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Abstract. We investigate the mass spectrum of a 2 + 1 lattice gauge-Higgs
quantum field theory with Wilson action βAp + λAH, where Ap(AH) is the gauge
(gauge-Higgs) interaction. We determine the complete spectrum exactly for all
β9 λ>0 by an explicit diagonalization of the gauge invariant "transfer matrix"
in the approximation that the interaction terms in the spatial directions are
omitted; all gauge invariant eigenfunctions are generated directly. For fixed
momentum the energy spectrum is pure point and disjoint simple planar loops
and strings are energy eigenfunctions. However, depending on the gauge group
and Higgs representations, there are bound state energy eigenfunctions not of
this form. The approximate model has a rich particle spectrum with level
crossings and we expect that it provides an intuitive picture of the number and
location of bound states and resonances in the full model for small β,λ>0. We
determine the mass spectrum, obtaining convergent expansions for the first
two groups of masses above the vacuum, for small β, λ and confirm our
expectations.

1. Introduction

We continue our investigation of the energy-momentum spectrum of lattice gauge
theories in the Euclidean formulation. For previous results see [1-7] and for an all
statistical mechanics approach to particle spectrum see [8, 9]. For spectral results
in the time-continuous Hamiltonian version of these models see [10]. For
numerical results see [11,12].

Here we consider a lattice gauge-Higgs theory with Wilson action A; the
Boltzmann factor is formally given by

Σ Rcφ+(x)ΌH(gxy)φ(y)\ (1.1)
<x,y}eb j

(see [13, 14] for notation) where β^O, λ^O. The sums occurring in (1.1) are over
non-oriented plaquettes P and bonds b of the lattice, χ is the character of the
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irreducible representation DG of the gauge group. The representations DG(DH) of
the gauge group in the pure gauge (gauge-Higgs) action may differ. For simplicity
of analysis and presentation we restrict our attention to a 2 +1 lattice (x = (x0, xu

x2) = (xo>x)G Z3) a n d the gauge group SU(2) with spin \ {\ and 1) for the gauge
(Higgs) representations. In this case χ is real. Also we take the Higgs field to have
unit length, i.e. |^(x)| = 1. Similar methods apply in the general case.

The statistical mechanics and associated quantum field theory of the model are
related by the Feynman-Kac formula,

(FG(xo,x)) = (F,e-H^ei»-*G)Jf. (1.2)

F, G are gauge invariant functions finitely supported in the x0 = 0 hyperplane and
G(xo,x) denotes the translation of G by x = (xo,x). The left side of (1.2) is the
normalized «1> = 1) infinite lattice expectation in the Gibbs ensemble with
Boltzmann factor given by (1.1) and measure dμ(g)dφ, where dμ(g) is the product of
Haar measures of the gauge group, one factor for each bond, and dφ is the product
of invariant measures on \φ(x)\ = 1, one for each site. The left side of (1.2) is used to
define the Hubert space Jf [with inner product ( , )^], the vectors F, G e Jf and
energy-momentum operators H, P on the right side; for this connection see [2,
13-15]. Actually it is the positive self-adjoint semi-group T1*0', 0^ Trg 1, that is
well-defined, and if T> 0 then T can be written T=e~ H , H;> 0. <•> is well-defined
for small β, λ, using the polymer expansion of [14], is translation invariant and
independent of boundary conditions. We use the Schrόdinger representation, i.e. F
and G in (1.2) are supported on the zero time hyperplane.

An intuitive picture of the energy-momentum spectrum can be obtained by
considering an approximate model obtained from (1.1) by dropping the interac-
tion terms in the spatial (horizontal) directions, such as maintaining only terms
with vertical plaquettes and bonds. In this approximation and for any dimension,
gauge group and β>0, /l>0, the model is solved exactly in Sect. II. Our method
produces the spectrum and all gauge invariant eigenfunctions of the "transfer
matrix" T directly. For fixed momentum p e (— π, π ] 2 the energy spectrum is pure
point and the dispersion curves are flat. Disjoint planar simple loops and strings
are gauge-invariant eigenfunctions. However, depending on the gauge group and
Higgs representations, there are gauge invariant bound state eigenfunctions not of
this form involving, for example, 3 —j symbols [16]. In addition to mass spectrum
occurring at n-particle thresholds there is other spectrum occurring above the two-
particle threshold. It is well known [17,18] that in a pure SU(2) gauge theory with
action in the spin 1/2 representation, Wilson loops in the spin one representation
have perimeter decay for small β > 0. It is expected therefore that dynamical Higgs
fields in the spin one representation are screened, and dressed single Higgs
particles should appear in the spectrum. We verify this expectation explicitly in this
paper.

In the full model for small β, λ we expect the approximate model to give the
correct intuitive picture of the number and location of strongly-bound bound
states and resonances. It is expected that as the horizontal interaction is turned on
the mass spectrum above the two-particle threshold (and not corresponding with
rc-particle thresholds) disappears and corresponds with resonances. However, we
do not understand, as yet, the precise spectral mechanism by which this may occur.
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We point out that similar considerations can be applied to scalar and multi-
component lattice spin models to give a unified picture of bound states and
resonances.

For the full model with β, λ small in Sect. Ill we obtain, using the decoupling of
hyperplane, Euclidean subtraction and expansion methods of [1-7], convergent
expansions for the first two groups of masses above the vacuum and confirm the
above expectations. In order to obtain additional masses below the two-particle
threshold further complications arise. One has to make additional Euclidean
subtractions which introduces new spurious poles in the complex energy plane
whose relation with the spectrum becomes increasingly more complex.

In Sect. IV we obtain decay properties of correlation functions, convolution
inverse and related functions which enter in the arguments of Sect. III. Section V
provides the missing proofs of theorems in Sect. III.

In Sect. VI we make some concluding remarks. The mass expansions obtained
here and in previous work result from finding a suitable implicitly defined function
whose nth derivative is given recursively (the classical implicit function theorem).
We give in an appendix an explicit formula for the nth derivative of the implicit
function which may be useful in the numerical evaluation of masses employing the
mass expansions given here and in [4-7].

II. Spectrum and Energy Eigenfunctions for Approximate Model

In this section we obtain the full energy-momentum spectrum of the model without
horizontal plaquettes and bonds. For clarity we deduce the eigenvalues and gauge
invariant eigenfunctions of the T operator ("transfer matrix") explicitly for the case
of a 2+1 SU(2) theory with the gauge (Higgs) field in the spin (̂1) representation.
Pure temporal gauge models in the same approximation are considered in [13]
with the purpose of testing specific ideas concerning the continuum limit. In [13] it
is shown that Π D%jb(gb) are eigenfunctions ίγ[ denoting the product over distinct

b \ b

bonds and σb the representation ] of the temporal gauge transfer matrix (see

[2, 14]). To obtain the eigenfunction expansion in the gauge invariant sector one
applies the corresponding projection operator (which is an integration over all
gauge transformations) to linear combinations of functions of the form above. We
emphasize that in our diagonalization procedure all gauge invariant eigenfunc-
tions are obtained directly.

In Figs. 1 and 2 for small β, λ we present graphs of the particle spectrum up to
the two-particle threshold with the gauge (Higgs) in the spin^(l) representation as
well as the case with the gauge and Higgs both in the spin \ representation.

Recall (see [2]) that in the full model Γ = Eo U(l) \2/f, where U(l) is the unitary
time translation operator by one unit (χ0 = 1) in the Euclidean Hubert space S, i.e.

and Eo is the orthogonal projection on the time zero hyperplane (conditional
expectation) defined by

\ψe~AΛdμ\g)dφf

, Φ) = -AΛ Λdμ\g)dφ/
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where ' means omit the time zero variables and A denotes a finite hypercube. Eoψ
only depends on the time zero variables. For φ e Jt? and of finite support Λφ, then

Now dropping the horizontal plaquettes and bonds we obtain partial cancellation
of the numerator and denominator integrating over the horizontal bonds not in
the support of φ and φ(x0 = 1) to obtain

Tφ(g, φ) =

where " means integration over variables in the support of φ(x0 = 1) and vertical
bonds between xo = 0 and xo = 1 emanating from the support of φ(xo = 1), and

0 — Aoi f-f oβχ(gP) l~T λ{φx,D^(,gxy)φy) /9 Λ\
— x± j. j. J v /

pcCΛφ (x,y)CΛφ

with the products running through vertical plaquettes and bonds between the
planes x0 = 0 and x0 = 1 whose bases belong to Λφ. Now we use the expansions

eβχ(g) = j ^ cn(β)χn/2(g), cn(β) = J eβ^^χn/2(g)dμ(g),

where χn/2 is the character of the spin n/2 representation of SU(2), and with
\ = D^1\gxy)φy,

00 J _

/ = 0 m=-l

= Σ d,(λ) Σ Ϋιm(Φx)D^(gxy)Y,m'(Φy)
1 = 0 m,m'=-l

= Σod,(λ)(Yι(φx),D«>(gxy)Yι(φy)),

1

where dι(λ) = 2π f eλxPt(x)dx; Pz( ) is the Ith Legendre polynomial and Ylm is the
- 1

spherical harmonic. Substituting the expansions into (2.2) we obtain

e 01 — Σ Σ ( Π CnpXnp/2\Qp)
{nP} {lxy} \pCΛφ

Π dlχ (Ylχ (φx), D{lχy\gxy)Ylχ (φ))\. (2.3)
(x,y)CΛφ

 Xy Xy Xy J

Now we insert (2.3) into (2.1) and perform the calculation of the numerator by first
integrating over the vertical gauge bonds.

Each term of the sum in (2.3) has the form

Π' rcn
L

2 2 9L

Π (Ylx{φx),^\gx)Ylχ{Φ'J)\, (2.4)
xeΛφ
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where vertical plaquettes and bonds are parametrized by their bases (a bond and a
site, respectively). In general each vertical bond in Λφ will share five D's and the
associated integral is

,{g)dg,

where ί?1 + , etc. are the bonds containing x as an endpoint. Using unitarity and
D(g~~ί) = D(g)~1, we can rewrite / as

I = J D^ΰι

where Dn denotes the complex conjugate of the representation D(n). The integral
can be evaluated by reducing the tensor product

into irreducible components. Let
τ/(i«£1+)® ®/x

be the unitary matrix implementing this reduction. Then,

^ atf+o$*+atf-otf-mx; k ' α'1
Lfiα'1

LΪ+α'2
LΪ-α/

2

LΪ-m/

jr; k '

where iVx[(^7?L*+)(x)...(χ)/x] is the number of times the identify representation is
contained in the decomposition, and the index k is a convenient parametrization
for some particular values of (oc^+,...,mx).

Thus, after performing the vertical integrations, (2.4) becomes

Π cnL)( π dΛί π DλZ\gL)D^

i cnL\(n 4

where we define

LCΛφ 2 ι \xeΛφ

Notice that the set of functions (2.5) is orthogonal, i.e. {ψfajy }, Ψ^}f{i'xy}) — 0 unless
{n'pi = inp}> {I'xy} = ilχy} a n d IK) = {^} The orthogonality isΌbvious if {w;} # {np}
or { Q Φ { U If {n;}-{np} and { Q = {/,,}, then
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verifying the assertion where dL is the dimension of the representation \nL.
Furthermore, the φ's are gauge invariant.

The numerator of (2.1) has the form

Σ Σ ( Π cB\ ( Π O Σ iwl%xy),flvfcl <w
{nP} {lxy} \pCΛφ *) \xyCΛφ ) {kx}

In the denominator we continue the integration over the horizontal bonds in the
xo= 1 plane. In (2.3) only cHp = 0 can occur; integrating over the vertical gauge
bond xy only lxy = 0 can occur. Thus the denominator is just ί Π c0 V Π

In this way we obtain the spectral resolution given by \pCA* J\χyCΛΦ

Theorem ILL Tφ has the eigenfunction expansion

TΦ-Σ Σ
} {lXy} pCΛφ Co / \χyCΛφ Uo ) \LCΛφClL

' Σ ( ψ { n X

p } { l x y } { p } { x y }
{kx}

where Ψ^f}{ixy} = Ψ^i{ixy}/\ψ{^f]{ιxy}\ are a complete set of gauge invariant ortho-
normal energy eigenf unctions with eigenvalues

Let Fj(λj)J = 1 , 2 be the spectral family associated with the translation operator eιPj\
then d\Fj(λj)ψ\2 = dλp such as ψ has a uniform momentum distribution on( — π, π]2.

Remarks. 1. The uniform momentum distribution follows by multiplying
(ψ,eιp'*ψ) = (ψψ(x)} by fix), summing over x and noting that (ψψ(x)} = 0 for
xφO. In this way ]f(λ)d\F(λ)ψ\2 = $f(λ)dλ(ψψ} = j/(λ)dλ for all smooth / so
that d\F(λ)ψ\2 = dλ.

2. To see that disjoint simple planar loops and strings are eigenfunctions we
refer to the claculations of [1, 2], where it is seen that the integral over a vertical
bond where only two oppositely oriented bonds in the same representation
overlap removes it and gives a factor of 1/r, where r is the dimension of the
representation.

3. A non-loop bound state eigenfunction occurs in the case of seven vertical
plaquettes with the base of six forming an elementary rectangle and the base of the
seventh dividing the rectangle two plaquettes. If DG is the spin 1 representation
(but not spin 1/2) then the integral over the vertical bond with 3 overlapping bonds
is non-zero. The integral over the six vertical bonds gives rise to the eigenfunction
with asymptotic eigenvalue 7 In/?.

4. A non-string particle occurs, for example, when the gauge (Higgs) is in the
spin ^(1) representation. It arises from the integration of four vertical plaquettes
whose base is a plaquette and a vertical bond along one edge. The eigenfunction
has one Higgs fields, four gauge bonds and is given in Sect. III.

5. Related to Remark 3 by a direct calculation we obtain the inner products
(XoaR)>^ (Xo>Xu)>0> where χR(\\χR\\ = l) is the elementary 2 x 1 rectangle
eigenfunction, XB(\\XB\\ = O the bound state eigenfunction of Remark 3 and
ZodlXoll = 1) is t r i e product function χ(gp)χ(gp>), where P and P' are plaquettes with
one bond in common. Thus the spectrum, up to the two particle threshold — ε,
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associated with the functions χ0, χ(gp) and their translates and rotates is the same as
the spectrum of the full model, such as all correlation functions.

6. A candidate for a resonance comes from a 3 x 1, 8-sided rectangle with a
ninth plaquette inside again with the spin 1 representation. The asymptotic
eigenvaue is — 91n/J for Λ = 0.

7. Although loop masses depend on β we see that the mass ratios are
independent of /? for A = 0.

We depict the mass spectrum in Figs. 1 and 2 for small β and λ. The asymptotic
mass is plotted as a function of α ~* (or y ~~1), where λ = βa(β = λy). The solid (dotted)
lines correspond to the mass of the model with the gauge, Higgs representations \,
l ( i i) We have also indicated the two-particle thresholds although we emphasize
that in the approximate model for fixed momentum there is no continuously
varying energy typical of two asymptotically free particles. Some of the associated
eigenfunctions are represented pictorially with a single line indicating a gauge
bond in the spin \ representation and a double line indicating a gauge bond in the
spin 1 representation; the degeneracy is determined by the number of distinct
configurations (not related by translation) that can be produced by rotation about
the x0 axis. A dot indicates a Higgs field. The heavy line of the insets indicates the
region of the β, λ plane displayed on the graph. The physical Hubert space 2tf can
be written 2tf = 2tfo®2%.> where J^(J^) contains an even (odd number of Higgs
fields, and we display the spectrum separately for J^o and J-fe.

Some of the interesting features of the graphs are the abundance of particles,
level crossings and the fact that some particles are stable in one region but unstable
in another. Furthermore we see the existence of dressed single Higgs fields as
particles.

SPECTRUM IN fle

1/2
Fig.l
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Fig. 1. Mass spectrum for small β,λ in the even Higgs subspace 34?e for the gauge group SU(2)
with no magnetic interaction. The solid (dotted) lines are for the pure gauge in the spin 1/2
representation and the Higgs in the spin 1 (spin 1/2) representation. The solid (dotted) cross
hatch indicates the corresponding two-particle thresholds. The inset indicates the region
depicted. Associated eigenfunctions are represented by a single (double) line for a spin 1/2 (1)
gauge bond, a circle for a Higgs field

Fig. 2. Same as Fig. 1 but in the odd Higgs subspace Jf0

III. First Two Mass Groups of Full Model

In this section we state the theorems which give the particle structure and
convergent expansions for the first two groups of masses above the vacuum for β, λ
small in the full model. Correlation function (hereafter abbreviated cf) decay
properties and the missing proofs of the theorems of this section are given in
Sects. IV and V, respectively. The results are in agreement with the mass spectrum
obtained in the previous section (displayed in Figs. 1 and 2) for the approximate
model. Different regions of the β, λ plane are treated separately. We restrict our
analysis to the case of the gauge (Higgs) interaction in the spin |(1) representation;
the case of spin ^ ) can be handled similarly. We consider zero momentum states
and work within a definite Z 4 (discrete angular momentum) sector as in [3] which
serves to reduce degeneracy and simplify the analysis.

In part A we treat the region of Fig. 1 (j-fe, λ<β3) and show that the first two
groups of masses arise from the plaquette and elementary rectangle (window) cf s. a
result similar to the pure gauge case treated in [3, 7]. We give detailed arguments
here as our method is new, simplifies that of [3] and generalizes to the degenerate
case of part B.

In part B we treat the region of Fig. 2 (j>fo, λ < β3) and the identity sector of Z 4 ;
the masses obtained are in agreement with those displayed in the figure. Here the
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spectral problem for the determination of the second mass group has a new aspect
as this group is triply degenerate. However, a spatial coordinate reflection (parity)
symmetry is used to further reduce the degeneracy. Other regions of the β, λ plane
(/?, λ small) and representations of Z 4 can be treated similarly (see Sect. VI).

We let Gφψ(x,β,λ) denote the truncated φ, ψ cf, Gφψ(xo,β,λ)
= Σ Gφψ(x = (x0, x), /?, λ) the zero space momentum cf and

X

Gφψ(p,β,λ) = Σe-ipxGφψ(x,β,λ),
X

2

P x = Σ Pi*i(Gφxp{p0, β, λ) = Gφ (p0, p = 0, β, X)),
ϊ = 0

the Fourier transform. We also consider Gφψ(x — y)(Gφψ(x0 — y0)) as kernels of
convolution operators on 12(Z3) (12(Z)). The above cf s are analytic for β and λ
small, and we suppress the β, λ dependence when no confusion can arise. In what
follows positive constants will be denoted by c{\ cmn, dMn refer to coefficients in the
Taylor expansion of various cf s and their values are given in Sect. IV. ε will denote

a strictly positive constant which may depend on β9 but ε(β) -> 0. Throughout our
results hold for all sufficiently small β, λ unless stated otherwise. Gφψ(p0), |Repo |
^ π, admits the spectral representation formally given by

ί
0 COSh/l0 —COSp 0 λe(-π,π] 2

(see [15] for a precise statement). Spectral results follow from analyticity
properties of Gφφ(p0). Note that from the spectral representation Gφψ(p0) is
analytic for Rep 0 Φ0. Points of p 0 non-analyticity (Imp0 ^ 0 , Rep 0 = 0) are in the
energy (or mass) spectrum. We use the same notation as [3] regarding the Z 4

group, R denotes rotation about the x0 axis by π/2 and {Pt} denote the projections
on the irreducible representations.

A. Here we work in J^e. As in [3] we denote by χ(χf5 1 £j i ̂  4) the plaquette
function (the horizontal 1 x 2 rectangle (window) function in the representation ί of
Z 4 ) . We first consider the spectrum in the subspaces generated by χb ί = 3,4. That
there is no mass spectrum in [0, — (1 — ε)\nβ8) follows from

Theorem III.l. GXiXl(p0), i = 3,4 are analytic in 0 ^ I m p o < — (l-β)ln/? 8 .

Now we consider the subspace generated by χ2. We let — fχ2χ2(x0) denote the
convolution inverse of Gχ2X2(x0). We have

Theorem III.2. Γχ2χ2{p0) is analytic on 0 ^ I m p o < - ( 1 -ε)\nβ8.

From Theorem III.2 and the spectral representation for GX2X2(p0) we see that
Γχ2X2(po) has at most one zero. fX2X2(p0) does indeed have a zero at p o

 = z m2
^ —16 \nβ and a convergent expansion for m2 is obtained by setting λ = α/?3, 0 < α
< 1, α fixed (a procedure which we use for the expansions in this section), and
writing the β Taylor expansion of fX2X2 as

p pd _ι JTT
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where Γχ2X2= — 2 + c66β
6e~ipo. The zeroes of ΓX2X2 determine the correct singular

and constant term in the expansion for m2. After making a non-linear transfor-
mation from the variables pθ9 β to w= — 2 + c66β

6e~ipo, β the analytic implicit
function theorem [19] applies to find the zero of the function H(w,β)9 where
H(w= -2 + c66β

6e~ipo,β) = Γ(pOίβ). In this way we obtain

2
Theorem III.3. m2 = - l n β 6 + l n — + r(/?), where r(β) = ln(l + w(β)) is analytic at

c

Passing now to the subspace generated by χ we let fχχ(x0) denote the
convolution inverse of — Gχχ(x0). We have

Theorem III.4. Γχχ(p0) is analytic on 0 ^ I m p o < — (1— ε)lnβ 6 .

By the same technique as used in arriving at Theorem III.3. we obtain a mass
m0 as the zero of fχχ(Po) given by

TheoremIII.5. mo= - ln/? 4 + l n c 4 4 + r0(j8), ro(β) analytic at β = 0 and ro(0) = 0.

As in [3] to go up in the spectrum we look for additional zeroes of fχχ.
Introduce

which is expected to subtract out the physical pole contributions to GXlXi. That it
does subtract out the m0 pole contribution is seen in

TheoremIII.6. FXίXί(p0) is analytic in 0fgImp o < — (1—ε)ln/?6.

We denote by — Φχιχί(xo) the convolution inverse of FXlXl(x0) and we have

Theorem III.7. Φχίχι(Po) is analytic in 0 ^ I m p o < — (1—ε) lnjβ8.

We show below that Φχiχi has precisely one zero at p0 = iρ « — i lnβ 6 , that this
zero is a pole of Γχχ and this is the only singularity of Γχχ in — I n β 5 < l m p o

< —(1 —ε)lnyδ8. We then obtain an equation for fχχ and a zero of Γχχ close to ρ
which corresponds to a mass m.

To find the zero of ΦXίXί write the β Taylor expansion as

φ =φd +φr where Φd = — 2-\-c*,β6e~ipo

the zero of which determines the correct singular and constant term of ρ.
Proceeding as before one obtains an expansion for ρ. As we do not know of a
spectral representation for FXίXί or ΦχiX1, a Rouche argument is used to show that ρ
is the only zero of Φ. We have

Theorem III.8. Φχίχi(Po) has one zero in 0 ^ I m p o < — (1 — ε)ln/?8 given by
2

ρ = _ l n j β
6 + l n — +rρ(jS), where rβ(β) is analytic at β = 0 and rβ(0) = 0.

We now rewirte (3.1) to obtain an equation for fχχ [formally obtained by
multiplying (3.1) on the right by — ΦXίXί and on the left by Γχχ]. Define

XXi ~~ XX XXi XiZi ' XiX ~ X
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and

M — — Γ G Φ

We have

^ ~~ xx~*-Jxxi χiXί^xix'

That fχχ = LχχiFχίXlLXίX + M is analytic in 0 < I m p o < — (1 — ε)\nβ8 except at
the zero of ΦχιXί follows from a) and c) of

Theorem III.9. a) Lχχi, Lχiχ are analytic on 0 < l m o 0 < - ( 1 -ε)ln/? 8,
b) LLχχi(ίρ) = Lχiχ(iρ) + 0,
c) M is analytic on 0 ^ I m p o < — (1 — ε)ln/?8

?

d) M(p0) + 0/or -(l-ε)lnβ5<Imp0<-(l-ε)lnβ8.

We rewrite Γχχ as

That p0 = iρ is indeed a simple pole of Γχχ follows from Theorem IΠ.9b and c.
Next, we obtain a zero m1 (near ρ) of

the term in brackets in (3.2). That po = im1 is a zero of Γχχ(p0) and hence in the
spectrum follows from Theorem IΠ.9d. The zero of (3.3) is obtained by the same
method as used previously; here we separate out Φd

χiχι, the zero of which gives the
correct singular and constant term of mι. The result is

2
Theorem III.10. mί = -61n/? + ln-— +rx{β), where rjβ) is analytic and ri(0) = 0.

From the spectral representation Gxx is strictly monotonic in an interval of
analyticity. Thus fχχ can only have one zero in an interval of analyticity. Since
m0 < ρ, we have m1>ρ and m1 is the only zero of Γχχ in ρ < Im/?0 < — (1 — β) In/?8.
Finally we point out that the spectral results obtained here extend to all ffl using
the methods in [3].

B. Here we analyze the spectrum in 2tfQ in the identity sector of Z 4 . Referring to
Fig. 2 in the approximate model of Sect. II, the first mass group is given by a single
Higgs with four gluons and the second by a single Higgs with six gluons. In Fig. 2,
we have labelled by τ one of the energy eigenfunctions of the first group and by ρ°,
ρ1, ρ 2 three of the eigenfunctions of the second group. These gauge invariant
functions are obtained by integrating over appropriate vertical gauge bonds as
explained in Sect. II. As these and related functions enter in the cf s to be analyzed
we begin by giving their explicit form. We have (where we choose a counter-
clockwise orientation for gauge bond loops)
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ρ1 and ρ2 are obtained in the obvious manner from ρ° by a relabelling of the gauge
bounds. Here M is the matrix which block diagonalizes the tensor product
representation, i.e. M(D1/2(g)®D1/2(g))M+ =D°(g)®Dι(g) and is related to the
3 —j symbols. In Lemma IV. 14 in part B of Sect. IV it is shown that the effect of
reversing the orientation of the gauge loop is to change the sign of the above
functions.

Now we consider the effect of an x1 coordinate reflection (parity) denoted by P.
Specifically if the rotation R is R(xu

 χ

2)
:=( — χ2iχi)> then P(x 1 ?

 χ2) = ( — χi> xi)-
We find that P0P = PP0, P1P = PPl9 but P2P = PP3 and P?P = PP2.

In particular as P0P = PP0 the reflection provides us with another selection
rule in the identity representation of Z 4 . We now show that this naturally breaks
the triply asymptotically degenerate level into a non-degenerate and doubly
degenerate level. With the same letter P denoting the action on functions P +
= i ( l ± P) are the projections on functions with + parity. Taking into account the
change of sign of τ, ρ°, ρ 1 under loop orientation reversal we have

Gφpρo = — Gφρ2 , GφPρi — — Gφρι , GφPχ — — GφRχ .

We also obtain GφPRτ = - Gφτ, GφPR2τ = - GφR3τ and GφPR3τ = GφR2, GφPRoτ = - GφPoτ

which implies, letting τ 0 = P o τ, GφP + τo = 0, GφP_τo = GφP_τo. We let ρ + = | / 2 P + ρ°

= -^(Q°TQ2X σ± =\/2P±ρ\ ρ°±=Poρ± and σ°± =P°σ±. Thus as Gφσo =0, we

are led to consider, for positive parity, the cf, Gρoρo, and for negative parity the cf s

r r

The analysis of the singularities of Gρo ρo is similar to that of Gχ2X2 of part A. We
have, letting — fρoρo+(x0) denote the convolution inverse of Gρoρo(χo),

Theorem 111.10. Γρoρo(ρ) is analytic on 0 ^ I m p o < - ( 1 -ε)\nβ8λ.

fρoρo(po) has a zero at p0 = im, m = — Inβ6λ and a convergent expansion for m is
obtained as in Theorem III.3. We have

o

TheoremIII.ll. m= -\nβ6λ-\-\n- \-r(β), where r(β) is analytic at β = 0 and
r(0) = 0. dβ6

The determination of the spectrum in the negative parity sector is similar to
that of the identity sector in part A except that the excited level of mass ~ — ln/?6/l
is doubly degenerate and we use a matrix generalization of Eqs. (3.1-3). We let
— 7^oτo(xo) denote the convolution inverse of Gτoτo(xo) We have

Theorem 111.12. Γτoτo(po) is analytic on 0 ^ I m p o < — (1 — ε)\nβ6λ.

Γτoτo(p0) has a zero at p o = ίmo, m o ~ — \nβ4λ and the mass is given by

Theorem 111.13. mo= - Inβ 4 Λ + ln8/d4 4 + rOS), where r(β) is analytic at β = 0 and
r(0) = 0.

Define the 2 x 2 matrix-valued function

τoτoσ°, (3.4)



582 R. S. Schor and M. O'Carroll

where

(C \
Gτo=\r ' G = ̂ oQ°- '. Gτoσo) .

We have

Theorem 111.14. F(p0) is analytic on 0^Impo < - ( 1 -ε)lnβ6λ.

Let — Φ denote the 2 x 2 matrix-valued inverse of F. The analyticity properties
of Φ are given by

Theorem 111.15. Φ(p0) is analytic on 0 ^ I m p o < —(1 —ε) lnyβ8yl.

We show below that the only possible singularities of fτoτo on — (1 — ε)\nβ5λ
< Impo < — (1 — ε) ln/?8/l are given by the zeros of det Φ. That there are at most two
simple zeroes or one double zero is shown by separating out the term det Φd = (— 8
+ d66β

6λe~ίpo)2 from det Φ and using a Rouche argument; a convergent expansion
for the zero or zeroes is obtained by making a non-linear transformation on pθ9 β
and using the Weierstrass preparation theorem [20] to obtain det Φ(p0 = iQ±) = 0,
where

Theorem 111.16. ρ+ - -Injβ62 + ln8/d6 6 + r±(jβ); r±(β) are analytic in βί/2 or β and

r±(0) = 0.

Remark. We are not claiming that ρ ± are distinct.

We now rewrite (3.4) to obtain an equation for fτoτo. Define

E° = f GτoΦ L =ΦG f

and M by

M = Γτoτo-E°FLτo.

Analyticity properties of Π°, Lτo and M are given in a) and c) of

Theorem 111.17. a) Π°, Lτo are analytic on 0 ^ I m p o < - ( 1 -s)lnβ8λ,
b) E%iρ±)φ0andLτo(iρ±)ή:0,
c) M is analytic on 0<Impo< ~(l-ε)lnβ8λ and MΦ0 on -(l-ε)\nβ5λ

<Impo<-(l-ε)lnβ8λ.

Writing F= —Φ~1 = Φ'/dQtΦ we see from a) and c) of Theorems 111.17 and
111.16 that

is non-singular for ρ 0 Φ iρ±. Using the spectral representation for Gτoτo(po), we see
that fτoτo(Po) c a n have at most two zeroes in (min{ρ + , ρ _ } ^ I m p 0

< — (1—ε)ln^8^. Rewriting (3.5) as

^ % , (3.6)
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we see that the only possible zeroes of Γτoτo are given by the zeroes of the term in
brackets. By separating out detΦd from detΦ+ M"1LτoΦXτo, making a change of
variables, and using the Weierstrass preparation theorem [20] we obtain

Theorem 111.18. a) detΦ + M" 1 £°Φ / L τ o (p o = im1

±) = 0, where mγ = -lnβ6λ
+ ln(8/d66) + r1

±(jβ); rf(β) are analytic in β1/2 or β and r1

±(0) = 0.
b) m* are the only possible points in the spectrum in — (1— ε)lnβ5λ<Imp0

<-(l-ε)lnβ8λ.

Theorem III.18b follows by a Rouche argument.
The number of distinct zeroes and spectral points in Theorem III. 18, which

based on the results of Sect. II we expect to be two, can be determined by
calculating the first non-vanishing terms in the differences of the remainders r*
and r±. This requires calculation of additional terms in the expansion of cf s which
is considerally more involved than the previous ones because of continuum state
contributions.

We point out that it is possible to establish the existence of precisely two nearly
degenerate masses by making the following reasonable hypotheses:

1) the full spectrum is determined by the spectrum of the scalar quark two-
point function, and

2) spectral points have multiplicity one.

IV. Decay Properties of Correlation and Related Functions
and their Convolution Inverses

In this section we obtain estimates on the decay properties of cf s, related functions
and their convolution inverses. These estimates imply analyticity properties of the
Fourier transforms and are used in Sect. V where the missing proofs of the
theorems of Sect. Ill are given. The estimates are obtained for a finite lattice A by a
decoupling of hyperplane method (see, for example, [1-7]) and are uniform in A;
they extend without change to the thermodynamic limit and are independent of
boundary conditions by the polymer expansion of [14].

We use a finite lattice approximation to the action, with complex coupling
parameters {wj, z, {uq}9 v, given by

AΛ=Σwq Σ x(gP)+z Σ χ(gP)+Σuq Σ (Φ(ί),D\gij)φθ))
Q pePq pεP1 Q (hfieQq

+ v Σ (φ{ί),Ό\gij)φ{j)). (4.1)

In (4.1) Pq(Q'q) denote the plaquettes (Higgs bonds) parallel to the time (x0)
direction between the planes xo = q and xo = q+l; P1(Qλ) denote the plaquettes
(Higgs bonds) perpendicular to the time direction. For a function φ of the gauge
fields {gij} and Higgs fields {φ(ί)} we define averages by

< ^ ( ( w j , {uj, z, v) = ZA

 1 j φeAHgΛdμΛ,

where ZΛ is such that <1>^ = 1. From the polymer expansion [14] (φ}Λ is analytic
in all variables if {\wq\}, {\uq\}, \z\, M</?0> βo sufficiently small independent of A
Furthermore the thermodynamic limit exists, is translationally invariant and
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coincides with <<̂ > when {wq = β} {uq = λ}, z = β, v = λ. In addition, given φ and ψ of
finite support, there exists an m o > 0 , independent of {wj,..., v and Λ, such that

In (4.2) ψ(x) is ψ translated by x e Z 3 and cφψ is a constant depending only on φ, ψ.
In the sequel it is to be understood that our results hold for all sufficiently small

values of β, λ, {wq}...v and different constants may be denoted by the same letter.
We also suppress the dependence on parameters when no confusion can arise. We
define

Gφψ(χ,y; A)= (Φ(χ)ψ(y)}Λ — (φ(χ)}Λ(ψ(y))Λ,

and adopt periodic conditions in the spatial direction letting

Gφψ(x0, y0 Λ) ΞΞ X Gφψ(x, y A).

Due to (4.2)

Decay properties follow more easily by writing Gφψ in terms of duplicate variables,
i.e. ,

Gφψ(x, y\ Λ)— irγϊ\ (φ(x) — Φ'(χ)) (ψ(y)~ψ'(y)) eAΛ + ΛΛdgΛdg/

ΛdμΛdμ/

Λ

_ Nφψ(x, y, A)

= 2D(A) ' ( 4 ' 3 )

and typically are obtained by a double Taylor expansion in wq, uq. Although we
consider here a double expansion many of the calculations are similar to those in
[3] so that only the results will be stated. However, some estimates simplify as we
only consider the gauge group SU(2) in the fundamental representation. Also as
Gφtp(x, y, A) = 0 if φ(ψ) depends on an even (odd) number of Higgs fields, it is
convenient to consider these cases separately. The even (odd) case being treated in
part A(B). Each part is further divided into two subsections where in subsection 1)
decay of Gφψ is established for general φψ and in 2) properties of Gφψ for specific, φ,
ψ, related functions and their convolution inverses are established. From now on
we only consider φ, ψ in Gφψ that are supported in xo = 0.

A.I) We begin by analyzing the Taylor series expansion of Gφψ in wq, uq. The
simplification resulting from the spin 1/2 representation of SU(2) (even number of
Higgs) are given in Theorem 4.1 a(b) below. By considering the Taylor series
expansion in wq, uq of the numerator and denominator of Gφψ for small wq, uq

(dependent on A) we easily arrive at the structure of the Taylor series expansion for
small wq, uq (independent of A). We have, writing

Theorem 4.1.
a) G9^(x9y9Λ) = 09n,
b) G^(x9y9Λ) = 09n
c) Gφψ(x9y9Λ) = Gf°
d) Gφψ(x, y9 A) = Gfψ°w*q + G%1%1 + Rfψ°, ,0 ^
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Proof, a) As the pure gauge action has the spin 1/2 representation of SU(2) only an
even number of plaquettes in Pq can contribute, b) In the λ Taylor expansion of the
Higgs exponential only an even number of Higgs can contribute, c) The absence of
G^° and G$°2 follows from cancellation of volume dependent terms in the
numerator and denominator, d) follows from using Peter-Weyl on the gauge
bonds in P"q.

Let e0 be the unit vector along the positive time direction. Recall that χh(χv)
denotes the elementary rectangular loop function with long axis along Xi(x2)
Below c 4 4 > 0 , c 6 6 > 0 , c 4 6 are combinatorial constants. The Gq

φ

4

ψ°wq and Gq

φ

6

ψ°wq

terms in Theorem 4.1 d are calculated in [3] and we have

Theorem4.2. Let xo^q<yo. Then

Σ Gφχ(x,t,Λ)Gχψ(t+e0,y,Λ)w6

q

+ C66 Σ Σ Gφχj(x,t,Λ)Gχjip(t + e0,y,
j = h,v to = q

where the G... on the right side are evaluated at wq = uq = 0.

For the partial Fourier transform we have

Theorem 4.3. Let xo^q<yo. Then

x0, q, Λ)Gχψ(q + 1 , yθ9

χ(x0i q, Λ)Gχψ(q + l,y0, Λ)w6

q

6 Σ Gφχ.(x0,
j-h,v

where the G... on the right side are evaluated at wq = uq = 0.

Taking into account the finite lattice Z 4 symmetry using the definitions χx

= PiXh, X2 = PiXh and the fact that P3χh = P±χh = 0,χv = Rχh we have (suppressing
the arguments in G...)

2 2

Σ Gφχ.Gχ.ψ= Σ GφP.χhGP.χhψ\ Σ G G
j — h,υ i , j = l i, j = 1

As Pίχv = PίRχh = Pίχh and P2χv= -χ29 we have
2

Σ Gφχ.Gχjψ = 2 Σ GφχGXιψ.
j = h, v ι=l

Therefore Gφψ has the structure given in

Theorem 4.4. Let xo^q<yo.
a) If φ = p.φ, ψ = Piψ, ί=3,4, then
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b) // φ = P2φ, ψ = P2ψ, then

Gφtp(x0, y0, Λ) = c66όφχ2(x0, q, Λ)GX2ψ(q +l,y0, Λ)w6

q + Rfψ

2 .

c) // φ = Pίφ, ψ = P1xp, then

Gφψ(x0, yo,Λ) = c44rGφχ(x0, q, Λ)Gχψ(q +l,yo> Λ)w*

+ c 4 6 G 0 z (x o , q, Λ)Gχψ(q +l,y0, A)w6

q

where the G... on the right side above are evaluated at wq = uq = 0.

In the rest of this part we assume \λ\ < \β\3, {\uq\ < \wq\
3} \v\ < \u\3. Iterating the

above argument for all q, xo^q,<yo, and using a Cauchy estimate we have

Theorem4.5. Let xo^q<yo.
a) Ifφ = P,φ, ψ = PtΨ, i = 3,4,then \Gφxp{x0,y0,Λ)\^c'\cβ\*^-y°\.
b) // φ = P2φ, ψ = P2ψ, then \όφψ(x09y0,Λ)\£c'\cβ\6lχ<>-^.
c) Ifφ = P1φ9 v ^ P i Ψ , then \ G φ ψ ( x o , y ^ \

Proof. We bound G%ζwquq by the Cauchy estimate

r j /, , G(w',u')

so that for \wq\ = β, \uq\ = λ,

Assuming β < βί/2 and λ < β3, part (a) follows from the above estimate applied to
each R^8

ψ

2 after noting that G^8

φ

2 = 0. Parts (b) and (c) are proven similarly.
2) Concerning Gχ2χJx0,y0,Λ) and its convolution inverse — ΓX2X2(x0, y0, A)

we have

Theorem IV.6.
/ 72/2V 0' "^05 / 2 ' ^\Γ ) 5

<5««(*o> xo + hΛ)=ic66β
6 + O(β8),

\GX2χ2(x0,y0,Λ)\^c'\cβ\6^-yo\.

d) fX2X2(x0,x0,Λ)=-

fX2X2(x0,x0+\,Λ) =

\fχ2X2(xo,yo,Λ)\SC\cβ\Ί]x°-yoK | x o - 3 Ό l > l

fl2l2 is analytic in β, λ.



Mass Spectrum of 2+ 1 Gauge-Higgs Lattice Field Theory 587

fχχ(xo, yo, Λ), the convolution inverse of — Gχχ(x0, yθ9 A), is defined in a manner
analogous to Theorem 4.5. We have

Theorem 4.7.
a) Gχχ(x0,x0,Λ) = l + O(β2), Gχχ(x0,x0 + l,Λ) = c^β4 + 0(β% \6xx(xθ9yθ9Λ)\

^ C / | C J S | 4 1 X O " 3 ' 0 1 ,

b) Γχχ(xθ9xθ9Λ)=-l

Γχχ is analytic in β, λ.

Gy „ and its convolution inverse — fYi y (defined as in Theorem 4.5) satisfy the
same bounds as Gχχ and Γχχ, respectively. The behavior of Gχχι, GχiXί and Γχiχι is
given in

Lemma 4.8.
a) Gχχι(x0,x0,Λ) 2

b) Gχιχi(x0,x0,Λ)=^(βl
c) fχίX*(x0,x0,Λ)= -2-\-O(β2), and tXlXl is analytic in β, λ.

We define FXίXί = GXlXl + όXίXΓχχGxxl. The properties of FXlXί and its convo-

lution inverse —Φχιχi are given in

Theorem 4.9.
a) FXlXl(x09x09Λ)=i + O(β)9 Fχiχι(x0ix0 + l,Λ)=i-c66β

6 + O(βΊl

\FXίXί(xθ9yθ9ΛMc/\cβ\Ί

9 |xo-J>ol>l.

b) Φ =—F~1 =Γ1 —Γ G f G 1 - 1 Γ
c) Φχiχi(x0,xo,Λ)=-2 + O(β), ΦMl(x0,xo + l,Λ) = c66β

6 + O(βΊ),

\Φχaι(x0,y0,Λ)\ύc'\cβ\7^-^ , \xo-yo\> 1.

FXlXl and ΦχiXί are analytic in β, λ.

We define LXXl = fxxόXXlΦXlX1, and LχiX = ΦχιχiGχafχr Their properties are
given in

Theorem 4.10. Lχχi is analytic and
a) Lχχι(x0,x0,Λ) = 2β + O(β2), Lχχι(x0,x0 + hΛ) = c

b) \LXXί(xθ9yθ9Λ)\^c'\cβ\7lχ°-yol9 | x o - y o l > l ; the same for LXίX.

Multiplying the expression defining FXiX1 on the right by ΦXίXί and on the left
by ~ 4 P w e o b t a i n fxx = LxμFχiXlLχiχ-ΓχχGχUίΦχxχi. Let M= -ΓxxOXlXx&χιXι.
M has the properties given in

Theorem 4.11. M is analytic in β9 λ.
a) M(x0,xo,Λ)=-l + O(β), M(x0,x0 + 1,Λ) = c44β

4 + O(β5).
b) \M(xo,yo,Λ)\SC\cβ\8^-^, | x o - 3 Ό l > l

B.I) Some properties of the Taylor expansion coefficients of Gφψ in wq, λq are
given in
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Theorem 4.12.

a) 6$?(x9y9Λ) = 09

b) o$?(xO9yO9A) = 09 n even, x Q ^

Proof. The proofs are based on an analysis of the expansion of the numerator and
denominator of Gφψ(x, y, A), a) There is an odd number of P"q spin 1/2 bonds, b)
Higgs bonds are uncoupled between x0 ^ q and y0 > q and there is an odd number
in x 0 ^ q. c) Expanding in λq if there are an even number of spin 1 bonds then there
are an odd number of Higgs in x0 ^ q; if an odd number then the integral over the
bonds in Qq vanishes, d) If xo^q<yo, there is a free bond in P"q or Qq which by
P—W gives zero. If x 0 ^ q , yQ^q, there are an odd number of Higgs in xo^q.

Thus Gφxp has the structure given in

Corollary 4.13. Let xo^q<yo. Then

Gφψ(x0, y09 A) =

We calculate the above derivatives G ^ 1 and G ^ 1 by integrating over the gauge
variables in q <; x0 < q + 1 to get, letting τ° = τ, τ1' = i^τ°, 0 ̂  i ̂  3 and ρij = Rjρ\ 0 ̂  i

Theorem 4.14. Let xo^q<yo. Then

Gφψ(xo,yo^Λ) = d4A Σ Gφτl(xo,q,Λ)Gτiψ(q+l,yθ9Λ) \w*uq

+ d.46

*66

Gφτi(xθ9q9Λ)Gτiψ(q+l , y09 A) w6

quq

2 3

Σ Σ
ί=0j=0

d 4 4 > 0 , d6β>0 and dA6 are combinatorial constants.

We now incorporate the Z 4 and xί coordinate reflection symmetries into the
above expansion. But first we prove that the effect of loop orientation reversal in τ,
ρ°, ρ1, ρ2 is a sign change, a fact used in Sect. III.B.

Lemma 4.15. τ, ρ°, ρ1, ρ2 change sign under loop orientation reversal.

Proof It is enough to consider τ = (φA)mD1/2(gABCD)ijM
tlι

p where we recall that

r)l/2/ \ fi^βίnΛ — M JJL(π\ (M+Λ

where U1(g) = U(g) is the real spin 1 representation and we set M™ = Mij: lm. Thus
multiplying the above by U(g)mίtn2 and integrating over the group, we have

We denote by ^^(φA)mD1/2(gADCBA)ijMfj the function with the loop orientation
reversed. Now τf = {φA)J)lί2(gABCΌA\μ^ and from [16] D1/2 and D1/2 are
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unitarily equivalent, i.e. D1/2(g) = CD1/2(g)C~\ where Cτ=-C. Thus τ/ = (^>4)m.
Dll2(9ABCDjdkiCkjMTjC^ To determine the last matrix we compute

CkjChMTjMn

rs = Q A 3 ί DiJ2DjsUmndg.

Since CkjD)l2= -Dlj2Csj, we have

CkjCuMTjMn

rs= ~3CHCsjίDlJ2Dll2UmJg=-CliCsjJTkJ
h

rί,

where JJ£ are proportional to the usual 3— j symbols in [16]. In matrix notation

Thus

(CM^C-^/iCrh = - (PC" %/Mn

rs = λ = const,

or C M C ' ^ y l C J . Therefore M = λJC, Mτ = λCτJ= -λCJ, so that CMC'1

= — M Γ , and it follows that

Recall that P+ =\{\ ± P) is the projection operator on functions with + parity
under xx coordinate reflection and Pb 0 ^ / ^ 3 , denote the projections on the
representations of Z 4 . Define

so that P + ρ ± = ρ ± , P±Q+ =0. We have

Theorem 4.16. Let φ = P+Poφ, ψ = P±Poψ and xo^q<yo. Then

φτ(x0, q)Gτψ(q+l,yo)w*λq

6Gφτ(x0, q)Gτψ(q + 1, ^0)wβ

+ d6,6

where the G... ow ί/ze rẑ f/zί 5/dβ are evaluated at wq = λq = 0.

As in arriving at Theorem 4.5 we have

Theorem 4.17. Let xo<=q<yo.

a) // φ = P+Poφ, ψ = P+P0Ψ, then \Oφφ(xΌ,yθ9ΛMc'\cβ6λ\lχ°-">K
b) // φ = P.Poφ9 ψ = P-Poψ, then \όφψ(xo,yθ9ΛMc'\cβ*λ\iχ<>-y<>l.



590 R. S. Schor and M. O'Carroll

2) fρ+ρ + , the convolution inverse of — Gρ+ρ+, is defined as in Theorem 4.6 and
we have

Theorem 4.18.

a) όQ+Q + (xo,Xo,Λ)= ^

b) fQ+Q + (xθ9xθ9Λ)=-

\fρ+ρ+(χ0, y0, Λ)\ ̂  c'\cβΊλ)\χo-yo\, \Xo -yo\

Proof b) From Theorem 4.16 we have for xo^

a n d

Gq

ρ

6

+ρ + {χo, Jo, Λ) = d66Gρ + ρ + (x0, q09 A)Gρ + ρ + (q +l,y0, Λ)\Wq=Uq = 0.

From Leibniz's formula

dm+1f m_1 ίm\ d Ydnf dn~m . ."1
i — m 'dλq [_dwn

q dwn

q

and the above we obtain, for xo^

δn + 1f(x0,y0,Λ)/dwn

qdλq\Wq = λq==0 for 0 ^ m ^

and

By a Cauchy estimate the result follows. We now consider negative parity
functions. Note that P-Poτ = Poτ. Let τ o = P o τ and let — fτoτo denote the
convolution inverse of Gτoτo. We have

Theorem 4.19.

a) Oτoτ0(x0,y09Λ)=i + O(βλ), ότoτo(xθ9x0 + l,Λ)=£±β*λ + 0(β6λ).

b) Γτoτo(xo,χ09 A) = - 8 + 0{βλ)9 fτoτo(xo,xo + l9Λ) = d44β*λ + O(β5λ\

Proof, b) Similar to Theorem 4.18. Here we use, for x 0 ^

OΓoϊo(xo,yo,Λ) = 09 0 ^ n ^ 3
and

Gwfao* yo>Λ) = d44Gτoτo(x0, q, Λ)Gτoτo(q +l,yθ9 Λ)\Wq

We obtain, for x 0 ^

and

^oίo(χo5 y^ A)=^44^(^o? Φ(q +Uyo)
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We have, for

Lemma 4.20.
a) G(x0,x0,A)=±

b) (?°(x0, x0, Λ) = (-y=: 1 ^ + O(β2λ),

c) G {iCr\ XΛ y θ = =

We define the 2 x 2 matrix function F = G + GτofτoτoG
τ°, and let - Φ denote its

matrix convolution inverse. We have

Theorem 4.21.

1 ! 6* 7

8-8

b) Φ ( x 0 , x 0 , y l ) = - 8 + 0(/M), Φ ( x 0 , x 0 + l , / l ) = ί / 6 6 ^ + O()β
7A),

II Φ(x0? ̂ o? -Ί)II ^ c |cp A) | X° •Vo', |XQ — jol ^ l ?

and Φ is analytic in β, λ.

Proof, a) We calculate wq, uq derivatives of F(xo,yo,Λ). First we have, for xQ^q

κ0, y0, A) = d 4 4 G^°(x 0 , q, Λ)GZ{

+ d66G"00(x0, q, Λ)G«00(q +l,yo,Λ),

G?0

41(x0, y0, Λ) = d44G«™(x0, q, Λ)ό«™(q+l,y0, A);

Gfo\x0, y0, A) = d46<5?0

00(x0, q, Λ)0£°o(q +1, yo)

+ d66G«00(x0, q, Λ) • Gfo\q+\,y0, Λ),

G τ o 9 4 1(xO, JΌ. Λ) = d44Gfoτ°0(x0, q, A) • Gτ°«00(q +l,yo,Λ),
and

Gτoq61 (xo, yo,Λ) = d46Gfoτ°q(xo, q, Λ)G™00(q +l,yo,Λ)

+ d66G^00(x0, q, A) • G"00(q+l, y0, A).

We need, in addition to the derivatives in the proof of Theorem 4.19b,

££o (*o, yo» Λ) = d46δ(x0, q)δ(q +l,y0)

+ d6M?&°) (x0, q,
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valid for xo^q<yo. Using the above results we find, for xoi^q<yo,
Fqnm(x0, yθ9 A) = 0, 0 <Ξ n S 5, 0 ̂  m S 1 from which the decay follows by a Cauchy
estimate.

b) From Leibniz's rule and the properties of F in part a) we have, for x0 ^ q
< y 0 , Φqnl(xo,yo,Λ) = 0, 0^n^5. For xo^q<yo a lengthy computation gives

F«61(x0, yθ9 A) = d66F«00(x0, q, A)F«00(q + 1, y0, A)

and as

Φ«61(x0, y09 A) = ( φ ^ o o ^ i φ .

we have

from which the decay follows.
We define

Π° — fττ GτoΦ and

Theorem 422.

a) Π°(xo,xo,A) = 4β(-j=': A +O(β2).

I 1

VΛ J (γ v Λ\ AR\ '
) τnV 0' ̂ 0? / — r \

c) \\Π°(xo,yo,A)\\^c'\cβ8λ\^-y^, \xo-yo\>l and similarly for Lτo.

Proof, c) Using the properties of the derivatives of fτoτo, Gτo and Φ obtained in the
proceeding proofs we find, for x0 ^ q < y0, Πoqmn(xo, y0, A) = 0 for n = 1, m odd and
0 ^ m ^ 5 , O ^ w ^ l . Also a lengthy computation gives

EoqβKxo, yo, A) = d6 6(Γτ o τ oGτ o) (x0, q, A) [_Gjτoτfi^Φ

But

G τ / τ o τ o G ^

so that, for xo^q<yθ9 Πoq61(x0,y0,A) = 0 from which the decay follows.
Define M = fτoτo-Π°FLτo.

Theorem 4.23.
a) M(x0, xo,A) = — 8 + O(β).
b) M(x 0 J ^o + 1 , A) = d4j

4λ + d46β
6λ + O(/?7A).

C^ I Λ/f(Ύ Λ) ΛW ̂  of \oR 2\ ̂ o yo I-y i) I ̂ . 1J \1V1 ^ Λ Q , JQ} **-)\ = ^ 1 ^ " ̂ / ? I-̂ O — J/QI ""̂  *

Proof, b) and c) For xo^q<yo, Mqmn(xo,yo,Λ) = 0 for m = 0 or w = 0 and
Mqm\xo,yo,Λ) = Q if 0 ^ m ^ 3 . Also, for

, M«4 1(x0, >Ό, /l) = d44(3(x0, g)5(g + 1 , y0),
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and we find

M*61(xθ9yθ9Λ)

(fτoτoό
τo) (xθ9 q, A) (G τ / τ o τ o ) (q+ l,yθ9 Λ)\Wq = Uq = 0

- Σ ^ o ^ o ,

From^E° = fτoτβ
τ°Φ and Lτo = ΦGτoΓτoτo we have frF=-ΓτoτoG

τ° and FLτo

= - Gtofτoτo, which implies, for x0 ^ q < yθ9 Mq61(x0, yθ9 A) = d46 δ(xθ9 q)δ(q + 1).

V. Missing Proofs of the Theorems in Sect. Ill

Here we give the missing proofs of Theorems in Sect. III. Analyticity results in p0 of
the Fourier transform of cf s and their convolution inverses follow from their
corresponding decay properties given in Sect. IV. To find zeroes, corresponding to
masses or to singularities of related functions, the technique used, in most cases, is
that explained in arriving at Theorem III.3; the method also gives a convergent
expansion. As this argument is used repeatedly throughout we give the proof of
Theorem III.3. We also give the proof of Theorem 111.10. which uses a variation of
the argument, and a proof of Theorem III. 16. which uses the Weierstrass
preparation theorem [20]. Typically, after obtaining the zero, we want to show its
uniqueness in the region of analyticity of the function. If the function has a spectral
representation then the zero is simple and unique. This is the case except in
Theorems III.8, 16, and 18; in the proof of Theorem III.8 below a Rouche
argument is used to give uniqueness. The multiplicity part of Theorems III. 16 and
18 is proved similarly using the estimates in Sect. IΠB. A Rouche argument is also
used to prove Theorems III.9 and 17.

Proof of Theorem HI.3. For notational simplicity drop the χ2χ2 indices from Γ,
write its β = 0 Taylor series separating out terms up to and including order /?6, and
take the Fourier transform to get

where fRm(fn) denotes the Taylor series of f from m to oo (0 to n) and we have used
Theorem 4.6. Making the non-linear transformation to the variables w=— 2
+ c66β

6e~ipo = Γd, β we obtain the function H(w9β)9 where H(w=-2
+ c66β

6e"ίpo, β) = f(p09 β). Using the falloff of f given in Theorem 4.6d, H(w9 β) is
dH

jointly analytic for w, β small, H(0,0) = 0 and ^— (0,0) = 1. The analytic implicit

function theorem [19] applies and gives a unique analytic w(/?), w(0) = 0, for small
β such that H(w(β),β) = 0. Thus for /?>0, w(β)= -2 + c66β

6em(β\

Proof of Theorem III.8. Dropping the χίχί indices we show, using Rouche's
theorem, that Φ has exactly one zero in the region R = {po\\RQpo\<π, 0 < l m p 0

< — (1 —ε)71n/?}. We write Φ = Φd + ΦR, Φd= -2 + c66β
6e~ίpo. It is easy to see that
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\Φd(p0 e dR)\ > 3/2 for all \β\ sufficiently small and we now show that \ΦR\ < 3/2 on
dR. This follows directly for all terms except for

R
n=ί

~ fl > 0

Using Theorem 4.9c we find \ΦR(poedR)\ > 0 uniformly on dR.

Proof of Theorem III.10. We find a zero of Φy „ - M ^ L L y near pQ = ίm,
m~ — 6 In/?. For notational simplicity drop the indices χ1 and χ. We obtain the
correct singular and constant term of m by transforming to the variables w= —2
-\-c66β

6e~ipo = Φd, β. We let M\ Φ\ L denote M, Φ, L, respectively written in
terms of the w, β variables. Now, using Theorem 4.9 and 4.11, we can write

) , 0(O,O) = O, ^ ( 0 , 0 ) = 0,

C66

Using Theorem 4.10 in addition, we see that L is jointly analytic as are g and h and
that (β2M/)~1 has a Taylor expansion beginning with a constant. Let

x = w

dF
As F(w, jS) is jointly analytic, F(0,0) = 0, ^— (0,0) = 1 the analytic implicit function

ow
theorem gives a unique analytic w(β), F(w(β),β) = 0 and w(0) = 0. Thus for

β > w(β)=_2 + c66β
6em^

Proof of Theorem 111.16. The β = 0 Taylor series of Φip the i, j matrix element of
Φ, is, using Theorem 4.21b,

n= 1

Make a transformation to the variables w= — S + dggjβ6^^"^0, jS and introduce a
2 x 2 matrix function H{w, β) such that

β6λe-^) = Φ0<p0, β).

Using Theorem 4.21b we find, letting F(w, β) = detίί(w, j8), F(w, j8) = w2 + g(w, β\

where ^(0,0) = 0 and ^ (0,0) = 0. As F(0,0) = 0, ^ (0,0) = 0, but ^ - (0,0) = 2 the

ow ow ow
Weierstrass preparation theorem [20] applies to give w+(/?), analytic in β1/2 or β,
w + (0) = 0 and F(w±(β)J) = 0. Thus for β>0, w±(β)=-S + d66β

6λeρ±.

VI. Concluding Remarks

In this paper we have explicitly analyzed the first two groups of masses in the
region λ<β3. The same techniques apply to other open regions, taking into



Mass Spectrum of 2+ 1 Gauge-Higgs Lattice Field Theory 595

account the degeneracy of the masses as given in the approximate model. The
regions where there are intersection of lines and the degeneracy of masses is
increased (see for example Fig. 1) can be treated by including this degeneracy in a
suitable matrix of correlation functions. The problem of how to analyze mass
groups beyond the second is currently being investigated.

In the increased region of convergence of the polymer expansion determined in
[13], i.e. arbitrary β with λ large, the question as to the complexity of the mass
spectrum also arises and has bearing on continuous models. In the case of the Z 2

gauge group we can show by a direct analysis, using methods similar to [15] or
by duality, that the particle spectrum has the same complexity in this region as in
the small β, λ region. Similar results are expected for continuous groups.

Some interesting open problems are the inclusion of Fermions and the study of
resonances. Also for the Hamiltonian version of these models it would be
interesting to develop a convergent perturbation theory in the magnetic coupling
parameter along the lines of [21]. We point out that for the Euclidean model the
results of this paper imply a convergent perturbation theory in the magnetic
coupling parameters.

Appendix

Here we deduce an explicit formula for fn=— A n , the nth Taylor coefficient of

the analytic function /(z), implicitly defined by F(/(z), z) = 0, where F(w,z) is

jointly analytic, F(0,0) = 0 and ̂ — (0,0) φ 0. We point out that from the theory of

Lie series [22] the non-autonomous ordinary differential equation obeyed by f(z),

df{z) _ F° \f(z),z) y+"F(w,z)

dz ~ Fx'\f(z\zY K ' '~ dwmdzn '

has a convergent series solution for small \z\ given by

0 0 7" °

D - 1 ,

so that 1 1

/„= - (DV) W = Z = O = - ID1,...[/)", w] . . . ] w = z = 0 .

Here we obtain a formula for /„ starting from the integral representation [19],

f{?)=7r-Λ 7̂ dw, Ξ f . (A.I)

We need the following two elementary power series lemmas.

Lemma A.l. // A(z)= £ hnz
n, hoφ0, then h(z)~1= Σ dkz\ where

n=O fe=0
k 1 m

ak— 2, V~U 2- , }ni "Mk no
m = o k k \m1...mkj{m} £ m m ^ Imk x 7
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00

Lemma A.2. // F(w,0)/w= Σ atw\ ai = Fί+1>°(0,0)/(ί+ 1)!, then
i = 0

(F(w,0)/wyil+ί)= Σ bkw\ where

= Σ (-
m=o

Σ
* *

m1...mk

with

{Kh Σ /r-/+l, Σ r/Γ = s
r=0 r=l

/+1

The formula for /„ is given by

Theorem A.l.

hhh

where w

(w,0)

(F° >,Z))V
2!

is given by Leibniz rule and the last factor by Lemma A.2.

-α+i)

Proof Applying Leibniz' rule to Eq. (A.I), we obtain

= Σ (?) Σ ^ίF1^
\κj 1 = 0 2πι

using Lemma A.I. Write F(w,0)~( ί + 1)w-(F(w,0)/w)~ (/ + 1 )w"
(2πiyί$K(w)w~im + 1)dw = Km(0)/ml with m = l~l to obtain

, and use

f«= ίo Θ lo (Pi)Γ ̂ Γ ^ "-V
Using Leibniz' rule again gives the result.
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