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Abstract. In this paper, we consider charge symmetric quantum Coulomb
systems with Boltzmann statistics. We prove that the theory of screening of
Debye and Huckel is a combined classical and mean field limit of these
quantum Coulomb systems.

Introduction

Quantum Coulomb systems are known to be stable: the thermodynamic functions
of these systems, as well as their convexity properties have been obtained from the
principles of statistical mechanics by Lieb and Lebowitz [1]. The microscopic
properties of these systems are however far from being understood. For instance,
nothing is known about the clustering properties of their reduced density matrices
(R.D.M.).

In this paper, we show that the classical theory of screening of Debye and
Huckel (see for instance [2, p. 275]) is an exact classical and mean field limit of
quantum Coulomb systems. For technical reasons, we have to impose restrictions
on the class of systems we consider. We restrict ourself to charge symmetric
systems in the Grand Canonical Ensemble; for a two component system (which is
the case we consider for simplicity), this means that the activities z, masses m, and
absolute value of charge e of both species have to be the same. Moreover, we only
deal with quantum systems with Boltzmann statistics (we shall have to add short
range forces to insure stability). For such models Frόhlich and Park have been able
to prove the existence of the thermodynamic limit of the reduced density matrices
[3]. These systems are described by three parameters: β = e2(kT)~1,
& = h2{me1γγ, z = z(α/?2π)~3/2. From these 3 parameters only 2 are independent.
Indeed, because of the scaling properties of the Coulomb potential, the system
described by the parameters (/?,α,z) is equivalent to the one with parameters
(β/£, oc/if, z//3), where t is any non-zero positive number which represents a change
of length-scale.
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The aim of this paper is to find a regime of temperature and fugacity for which
the quantum system in the thermodynamic limit can be approximated by the
classical Debye Hϋckel theory with exponentially decaying correlation functions.
There are two conditions to be satisfied:

A) The quantum Coulomb system has to be close to a classical Coulomb
system.

B) That classical model has to be close to the mean field theory of Debye
Hϋckel.

In order to express quantitatively conditions A and B, it is useful to introduce
three other length scales: the Debye length ίD = (βz)~112, the de Brogue length λd

= (α/?)1/2, and the "ion sphere radius" a defined by z~1 =4/3πa3. Since we shall be
in a regime of parameters for which the density ρ «z, a is the mean distance
between point charges. From general textbooks (see for instance [4, p. 213]), we
expect that a quantum system of particles with two body potential V (with Bose-
Einstein or Fermi-Dirac statistics) converges to its classical limit if

Al) λda-χ<l,
A2) λdr0 * <ξ 1, where r0 is the range of the two body potential V.
Al essentially ensures that the effects of statistics are negligible, and A2 ensures

that the non-commutativity of — A and Fis negligible. For our system Al does not
come in, since we have chosen Boltzmann statistics and A2 will be replaced by
η = χ/~x <̂  1 that is we replace the infinite range of the Coulomb potential by the
"screening" length £Ώ. Condition B is satisfied if the plasma parameter ε = βέp 1 is
small. The main result of this paper is to prove that the pressure and the diagonal
reduced density matrices (DRDM) converge to the function predicted by the
classical Debye-Huckel theory when ε and η both go to zero1. The non-diagonal
reduced density matrices have been handled similarly by Oguey [5]. Because of
our choice of the Boltzmann statistics, for the system to be stable, we have to add
short range forces. This is equivalent to regularize the Coulomb potential at short
distances. Actually we choose the following two-body potential:

here qt denotes a charge et (= + e) at position xb and μ is a positive real number.
Since the Debye-Huckel theory does not contain any short range forces, we shall
have to remove them at the same time as we take β-»0.

To prove the result, we first express the system as a field theory using a
combination of the Ginibre representation and of the Sine-Gordon transfor-
mation. This is also what Frόhlich and Park did to prove the existence of the
thermodynamic limit. We then get a field theory with a cosine interaction. The
Debye-Huckel theory essentially corresponds to a quadratic approximation of the
cosine. In order to extract this contribution out of the cosine, we use the method of
complex translation of a Gaussian measure invented by McBryan and Spencer [6]
and used in [7, 8] for similar problems. Once we have the Gaussian contribution to
the D.R.D.M., the remainder is estimated using correlation inequalities. The

1 We take at the same time a classical and a mean field limit
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correlation inequalities we use are simple generalization of those found by
Kennedy [8] and are only known to hold for charge symmetric systems.

The paper is organized as follows: Sect. 1 contains a precise definition of the
system and its representation in terms of field theory. We state the main results in
Sect. 2. In Sect. 3, we generalize Kennedy's correlation inequalities. Section 3
contains the proofs of our results.

Caution. In the whole paper c stands for a constant which can take different values
at different places.

1. Definition of the Model

We consider quantum Coulomb systems with Boltzmann statistics. In order to
insure stability, we therefore have to add a short range potential to the usual
Coulomb force.

In a specific way q = (e, x) denotes a charge of type e at position x e R 3 e = ± 1.
All particles have the same mass m.

The two body potential is:

~ v l - > (i)
4πe2\xί-x2\

μ>0 and ίD, the Debye length will be specified later.
The JV-particle Hamiltonian is defined on the Hubert space

N

by:

HN

Λ((q)N)=- ί^Δf
i = i Ime

Where ΔA denotes the Laplacian with Dirichlet boundary conditions on dA9

U^)N)= ικΣ V(qbqj).

As usual the Grand Canonical partition function is defined by:

ΞΛ(β,z)= Σ ^ΣίΦ) w [exp- j3HΛ(«) w )]((x) κ , (x) w ) ,
JV-0 iV . (e)N

where Z G R + .

The pressure is given by:

P(β,z) = lim PΛ(β,z).
Ml~-*°o

The reduced density matrices (R.D.M.) are:

• [exp - βHJ ((xUx V (yMx%) • (3)
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We shall mainly consider the diagonal R.D.M. = D.R.D.M.:

Qjβ* I (X)N> ON)) = Qjβ* h (X)N) >

<?(£*,(*)*)= urn QA(β9z;(x)N).
|ΛL|->α>

1.1. The Gίnίbre Representation [9]

Let dP%y

Λ(ω) be the conditional Wiener measure associated to the kernel
exp( — aΔΛ). It is defined on paths ω(s) such that:

ω(s = 0) = x, ω(s = 0L) = y, ω(s)eΛc'R3,

The Feynman-Kac formula yields [9] (a = ή2(2me2)~1):

[exp( - βHΛJ\ ((x)N, (x)N) = J dP^{y)N exp Γ - - ? ds U((e)N(ω(s)N)] . (4)
L α o J

1.2. Scaling Properties of the System

Ω= x 1ft4, R is the one point co
ό€[Oλ]

Proposition 1.3.1. Let f e c{Ω), then

Ω= x 1ft4, R is the one point compactification of IR.
ό€[Oλ]

Proof. On cylindric functions this follows from a change of variable. •

Proposition 1.3.1 will be used to establish the scaling properties of our
Coulomb system. It is convenient to introduce the normalized measure

Proposition 1.3.2. The system described by the parameters A, β, α, z, V(x — y) is
equivalent to the system with parameters Λtf~3, β/" 1, α/~\ z/3,

Proof. Consider the case of the partition function; for the correlation functions this
is similar,

zn Γ 1 f
S ( ^ ) = Σ ~ τ J d(x)ndPΆ'(X) exp J U((ω(s))n)ds

n n\ Λn L α °

= Σ ί ί ^3"d(x)I1dP?fjί^(,)B exp Γ - -ΐ U((ω(s))n)ds I.Σ ί {)niϊίax)n p Γ ΐ
n n\ iA\n l α o

Us/

Using Proposition 1.3.1, this can be written as:

= Σ ^ ί d(x)JPt^)n exp Γ - - ""I 2W{AΦ)X)dλ XΛIA(ω)n) •
n n\ iA_\n |_ α o J

1 /
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The way we recover the classical Debye-Huckel theory from our quantum
system is by letting both ε and η go to zero. Actually (ε, η) can approach (0,0)
through any curve of the type η — sp, where p is any strictly positive number.
According to the different values of p, we have the following regimes (of closeness
to Debye-Huckel); high temperature and moderate density, moderate temperature
and low density, low temperature and low density....

Because of Proposition 1.3.2, we shall always work in units where tfD = 1. With
these units the Debye-Huckel limit corresponds to /?->0 and λd — cβv. To have
easier notations, λj = λ.

1.3. The Sine-Gordon Representation

Consider the Schwartz space

Here [oβ~] is a circle and ds is the corresponding Haar measure. Define

dμ denotes the Gaussian measure on Sff of mean 0 and covariance U:

1 φ(f)φ{g)dμ = (/, Vg), (φ e Sf\ fandge<?).

The Wick-ordered quantities are:

: exppfl/)]: = exp[l/2(/, ϋ/)] exp[^(/)],

:cosφ(f): =exp[l/2(/,ϋ/)]cos[^(/)].

The fundamental identity which yields the Sine-Gordon representation is:

N Γ λ Ί Γ λ Ί

ί Π :exp iejίφ(ωJ{s)9s)ds \:dμ = exp\ - JdsU((e)N,(ω(s))N) ,
i=i L o J L o J

C l =$d3x$ dP^λ(ω) :cos f dsφ(ω(s), s)ds:.
A 0

We can now write

8, z (e)N(x^) = SJx(/?, z)zN j ft d P ί ^ M

Γ λ Ί
• :exp i\dsφ{ω:{s),s)ds :exp[z(C^] . (6)

L o J

Ί
),s)ds :

J
It is convenient to absorb the Wick ordering as a multiplicative constant of the
activity: we introduce

(7)

1.4. The Gaussian Approximation

In this section we compute the covariance of the Gaussian theory obtained by
replacing the cosine by its quadratic approximation.
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dμG is formally defined by:

dμG = Normalisation dμ° 6XP [ ~ \J ^ J ̂  ( | * " * ' > ' s)dsJ]'

= \d3x\ dPλ

xx f hω(x', ϊ)hm(x", s") φ(x\ s^φix", s")d3x'd3x"ds'ds",

where

hω(x,s) = δ(x-ω(s)).

After performing the dx and dPxx(ω) integration we get:

= (2π)" 3 f ds' J <fa* f d3x'd 3x" φ(x', sθ φ(x", s")H(x' - x", s' - s")
O 0

with

H(x, s) = (2πλ)3l2(2π(λ - s)) ~ 3/2(2πs)" 3 / 2 exp[- λx2(2s(λ - s))"x] ,

H(x'-x',ϊ-sη=Sd3xidPitω)ha(x',!θhJx",!n- (8)

H(x,s) is periodic in s; one can take the Fourier transform:

H(k, k0) = (2π)"3 J dx J ds exp( - ikx - ikos")H(x, s)
o

o

ko = 2πnλ'1, neZ, H(k, k0) e R.

It is now easy to compute the covariance

J φ(x, s) φ(y, t)dμG = G(x — y , t — s ) ,

with

G(k, k0) = [αF(fe)- ι+zH{k, /c0)] -1. (9)

Remark that

ί dμG f ^(x, s) J φ{y, t) = λG0(x-y),

2. The Results

1

IJ exp[ — k2μ{\ — μ)λ] dμ. (11)
o

We express the results in units where ^ = 1. As mentioned above the Debye-
Huckel limit corresponds to /l->0 and β-+0 through the curves λ = cβp. Since the
Debye-Huckel theory does not contain any short range forces, we shall have to
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remove them at the same time as we take β-^0. In fact we take μ = λ 1 / 2 0 with this
choice of μ, p will have to be smaller than 5.

We summarize our convention for the rest of the paper:

Remark that for β small V(k)~k2 and ίϊ(k,0)~λ; this shows that G0(k)
= (k2 + 1)" 1 , which is the Debye-Huckel propagator. Using the analyticity proper-
ties of G0(k), it is easy to show that for λ sufficiently small,

i) l<
where c is λ and μ independent

ii) IGoOOI^fp

Note also that

u dd k
a s

This implies that

Theorem 2.1.

as

(12)

(13)

(14)

(15)

12π

Theorem 2.2. Let q,...,qN be distinct (non-coincident) charges in IRA Then the
correspondent diagonal reduced density matrices ρ(β,z,(q)N) are asymptotic to
the classical DebyeΉύckel correlation functions:

ρ(β9 z,(q)N) = zN 1 + — - β ^ Σ. < e&ji - Δ

Remark. Theorem 2.2 applied to the density yields

1

3. Correlation Inequalities

In this section we generalize Kennedy's correlation inequalities to quantum
systems [8],
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Notation.

< >z = 0 is defined by (6) with z = 0.

Proposition 3.1. For any g such that (g, Vg)< oo, we have:

with

(2n)!en

= 1, n=\.

Remark. If we choose g = hω,

ii) => J dPλJω) (φ2"(hω)} S dn[βV(0)γ,

with

Proposition 3.1. (ii) For n=l is a result by Frδhlich and Park [3].

Proof, (i) It is sufficient to prove

zn

—$ dμcoshφ(g)S dx1..JxJPiίX£ω1)..JPinXn(ωn)n\ A

But this is implied by the inequality

J dμ cosh<^(ρ) exp[i^(ρθ] S ί dμ cosh<^(ρ) J dμ exp[^(ρ')] ,

which is immediate by explicit computation,
(ii) It is a direct consequence of (i) see [8].

4. The Proofs

4.1. The Pressure: Proof of Theorem 2.1

We essentially follow [8] we define an interpolating function

)-?- cosί u]dsφ(ω(s),s)ds I — 1 >,
u L \ o / JJ
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lim Ξ(u) = exp(z0 |ΛL|) J dμ

•exp — 2zoi d3x$dPχ.

We shall estimate (uniformly in A)

μΓφogΞ(l)-logΛimΞ(ι^Ί =1

Now

oo 2π—2

A n = 2 (2n)!

2"

Using Proposition 3.1 (remark)

Ί ; o β μ
n = 2 Z Π

= z0- lim IΛΓMogJdμexp - | z o ί ίί3xίrfPίiΛ( ids<Kφ),s)) L

We therefore get:

H(k, ή) = λ\ds exp(2iπns) exp ( - k2s{ 1
o

«Φ0

i) By a dominated convergence argument

lim^ = [2(2π)3]-1Jrf3fc[fe"2

ii) It is easy to realize that for each n φ 0,

β-+0
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From ln(l + x)<^2|x|, xΞ> — \, we have for β small:

IBI^PWΓMd 3* Σ \V(k)\ \H0(k,n)\
nΦO

i— °° άk

= 2\Γλμ\2π? f _ - 3 - Σ |F («, k)\, (16)
0 /C + μ A n*0

where

1

F(n9 k)=$ds Qxp(2ίπns) exp(-k2s(l -s)/2).
o

The left-hand side of (16) is written as B2

JrBι, where in B2, the k integration is
from 0 to 1.

Estimate of Bγ.

nΦO n

= 0, n = 0.

By Schwartz inequality and the Parceval identity,

Γ 1 Ί 1 / 2 Γ ! Ί 1 / 2

Σ \F{n,k)\ύ Σ -T ί ds(4π)2(5-i)2/c4exp(-fc2

S(l -s))

Therefore

Estimate of B2.

i) Bounds on ̂ (n, fc)

a) \2πnF(n,k)\^Us\s-^\k2Qxp(k2(s2-s)/2)
o

o

We used that on [o^], 5 2 - 5 ^ —£s,
1/2

= c j
o

b) Similarly one gets

i/2 ί k2 \ ιl2 ί k2

\4π2n2F(n,k)\^c J /c2exp - — s + c J fc4exp - — s
o V 8 / o V 8
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Doing the geometric mean of a and b

\n3/2F(n9k)\£c\k\ and \n5/4F(n,k)\^c\k\ll2(ke[1, oo]).

We therefore get the bounds

and

We finally get B ̂  cj/Xμ2, and lim B = 0. In the Debye-Hϋckel limit the pressure
becomes: /ί~*0

i5p = z + [2(2π)3]-1Jrf3/c[/c-2-log(l+fe~2)] = z + - ^ - . D

4.2. The Correlation Functions

We shall consider in detail the case of the two-point function. The general case is
similar. We start by giving a first approximation to the full correlation functions.

Notations.

1 ? " ^ 5

Lemma 4.2.1. \A — B\^cz2βμ3l2λ1/4 uniformly in xt and x2-

Proof.

\A - B\ = z 2

- h'2))\ \Φ((K + h\) + (h2 + h'2))\)

We have used Schwartz inequality and correlation inequality (3.1).

Using again Schwartz inequality and the fact that dP^(ω) is a normalized
measure we get

^ o ] 1 / 2 . (17)
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(17) can now be estimated by explicit computation:

I dP^iω^h, = λ^\λ - s) ~ 3'25 " 3 ' 2 exp - [(xt - yfλ{2s(λ - if) ~ *]

= g(x1-y,s),

j dP"XιXι(ωi)dPλ

X2X2(ω2) [{(A1 -hΐ) + (h2 - h'2)}, U{(A1 -h[) + (h2 - h2m

1 -y, s)oΓ ιV{y-yr)δ{s-sr)g{x2 - / ,

-ίg(x2-y,s)a-1V(y-x1)δ(s-sr)d3ydsds'

o

+ 1 ds Jd 3 ke i t ( x ' - X2)a~J F(/c)[ 1 + exp( - 2(λ - s)sλ ' i k2)
o

-2exp(-(λ-s)sk2λ-1)'].

Now

f dsU3kίl
o

= βμ2 J dsj/I J dk(k2 + λμ2yJ [1 -exp(-s(l -s)/c2)]

The last estimate is obtained by splitting the k integration as in (4.1). A similar
computation yields the estimate

hί)l}2\=oZβμc. D

4.2.2. Remark. For n-point correlation functions we would get the bound

In order to extract the Debye-Hϋckel part of the full correlation functions we
shall use the method of "complex translation of a Gaussian measure" introduced in
[6] and used in [7] for the low fugacity expansion of the dipoles gas.

We first recall the basic formula [10].

4.2.3. Complex Translation. Let dμ(φ) be a Gaussian measure with smooth
covariance F(x, y) and g(x) e 5 (̂1R3). We have:

Using Lemma 4.2.1, we see that it is enough to consider correlations of the type

/ / x \ i x \ \
ρ/(eί,x1;e2,x2) =z2 (:exp ίejφ(xί,s)ds I: :exp ie2 J φ(x2, s)ds :) . (18)
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In order to avoid complicated notations we take e1=e2 = l,

Define

ψr(x, t) = (2π)" 3 ί exp(zk(x - xr))

\ H{KQ)Y'®±{t), r = l , 2 ,

0

Using the analyticity properties of aV~ 1{k)J

Γzϊϊ{k, 0),it is easy to get the bounds
(μ->oo)5 (c is β, z, μ-independent)

ψr(x,t)^cct-1exp(-$\x-xr\), |x-x r |>l
(18b)

ψr{x,t)^μa ~c.

Lemma 4.2.4.

f x
i) (ψ, 0ίV~1ψ) = βψ(x1)-\-βψ(x2) — i dx j dP^(ω)

\o

o
ίx \ίx

\o 7 \o

(λ \2

- z j dx J dP^(ω) j ψ(ω(s))ds .

The last equality follows from

J d3x J ΛPϋω) j ds^(x' - ω(sθ) ί 5
0 0

= λjdsfί(x/-x%s) [see (8)].
0

ii) (ψ,uV-1ψ) 1 2

0

λ

- J ds J d3xφ(x, s) j exp(zfe(x — xx)) + exp(z7φc — x2))
0

H(K 0) [α7" \k)-{-zH(k, 0)] ~ V3/c. (19)

Again, using (8), the second term of the left-hand side of (19) can be written as:

- z j d3xί dPλ

xx(ω) ( j Φ(ω(sl s)ds) (t ψ(ω(s))ds) . D
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We now want to evaluate (18) using a complex translation by the function iψ(x, t):

z2

Q ( e x p

exp[-

•exp

•exp

•exp

•exp

•exp

- i !, s)+^(

ίz0 J d3x j dVλ

xx ( cos f φ(ω(s), s)ds ) ( cosh J ψ(ω(s))ds I

i z 0 J d 3
sin J φ(ω(s), s)ds sinh J ψ(ω(s))ds

o / V o

As in [8] we want to rewrite (19) as

ρXx^) = zl exp(A+S) <exp(R(φ) + i

with A= ~

A ίλ \2~

cosh J ψ(ω(s))ds — 1 — \ J ψ(ω(s))ds ,
o \o

cosh j" ψ(ω(s))ds— 1 ,
o /Jcos

[ A A A A Ί

sin J φ(ω(s), s)ds sinh J ψ(ψ(s)ds — j φ(ω(s), s)ds f ψ(ω(s))ds . (20)
o o o o J

Remark. In order to be precise, the way to get (20) is to first consider finite volume
expectation values and do a translation by the function

where

HΛ(x", s"; x', sθ =

and then take the limit A]co to get (20).

Lemma 42.5. \S\^Cβ3μ2.
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Proof Using Taylor's theorem we have the bound

I
\S\ S zo ί dx J dPxx(ω) —T

4!

• M ψ(ω(s))dsj cosh \ξ } φ(ω(s))ds|, 0 < ξ*

The bounds (18b) imply

\S\ S czoβ
2μ21 d?x ί dPλ

xx(ω) (j ψ(ω(s))ds

Scz0β
2μ2λ2\\ψ(k)\2H0(k)d3k.

255

Let us recall that

βo(k, 0) = J ds exp( - λk2s(\ - s)β),

and that

ψ(k) = exp(i/cx t + i/bc

(21)

Lemma 4.2.6.

Proof i) Let us first prove \R(φ)\^cβ. Using Taylor's theorem we have:

z 0 J d3x f JPχX(ω) ( cos J φ(ω(s), s)ds — 1 ) ( cosh j ψ(ω(s))ds — 1
o A o

ii) Again a double application of Taylor's theorem yields:

cos J φ(ω(s),s)ds— 1 coshjφ(ω(s)) —

by Proposition 3.1. D

Lemma 4.2.7.
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Proof. Write I(φ) = Iί(φ) + I2(φ), with:

[ λ λ Ί

j φ(ω(s), s)ds - sin J φ(ω(s), s)ds
o o J

x
- sinh J ψ(ω(s))ds,

[A A

J ψ(ω(s))ds — sinh j φ(o
o o

, s)ds.

Now,

^ z 0 J d 3

λ

J φ(co(s), s)ds

Using correlation inequality (3.1),

ii) Bounds on

o

= z2

0id
3xίdPλ

xx(ω)

Using Proposition 3.1, we have:
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But

x
J d3x J dPxx(ω) J ψ(ω(s))ds

o
λ

= jds$d3x' |φ(xθl 1 ̂ 3 χ ί ^Λrί^δίx' - ω(s)) ̂  cjβ
o

t3iS2c. ϋ

Proof of Theorem 2.1.2. Using (20) we have:

\ρ(e1,x1;e2,x2)-zleA\^ρ(e1,x1;e2,x2)-ρ/(e1,xί;e2,x2)\

+ \z2

0exp(A + S) (expR(φ)cosl(φ))-zlexpA\. (22)

In order to estimate the second term of the right-hand side of (22), we write it as:

+ \expR(φ)- 1| \cosl(φ)

ύzlo{β).

We used Lemmas 4.2.5., 4.2.6., 4.2.7. It is now easy to check that:

D

Acknowledgements. It is a pleasure to thank Ph. De Smedt, Ph. Martin, and Ch. Oguey for useful
conversations.

References

1. Lieb, E.H., Lebowitz, J.L.: Adv. Math. 9, 316 (1972)
2. Landau, L., Lifchitz, E.: Physique statistique. Moscou: MIR 1967
3. Frδhlich, J., Park, Y.M.: Correlation inequalities and the thermodynamic limit for classical

and quantum continuous systems. Commun. Math. Phys. 59, 235 (1978)
4. Huang, K.: Statistical mechanics. New York, London: Wiley 1963
5. Oguey, Ch.: Lausanne. Preprint (to appear)
6. McBryan, O., Spencer, Th.: On the decay of correlations in SO (n) -symmetric ferromagnets.

Commun. Math. Phys. 53, 299 (1977)
7. Fontaine, J.-R.: Low-fugacity asymptotic expansion for classical lattice dipole gases. J. Stat.

Phys. 26, 767(1981)
8. Kennedy, T.: Debye-Hϋckel theory for charge symmetric Coulomb systems. Commun. Math.

Phys. 92, 269(1983)
9. Ginibre, J.: Some applications of functional integration in statistical mechanics. In: Statistical

mechanics and quantum field theory. Les Houches, 1970. de Witt, C, Stora, R. (eds.). New
York: Gordon and Breach 1971

10. Glimm, J., JaίFe, A.: Quantum physics. Berlin, Heidelberg, New York: Springer 1981

Communicated by J. Frδhlich

Received April 11, 1985; in revised form July 22, 1985






