 1-simplex <αβ> of A,
ordered so that α o-precedes β.
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(b) BL

Ύj

Fig. 3.2. a The subdivision Λ* of A x [0,1], where dimΛl = 1, with respect to a local ordering o in
which α and γ precede β. b A 2-simplex σ of A and the subdivision of σ x [0,1] in A*; here a
precedes β and β precedes γ in o

3.15. In order to apply the algorithm of Theorem 2.8 we first show that the
5-dimensional analogue of B(o) holds for every simplex of A*, namely:

JB(o*). For every simplex τ* of dimension ^ 2 in /I*,

d(I,uAτ*))<π/2.

We shall examine only the case that τ* has the form ζa...λλ'...ζ'} discussed
above; other cases, such as (a...λμ'...ζ'}, are similar. In case (la), and also in case

(2),

Uo*\τ ) = Uaβ...κλλ'μ'...Θ'ζ'a

= u*β... u*λufλ,ulμ,... u$

= uaβ...uκλluλμ...uθζuζa

— uo(σ), where σ is a simplex of A.

Since u is in A2, the condition B(o) holds for σ; and so B(o*) holds for τ* in this case.
Case (lb) is similar: we obtain u**(τ*) =uo(σ\ and since £(o') holds for σ, J3(o*)
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uo*\τ ) — U<xβ...κγ

follows for τ*. Lastly, in case (lc),

κγδ'y'μ'...θ'ζ'oc

>UκyUyδUδγUγμ . . . ζ ζ

= uo(ρ), where ρ is the face of σ opposite δ;

and £(o*) follows in this case too.

3.16. We can now apply the algorithm used in the proof of Theorem 2.8; the
increased dimension here does not affect the argument. We obtain a coordinate
bundle v* on Λ*,which restricts to v on A x {0} and to v' on A x {1} because v and v'
were constructed by the same algorithm applied to restrictions of the data Λ*9 u*
and o*. As in the proof of Proposition 3.4, this implies that ξ and ξ' are isomorphic,
as required.

Extensions and Improvements

3.17. To Different Gauge Groups. Let G be an arbitrary Lie group, and r its radius
of convexity (i.e. the largest number such that the open ball of radius r about the
identity is strictly convex). Then Theorem 2.5 holds for G-valued lattice gauge
fields with any A ^ r; and Theorem 2.8 holds under a new hypothesis on u: namely
that, on each 4-simplex, u satisfies the condition B(o) with π/2 replaced by r.
Proposition 3.4 holds for G-valued lattice gauge fields and coordinate bundles
satisfying (3.4.1) with π/8 replaced by r/4; and Proposition 3.6 holds if A2 is defined
as in (3.3.1) but with π/2 replaced by r.

3.18. To Higher-Dimensional Simplίcίal Complexes. Let A be any finite-
dimensional simplicial complex. Continuing with an arbitrary Lie group G as
above, Theorem 2.5 holds without further change; Theorem 2.8 should be further
modified by requiring (2.7.1) for every simplex τ of dimension ^ 2 . In Proposition
3.4 the hypothesis on v is now (3.4.1) with π/8 replaced by r/dimA; no further
change is necessary in Proposition 3.6.

3.19. In case G = SU 2 hypotheses involving condition B(o) can be weakened by
replacing π/2 with π/2 + ε, where ε decreases with dimΛ For Theorem 2.8
(dim/L = 4) we calculate that we can use approximately π/2+ 0.3 radians, and for
Proposition 3.6, π/2+ 0.2 radians (in the definition of A2). This allows us to
construct examples having the standard unit quaternions i, j , k as plaquette
products, knowing that the bundle produced by our algorithm will not depend on
the choice of local ordering. On the other hand, the bound in the definition of A2

cannot be allowed to exceed 2π/3, as the following example shows.

3.20. Example. Here the lattice is dΔ5, the complex of proper faces of the 5-simplex.
Topologically, this is a 4-sphere. Let us label the vertices α, β, y, δ, ε, ζ, and consider
the SU2-valued lattice gauge field u on dΔ5 (see Fig. 3.3) defined by uΛβ=\\ uay = k',
uaδ = \\ uaε = ω', uβε = — j ' and all other transporters = 1. Here 1, i, j , k refer to the
standard unit quaternions, ω = —1/2(1+i+j + k), and the ' and " indicate small
perturbations of the quaternion values, chosen so as to make u generic. The
products uabca, uabcda, and uabcdea, for a, b, c, d,einz 4-simplex, all lie within 2π/3
(neglecting perturbations) of 1.
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Fig. 3.3. An SU2-valued lattice gauge field on dA5. (In this rendering of the 1-skeleton of dΛ5 the
vertex ζ has been projected to infinity)

When our algorithm is applied to u and to the ordering a<β<γ<δ<ε<ζit
produces a nontrivial bundle (Q=l), whereas the ordering β<oc<γ<δ<s<ζ
gives a bundle with Q = 0. The topological charge is calculated following the
procedure described in the next section.

4. The Calculation of Topological Charge

4.1. If u is a SU2-valued lattice gauge field defined on a 4-dimensional simplicial
complex A and satisfying the continuity condition (2.7) with respect to some local
ordering o of the vertices of yd, then the algorithm of Theorem 2.8 produces an SU2-
coordinate bundle v from u and o. In this section we will show how this algorithm
can be extended to yield the second Chern number of the principal bundle ξ
underlying v. In the range where ξ is independent of the construction (e.g. in the set
Aγ of (3.2)) this can be called the topological charge ofn.

For a principal SU2-bundle over a 4-complex, the second Chern number C2(ξ)
coincides [19] with the Euler number of ξ, i.e. the obstruction to the existence of a
section in ξ; in this context, obstruction has the following precise meaning.

4.2. Let π: E(ξ)^Λ be the projection from the total space of ξ onto its base. A
section over a subset X C A is a continuous map S: X^>E(ξ) such that π(S(x)) = x
for every x in X.

We will show how to construct a section S over the 3-skeleton A{3) of A.
Choosing a trivialization Φ: π~ 1σ->σ x SU2 over a 4-simplex σ of A identifies S| dσ
with a map Sσ: dσ->SU2, and it is clear that S can be extended as a section over σ if
and only if Sσ, which is topologically a map between two 3-spheres, is null-
homotopic. What is less obvious is the following theorem.

Let us assume the σ's and the Φ's have all been coherently oriented
(orientations will be discussed more in detail below).
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i ,

σ
Fig. 4.1. The complex A, its dual cells and the lattice gauge field U. Here A is 1-dimensional. A is
the cone from χ on A

4.3. Theorem [19, 27]. Let JV σ eπ 3 SU 2 = Z be the degree of Sσ. Then the

integer Σ Nσ does not depend on S and is in fact the Euler number of ξ.
σeΛ

This explains how in our context C2(ζ) can be characterized as the obstruction
to the existence of a section in ξ.

4.4. We will show presently that C2(ξ) can also be described as the obstruction to
extending v over the augmented complex A formed by coning A from a point χ.
(This complex has one new vertex χ, one new 1-simplex <αχ) for each vertex α of A,
etc.; see Fig. 4.1.) This last obstruction can be realized by the following
construction. First extend u to a lattice gauge field U on A by defining Uaχ = / for
each new 1-simplex, and extend o to a local ordering O of the vertices of A by
placing χ after all the vertices of A. In particular this defines a lattice gauge field and
a local vertex ordering on the 4-skeleton Λ(4). If U does not belong to the
exceptional set X(O) on A{4) (this means additional measure-zero continuity-type
conditions on u; see below) then the algorithm of Theorem 2.8 may be applied to U
and O to give an SU2-coordinate bundle V defined on A{4).

4.5. Here is how to interpret V as a section S over A{3). Let σ be a fe-simplex of A{3),
so k ̂  3, and Σ = χ * σ the corresponding (k + l)-simplex of τί ( 4 ). For any vertex α of
σ, the set c° = σnca has modified barycentric coordinates sμ,...,sλ, where
μ,...,λ + ot are the other k vertices of a. The set clχ = Σncancχ has modified
barycentric coordinates with exactly the same names. Define iS£:c£-»SU2 by
S%sμ9..., sλ) = V*χ(sμ,..., sλ). We will write simply Sσ

a - Vξr

4.6. Proposition. The maps Sζ fit together to give a section in ξ over A(3).

Proof. First note that if α e σ n τ , then on cσ

Λr\c\

S:=KΣ

χ=Vjχ = Sl, where T = χ * τ ,

the middle equality from (2.10.6).
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Now suppose xeσc\car\cβ. Then

s:(χ)=κΣ

x(X)

= (KΣ

β(x)Vβ

Σ

a(x)) by (2.10.8)

= Kβ(χ)VβX(
χ) s i n c e V extends v

= υσ

aβ(x)Sσ

β(x),

i.e the SJ's transform as the local coordinates of a section in ξ.

4.7. Note. The continuity hypothesis guarantees in fact that the algorithm will
produce VΣ

χ on any set of the form cΣ

χ as long as dimZ" ̂  4 or dim I1 = 5 and α is not
the first vertex of Σ. It follows that the section S is defined over any set cl except
when σ = (01234) is 4-dimensional and α = 0. So the integer Nσ of Theorem 4.3
becomes the homotopy class of S\dcσ

Q or, equivalently, the homotopy class of
V£χ\dcΣ

OχΛ, w h e r e £ = χ * σ

4.8. Calculation of Nσ (Beginning). The map VQX\3CΣ

OX has a specific geometric
form due to the algorithm. To write it explicitly, let us review the definitions made
in the extension of v to Λ(ί

1(4)

(Note that g 3 4 χ is the unique shortest geodesic from / to u34.)

Finally, on the boundary of c\v VQX is prescribed:

o n d°cΣ

Oχ b y
M ) χ ( S 4 ~ Ψ z : : : * (

^ X ( S 3 = 0) =

Kfχ(s2 = 0) = I0134χ0l, S3, 54) ,

^ i = 0 ) = f O 2 3 4 χ (5 2 ,5 3 , 5 4 ); (4.8.1)

on dιcltχ by

VΣ

χ(Sl = l)=VΣ

1V
Σ

χ = u0ίΐ1234χ(s2, s 3 , 5 4 ) . (4.8.2)

Note that implicit in these definitions is a partition of each face of dcΣ

Oχ into sub-
polyhedra. When the map is of type ϊ or u ϊ, these are four simplexes and a square-
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based pyramid (see Fig. 2.5); when it is of type ί) g or g ί), these are two triangular
prisms (compare with Fig. 2.4).

4.9. The existence of all the unique shortest geodesies required for the definition of
these maps requires an additional set of continuity conditions. In terms of u, on
each 3-simplex <0123> of A one of the two following conditions, coming from
applying A(O) and B(O) to <0123χ>, must hold.

* from 4̂(o). The following five sets of elements must be linearly independent:

(1)

(2)

(3)

(4)

(5)

* from

J> W0120>

1 , UQI ,

1, ^ 0 1 ?

J , ^*0 3 5

/ , W 0 3 ,

#(O).The following elements

W012? W0123>

W012? W 0 1 2 3 '

W013? W0123?

W013? U0123?

W023? W01235

must all lie within π/2 of /:

W023J W123? W0123

4.10. Note. Condition A(O) is satisfied on the complement of a set of measure zero
in the space of all lattice gauge fields. Note however that the new conditions are not
gauge-invariant; also, £(O) is a much stronger condition than B(O). Clearly B(O)
always holds in the "continuum limit;" but if u satisfies B{O) for every 4-simplex of
A, then it can be shown that C2(u) = 0 (compare with [23, Proposition 1.12]).

4.11. Orientations. Nobody likes to think about orientations. Here it is unavoid-
able, because the VQX'S have an intrinsic orientation coming from the local
ordering, and this must be compared with a global orientation of A and of ξ if we
want the various Nσ's to add up correctly.

Suppose A is an oriented 4-dimensional simplicial manifold. One way of
defining "oriented" is to begin with the concept of an orientation of a simplex: this
is the choice of an equivalence class of vertex-orderings, where two are equivalent if
they differ by an even permutation. An orientation of A is then the choice of an
orientation for each 4-simplex of A (we will call the distinguished orientations
"positive") in such a way that two adjacent simplexes induce opposite orientations
on their common 3-face. To say that A is oriented means that such a choice can be
and has been made.

4.12. We can define an orientation of a smooth manifold M as a continuous
assignment of a sign (+ or —) to each tangent rc-frame. If M is triangulated as a
simplicial manifold A, then an orientation of A gives one of M: if a frame vu...,vnis
at a point of a simplex σ = (0l2...n} with vertices thus positively ordered, slide it
over to 0 and compare it with the frame 01, 02,..., On. It is easy to check that the
sign so determined does not depend on σ.

4.13. Induced orientations: we follow the convention that the orientation induced
on a boundary face is that which, preceded by an outward-pointing vector, gives
the orientation of the interior.
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4.14. Next suppose ξ is an oriented principal SU2-bundle over Λ, in the following
sense. Take the group SU2 as being oriented as a smooth manifold, say with the
orientation induced from the standard orientation of R4 (see 4.23). Then the local
fiber coordinates may all be coherently oriented, since any two of them differ by
multiplication by an element of SU2 (this preserves orientation). We suppose that a
coherent orientation has been chosen, and we call those fiber coordinates
"positively oriented."

4.15. Calculation of Nσ (Continued). We now have an oriented SU2-bundle ξ
over an oriented 4-dimensional simplicial manifold Λ; suppose in addition we
have a local ordering o of the vertices of A Given a 4-simplex σ = <01234>j)f Λ, the
vertices listed in their o-ordering, let εo(σ) = + 1 if the frame (θί, ό5,03,04) is
positively oriented, and — 1 otherwise. Let cσ

Q be oriented by (01,02,03,0?) and give
dcΣ

Oχ [identified with dcσ

0 as in (4.5)] the induced orientation. Let No{σ) be the degree
of the map VQX : dclχ-^S\J2 with respect to that orientation and a positive fiber
coordinate. Then we may take

(4.15.1)

The rest of this section will be devoted to the calculation of No(σ).

4.16. Our algorithm for computing the homotopy class of VQX is based [12] on
picking a point y in SU2 which is generic with respect to the image of V$χ in a sense
to be made precise soon. For now it is enough that y be chosen so that (Voχ)~ί(y) is
a finite set of points xu ...,xn and VQX is a local homeomorphism at each xv. Then
we assign to each xv a number φv, which is 1 or — 1 according as VQX preserves or
reverses orientation at xv. Finally, the value of No(σ) is φί + . . . + φn.

To compute the numbers φv we exploit the precise geometry of the construction
of VQX. AS remarked in (4.8), this map implicitly subdivides dcσ

Q into a complex K
whose 3-cells are simplexes, pyramids or prisms. On cells of each type, VQX is
geometrically the same; for example VQX maps each simplex onto a convex,
geodesic simplex in SU2.

4.17. The genericity requirement on y can now be stated: in addition to the
conditions given above, the xv must all lie in the interiors of the 3-cells of K; that is,
y must be in general position with respect to the image under VQX of the 2-skeleton
ofK.

4.18. Our program consists of the following steps.

(1) Using just the local ordering o, we shall define an "intrinsic" orientation for
each 3-cell D of K.

(2) We then calculate the relative orientation ε(D; dcσ

Q) which is + 1 or —1
according as the orientation of D agrees with the orientation of dcσ

Q described
above or not.

Then, depending on whether D is of type / (simplex), type II (pyramid) or type
/// (prism) we shall give

(3) a criterion, satisfied on an open, dense set in SU2, for when a point y is
generic with respect to VQX\D.
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We shall also give and justify algorithms to determine
(4) the number n(D) of points xv in (VQX)~ 1(y)nD (this number will turn out to

be 0, 1 or 2);
(5) and when n(D) = 1, the orientation εx(D1 of VQX (considered as a map from D

to SU2) at the single xv = x(D); this is + 1 if FO χ preserves orientation at x(D), and
— 1 otherwise. [We will show that when n(D) = 2, the map VQX has opposite
orientations at the two inverse image points.] Finally,

No(σ)= Σ s(D:dcσ

0)εxiΌ). (4.18.1)
D:«(D)=1

4.19. First some notation for the vertices of eg. In the modified barycentric
coordinates (sl9 s2, s39 s4) of (2.9) these are the 16 points where each coordinate is 0
or 1. Each vertex v may then be identified by the subset H C {1,2,3,4} made up of
the indices of the coordinates which it has equal to 1. It will be convenient to label v
by the set H' = {0}KJH, the elements written in increasing order, because then the
image VQX(V) can be read off directly from the label.

y*(0 w ί ' i f H'=i°}
°λH W i f H' = {0ijk}i<j<.<k. (4.19.1)

[For example, the vertex with sί=s2 = s4.= l, s3 = 0 would be labelled 0124, and

4.20. We will label the 8 faces of cσ

0 by C = {st = 1} and Ct = {st = 0}. Each of these
faces has its own intrinsic orientation determined by the local ordering: C and Ct

have coordinates sj9 sk, st withj<k<lin the ordering; we will orient them by the
ordered basis (d/dsj9 d/dsk, d/dst).

4.21. Finally each 3-cell D of K has an intrinsic orientation; the simplest way to
describe it is to say that it is determined by the first four of the vertices of D as they
are listed in the table below. If these vertices are vθ9 vl9 v2, v3, in that order, then the
orientation is given by either one of the equivalent 3-frames {VQUU ̂ 2 ? ^0^3) o r

4.22. The following table gives for each 3-cube Ccdcσ

0 the corresponding VQX\C

and lists the 3-cells D which it contains. Each cell is identified by its vertices; its
combinatorial type is also noted. In addition the table lists for each C the sign
ε(C, del) relating its intrinsic orientation to that of 9cg, and for each D the sign
ε(D, C) relating its intrinsic orientation to that of C. The sign ε(D, dcσ

0) is the
product of these two.

Before we can continue our program we need some more notation.

4.23. Notation for R 4 and S3. The rest of our program makes use of the geometry
of SU 2 which we identify with the group of unit quaternions, geometrically the
sphere S3 of radius 1 in R4.

The term line will mean an affine line in R4, with L[yuy2~\ the line through
points yί and y2. A segment is a closed interval on a line; [yu y2~\ means the
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Table 4.1. Combinatorial type and relative orientation of the 3-cells D oΐdcQ. Here σ = <Ό1234> is a
simplex of yl, its vertices so ordered. The algorithm splits dc% into 8 cubical faces, the Cι and Cb and
maps each of them into SU2 either as the union of a pyramid and four simplexes or as the union of
two prisms. A vertex labelled 0 is mapped to /, a vertex labelled ab to uab, a vertex labelled abc to
Kbc = uabubc, etc.

3-cube C

(^0134χ)

c3

C1

C 2

C 3

©0123934*)

c4

ίol.234)

ε(C 5cσ)

- 1

+ 1

— 1

+ 1

+ 1

- 1

+ 1

Type of D

Pyramid
Simplex
Simplex
Simplex
Simplex

Pyramid
Simplex
Simplex
Simplex
Simplex

Pyramid
Simplex
Simplex
Simplex
Simplex

Pyramid
Simplex
Simplex
Simplex
Simplex

Pyramid
Simplex
Simplex
Simplex
Simplex

Prism
Prism

Prism
Prism

Pyramid
Simplex
Simplex
Simplex
Simplex

Vertices of D

0, 03, 023, 0234, 034
0, 02, 023, 0234
0, 02, 024, 0234
0, 04, 024, 0234
0, 04, 034, 0234

0,03,013,0134,034
0,01,013,0134
0,01,014,0134
0, 04, 014, 0134
0, 04, 034, 0134

0, 02, 012, 0124, 024
0,01,012,0124
0,01,014,0124
0, 04, 014, 0124
0, 04, 024, 0124

0, 02, 012, 0123, 023
0,01,012,0123
0,01,013,0123
0,03,013,0123
0, 03, 023, 0123

01,013,0123,01234,0134
01,012,0123,01234
01,012,0124,01234
01,014,0124,01234
01,014,0134,01234

02, 012, 0123, 01234, 023, 0234
02, 012, 0124, 01234, 024, 0234

03,013,0123,01234,034,0134
03, 023, 0123, 01234, 034, 0234

04, 024, 0124, 01234, 0234
04, 014, 0124, 01234
04,014,0134,01234
04,034,0134,01234
04, 034, 0234, 01234

ε(D, C)

7
+

7
+

7

1 
+

 
1

 
+

 1

7
+

7
+

7
7

+
7

+
7

7
+

7
+

7

+ 1

+ 1
- 1

7
+

7
+

7

segment with endpoints yλ and y2. The term geodesic will stand for a closed,

minimal geodesic in S3; if yu y2 are points on S3, y1 φ — y2, then slj^,}^] will

represent the unique minimal geodesic between them.

Let 0 denote the origin in R4. For any set X C R4, the notation cX represents the

infinite cone on X:cX = {ty\yeX, 0 ^



626 A. Phillips and D. Stone

We set s(X) = cXnS3. This defines a map s :R 4 -{0}->5 3 ; note that s(X)
= s(cX). For example, if [j/ l5 y2~] is a segment which does not contain 0, with yu y2

on S3, then s([yuy2~\) is the geodesic s[yl9y2'].
More generally, suppose that X is convex and does not contain 0. Then s(X) is

strictly convex; that is, any yu y2 in s(X) can be joined by a unique (minimal)
geodesic (in S3) which lies in s(X).

Finally, if yί9 y2, y39 y 4 are points in R4, det(y1? y2, y3, j/4) means the
determinant of the matrix with those four vectors as columns; if that matrix is
nonsingular, then sdet(yl9 y29 y39 y4) = + 1 or - 1 is its sign. For a e R4, let det^a;
yu yi> y3> y*) ^ e the determinant formed by replacing j/ f with a.

If det(y1? y29 y39 y4) + 0, then (yl9 y2, y3, y4) is a basis for R4, and the coordinates
of a in this basis are

ti(a) = deti(a; yί9 y2, y3, y 4 )/det(y 1 ? y2, y3, y 4 ) . (4.23.1)

4.24. Calculation of Nσ (Continued). Given a generic y eS3, the calculation has
been reduced, by (4.15.1), (4.18.1) and the orientation coefficients given in the table,
to the computation of n(D) and, where appropriate, εx{D) for a 3-cell D of the
complex K.

We now continue with parts (3)-(5) of the program of (4.18) in the three cases: I
(D is a simplex), II (D is a pyramid) and III (D is a prism). Suppose D has vertices v0,
vl9... listed in the order given in Table 4.1.

Notation. In what follows we will shorten " F o ^ " to " F " .

4.25. Case I: D is a simplex, with vertices vθ9 vu υ2, v3. Set yί=V(vi). Then V(D) is
the convex hull in S 3 of y0, yu y2, y3. The continuity hypothesis guarantees that y0,
yu yiτ ^3 a r e i n general position, so V(D) is a strictly convex spherical 3-simplex.

(1.3) A point yeS3 is generic with respect to V(D) provided no ίf(y) = 0,
i = 0,1,2,3, where t{ is defined as in (4.23). This condition is satisfied on an open,
dense set in S3.

(1.4) y E V(D) if and only if y e cV(D)9 which happens if and only if all tt(y)
> 0 ; and then n(D) = l.
(1.5) In Case /, V either preserves or reverses orientation simultaneously at
all points of D, according as det(y0, j / l 9 y2, y3) is positive or negative. Hence

4.26. Case II: D is a pyramid with cone point v0 and base the square R with vertices
υu v2, v3, v4 (in cyclic order).

Again, set j ; .= F ^ ) . The continuity hypothesis guarantees that yί9 y29 y39 y4

are in general position in R4. Let t u ..., ί4 be coordinates with respect to this basis,
as in (4.23).

The 3-cell D (see Fig. 2.5) is part of a 3-cube C parametrized by (sα, sβ9 sy); where,
in the /ί'-notation, t;1 = ϋou{α}, v2 = v1u{β}9 v4r = υ1κj{y} (and v3 = v1u{β,y}).
Here sα is 0 at v0 and 1 on R, and D has the structure of a cone with base R:D = {(sα,
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sβ9sy)\0^sβ9sγ<*sΛ^l}.lfx = (sa9sβ9sγ)9 andx + ϋ 0, set u = (l,s^/sα,sy/sα)eR; then
x = (1 — sjvo + sav. On R, sβ and sy run from 0 at v1 to 1 at v2 and v4 respectively.

4.27. We shall need the equation of the map V: R -+S3. Now V was defined on R as
the product of two geodesies:

Since multiplication by a fixed unit quaternion is an isometry, as sγ varies the
length of the geodesic sfi^>Qfi(sfi)Qy(sy) is a constant, say θβ; and similarly the length
of each Qβ(sβ) gy is a constant 0 r Thus 0^ is the spherical distance, or angle,
between yγ and y2, and also between y4 and y3 while 0γ is the angle between yt and
y4, and also between y2 and y3. It now follows that

Hence

= Σtiyi9 where

ίi = [sin((l - sβ)θβ) sin((l - sy)0y)]/sin0, sin0y,

ί2 = [sin^θ^) sin((l - s^β^j/sinθ^ sin0y,

h = [sin (5^0 )̂ sin(5y0y)]/sin0^ sin0y,

t4 = [sin((l — sβ)θβ) sin(sy0y)]/sin0/j sin θγ.

4.28. Using the coordinates (ί l 9 ί2, ί3, ί4) with respect to the basis yl9..., y4, define
^ : R 4 - > R b y

q{tut2,t^t4)^t^-t2t4; (4.28.1)

Then g o F = 0 on R, so F(.R) lies in the variety {q = 0}, which is a cone cQ since g is a
homogeneous polynomial. We may take Q = s(cQ), so V(R) is a portion of Q. In
fact V(R) = {(tl9 t29 t39 t4)εS3\q(tu t29 t3, ί4) = 0 and all ί f ^0} (see Fig. 4.2.).

4.29. The continuity hypothesis guarantees that ±y0ΦQ', so for each z in Q there
is a unique shortest geodesic from y0 to z. Let A{z) be the angle between y0 and z.
Then the extension of V over D is given by

sin^(z) ^ 0 + sin^(z) n h

where x = (sα, sβ9 sy)9 v = (l9 sβ/sa, sγ/sa) as above, and z=V(v).

4.30. Let z = (tl9129139 t4) = Σtiyi. The differential dq\z has components (ί3, — ί4,
fi5 — ί 2 ) i n ̂ e basis of the cotangent space at z dual to the basis (y1? j ; 2 , y3, y4).
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Fig. 4.2. The map V of a pyramid D into S3

That is, if X = (xu x2, x3, X4) =
I G Γ Z R 4 - R 4 , then it acts on X by

regarded as a tangent vector at z, i.e.

dq\2(X) = t3x1 - t4x2 + t1x3- t2x4. (4.30.1)

4.31. (II.3) Our first constraints on y are that it not lie in the boundary portion of
V(R). To ensure this we require that y not lie in cQ, nor in any of the 3-planes
through the origin determined by (j/0, yu y2), by Q;o, y2, y3), by (yθ9 y3, y4) or by

fro, "J>i, yd-
The numerical criteria are that each of the following quantities be non-zero:

), det(y, yθ9 yu y2), det(y, y0, y2, y3), det(y, y0, y3, yA\ det(y, y0, yl9

4.52. Our other condition is that the geodesic circle through y0 and y not be
tangent to Q. This is equivalent (see Fig. 4.3) to requiring that the line L through y
parallel to y0 not be tangent to cQ. We may parametrize L as

Then
= y-ty0.

q(L(ή) = t2q(y0) + tdq\yo(y) + q{y).

(4.32.1)

Roots of this polynomial in t give intersection points of L with cQ; a tangency
corresponds to a double root. The discriminant

P(y) = ίdq\yo(y)l2-4q(y0)q(y)

is homogeneous of order 2 in y, so the variety {p = 0} is a cone cP. Our final
constraint on j ; is that it not lie in P = s(cP); it is sufficient to require p(y)ή=0.

These six constraints exclude 2-dimensional sets in S3, so the set of remaining
j/'s is open and dense.

4.33. (II.4) We calculate n(D) in three steps. First we count the number of points in
which the geodesic semi-circle from y0 through y to — y0 meets Q. We then see how
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V(D)

Fig. 4.3. A suitable choice of the point y with respect to V{D) when D is a pyramid

many of these points actually lie in V(R). Among such points we finally check
which ones have y between themselves and y0.

Now s(L) is the relative interior of the geodesic from y0 through y to — y0. Since
y0 and — y0 are not in β, the number of points in which the geodesic meets Q is
equal to the number of points in which L meets cQ. This is the number of solutions
of q(L(t)) = 0. We have excluded the possibility of a repeated root, so there are
either none or two, according as p(y) < 0 or > 0.

If p(y) < 0 we are done, since then n(D) = 0. So assume p(y) > 0, and let t' and f
be the roots of the equation q(L(t)) = 0. Then s(L(O) and s(L(ί")) are the points
where the semi-circle meets Q (see Fig. 4.4). Now s(L(t)) lies in V(R) if and only if all
of its coordinates if(s(L(i)))^0. In fact, by our choice of y9 none of them can be
zero. Since L(t) is a positive scalar multiple of s(L(t))9 we may calculate the number
of ί's (this can be 0,1, or 2) such that q(L(ή) = 0 and ίf(L(ί)) > 0 for i = 1, 2, 3, 4. If
this number is 0, we are again finished, since n(D) = 0. Otherwise, y is between y0

and s(L(ί)) on the semi-circle if and only if t is strictly positive.

4.34. To

such that

and

[Here q i

summarize, n(D) is the number

t2q(y0)-tdq\yo(y)

f;(L(ί))>0, i =

ί > 0 .

of real roots t of the equation

= 1,2,3,4

5 given by (4.28.1), dq by (4.30.1), L(ί) by (4.32.1) and ίί(α) = detί(α;
y4)/det(yί9 y29 y39 y4) are the coordinates of a in the basis yί9y2> y?>,
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y 4

Fig. 4.4. Values of n(D) for different choices of y. D is a pyramid. When y is at a point marked x ,
then n(D) — ± 1; if y is at a point marked o, then w(Z>) =0

¥ J 5 . (II.5) The configurations giving a nonzero n(D) are shown in Fig. 4.4. The
geodesic sL(ί) from y0 to y intersects the ruled surface V(R) beyond y in exactly one
point z0 [with dist(y0, z0) < π]. Our task is now to determine the appropriate sign
ε(D): we assume that vo...v4 is positively oriented (i.e. that the curve v1v2v3v4.vu

traversed as listed, gives the positive orientation on the boundary of the pyramid)
and we calculate the sign of dV\x, where x = V~1(y).

Let z be the corresponding intersection point of L(ί) with cQ, so the points 0,
y0, y, z and z 0 are all in the same 2-plane in R4. Set h(z) = signdq\z(z — y0)
= — signdq\z(y0). Since gradg|z is perpendicular to cQ = {q = 0}, and since
dq\z(z — y0) = (gradqlz, z — yo>, if this sign is positive it means that Lit) is crossing
at z from {q < 0} to {q > 0} (in the direction of increasing ί), and it gives us the same
information about how the geodesic sL(i) crosses Q at z0.

4.36. Suppose sdetO^, y2, y3, y4)>0. We may then simplify the argument by
assuming that yt = eh the z'th element of the standard quaternionic basis 1, i, j , k of R4.
Then the function q becomes ί t ί 3 — t2t4 in the standard R 4 coordinates, and gradg
= (ί3, — ί4, f i, —12). Projecting grad q onto S3 at 1 gives the vector (0,1,0) = j e TSj.
At 1 the tangent space to V(R) is spanned by i and k. If lijkl is to be a positively
oriented circuit on V(R), then i, k is a positive basis for TV(R)V With respect to this
basis j is a negative normal vector, since the basis i, j , k for TS,3 gives the positive
orientation of S3; i.e. grad q is a negative normal vector at 1 and therefore on all of
V(R). So in this case if h(z) is positive then sL(t) is crossing F(R) in the negative
direction at zθ9 and εD(x)= — 1.

4.37. In general,

where z is the intersection point of Hi) = y — ty0 with cQ and h(z) is given in
(4.35).

4.38. The last sentence of (4.35) gives a geometric interpretation of Λ(z), from
which it follows that if n(D) = 2, then the two ε's cancel. This is in accordance with
what we claimed in (5) of (4.18).



Calculation of Topological Charge 631

4.39. Case 111: D is a Prism. There are two subcases, (a) D is of type (1-simplex)
x (2-simplex) These are the two prisms of C 2, where VQX (which we shall continue

to abbreviate as V) is given by V(sί9s3, s4) = Qoi2(s1)ί)234χ(s3,
 S4) The two prisms

of C 3 are of the form D = (2-simplex) x (1-simplex); this subcase (b) is similar and
will be dealt with briefly after subcase (a).

We write v l9..., v6 for the vertices of D in the order listed in Table 4.1, and yt

= V(Vi) as usual.
One of the prisms of C2 is D = Δι x A2, where A1 = <02, 012> and A2 = (0, 23,

234>. (The other has 24 instead of 23.) A1 is parametrized by 0^s1^l, and A2 by
0 ^ s3, s4 ^ 1, s3 ^ s4. We will work on this prism, but state our results in terms of
yί9 ...,y6 so they will be applicable to both.

Let Vί and V2 denote the restrictions of V to A * and A 2 respectively. Vλ maps A1

to the geodesic s[uO2,uol2] and F2 maps A2 to the convex spherical 2-simplex
which we will write as s[/, w23, w 2 3 4 ] , where as usual u0ί2 means u01 w12, etc.

4.40. (IIIa.3) Our first task is to analyze the set of points at which V is not a local
diffeomorphism. (For this section and the next, refer to Fig. 4.5.) Let Σ1 and Σ2

represent the geodesic circle and 2-sphere determined by Vγ and V2 respectively.
Define f\ΣιxΣ2 to be quaternionic multiplication, f(ξ9ή) = ξη. We want to
know when, for ξeΣ1 and ηeΣ2,

is not one-to-one. We may identify T^η)(Σι x Σ2) with T^Σ1 η)®Tm(ξ Σ2).
Now / is a diffeomorphism on each of Σ1 η and ξ Σ2, so if df\iξtη) is not one-to-
one, it must be the case that T^Σ1 - η) C Tiξη)(ξ Σ2). Since Σ1 η is a geodesic and
<̂  Γ 2 is a great 2-sphere, this implies that Σ1 -ηcξ Σ2.lf ξ' is any other point of
Σ\ left-multiplication by ξ'ξ'1 takes Σ1 to itself; it follows that Σ1 -ηCξ'-Σ2; in
particular ξη belongs to u02 Σ2 and to w0 1 2 Σ2. Conversely, if ξη is any point of
u02 Σ2nu012 Z 2 , then Σ1 -ηCξ-Σ2. Thus d / ] ^ ^ fails to be one-to-one if and
only if ξη lies in Σ' = u02 Σ2nu012 I"2. The continuity condition implies that Σ
is a circle.

In conclusion, for xeZ), d F ^ is one-to-one provided y= V(x) is not in Σ'.

4.41. Our other constraint on y is that it not lie in V(dD). For; = 1,2,3 let Σj be the
geodesic circle determined by J, w23, w2 3 4, leaving out t h e / h element. Then V(dD)
consists of portions of uO2 Σ2, u012- Σ2, and Σ1 - Σjj= 1,2,3. Since Σ/Cu02- Σ2,
the constraints on y are all taken care of by requiring that y not be in any of the five
surfaces just mentioned.

Now for any ueS3,yφu- Σ2 provided det(y, w, uu23, uu234) Φ 0. So we require:

uyS9 y6) Φ 0 and det(y, y2, y3, y4) φ 0,

where yt = F(uf) as before.

To detect whether or not y is in Σ1 Σj we could use functions of the type of
q: R4-»R defined in Case II. But there is a simpler method, which is more easily
explained in the course of showing how to calculate n(D).

4.42. (IIIa.4) To calculate n(D) we observe that y e s [u 0 2 , u0ί2] s[/, M 2 3 , M 2 3 4 ] if
and only if the geodesic segment s[z, y] intersects the great spherical triangle
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<*sC7s
s y 6 ^ ^ V ^ V(D) u<»2 -

U023 = y 5

Fig. 4.5. A suitable choice of the point y with respect to V(D) when D is a prism. (Geodesies in Σ2

and S3 are represented by straight lines)

u02 s[/, w23, u234], where z = w0 2 1 0y. This can be detected in two steps. First we
check whether or not s[z, y] intersects u02 Σ2. If they meet in a point /c, then by
our choice of y (so far) K is neither z nor y, and s[z, y] is not tangent at K to u02 Σ2.
It follows that z and y are on opposite sides of the 3-plane determined by u02 Σ2.

Let t u ..., ί4 be coordinates on R 4 with respect to y, yu y5, and y6. Then the
3-plane of uO2 S2 is { ί i=0}, and t1(y)=l. So yes\u02, w 0 i 2 ] ' ^ 2 if and only if
ί !(z)<0. Here

yx, y5, y6)/det(y, yu y5, y6).

The numerator equals det(u0210y, yu y5, y6) = det(y, y2, y3, y4) because
quaternionic multiplication (by u0210 in this case) is an orientation-preserving
isometry. Hence our first necessary condition is

yeV(D) only if det(y, y2, y3, y4)/det(y, yu y5, y 6 ) < 0 . (4.42.1)

Now to say that y e 5[w02? w 0 1 2] 5[/, w23, w 2 3 4] is to say that K e u02 s\_I, u23,
w 2 3 4] = s[w02, u023, 1̂ 0234]- I n other words, ί t(κ:)^0 for i = 2,3,4. In fact, if any
ί.(κ;) = 0, then κeΣ\, so y e l 1 I1/. So our extra constraints on y in (4.41) are:

ίi(κ) + 0 for i = 2,3,4.

These constraints will be elucidated shortly.
The coordinates ί2, ί3, ί4 are in constant proportion on the 2-plane through y,

7c, and the origin. These three coordinates are 0 at y; and since K is in the convex
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D

Fig. 4.6. Comparison of orientations at y and yv (Geodesies in S3 are represented by straight lines)

sector cs[uO2loy,y\, they each have the same sign at K and at u02ί0y. We may
therefore require, in addition to (4.42.1),

Here, for example,

hΪMonoy

Φθ21θ)0>0

) = det(y,M0 2 1 0)

for

>, ya,.

i = 2, 3,

tθ

4.

>,yuys,y6).

If these conditions are met, then y can be written as ξη, with ξ 6s[w02, u0ί2Jand
η e 5[/, w23,1^234]- Here ξ and η are uniquely determined by y; and since Vί and V2

are diffeomorphisms, it follows that the coordinates sί and (s3, s4) of a point x in D
such that F(x) = y are also uniquely determined. Of course if any of the conditions
is violated, then n(D) = 0.

4.44. (IIIa.5) It is clear from Fig. 4.6 that if Σ'nV(D)φΦ, then the sign of dV\x

depends on the position of y with respect to Σ'. In fact sign dF|JC = signdF| t ; i if the
geodesic segment s[y1? y] does not intersect u012 Σ2, i.e. if y and j ; x are on the
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same side of the 3-plane through 0 determined by y2, y39 and y4; equivalently, if
det(y, y2, y3, y 4)det(y 1 ? y2, y3, y 4 ) > 0 . To calculate the sign of dV\Vι, observe that
since d/dsl9 d/ds3, d/ds4 form a positively oriented basis at 02, then so do vίv2, v{v5,
vtv6; so the sign of dV\Όί is the sign in S3 of the frame yxy2, yxy59 yxy69 i.e.
J>2, J>5> y6) Finally

9 y2, y3, y4)sdet(y1 ? y2, y3, y4)sdet(y1? y29 y59 y6).

4.45. Case I lib. Here D = A2xA\ where in one prism A2 = <03,013,0123> and Ax

= <0,34> (in the other, z!2 = <03,023,0123)). Again, we will work with the first
prism but give results in a form applicable to both. The vertices of D, in the order in
which they are listed in Table 4.1, are ι; 1=03, f2 = 013, y3 = 0123, v4 = 01234, v5

= 034, z;6 = 0134. D is part of a cube parametrized by su s2, and s4; A1 is
parametrized by s4 and A2 by (sl9 s2), s1^s2. As before, V(sl9 s29 s4) = V2(sl9 s2)
• Fi(s4). The argument is now exactly as in case (a), except that the order of
multiplication in S3 is systematically reversed.

4.46. (IIIb.3) Let Σ2 = 5[w03, u0139 u0123] and Σ1 =s[/, w 3 4]. We define f: Σ 2 x Σι

->S3 by f(η9ξ) = ηξ. We find that <//!<„,$>: ̂ , ξ ) ( ^ 2 x ^ ^ Γ ^ S 3 is one-to-one
unless ηξ is on the circle Σ/ = Σ2nΣ2 u34, and rfF|x: TxD-^TV(x)S

3 is one-to-one
provided y = V(x) is not in 21'. The constraint that dV\x be one-to-one atx=V~1y
is thus included in the requirement that y not be in the portion of V(δD) given by
s[yί9 y2, j>3]; it is sufficient that det(y, y l 5 3/2' ^3) + ̂ - Similarly, y will not lie in the
opposite triangular face if det(y, y4, y5, y6) + 0.

The other constraints on y are that it not lie in the three lateral portions of
V(dD). These can be guaranteed by

det(y, yu43, u03, w

det(y, yu43, uOί39

det(y, yu43, w 0 1 2 3 ,

4.47. (IIIb.4) The condition that j / e £ 2 s[J, u34] is ί 1 (z)<0, where tl9 . . . , ί 4 are
coordinates on R 4 with respect to y9 yu yl9 and y3, and where z = yw43. Now

z, yl9 yl9 y3)/det(y, yl9 y29

so our condition is

y, y59 y69 y4)/det(y, yl9 y29 y 3 ) < 0 .

To ensure that ye V(D) we must further require ίI (z)>0, for ί = 29 3, 4.
Here, for example,

, yu43, y29 y3)/det(y, yl9 yl9 y3).

If these conditions are satisfied, then n(D) = l; otherwise, n(D) = 0.
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4.48. (IIIb.5) Arguing as in (4.44) we obtain

, y4, ys, y6)sdet(y1? y^ y5, y6)sdet(yl9 y2, y3, y5).
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