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Gauge Covariant Theory
of the Generating Operator. I

V. S. Gerdjikov* and A. B. Yanovski

Joint Institute for Nuclear Research, Dubna, SU-101000 Moscow, .USSR

Abstract. A gauge covariant formulation of the generating operator (Λ-
operator) theory for the Zakharov-Shabat system is proposed. The operator Λ9

corresponding to the gauge equivalent system in the pole gauge is explicitly
calculated. Thus the unified approach to the nonlinear Schrόdinger-type
equations based on A is automatically reformulated with the help of A for the
Heisenberg ferromagnet-type equations. Consequently, it is established that
the conserved densities for the Heisenberg-ferromagnet-type equations are
polynomial in S(x) and its x-derivatives. Special attention is paid to the
interrelation between the hierarchies of symplectic structures corresponding to
the above mentioned families of gauge-equivalent equations. It is shown that
the geometrical properties of the conjugated operator Λ* are gauge-
independent.

1. Introduction

It is well known that the inverse scattering method (ISM) relates to a given linear
problem L(q, λ), where q(x) denotes a set of coefficient functions and λ the spectral
parameter, a class of exactly solvable nonlinear evolution equations (NLEEs). A
paradigm of such a linear problem is the so-called Zakharov-Shabat system [1,2]:

L(q,λ)ψ = li— -q-λσΛ ψ = 0,

(1.1)

0 lλ /O 0\ /I 0̂

A number of physically important NLEEs, such as the nonlinear Schrόdinger
equation (NLSE):

> = 0, <4,4> = i tr q2, (1.2)
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the sine-Gordon and the modified Korteweg de Vries equations (m KdVE) have
been solved by means of it. The function q(x) in (1.1) can be considered as a
coordinate function on the space of the potentials Jί = {q(x)} which possesses a
natural symplectic structure. All the above mentioned equations are Hamiltonian
with respect to this structure.

In the case of the Zakharov-Shabat system it was conjectured for the first time
that the ISM may be interpreted as a generalized Fourier transform, see [2], As
generalized exponents, there naturally appear the "squared" solutions Ψ±f(x, λ) of
the system (1.1) [see Eqs. (2.7) below]. The analog of the differentiation operator is
the integro-differential operator Λ+, defined by the requirement that all the
functions Ψ±f(x9 λ) are its eigenfunctions. The most important property of the
system {Ψ±f(x, λ), λelR} is probably its completeness which has been demon-
strated for the first time in [3] and more rigorously proved in [4]. Just because of it
the mapping from the set of potentials Jί to the set of the scattering data of the
system (1.1) is unique and invertible. Indeed, expanding the potential q(x) and its
variation over the system {Ψ±f(x,λ),λe]R] one obtains as coefficients the
minimal set of scattering data Rρ and its variations, respectively [5,6] [see
formulae (2.9-10) below]. These expansions together with the inversion formulae
(2.4) are fundamental and stress the importance of the generating operator Λ+ for
the NLEEs related to the linear problem (1.1).

Moreover, with the help of the operator Λ + one is able to generate not only the
class of the solvable equations but also their conservations laws, the hierarchy of
symplectic structures on Jί etc., see [5-11]. We would like to note, however, that
for the effectiveness of the approach it is crucial to have an explicit expression of
Λ+ through the potential q(x).

The set of the equations which can be solved by means of the linear problem
(1.1) will be referred to as the NLS-type equations. It consists of the equations
having a Lax representation:

[L,M]=0, M=^t+V(q,qx,...9λ)9 7esl(2,<C), (1.3)

with a convenient choice for the matrix V and L given by (1.1). In the papers [12,
13] it has been realized for the first time that as soon as the Lax representation (1.3)
is invariant under the gauge transformations one can consider the equations
possessing gauge-invariant L — M pairs as equivalent as well. This fact has been
used in [12, 13] to reveal some important examples of gauge-equivalent NLEEs.
The gauge transformation itself can be regarded as a nonsingular mapping
between the phase spaces of these equations.

The most celebrated examples of the gauge equivalence we are speaking about
include: i) the rc-wave and the chiral field hierarchies [13,14]; ii) the multicompo-
nent NLSE with vanishing boundary conditions and the equations of the Landau-
Lifshitz type (XXX-case), [14]; iii) the NLSE on symmetric spaces and the
corresponding generalized Heisenberg ferromagnet equations [15]. The Heisen-
berg ferromagnet equation (HFE) is gauge-equivalent to the NLSE (1.2) and has
the form:

2iSf = [S,S x x], S2 = H, lim S(x) = σ3 (1.4)
x-+ ± oo
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[S(x, t) is an si (2, C)-valued function]. Equation (1.4) was solved with the help of
the following system, known as the Zakharov-Shabat system in a pole-gauge:

( d \
Lψ= i- λS) t/3 = 0, S = ψ0

 1σ3ψ0,V dx ) ( 1 5 )

Ψ = ΨoXψ, ψo = ψ(x9t,λ = 0), lim ψo(x,t) = t9
x-> + oo

ψ being a solution of the system (1.1).
It is natural to consider that one can reformulate the ^.-operator theory from

one gauge into another. In the present paper we shall show on the example of the
system (1.5) that it actually can be done. The system (1.5) has been chosen for the
reason that the theory related to the linear problem (1.1) is well known but the
corresponding theory for the system (1.5) has not been constructed1.

As far as we know there are few papers discussing the /i-operator theory and
the gauge transformation as well, see for example [18,19]. In [18] the role of L is
played by a scalar differential operator of order n in an arbitrary gauge. The
corresponding expressions for A contains both the coefficients q and the analog of
ψ0. In [19] an expression for the operator A generating the class of the chiral-type
equations has been proposed but its interrelation with the corresponding w-wave
Λ-operator has not been discussed.

The paper is organized as follows: In Sect. 2 we present the basic facts of the
yl-operator theory for the system (1.1). We give expressions for the inversion
formulae, see (2.4), and a definition for Ψ±J(x, X), which are covariant under the
adjoint group action (Ad-co variant). In Sect. 3 we apply the gauge transformation
L-^L = ψQ1Lψ0 to the operator A and explicitly calculate A and the quantity
δq = ψQ1δqψ0 by means of S and δS only. This gives us an opportunity to
reformulate automatically all the results concerning NLS-type equations to the
analogous ones for the HF-type equations in Sect. 4. As a consequence we establish
that the conservation law densities of the HF-type equations are polynomial in S
and its x-derivatives. We also show how the corresponding hierarchies of
symplectic structures are interrelated. In the last section we discuss the geometrical
properties of the conjugated operator A* and show that they are gauge-
independent.

Some of these results have been announced in [17].

2. Ad-Covariant Formulation of the Basic Facts
from the Theory of the NLS-type Equations

Let us introduce the linear space £fo of all Shwartz-type, si (2, C)-valued functions
q(x), satisfying the constraint (q(x),σ3y = ̂ trσ3q = 0. Further we shall consider
the linear problem (1.1) with q e £fσ, i.e., we choose the phase space Jί for the NLS-
type equations to be ίfσ. Below, for the sake of brevity and simplicity we assume
that the linear problem (1.1) has no discrete spectrum. All the results however can
be extended to the case when any finite number of eigenvalues with finite
multiplicities are present, see, e.g., [4].

1 The situation with the n-wave hierarchy is similar but this case is more complex
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In what follows we shall need the Jost solutions and the transition matrix of the
system Lψ = 0 which are defined as follows:

ψ(x,λ) = \\ψ~,ψ

+ iλσ3x), x-*-oo, (2.1)

The existence and the analyticity properties of the Jost solutions are well
known, see [2], In (2.1) the superscript + ( —) everywhere except for b + , b~
indicates that the corresponding function is analytic in λ for ImΛ>0 (ImΛ<0).

We recall some facts from the scattering theory of the system (1.1). First, one
can choose as a minimal set of scattering data one of the following sets:

(2.2)

(It can be shown that they are equivalent.) The matrix T(λ) can be reconstructed
from Rρ(Rτ) by virtue of the dispersion relations, [2] :

i +0° dΓ
logα + (A)=— J -^ylogCl + ρ V O , ImA>0,

z π - oo ζ — λ

^ + f β ρ + ρ-(ζ)), lmλ<0, (2.3)

π -oo ζ — A

[Note that ρ+ρ-(ζ) = τ + τ-(ζ), ζ
It was noticed, see [2] that the scattering data coefficients and their variations

are expressed through so-called "squared" solutions Ψ±f, Φ±f. Here we shall
present these expressions in an Ad-covariant form. The words Ad-covariant mean
covariant with respect to the adjoint group action X-+gXg~γ=kά(g)X,

(2.4a)

g± = -Ka±y

τ± = ί(a±y2

Se+- = ±2Ka

δτ ± = + 2ί(a

Φ±=φσ+φ

4
-2

+ 00

- oo

* > -

* ) -

• o o

- oo

< ]

2

2

<<*

ψ±

- 00

7
— oo

•P

.[σ,.

<Φ±

^ ±

r9,«]>dx

, (5(?>dx,

:, δq)dx,

± = φ σ τ φ " 1 . (2.5)
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In the above expressions <X, Y> denotes the Killing form of the algebra
sl(2,(C), i.e., <X, Y) = ̂ trXY. As the Killing form is invariant under the adjoint
group action, Eqs. (2.4) are indeed written in a covariant way.

Let us remark in addition that the functions Φ±, Ψ± satisfy the equation

which immediately follows from (2.5). This fact will appear in the explicit
calculation of A + .

From the formulae (2.4a, b) it is easy to see that since the potential q and its
variation δq are off-diagonal matrices one can write instead of Φ± and Ψ± their
off-diagonal parts Φ±f

9 Ψ±f. Thus the decomposition Φ± = Φ±f + Φ±d (off-
diagonal plus diagonal part) appears naturally here. In the case of the sl(2,C)
algebra it can also be written in the following way:

Φ±f=i[σ3> Eσ3? Φ * ] ] J Φ±d = <σ35 ^
± > σ 3 (2.7)

The formulae (2.4) show that the set of functions {Ψ±f(x9 X), λeΊR] and {Φ±f(x9 X),
λ e R} are important in the scattering theory. In [3,6] it has been shown that they
are complete sets, and hence one can expand over them every function X(x) e Sfσ.
The same is also true for the so-called symplectic basis - {P(x, X), Q(x9 X), λ e R},
see [4]. P and Q are expressed through Ψ±f

9 Φ±f as follows:

1 _ _ i
P(x9λ)= - (τ + Φ+f-τ-φ~f)= - (Q

 + Ψ+f-ρ-ψ-f)f

(2.8)

The importance of these sets is demonstrated by the following expansions, [4,6]:

4 ( x ) = I J (ρ+S/+/_ ρ-
71 -oo

η +00

= - J (τ+Φ+ /-τ"«
71 - o o

= i f P(x,λ)dλ,
— oo

σ3δq=-- f (δρ+ψ+f + δt
71 - o o

i ^ °°

π -oo

= - /°(<SβP + δpQ)dλ.
— oo

Ψ~f)dλ

P~f)dλ

g-ψ~f)dλ

P~f)dλ

(2.9a)

(2.9b)

(2.9c)

(2.10a)

(2.10b)

(2.10c)
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The coefficients p, q in the above formula are expressed through the scattering data
of the system (1.1):

h+ 1

2 b 7Γ

and are known as the action-angle variables.
Now it is natural to introduce the operators A±, A (if it is possible) through the

requirements

For the expansions over {Ψ±f}, {Φ±f}9 {P, Q} these operators play the same role

as the operator — for the Fourier expansion.

In order to show that one can actually construct such operators let us
decompose [as in (2.7)] both sides of Eq. (2.6). Considering the diagonal part we
have:

- ,σ3 +co , „ , q, , ^

Φ±d=-iσ3 J dy(σ3,[ι
— oo

Inserting (2.13) into the off-diagonal part of (2.6) yields:

JC

±00

Finally, it can be shown that A in (2.12) equals j(A+ -\-A_).
We shall display now without proof the basic facts for NLS-type equations

using notations convenient for our purpose.
I) The interpretation of the ISM as a generalized Fourier transform.

This point is clear enough because from the expansions (2.9) and the inversion
formulae (2.4) it follows that the potential q(x) is uniquely recovered from the set
Rρ (or Rτ) and vice versa.

II) The class of NLS-type equations is given by:

jF(A+)[^σ3,q^] + G(A+)q — 0, (2.15)

where the functions F(λ) and G(λ) are rational2 in λ. The NLEEs (2.15) are
equivalent to the following linear equations for the scattering data Rρ:

F(λ)ρt

±TG(λ)ρ±=O. (2.16a)

Remark 1. The same equations could be obtained if instead of A+ we inserted in
(2.15) either A- or A. The corresponding evolution equations for the sets Rτ and

2 In order to ensure the existence of the inverse operators one must restrict the space Sfa. For
example, for the existence of the inverse operators A J 1 it is sufficient to restrict ourselves to the
submanifold Jί°C^σ - see the explanation after (3.2) below
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{p(λ)9 q(λ)} are

F(λ)τt

±±G(λ)τ±=0, (2.16b)

p t = 0, qt = iG{λ)F{λyι. (2.16c)

In particular, if F(λ) = 1, G(λ) = 4iλ2 we get the NLSE (1.2). If one chooses some
real form of the algebra sl(2,(C), i.e., if one assumes that q+ = qt (q+ = —q*-) the
NLSE with attraction (repulsion) could be obtained, see [1]. Other choices for the
functions F(λ) and G(λ) lead to some well known equations. For example,

F = ( 8 ί ) ~ \ G = λ3 (2.17)

leads to the complex mKdV equation:

q,q} = 0 (2.18)

(here one can obtain as above two different versions of the mKdVE by choosing
some real form of the algebra). Similarly, the choice

F = l , G = - U " 1 , (2.19)

with the additional constraints

q+=εq_, ε= + l , q+=$vx, (2.20)

where v(x, t) is a Shwartz-type function in x, leads to the sine-Gordon equation

z;ίΛ. = sinz; (2.21)

for ε = 1 and to the sinh-Gordon equation

vxt = sinhv (2.22)

for ε = — 1.

Remark 2. The conditions (2.20) imply that we restrict ourselves to the submani-
folds V+ = {(σ+ ±σ-)fx(x)}9 V+ C^σ. These submanifolds are not invariant under
the action of Λ± (or A). In fact, Λ+(V+)C V+. Since the operator a d σ 3 = [σ3, ] has
the same property, the evolution equations defined by:

Kσ3,q<] + G(Λ+)q = 0 (2.23)

will be self-consistent when restricted to V+ (or F_) only if the function G(λ) is odd.
In other words, if we assume that the linear problem L(q, λ)ψ = 0 allows the
involution

L(q,λ) = τoL(q,-λ)τo1, τ o= (° ^j, (2.24)

then from (2.1) it follows that ρ ± (— λ) = — ερ ± (λ). Applying this to Eqs. (2.16) we get
that G is an odd function. In the same way from the dispersion relations (2.3) it
follows that loga+(λ) is also odd.

Note that the subspaces V+ and F_ are orthogonal with respect to the Killing
form.
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III) Compact expressions for the conserved quantities are given by:

\oga+(λ)= Σ cj-) -m

I +00 JC

c m = J dx J
m -oo +oo

(2.25)

If the restrictions (2.20) hold, it is easy to see that from q e V+ it follows that
A2+q e V+ . Since V+ and F_ are orthogonal C2k = 0, k = 1,.... This is another way
to prove that in this case loga + (λ) is an odd function.

IV) The NLS-type equations are Hamiltonian ones with respect to an infinite
number (hierarchy) of symplectic structures defined through the following 2-forms,
[6,8-11]:

ωF(X, Y) = i T <X,F(Λ) [σ3, YJ)dx
— oo

= f dλF(X)dp(λ) Λ dq(λ) (X, Y); X,Ye^σ. (2.26)
— oo

(Here the symbol Λ means the exterior product.) The Hamiltonians of Eqs. (2.15)
are linear combinations of the conserved quantities cm. By virtue of the dispersion
relations (2.3) one finds

Hβ = 2 Σ cmGm = i+f dλG(λ)p(λ),

^ N - (2.27)

G(λ)= Σ Gjr-K
m=ί

From Eqs. (2.26-27) it is clear that all Eqs. (2.15) are completely integrable
Hamiltonian systems and the quantities q(λ), p(λ) are indeed the corresponding
action-angle variables.

3. The Generating Operator and the Gauge Transformations

Let us pass to the system (1.5) and see how such objects as Ψ±f, Φ±f, q, δq, Λ+ etc.
change under the gauge transformation: L-+L = ψQ 1Lψ0. Here and below all the
quantities related to (1.5) will be supplied with a tilde.

The Jost solutions dp, ψ, corresponding to the linear problem Lψ = 0 are defined
in a similar way as for the system (1.1) and are related to the functions φ, ψ, and T as
follows:

For the HF equation there exist natural boundary conditions: lim S(x) = σ3.
It can be seen that they are not violated if *^ + oo

Γ ( 0 ) = l 0 -α-(0).
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The sets Rρ and Rτ restricted by (3.2) will be referred to as R° and R?. In what
follows we shall consider only a subclass of potentials q(x) and a subclass of their
variations δq such that (3.2) together with δρ±(0) = δτ±(0) = 0 are fulfilled. The
submanifold of these potentials we denote through Jί°. In its turn the phase space
for the linear problem (1.5) is denoted by Jt,

Jί = f S(x): S2 = t , lim S(x) - σ 3 , S(x) G si(2,<C)
1 χ->±oo

Remark 3. From (3.1) and (3.2) it follows that ρ 1 = ρ ± , which ensures that the
scattering problem for (1.1) and (1.5) are equivalent since they have the same
minimal sets of scattering data JR° = Rρ.

Let us define the matrices Φ± and Ψ± as: Φ^φσ+φ'1, Ψ± =ψσ^ψ~1. From
(3.1) we get:

Now our idea is to obtain the main results of the Λ-operator theory for the system
(1.5) simply applying the transformation X-^ψo xXψ0 to the results (I-IV) for the
linear problem (1.1). Following this thread we define the transformed system of
"squared" solutions and the corresponding symplectic basis as follows:

,S>, (3.4)

π π
(3-5)

Simultaneously we have defined the new decomposition

The prerequisite property of the operators Λ+ is that Ψ±f and Φ±f are their
eigenfunctions. If we want the same property to hold for the operators Λ+ and the
functions Ψ±f, Φ±f, then we must have: Λ±(ψo 1Xψ0) = ψό1(A±X)\p0, Xe^σ.
The most simple way of calculating Λ± is to make use of this relation. But in order
to stress the similarity between the two different gauges we shall follow the same
way as before. We look upon the gauge transformation as to an x-dependent
change of the basis of the algebra sl(2,(C). That is, we introduce the moving frame
<r3, σ± and the corresponding covariant derivative by:

^

Evidently, one has 17^ = 0, and as a consequence

V-ι (Σ QJίxySu\ = Σ δu f dyQa(y). (3.7)
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[Here Qa(x) are (C-valued functions and α runs over + , —, 3.]
We must decompose now the equation:

^ *]=<), (3.8)

which is the analog of Eq. (2.6) after the gauge transformation. In this case the

basis σα is x-dependent and — does not respect the decomposition Φ = Φf + Φd.

We must use then the covariant derivative Vx9 which can be expressed through S
because of the following relation:

iψo Vo*= 4 ίS,Sx'] = q = ψo1qψo. (3.9)

Decomposing (3.8) we get:

(3.10)

Next, keeping in mind (3.7), one can express Φd from the first of these equations:

Φ±d = S J (Sy,Φ
±f}dy, Ψ±d = S f (Sy,Ψ

±f}dy. (3.11)
— OO +00

Inserting after that (3.11) into the second line of (3.10), we obtain the necessary
formulae for the operators Λ±:

λ±X= l- Is, -^ X1 + l- [S,SJ j (Sy,X(y))dy. (3.12)

Finally, the operator A whose eigenfunctions are the elements of the symplectic
basis (3.5) is again given by j(A+ +AJ). Let us note that in (3.12) X stands for an
arbitrary vector from the space 5^5 consisting of all si (2, C)-valued Shwartz-type
functions X(x) satisfying the condition <S(x), X(x)} = 0.

Remark 4. It is clear that the matrix functions Ψ±f, Φ±f have the same analyticity
properties as Ψ±f, Φ±f. Moreover, the completeness of the sets {Φ±f},{Ψ±f}, and
{P, Q} in ̂ s is an immediate consequence of the completeness of the sets {Φ±f},

Below we shall need the following symmetric and skew symmetric3 nondegene-
rate bilinear forms on the spaces Sfa and £fs\

g(X,Y)= T <X,r>dx, X,Ye^σ, (3.13)
— oo

ωo(X, Y) = i T {X, [σ3, YJ)dx, X,Ye^σ, (3.14)

3 The 2-forms ω 0 and ώ 0 are in fact symplectic ones and have been used in [4-6,8] and in [12]
to describe the Hamiltonian structures of the NLS and HF equations, respectively
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g(X,Ϋ)= T (X,Ϋ>dx, X,Ϋe^s, (3.15)
— oo

+ 00+ 00

ώo(X,Ϋ) = i J <X,[S,Ϋ])dx, X,Ϋe^s. (3.16)
— oo

The following two lemmas are directly verified.

Lemma 1. The operators conjugated to Λ+ and Λ+ with respect to the forms g and g
are given by the expressions:

^ j (3.17)

Λ%X = ι- \s, -^ - -ASX ^ <[S, Syl X}dy, ΐ e y s . (3.18)

Lemma 2. The operators Λ% and At are conjugated with respect to the form ω 0 , so
are the operators Ά% and At with respect to the form ώ0:

(3.19)

? A% Ϋ) = ώo(Λ%X, Ϋ)9 X,ΫE^S. (3.20)

Remark 5. It is easy to see that A% are gauge equivalent to Λ%.
Next, keeping in mind the nondegeneracy of the scalar products g and g one

can prove one more lemma.

Lemma 3. The following relations hold:

(3.21)

(3.22)

(3.23)

(3.24)

These relations will appear in Sect. 5 as one of the characteristic properties of
the operator yl*. They are useful in some calculations as well.

Now, our aim is to obtain expansions like (2.4), and for this it is important to
find an expression of the quantity δq = ψQ1δqψ0 through the variation of the
potential S(x) in (1.5). The next lemma shows how it can be done:

Lemma 4.

^ (3.25)

(3.26)

Let us first make some comments about the notations we use. The variation δq
belongs to ίfσ and is considered as a tangent vector at the point q e Sfσ. Quantities
like S, a+(λ), ψ0 are mappings of the type F: ^ σ -> V, where V is some linear space.
Then for the sake of brevity we sometimes denote through δF the Gateau
derivative at the point q along the vector δq, i.e., δF(q) = F/(q)(δq). In the special
case F = C , R w e write dF instead of Ff.
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Proof of Lemma 4. From the definition of S(x), see (1.5), it follows that
δS = [S, ΨQ 1δψ0] = Ad(ψ(7 *) [σ3, δψoψQ *], and hence

Let us consider now the matrix function A(x, λ) = δψψ~1(x, λ), ψ being the Jost
solution introduced in (2.1) (A(x, 0) = δψoψQ *). From (1.1) we obtain that A(x, λ)
satisfies the equation:

i — A — \_λσ3 + q, A~] = δq. (3.28)

Separating the diagonal and the off-diagonal parts of (3.28) and taking some care
of the integration constants one is able to find that

δq = [σ3, (A+— λ)Af(x, λ)'] + [σ3, q~\ lim <σ3, A(x, λ)} .

(3.29)

We shall need this relation only for λ = 0. In this case the limits are easily
calculated:

lim <σ3,^(x,0)> = 0, lim (σ3,A(x,0)}=-δ\oga+(0). (3.30)
x^> + oo χ-> — oo

Finally, we apply AdiψQ1) to the both sides of (3.29), (λ = 0) and as from the
definition of the operators A+ it follows that

1 ) , (3.31)

we have

δq = Ad(φo tyq = ίS,Λ+ Ad(φ0"
 x)Af

= [S,^_Ad(φί 1 μ / ]-[S,4]51ogα + (0). (3.32)

Now, inserting the right-hand side of (3.27) in these formulae and using Lemma 3
we arrive at the expressions (3.25-26).

It is useful to reformulate the above lemma in a somewhat different way:

The Gateau derivative q'(S) of the mapping q:(q = q(S)) is given by the formulae:

o)Λ*_ =Ad(ψ0)A%-iAd(Ψo)Sxd\oga + (0)

= Ad(ψo)A*- l- Ad(Ψo)Sxdloga+(0). (3.33)

4. The Λ-Operator Theory for the HF Type Equations

The results of the previous section help us to establish two theorems which are
analogs to the relations (2.4) and (2.9-10).
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Theorem 1. The following inversion formulae hold:

Q±=(3±Γ2Y <Φ±f,Sx}dx,

(4.1a)
+ 00

j (Ψ±f,Sx)dx,
— oo

+ 00
± = ±2i(a±y2 I (Φ±f,ΛtδS}dx,

(4.1b)
+ 00

± = ±2ί(a±)-2 j (Ψ±f,Λ*δS)dx.

Proof. It is well known that the Killing form is invariant under the adjoint group
action Ad (ft), i.e., <Ad(ft)X, Ad(ft)7> = <X, Y). We have found how the quantities
δq^Aάiψg^δq, q = Ad(ψo1)q are expressed through S and δS. That is why the
statement of the theorem follows from the formulae (2.4).

Theorem 2. There exist the following expansions over the sets {Ψ±f}, {Φ±f}, and

1 + 0 0

=~ J dλ(§+Ψ+f-Q-ψ-f) (4.2a)
π -oo

1 +oo

= - j dλ(τ + Φ+f-Γφ-f) (4.2b)
71 - o o

= f dλP(x,λ), (4.2c)

2ί +0°
= J dλ(δρ+Ψ+f + δρ-ψ-f), (4.3a)

π -oo

= — T dλ(δτ + Φ + f + δΓφ-f), (4.3b)
71 - o o

= - 2 f dλ(δqP+δj>Q), (4.3c)
— oo

b~y\ p=
z π

Proo/. Let us apply Aά(ψQ 1) to the expansions (2.9) and (2.10). As in the proof of
the previous theorem we express q and δq through S and δS and arrive to (4.2a-c)
and (4.3a). As to the expansions (4.3b-c) Lemma 4 shows that an additional term
proportional to δ logα + (0) will appear in the left-hand side. However, one can see
that analogical terms exist in the right-hand side as well, due to the fact that

and δq = δq — iδ\oga+(0). It is easy to see that the cancellation of these terms
follows from (4.2b-c).
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Now we have overcome all the difficulties and are able to reformulate the
results I-IV in the case of the HF-type equations. We would like to note that as all
of them are consequences of the expansions (2.9) and (2.10), the corresponding
results for the HF-type equations may be proved just in the same way starting from
the expansions (4.2) and (4.3).

I. The inversion formulae (4.1) together with the expansions (4.2) and (4.3)
show that the quantity M(x) =^[β, Sx~] can be recovered uniquely from the set of
the scattering data Rρ and vice versa. In its turn the potential S(x) is determined
uniquely from M(x) as a solution of the linear problem

Sx = ίS9M] (4.4)

with the boundary condition lim S(x) = σ3. The fact that in the same time
χ-+ + oo

lim S(x) = σ3 follows from the restrictions ρ ±(0) = 0. Thus the interpretation of
x-+ — oo

the ISM as a generalized Fourier transform has a general character and does not
depend on the choice of the gauge for the linear problem L(q, λ)ψ = 0.

II. It is not difficult to find that the class of the solvable NLEEs, gauge
equivalent to Eqs. (2.15) is given by:

2F(Λ±)Λ± [S, St] + iG{A±) [S, S J = 0. (4.5)

Needless to say that these equations are equivalent to the linear equations (2.16)
for the scattering data, and that as before one can write in (4.5) the operator A
instead of Λ+ without changing anything.

Sometimes one prefers to describe the same set of equations by means of the
adjoint operators A%. If we introduce ί\(Λ) = 2λF(λ) and Gγ(λ) = iG(λ), then with
the help of Lemma 3 we have

O. (4.6)

Besides, written like that the equations are invariant under the permutation x<-»ί,
F1^G1.

Remark 6. A similar arguments applied to Eqs. (2.15) show that they may be
written in the symmetric form as well:

0, (4.7)

where F2 = ±F and G2(λ)= l- λ~γG{λ).

Below we give some examples of the HF-type equations, making the same
choices for F and G as in Sect. 2, and thus obtaining the corresponding equivalent
pairs of equations. First of all, for F(λ)=l, G(λ) = 4ίλ2, one gets the HFE (1.4)
which is gauge-equivalent to the NLSE (1.2). The choice (2.1) for F and G leads to

the equation St + Sxxx-(S,Sxxx>S+USx,Sx}Sx = O, (4.8)

equivalent to the mKdV equation (2.18).
The counterparts of (2.21) and (2.22) are a bit more difficult to find, but since

one is able to calculate explicitly the matrix ψ0 through v(x, t) we find that both
sine- and sinh-Gordon equations are equivalent to

0, (4.9)
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with different additional conditions however:

<S,σ1> = 0, <S,σ2> = 0 (4.10)

for the V+ and F_ cases, respectively (σ1>2 are the Pauli matrices).
The following remark concernes the Lax representations of the sine-Gordon

and sinh-Gordon equations. These equations may be written in the form (1.3),

where q is subject of the restrictions (2.20) and M = i— + - S(x,t). The
Ot A

compatibility condition (1.3) leads to an interrelation between q and S which may
be solved explicitly. Thus choosing q as an independent variable and solving for S
we obtain (2.21) or (2.22) depending on the sign of ε. But we can choose S as the
independent variable and express q through it. This directly leads to (4.9).
Therefore, we see that in this example the gauge transformation interchanges the
operators M and L in the Lax representation.

III. The compact formulae (2.25) is a starting point for obtaining the series of
conservation laws with a local densities for the HF-type equations. From (3.1) and
(3.2) it follows that logα+ =logα+ — logα+(0). Therefore, the generating func-
tionals for the NLS-type equations and HF-type equations differ only by the
quantity logα+(0), which is a conservation law by itself. Applying to the integrand
of (2.25) the transformation Ad^o"1) we obtain:

1 + O O + O O + 0 0

cm=--r~ ί dx J <Sy,ΛiiS,SJ]ydy= ί ρm(x)dx. (4.11)
ΎYΪ

Utilizing the explicit form of A +, one is able to obtain (up to numerical factors and
x-derivative terms) the first three conserved densities:

Qi = (sx> sx> > Qi = <S> [SJC, Sxx]} ,

S>

At first sight ρ3 differs from the expression obtained in [12] which contains
rational dependence on Sx, i.e., a factor <SJC,SX>~1. But, if S^φO, then S, Sx, and
[iS, SJ are linearly independent and form a basis in sl(2,(C). Expanding Sxx over
this basis one can check that

Sx,Sx}-\ (4.13)

which coincides with the quantity in [12]. Besides, since the operators Λ± depend
polynomially on S, it is obvious that all the densities ρm(x) will depend
polynomially in S and its x-derivatives. The fact that ρm are also local functions in S
deserves special attention and will be proved elsewhere.

IV. Let us describe now the interrelation between the hierarchies of symplectic
structures. The mapping q: Jί^Jί0 is nonsingular and therefore we can define the
following hierarchy of symplectic forms on Jί (it is of course the same hierarchy in
"different coordinates")

q*ωp(X, Ϋ) = ωF(q'(S)X,q'(S)¥). (4.14)
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A simple calculation shows that

4*ωF(X, Ϋ) = ί T dx(X,F(Λ)Λ2tS, Y]>
— oo

+ 2i(d ϊoga+(0)) Λ βF(X, Ϋ); X,Ϋe^s, (4.15)

where the 1-form βF is given by:

βF(X)= ~ T a ,F(^[S,SJ>dx. (4.16)

It is not difficult to understand that the hierarchy of symplectic structures
corresponding to the HF-type equations is determined by the following 2-forms:

ώG(X, ?) = i 7 <X, G(Λ) [S, Ϋl}dx, (4.17)
— 00

and therefore the formula (4.15) gives the connection between the two hierarchies.
The case F = F0 = λ~2 is of particular interest since then the first term in the

right-hand side of (4.15) is exactly the canonical symplectic form ώ0. We have then:

q*ωFo = ώ0 + 2i(dloga + (0))AβFo. (4.18)

Making use of the dispersion relations and the expansion formula (4.2c) one can
write down this equation in an equivalent form:

(4 19)

For the first time this result has been obtained in [10] comparing the expressions
for ώ 0 and ω 0 in terms of the scattering data.

5. The Geometrical Interpretation of the A -Operator Theory
and the Gauge Transformations

It is known that the Λ-operator theory has a beautiful geometrical interpretation,
based on the fact that Λ* can be regarded as a tensor field on an infinite-
dimensional symplectic manifold, possessing some special geometrical properties.
We shall outline the main points, for more details, see [11, 20, 21].

First of all one can consider Jί (the phase space for the NLS-type equations) as
an infinite-dimensional manifold, q being the coordinate function on it. As in fact
Jί = £fσ is a linear space, it is evident that the tangent space Tq at the point q e Jί is
equal to Sfσ and the tangent bundle T(Jί) = Jixίfσ. An arbitrary mapping
X: Jί -*£fσ can be considered as a vector field on Jί. In the same way the mapping
of the type A: M^i£(S?σ9 ίfσ) can be regarded as an (/, /) tensor field on Jί. [Here
as usual if (Sfσ9 £fσ) denotes the space of all linear operators on 5^.] For example,
with the help of the formulae (3.17) one is able to construct for any qeJί the
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following operator:

1

2
A*=-(A*++Λt)=7\σ39

] ) < q , >dy, (5.1)
- 0 0 /

or in other words Λ* is a tensor field on Jί. For every q as a cotangent space 7̂ * we
shall take 9?

σ and put it into duality with Tq by means of the bilinear form g, see
(3.13).

We have already mentioned that the 2-form ω0, see (3.14) defines the canonical
symplectic structure on Jί. For our purpose, however, it is more convenient to
describe the symplectic structure with the help of the so-called symplectic
"operator" H. For an arbitrary point q e Jί, H can be regarded as a linear mapping
from the cotangent space T* to the tangent space Tq. The tensor field H is
completely determined through the requirement

oc(Hβ) = ωo(Ha, Hβ) a9βeT* = Srσ. (5.2)

We prefer the tensor field H rather than the 2-form ώ0 because the expression of H
is extremely simple:

H α = ^ [ σ 3 , α ] , α e ^ σ . (5.3)

Below we shall need also the notion of the Lie bracket of two vector fields X and Y.
We shall denote it through [X, Y]L. It is defined by the relation:

[_X^L=Y\q)X-X\q)Y. (5.4)

After these preliminaries let us pass to the properties of the tensor field Λ*9

given by the expression (5.1). It was noticed that Λ* satisfies a number of
conditions, see [11]. The first one is the so-called Nijenhuis condition, [22]. It
means that whatever the two vector fields X and Y are, the following equation
holds:

, Λ* Y]L = Λ*&Λ*X9 Y~\L + [X, A* Y~\L). (5.5)

The other conditions are the so-called coupling conditions and they describe the
interrelation between the symplectic structure and A*. The first of them reads

HA = Λ*H, (5.6)

and evidently is the already established property (3.23). The second coupling
condition is more complicated. It can be written in the following form:

g(X, Λ*'(Z)HY) - g(X, Λ*'{HY)Z) + g(Y, Λ*'(HX)Z)

+ g(Y, Λ*H'(Z)X) - g(Y, H'(Λ*Z)X) = 0 (5.7)
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for every three vector fields X, 7, and Z. All these properties are sometimes referred
to as the symplectic Kahler structure, [11]. It may be shown, that it follows from
them that the equations

qt = HΛnq, n = l , 2 , . . . , (5.8)

are Hamiltonian ones and the right-hand sides define commuting flows [compare
with (2.15)]. Some other important facts from the theory of the integrable
equations also find their natural geometrical explanation within this scheme.

Our intention is to show that the geometrical properties of the operator Λ* do
not depend upon the gauge. The gauge transformation maps the phase space
Jί°CJi into the space

= % lim S(x) =

First of all, let us note that the submanifold Jί° is an invariant submanifold for the
operator field A*. Indeed, Jί° is defined as the set of points qeJK9 satisfying the
constraints τ±(0) = 0 (ρ±(0) = 0). Therefore, l e T ^ is a tangent vector for the
submanifold Jί° if dτ±(0)(X) = 0, (or dρ±(0)(X) = 0). From the inversion
formulae (2.4) it follows that dτ±(0)(Λ%X) = dρ±(0)(ΛtX) = 0 for an arbitrary
l e ^ . Jί° is then an invariant submanifold for Λ% and At, and hence for A*.

Now, the manifold Jί is also an infinite dimensional manifold, and T(Jί)
= LL &s> i e > the tangent space at the point S e Jί is exactly 5^. As before 7̂ * = ^s

SsJί

and the duality is given by the bilinear form g, see (3.15). The canonical symplectic
structure on Jί is defined by the 2-form ώ0, (3.16). Just as before one easily finds
the symplectic operator H:

β&=±lS9&], oίeTs* = ys. (5.9)

Next we consider the operator field yϊ* defined as:

+ I) <ίS9S^>dy
(5.10)

and are able to formulate the following

Theorem 3. The tensor field A* satisfies the Nίjenhuis condition and is coupled with
the symplectic structure on Jί,

The proof of the first of the coupling conditions coincides with the proof of the
relation (3.24). As to the Nijenhuis condition and the second coupling condition,
we regret to say that we have no better proof but a direct verification. This is one
more reason that the explicit form of Ά* is indispensible. The verification, although
laborious, is quite straightforward and we shall omit it.

Thus the geometrical interpretation has also a general character, and of course
so are all the results that are consequences of the symplectic Kahler structure.
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Conclusions

In the present paper we have considered the simplest non-trivial example of gauge-
equivalent linear problems. The method, however, can be extended in order to
investigate more complicated examples. Some preliminary results of this type have
been reported in a conference talk [23].
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