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Abstract. A suggestion by Berezin for a method of integration on supermani-
folds is given a precise differential geometric meaning by assuming that a
supermanifold is the total space of a fibre bundle with connection. The relevant
objects for integration are identified as suitable horizontal/vertical projections
of hyperforms. The latter are generalizations of differential forms having both
covariant and contravariant indices. The exterior calculus of these projected
hyperforms is developed, analogously to the Cartan calculus, by introducing
appropriate derivations and determining their commutators, respectively
anticommutators.

1. Introduction

The concepts of rigid and curved superspace have turned out to be of great
importance in current research on supersymmetry and supergravity. As originally
introduced by Salam and Strathdee [ 1] superspace has, besides the coordinates x*
(u=0,...,3), which are commuting (even, bosonic), additional anticommuting
(odd, fermionic) coordinates 6% =1, ..., 4). Superfields are functions depending on
these variables and encode both bosonic and fermionic fields by means of a Taylor
expansion in the odd variables. Integration of superfields with respect to the odd
variables is given an operational definition by the Berezin integration rules [2].
Also a (super)-tensor calculus and the notions of (super)-connection, -torsion and
-curvature are used frequently in the physics literature [3, 4].

Many authors have investigated how to make these more or less heuristic ideas
mathematically rigorous. Rogers [5] introduced the concept of a D,+ D,
dimensional supermanifold modelled over BP-P1 a space obtained from a
Grassmann algebra B;. Several modifications of her approach have been proposed
[4, 6-8]. The construction of tensor bundles on supermanifolds broadly resembles
the procedure for C* manifolds.

What is still lacking is a fully satisfactory theory of integration on supermani-
folds mimicking the Berezin integration rules. For C* manifolds the relevant
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objects for an integration theory are differential forms. This is not true for
supermanifolds. In his last article Berezin [9] pointed out, that in this case one
must consider more general tensors with both covariant and contravariant
components (which we shall call hyperforms in the sequel). Although he was able
to define a consistent supermanifold integral, his definition uses an ad hoc recipe
for which we shall give a geometric interpretation. By this means we arrive at a
truly geometric, chart-independent integration theory.

In Sect. 2 we make some informal remarks on superspace and supermanifolds.
We would like to point out that superspace B{** is not yet rigid superspace in
physicists’ jargon. Rigid superspace is a manifold modelled over B{**), but with
more structure. This is to be compared with Minkowski space, which is a quasi-
Riemannian manifold modelled over R* with the Poincaré group as isometry
group. Similarly a G* function is not the same as a superfield, of which one
demands that it transforms according to some representation of the graded
Poincaré group. These additional structures are however of no relevance for our
arguments.

In Sect. 3 we discuss integration on supermanifolds. The first part of this
section is largely a repetition of Berezin’s arguments [9] (see also [10-12]), about
why one needs hyperforms. Berezin’s proposal for a supermanifold integration
contains, in our view, a non-geometric ingredient. We overcome this by assuming
that the supermanifold is the total space of a bundle with connection. The volume
form turns out to be a P-hyperform constructed out of suitable pieces of the
horizontal and vertical tangent and cotangent spaces of the bundle.

After having identified P-hyperforms as the relevant objects for integration on
G® supermanifolds (comparable to differential forms for C® manifolds), we
improve in Sect.4 on the previous coordinate-based formulation of Sect. 3.
P-hyperforms are now obtained from hyperforms by a projection.

Next we aim at an exterior calculus for P-hyperforms. We arrive at it in two
steps: first in Sect. 5 we develop an exterior calculus for hyperforms, then in Sect. 6
we “project” this onto P-hyperforms. The operations are an exterior product »,an
exterior derivative dl, contractions with respect to a vector field iy, and derivations
obtained from dl and iy by taking suitable commutators or anticommutators. The
exterior derivative dl is a covariant derivative acting on vector-valued forms. On
the space of P-hyperforms we can also define a Hodge duality operation.

In our conclusions in Sect. 7 we briefly discuss a possible enrichment of the
exterior calculus on P-hyperforms by adding further derivations. Finally, since this
article is mainly intended to be mathematical, we merely indicate why and how the
calculus may be applied to supersymmetric field theories, leaving further details for
future articles.

2. Superspace and Supermanifolds

The supermanifolds we are dealing with are modelled over flat superspace B{Pe-Pv),
the Cartesian product of D, copies of By, , and D, copies of B, ,, where B, , and
B, , are the even, respectively odd, subspaces of a real Grassmann algebra B; (with
Lanticommuting generators). Functions from B{?>?+ to B, will be taken to be G*,
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i.e. infinitely differentiable with respect to all arguments, which in turn implies that

the function admits a finite Taylor series expansion in the odd arguments, with

infinitely differentiable functions of the even arguments as coefficients [5]. A

(Do + D,)-dimensional supermanifold MP>?? is constructed from B2 in the

usual way by means of an atlas of charts |J (U,, ;) with U, an open cover of
iel

M®o:P) and a homeomorphism ¢; of U; onto an open subset of B{Pe-2v, If the
overlap U;nUis non-empty we require the transition function ¢; - ¢; ! to be G*.

A chart map ¢ induces coordinates p™(m)=z"={x*,0"} M =1,...,Dy+D;,
u=1,...,Dq,a=1,...,D,) for me U. If we change to other coordinates we require
this change to respect evenness/oddness in the following sense: if (X) denotes the
grading of a Grassmann element X, i.e. (X)=01if X is even and (X) =1 if X is odd,
then under a coordinate change z”—z¥ we require (zM)=(zM).

Equipped with the notion of differentiability in B{>?" one can construct the
tangent bundle TM>Pv, Ata pointme U C M®>P¥ the tangent space LM PPV
. . . . 0 .
is spanned (in a coordinate basis) by { u0= a—zﬁ} (we use the de Witt [4]
conventions for index manipulation, which conveniently avoid factors of (—1)).
The dual space to TM®>P" denoted T*M (Po.D1) i spanned by {dz™}, where
{y0|dz™> = yoM (the Kronecker delta). This is in turn gives rise to the cotangent
bundle T*M. In general tensor fields of type (p,r) are eclements of
®pT*M(D°’D1)® ®" T MDPo:Dv).

The components of a tensor of type (p, r) are displayed in a coordinate basis as:

dzV'®...@dz"r(y, N, """ M)® 1, 0®...Q y,0.

In the following sections we will need tensors with special symmetry properties,
which generalize the differential forms of ordinary differential geometry. This
subspace of (p,r) tensors is denoted A5,(M®* V) and is spanned by

A2V A LAYy OV L.V g, 0
where A is the graded antisymmetric wedge product, and
A2V AdzM =dzWN A dzM = — (— 1N MGZM A dZN |
where (N)=(dz"), and v is the graded symmetric product
NOV 0 =@w0V 0=+ (=DM v 0.

We will call an element of A5(M*?V) a (p, r) hyperform. For p=0 a hyperform is
also called a derivative r-form; for »=0 a hyperform is a differential p-form.

3. Integration on Superspace and Supermanifolds

The standard method in “supersymmetric physics” to evaluate integrals of
functions on superspace is the following: after expanding a G* function f(z™) from
UcCM®oP to B, as

LG, 09 = fo(x) + £.()0 + ...+ fr(x)0P1...00, (3.1)
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one evaluates the Berezin integral B as
B f(x, 0)dPoxd0*...dOP = R fr(x)d°x, (3.2)

where the § integral is meant to be an ordinary Riemann integral. Formally this is
achieved by the Berezin integration rules

Bdo=0, BOdO=1. (3.3)

These rules are as they stand void of any measure-theoretic meaning (no
integration limits are prescribed). They demand that under a change of variables
(x,0)—(x,0) the “volume element” d”°xd”'6 transforms according to

dPoxdP10 = B(%, ) dPox "7,

where 4 is the superdeterminant of the matrix

ox*  oOx*
ox’ o0F
M= @ gej , (3.4a)
ox’  00°
ie. _
’ Ox* 00*

ot

For D=0 this reduces to gz/2d6t<8i“)’ and for Dy=0 to #=_¢""

00"

We would like to point out that, contrary to common belief, the expression (3.2)
is not invariant under a change of variables for arbitrary f(z). This failure is not
caused by the Berezin rules (3.3), but by the fact that the x* are even Grassmann
algebra elements, instead of real variables [13]. The ill-defined recipe (3.2) can
however be replaced by a well-defined one [4, 13], essentially by treating the
integration with respect to the even variables as a contour integration.

For integrals on supermanifolds the procedure will roughly be to define
integration in a chart by integration in the model space B{®>?", and then to patch
the results from the different charts together.

To perform the first step, one has to make sure that one integrates objects on
the manifold which locally have the same transformation properties as the
integrands in the model space. It is well known that for D-dimensional C®
manifolds these objects are D-forms. This is also true for G® supermanifolds
M®20_ Both the volume element d”°x and the (D, 0) hyperform

1
Q(Do,o): DO ) dx’“ Ao A dquO(“DO'“‘ula) N

(3.5)
(uny...u;€) being the Levi-Civita symbol, transform with the Jacobian determinant:
if {x*}—={x"}, Qp, 0y~ F L, 0y This comes about since the (graded antisym-
metric) A product is antisymmetric for even differential one-forms dx*.
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In the other extreme case, i.e. a supermanifold with only odd coordinates, the
“volume element” d”'6 in the model space B’V transforms with Z= ¢ ! (see
(3.4)). This shows that a “df” in d”0, despite its appearance, cannot be a
differential one-form, and that the volume form cannot be a differential D,-form.
The object with the appropriate transformation property is the derivative D-form

1

Q(O,Dl)z ‘D‘—"sal.“aDlaDla V..V ala . (3.6)
1+

This is because the (graded symmetric) v product is an antisymmetric product for

/3 i
the odd derivative one-forms ,0, and since ,0 = 2—3, 40 ( 0= 6(2 p> therefore Q.

=4 IQ(O,DI)'
The previous cases lead one to suspect that the volume form on M®o-Pv) is the
(Dy, D,) hyperform

Qw01 = 2w, 0)®Q(o Dy)
1

#1 HDg &1...0Dy
Do' D1 —@xt AL Adxte, L, 8) (e ap 0 A - Ag0). (3.7)

Under a change of coordinates (x, 6)—(x, §),

oxt_oxt
B gV
dx 0% o
0%t _ oo 3.8)
0= G710+ G0

So one immediately observes that, whereas Qp, p,)is a product of even differential
forms dx* and odd derivative forms @, a coordinate transformation _leads to terms
containing odd differential forms d6* and even derivative forms ,0:

Q0,00 =% 200,09+ Ripo, 51y » (3.9

where Ry, p,) contains all unwanted terms with factors d6* or ,0.

Berezin [9] proposed to define the integral of a (D, D;) hyperform only with
respect to the part that transforms correctly (i.e. with %). In our notation, if Ais a
(Do, D,) hyperform,

1 1
A = DO' EdZMI VAN dZMDO(MDO‘..MlANI...ND1)® NDla V...V Nla )
one may split it as A=A"+A", where A" is proportional to Q, p,
A =a(2)Qp,, p,) Berezin proposes

[ A= AP = Ba(x, 0)dx'...dxPd6* ...doP" | (3.10)

If we change coordinates z—Z=Hh(z) and denote A expressed in terms of 7 as A4,
then

[A= [ A" = B(ah™")Bdx'...dxP°d0*...do"", (3.11)
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which is consistent with the transformation of the Berezin integral under the same
coordinate transformation.

Although Berezin’s proposal leads to a consistent definition, one feels unsure
about the neglection of the terms A®. One would like to have a differential-
geometric, i.e. ultimately a chart independent, understanding of this procedure.
This is offered by the observation from (3.8), that all the terms in Ry, p, (see 3.9)

ox* ox+
contain factors ——-and/or —

i 205 . Therefore Ry, p,) would be identically zero, if one

ox* = =0. Equally, if A®=0in

one chart, this would imply A®=0 in the new chart. Such restricted coordinate
transformations “smell like” bundle morphisms in the following sense (the precise
notions will be given in the next section; here an informal approach is sufficient):
we regard the supermanifold MPo-Pv ag the total space of a fibre bundle
E=(M®>2) 7 B, F,) with an (even) base space B, and (odd) fibre F,. Natural
coordinates in M®2-P1 are coordinates inherited from coordinates in B, (via a
section) and coordinates in the fibre F,, which may be different (i.e. x dependent)
for each fibre. A bundle morphism is described locally by a change

{x*, 67} > {x*(x), 0%(x, 0)} (3.12)

from one set of natural coordinates to another. This corresponds to the choice of a
different section and a change of basis in the fibres.

If E possesses a connection, the canonical basis in the tangent space to M®Po-2v
is {,D=,0+ ,y%,0, ,0}, where {,D} is called the horizontal lift of {,0} into the
bundle. {,D} and {,0} are bases for the horizontal and vertical tangent spaces of
M®o29 Under bundle morphisms (3.12) ,y* transforms like a connection

—a_@ pa_0_°‘+€x_"6_9—“
W= o 068 T oxr ox”

such that
ox’ - oo _
W=D =g

The canonical bases (with respect to natural coordinates) in the cotangent
spaces to By, F; and MP>PV are respectively {dx"}, {d0*} and {dx*, DO*=d6*
—dx*;y*}. Under bundle morphisms (3.12) this gives

ox* . 00"
dx’, DO*= F D6* .
The hyperform (3.7) is then the volume form in MP>-?V in the canonical basis. We
call it a (DY, D)) hyperform. In later sections it will also be called a (D,,D,)
P-hyperform.

We are now in a position to make precise the relationship between the
supermanifold integration and the Berezin/Riemann integration:

Definition 1. Let MPo-Pv) be the total space of a fibre bundle E =(M®>P) 7 B,
F,), and let pe MP>PV Let (~}(U), ¢) be a chart on the G® supermanifold,

dx* =

x—v
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where UCB, and n(p)e U. Because of the local trivialisation property we take
n Y (U)=UxF,. Let A be a (DY, DY) hyperform with compact support in ¢(U)
C 0, where O is open in B}?,. In natural coordinates z* = ¢™(p), and with respect
to the canonical bases,

1 1
A=a(2)Qp, py= Dol D1 dxMU A ondXEPo, AT OV LV 0.
Then A= B a(x,0)dx"...dxPed0" ...d6": . (3.13)
n ) 0xBP!,

We remark that it makes no sense to demand that A has compact support “in the 6
direction,” as e.g. for BY*" the only G* function of 6 which has compact support is
f(8)=0. By construction the left-hand side of the definition (3.13) transforms with
the Berezinian under a change of natural coordinates (3.12). We emphasize that
this definition is no less a recipe than the equivalent definition relating integrals of
differential forms to Riemann integrals. The recipe consists of replacing the one-
forms dx* by the integration symbols “dx*”, the derivative one-forms ,0 by the
integration symbols “d6*, and deleting the A and v products. This procedure is
justified by the fact that both sides transform identically under the coordinate
transformations (3.12).

At first sight the restriction to bundle morphisms, described in natural
coordinates by (3.12), seems too strong, as it appears to exclude supersymmetry
transformations (x*—x*+(y*)0°n", 6°—0*+n* n* constant). However one
should observe that in non-natural coordinates (y*, ) a (DY, DY) hyperformis not

. 0 .
justa product of dy* and e terms. To make this point clear, we demonstrate what

happens if one chooses coordinates
y=xt+0" ", p'=0*, ,\eB ,,

instead of the (natural) coordinates {x*, 6*}. One finds

=

0,7 _
oy oyt

and the volume form becomes

20 = ot

€, Axt=dyt—dyp* \F=et,

— okt UD A1...8D
Qo py= Dy Dl'e A NerPo,  u ERE lap, €V eV g€,

.. .. 0 . . .
and although containing terms with a_y" and dy*, this form is the natural choice

with respect to the bundle structure. The integral of a (D, DY) hyperform
A=a(y, v)Qp, b, 1s defined by

fA= Ba(y,p)dy'...dyPedy...dP:,

ie. replacing the ¢* and ,e on the left-hand side by the symbols dy* and dy* in the
Berezin integral on the right-hand side (and deleting the A and v products).
Again the definition is independent of the choice of coordinates, provided the
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6 wH
coordinate change corresponds to a bundle morphism. The restriction —— 0= =0 for

changes of natural coordinates places a restriction on transformations (y*, %)
—(3*, %) of non-natural coordinates: one finds

PO w) =0 =" A+ v, B =90, )
with f* and g* being G® functions of the arguments indicated. Furthermore

ay oy* opf o’
I n Y I 1 T
et=¢ <637“ a5 A) £ (al 6y" + e €5

and hence Qp, p,, transforms into 2(y, )2 p, p,,, Where Z(y, ) is the Berezinian

"
de t(gx ) det <g 0") written in (y, ) coordinates. As the Berezinians of the other

transformations (y, )——>(x 0) and (X, (7)—»()7, ) are both 1, this gives precisely the

op
correct answer, i.e. det det< v

6y oyl )’

This example suggests the possibility of an integration on supermanifolds
which have the opposite fibration to E=(M®>PY B, F,). By this we mean a
fibration characterized by odd coordinates in the base and even coordinates in the
fibre. We denote it by E=(M®>?Y n, B,, F,). Natural coordinates {6% x*} on
M®o-P0) are induced from coordinates on B, and F, respectively, similarly to the
previous case. The canonical bases for the tangent spaces of B,, F, and MP> PV are
{0}, {,0} and {,D=,0+,I",0, ,0} respectively. The canonical bases for the
cotangent spaces are {d0*}, {dx*} and {d6*, Dx"=dx"—d6*,I'*}. Bundle mor-
phisms are coordinate transformations {6% x*}—{0%6), x*(x,6)} (in natural
coordinates). They transform horizontal bases ({,D} and {d6"}) into horizontal
ones and vertical bases ({,0} and {Dx"}) into vertical ones. The natural volume
form is the (DY, D¥) hyperform

1

n u Xp..
Q(Do,Dl) D | D ' (Dx "N ADx DOMDo~~«H18)®(8 ! DlamD V.V alD) .

(3.14)
By construction it transforms with the Berezinian under bundle morphism. This
allows us to define the integral of a (D}, DY) hyperform:

Definition 2. Let M®> 21 be the total space of a fibre bundle E=(M®>?) 7 B,

F,), and let pe M®o>P), Assuming the bundle is trivial, i.e. there is a homeomor-

phism h:B; x Fy—n~1(B,), let (h(B, x U), @) be a chart in M®P>-PV with pe h(B,

x U) and U open in BP%. Let A be a (D, DY) hyperform with (for all be B,)

compact support in (p(h(b x U))C 0, where O open in B?°,. In natural coordinates
=@™(p), and in the canonical bases, 4 may be wrltten

A=a(2)2py py= (Dx" A ... ADx"Po), - AP, DV v, D).

D 'D D,!
Then we define
A:= B a(x,0)dx!...dxP°d0...doP: . (3.15)

h(By x U) BP'; X0
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We are not quite ready with the complete definition of integration on
supermanifolds because in the previous definitions the integration was only
defined on appropriate charts of M®2?v, The chart integrations should ultimately
be patched together over the manifold. For C® manifolds one gets rid of the
demand for compact support of a D-form in the domain of its chart map by using a
partition of unity, which exists if the manifold is paracompact. For both definitions
(3.12) and (3.15), the charts for which integration is explained in terms of
Berezin/Riemann integration cover the complete odd sector of MP?, Hence
there is no patching in the odd directions. For the even sector, assuming
paracompactness, the patching can again be performed by introducing a partition
of unity.

In this section we argued in a local manner. This is sufficient for defining
supermanifold integrals in terms of superspace integrals, provided the objects one
is dealing with can be given a coordinate independent definition. In addition,
knowing the objects which are relevant for integration is not enough, because one
ultimately wants to manipulate them without referring to charts. This is possible if
one has an exterior calculus for hyperforms. Such a calculus will be presented in
Sects. 5 and 6, after we define in a chart independent way horizontal and vertical
tensor fields in the next section.

4. Hyperforms and P-Hyperforms

We showed in the last section that a satisfactorily geometric interpretation of
integration on a G* supermanifold MP>2V is possible if one considers the
supermanifold (for Dy=0, D,=0) as the total space of a fibre bundle with
connection. Two types of fibrations are possible, namely (M®?, ., B,, F,) with
even base and odd fibre, and (MP>-?0 ¢ B, F) with odd base and even fibre (even
and odd referring to the grading of the coordinates). For application to
supersymmetric field theories, the second choice seems to be more appropriate, as
we shall explain below. Therefore in the following we shall develop the differential
geometry for (MP-P n B, F,), and point out at the end the changes that occur
for the other fibration.

1. The fibre bundle E=(M®P) 7 B,, F,) has as total space MPoP0 3 G
supermanifold modelled over BP'; ® BP%. The projection = maps from M® P9 to
B,, and we have the local trivializations 7~ *(U)~ U x F,, for U open in B,. The
fibre =~ *(b) is isomorphic to F, for all be B,.

Locally, as described in the previous section, we have natural coordinates {z"
=@ (m)} = {6, x"}, which are inherited from coordinates in the base and the fibre.

2. We assume that E possesses a connection. Then, for each m € E, there exists
a unique split of the tangent space (?n")E (for convenience we will frequently refer to

E when we actually mean the total space MPo29) of E):

(%E = hor(:ln")E@)ver(z)E s 4.1
such that T (hor(z;E> = T B, 4.2)

where n*:(%E—) (T,.,B is the push-forward induced by the projection 7.
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Locally we choose a basis {,,E} in (Z)E’ which splits into a basis { ,E=:—E,}
for hor('Yn’)E, and {,E=:E,} for ver(;ll‘)E. In a natural coordinate basis {,,E} = {,D

=,0+,0",0, ,0} where ,I'™* are the components of the connection one-form in B,
(see below). These notions of horizontality and verticality extend naturally to
(contravariant) vector fields X € ¥(E) (i.e. the space of sections of the tangent
bundle).

3. The action of a (super) vector field X on functions f € (U) is denoted by
X - f. The vector fields form a module over the ring of functions with an additional
(super) Lie algebra sturcture:

[,}:X(E) x X(E)—~X(E)
X,Y)—[X,Y}
with [X, Y} - f=X - (Y- f)—(—=1D)PVY.(X - f). Here and in the following we

assume that all tensor fields introduced are pure, i.e. have a definite grading. Due to
the split (4.1) of (T) E any vector field splits uniquely as X = X# 4+ X",

Locally, X = XV E = EV, X (using de Witt conventions [4]). In general we have
[vE, »E} =y C¥(E, where y,,C¥ is the object of anholonomicity. In the natural
coordinate basis the components of C are zero apart from ,,C* = ,,Q" = 0(,I'™*)
+40(,I™). In this basis X - f = X*(,Df )+ X"(,0f ).

4. The (super)cotangent space at m € E, denoted (Z’)E, is the dual space of (:1,: )E

i.e. B linear maps from (T)E to B, : (T )*E = LBL< (T)E ; B L). The action of an element

 of gn")*E on an element X of gn")E is denoted (X |w). (Following the practice in

most of the literature we will not distinguish in our notation between elements of
tensor spaces and sections of tensor bundles.) (T )*E splits as
m

(T)*E:hor (T)*EEI—)VCI‘ (T)*E, (4.3)

where w €hor (T)*E if (X"|w)>=0 for all vectors X" and wever(T)*E if

(X" w)=0 for all vectors X”. As before we extend the splitting to covariant
vector fields w € X*(E).
Locally we choose a basis {E¥: =ME} in (T) *E, which is dual to the basis {yE}

of (T )E: {yE|EM) = oM. In a natural coordinate basis we have {EM} = {d6*, Dx*

=dx*—df",I"}; of=d0",», o”=Dx",m. The vertical forms Dx* define a
connection on E. Their exterior derivative yields the curvature d(Dx*)=Q*
=4d0" A d6”’ ,Q". The pull-back of Dx* onto B, is d6*,I™.

5. The super tensor spaces T)(E) at me E are defined by the B; multilinear
maps: m)?

(E)= *E, ..., T*E; =®T* "TE. (4.

A tensor field is a section of the tensor bundle T;(E)= U (mTp'(E). We also define
To(E)=§(E). "



Supermanifolds 595

Locally a tensor field T is displayed as
T=EV®...QE"(y, 5, T"""™)yE®...Qu,E,
where

NI,...NlT‘}Ml..JV[r= <NpEs vees N1E| TIEMla cees EMr> .
6. The hyperform spaces A(E) are defined by the graded multilinear maps
A(E) =LS%’L< TE, ..., TE, T*E, ..., T*E; BL>,

which are graded antisymmetric in the first p arguments and graded symmetric in

the final r arguments. The elements of A}(E) are called (p, r) hyperforms. We also

define the direct sum of all (p,r) hyperform spaces A(E):= @ A}(E), and the
D,r

spaces dif A(E):= (P AY(E) of differential forms and der A(E):= @ AL(E) of
p r
derivative forms.

Locally an element ¢ of A,(E) is expressed in terms of the basis

EN‘"’N"®Mr...M1E=(EN1 A NEMYQ(EV ... v w,E)
=pr BN @ QE® 3, EQ ... @ E
as

11
Q= —— EN""N"®(Np...N1§9M”"M1)M1...M,E . (4.5)

p!r!
7. Finally we define the P-hyperform spaces Q)(E)CAy(E) by means of a
projection

P:A(E)>Q(E), o@—Pp=0¢", (4.6)
where

(X, X @00y, .0, =(XY, ... X} @|o¥, ..., 0ff) 4.7

for all X; e X(E) and w, € X*(E). Elements of Q%(E) are called (p, )" hyperforms or
(p¥, ") hyperforms, as in the differential (derivative) form part the horizontal
(vertical) pieces are projected away. For functions f* = f, for contravariant vectors
X?= X" and for covariant vectors w” =w". If ¢ and ¢ are elements of A(E), then
P(p® @)= ®@". Analogously to the definition in point 6, we define the spaces
Q(E), dif Q(E), der Q(E), where the summations now only run over r<D; and
p=D,.
Locally we have for ¢ given by (4.5):

11
Pp=o¢"= o7l EX @y i @ g E 4.5y

Qggerve that , @ " is completely antisymmetric in both its upper and lower
indices.
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5. Exterior Calculus of Hyperforms

1. In the spaces of differential and derivative forms, one has an exterior product
(A and v respectively). We wish to extend this to an exterior product » in
A(E):
X AYE) x AYE) = A(E), (0, p) o X .

The product x is defined by its action on the basis elements:

ENxEM:=ENANEM |

NExX yE:=yEV yE,

ENw yE:=E'® ,E,

MEXEN:=(—1)yMMEN® E.

(5.1)

For ¢ € A,(E), ¢ € A}(E) we have the symmetry property,
Pro=(=1P"" PP xg. (5.2)
2. A map 6: A(E)—> A}, (E) defined for all r, p=0 is called a derivation of
type (w,(9)), where (6): =(0¢p)—(p), if the following properties are satisfied
O(AE)=0 for p+n<0,
oA+ pL)=(6¢p)L+(6¢p)4; A, AeB,, (“Bj-linearity”), (5.3)
e x @)=(60) x +(—=1)*9x(06), (6,9):=()(p)+mp.
If , are derivations of type (n;, (,)), the supercommutator
(05 0;}:=06;0,—(—=1)®%25,6,,  (3;,6;):=(5;) (6))+mm; (5.4

is a derivation of type (n;+ 7}, (5;)+(0,)). Of course the supercommutator may just
be the trivial derivation 0.

3. Since below we shall arrive at an exterior calculus on A(E) partly by using
the Cartan calculus on dif A(E), we state here the rules for the latter theory (see e.g.
[47): the exterior derivative d and the contraction i, with respect to a vector field X
are derivations on dif A(E) of type (1,0) and (—1, (X)) respectively, with

lix, iy} =0,  [d,ix} =2, (5.5)

where £y is the Lie derivative with respect to the vector field X. The
supercommutators involving £, are

[Qx, d} =0, [QXa iy} = i[X,Y} s [BXa Qy} = Q[x, Y}+ (5-6)

4. We extend the Cartan calculus from dif A(E) to A(E) by considering a (p, r)
hyperform as a vector-valued differential form:

1
Q= ] (Pf‘;)lmMer...MlE )
(5.7)

1
M My_ 2 pNioN MM,
e A (R g B
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So pfyMris a differential p-form with values in A5(E). The derivations introduced
below only “see” the differential form part of a hyperform:

1
50 =1 00 .

5. The exterior derivative on A(E) is defined as a covariant derivative on
vector-valued forms. It is obtained in the following way: a covariant derivate V on
tensor fields is a B; linear map:

V:T3(E) > T 1(E),
with

(i) Vf=df for fe§E),

(i) M(IRL)=VT1@T,+T,®VT,,

(i) YV X|w))=YVX|o)+{Y,X|Vw) for X,YeX(E), weX*E).

By these requirements V is completely determined on any tensor field by specifying
its action on a contravariant base vector yE:

VNE= NCUM®ME >

where o is the connection one-form (linear connection in E). The action of V' on a
hyperform ¢ can be expressed as an action V on the components of ¢:

1 ~
Vo= W EN-Nr® V(Np...N1(le‘“Mr)®Mr...M1E .
The resulting object is however in general not a hyperform. Therefore we define the
exterior covariant derivative dl on a hyperform as

1
dlp = ] (CHQD?:)‘"'Mr)Mr...MlE )

M. M, __ Miy..M, Mi..M,- 1M M,
dipgyy M =depgy M (= 1Pl MM A o™,

(5.8)

and get as special cases dlo,, = d@,, and g M= F 1M dlis a derivation on
A(E) of type (1, 0).

6. The contraction of a hyperform with respect to a contravariant vector field
X is a map

iyt X(E) x A (E) > A y(E).

with
(i) for fixed X, iy is a derivation of type (—1,(X)),
(i) <Yy...Y,_lixplo;..0):=Y;...Y,_ X|p|lo..0,) . (5.9

7. Tt turns out to be convenient to introduce the following notation: let W™
be a matrix of differential g-forms. Then for a (p, r) hyperform we define

Wog:= (_ l)qur(“’)(W)rgo%"“M“lM A MWMF)MW..MIE . (5'10)
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Thus we can express (5.8) compactly as dl=d+ wo. It is straightforward to prove
the following statements:
(1) If 6 is a derivation in A(E) of type (x,(d)), then

(Wo)=0Wop+(—1)M*OMW.5¢p. (5.11)
(i) If W, are matrices of differential g; forms, then
Wyo (W0 0)=(= 1o 00, A ) o . (5.12)
8. The supercommutators of d and iy are found to be
[d,d}=2(Q0), [d,ix}=Ily, [iyiy}=0, (5.13)

where £ is the curvature
VM =dyao™ — vk A g™, (5.14)
and the covariant Lie derivative [y can be expressed in terms of the Lie derivative
2y as
Iy =2, +(iyw)o. (5.15)

Here we take £y to act only on the differential form part of a hyperform. (Q <) and
[ are derivations of type (2, 0) and (0, (X)) respectively.
9. By forming supercommutators with [, and (Q2o), one finds

[ dl} = (ix2) o,
[y, iy} = ix, vy >
[[x’ Iy} = I[x, Y} (iXiYQ) ©
Lix, Qo}=(ixQ)e,
[ly, Qo} = (xQ) o =(dlixQ)- .
Thus further derivations appear on the right-hand side of the supercommutators.
If we denote by d; any of the derivations from the set {dl, iy, [}, the chains (,Q)°,

(0,6;Q)°, etc. are also derivations. Let us denote these collectively by (€2;°). For
supercommutators involving (€2;-), we have

[, Qr“} = (51'521)0 s
[Qpe, Qpo} =(—N)B@FEVENQ A Q)0 —(Q AQ))o.

6. Exterior Calculus of P-Hyperforms
1. We define an exterior product & =P x,
O AYE) X A(E) - UE), (0. P0Odi=(pud).  (6.1)

Since (¢ x @)F = @ x @* = p” O @F, one has [P, w =P x — x P=0. Therefore for
P-hyperforms < and » can be identified.
2. A derivation 4 of type (=, (4)) on (E) is a By, linear map

4:QE)~ 2, (E).
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with
AP OB =(A)C ¢+ (=149 O (44),

and obeying similar postulates to (5.3).
3. If § is a derivation in A(E), it is in general not a derivation in Q(E):

5 : Q;(E)—)A;%-n(E) b
3P0 P)=(04) O+ (= D)*$C(64)+Ri(¢C ),

where we introduced R=id, —P. As a consequence one can state: if J is a
derivation of type (r, (9)) in A(E), then P§ is a derivation of the same type in Q(E).
Pé is in general not a derivation in A(E):

P3: A(E) > (E),
Po(p % @)= (Pdp) O ¢+ (— 1) P9 O (Pid)
=(00)O ¢+ (=1)*P9 O (56)
+(P5@) % ¢+ (—1)*99 % (P5&) . (6.3)

4. Let §, be derivations of type (n;, (0,)) in A(E). Call 4, = P9, the corresponding
derivations in Q(E). By applying P to the supercommutator [§;,d;}, one obtains

(6.2)

A, jy="PL0;, 05} =A4,0;— (—1)*"*)4;5;. (6.4)
By writing 6;=4;+ R4, one gets
4, Aj}ZA(i,j)_(wij—(— 1)(6i’6j)wji)a (6.5)

where y;;:=4;RJ;. One can show that v, is itself a derivation in Q(E).

5. We introduced the derivations dl and iy in A(E). By projection we get the
derivations D:= Pdl and I;:= Piy in Q(E). They satisfy the following two special
properties:

() DP=D, (6.6)

(i1) IyP=iyP. (6.7)
We show (i) just for X € X(E) and w € X*(E). By the derivation property of D, the
proof can be extended to arbitrary hyperforms. Firstly dX = (dX")yE, hence

DX =(dX*?,E=DX?".
Secondly we have
dw=do=dENyw—E" Adyo,
Dw=(dEN)’yo—E* A (d,w)",
Do’ = (dEY 0 —E* A (d,0)
and the result follows from
dEN =1EX A Eby CY,
(dEMP =1E" A E”,,CY,
when we recall that ,,C*=0 (since [ X", YV }¥=0).
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It is sufficient to show (ii) for differential forms w. From the definition we have
<Y1...Yp_1 |iX0)P> = <Y1 ...Yp__lewP>= <1’1P-‘.Y;’P_ 1XP|(L)P> N
Yy...Y,y |Piyo®) = <Y1P~~-Ypp~1|iwa>

=P Y X o)
=(YFLL Y X o).
This demonstrates that on Q(E) the derivation Iy is identical with iy, and that

iy =0 o0n Q(E). A consequence of (6.6) and (6.7) is that some of the derivations y;
defined in (6.5) are trivial:

DR$;=0,
0Rix=0 on Q(E).

6. The rules stated in Sect. 5 allow one to obtain the supercommutators of
derivations in (E). We only list those coming from D and I:

[D,D}=2(Q-)",
[D,Ix}=Ply—IxRdl,
[Ux, Iy} =0.
7. We assume that the supermanifold possesses a Riemannian (super)metric
g € TZ(E) satisfying:
(i) <X, Ylg>=(-1D)IY, X]|g).
(i) g is non-degenerate, ie. if (for all Y) <(X,Y]|g>=0, then X =0.
The signature of g denoted sign(g) is the dimension of the maximal subspace
of (%(E) for which (X, X|g> <0 (for all m).
Locally
g=EM®E"yyg= EM®ygn"E,
wgu=(=DM M, gy,
lg]: =[sdet(yga)| 0.
Under a change of basis
EM=E_KKAM=(MAK)TKE,
where

(MAK)T=(— 1)K(K+M)KAM
is the supertranspose of 4, g changes according to

9=E*X®@ A" ygn(YA) @ E=E*®J,"E,
such that ) e
lgl=1gl (sdet(yA™))" .
8. One can define a Hodge duality operation * in Q(E),

£ QE)»QD(E), ok

Do~p
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Locally for ¢ given by

¢_ ﬁ? El‘l up(ﬂp--~#1¢almar)Oar...onEa
we have
* )= 1 1 Eupﬂ...lluo( % o+ 1...ozD1)<> E
¢_ (Do'—p)' (Dl—}‘)' KDg---Hp +1 ¢ D g Ot 10
where
lg|'"?

*¢ar+1...dpl:= 1 ”upgvp

I"lg
HDg---Hp+1 p|r| UDg---H1

Q(Vp...v1¢ﬂ1.”ﬂr)prgar._.ﬂlgale(ll-..le ,
and Vg™ with upper indices denotes the inverse of yg,,.. From this one can show

¥ % ¢:(_ l)sign(g)(_ 1)p(Do~p)(__ 1)r(D1‘r)¢ ,

11
Xpeeilp 1.l o)
p' 7l M1~~~Hp¢ ! p¢a1...ar )

PO *p=

where indices are raised and lowered the metric and its inverse. Furthermore
Q==1 is the canonical volume form

1 1

‘gl EMW”DO#DO.”mg@CaL"aDIaDI-..ME

Dy! D!

7. Conclusions

We have shown that the ad hoc prescription for integration on supermanifolds
proposed by Berezin can be justified by postulating that the supermanifold is the
total space of a fibre bundle with connection. In the fibration E= (M2 ¢ B,
F,) the volume hyperform consists of pieces “living in” the horizontal tangent
space and the vertical cotangent space of the bundle. The transition from a
supermanifold integral to a superspace (Riemann/Berezin) integral only makes
sense in canonical bases in the horizontal and vertical tangent and cotangent
spaces. Under coordinate transformations which are natural with respect to the
bundle structure (i.e. bundle morphisms) the volume hyperform transforms with
the Berezinian. Under arbitrary coordinate transformations the invariant notions
of horizontality and verticality preserve the right transformation properties.
We extended the Cartan calculus for differential forms to hyperforms by
considering these as vector-valued differential forms. This gave rise to a covariant
exterior derivative dl. Here we do not agree with Rogers, who in [11] essentially
sets d(y0)=0. As a consequence one would get for a vector field d(X™,,0)
=dXM® 0 =dz¥(y0XM)®,,0. However y0X™ is not a tensor. The only reason-
able thing one can do is to work with covariant derivatives. We described the chain
of derivations which arise by forming supercommutators of earlier derivations.
Finally, we obtained the exterior calculus for P-hyperforms by making use of the
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projection P. To our own suprise, this procedure yields derivations not present
before the projection. They may not be of much importance for “practical”
calculations, but we find them rather intriguing from a structural point of view. At
present we are investigating whether one can make general statements about the
supercommutators of the additional derivations on Q(E). We also plan to enrich
the exterior calculus with relations involving the Hodge duality operation.

In the Cartan calculus on differential forms, the Lie derivative £, is a
derivation obtainable from d and iy(8y=iyd+diy). On hyperforms this corre-
sponds to ly=iydl+dliy. Like dl and iy, 1y acts only on the “differential form
part” of a hyperform. For instance, for a (1,1) hyperform:

IX(Q’NNE) = (IX(PN)NE = (QXCPN — M Ay MCUN)NE .

However £ is itself a respectable derivation on hyperforms (acting on both parts)
and could be added from the beginning to dl and iy. This could be of use since
Ly is related to diffeomorphisms and P2y to bundle morphisms.

One could also introduce into the exterior calculus a contraction i, of a
hyperform with a one-form o (now only acting on the “derivative form part”). By
generalizing the concept of a derivation d to maps d : A, (E)— A3, 2(E), i, would be
a derivation with n=0, 9= —1.

We would like to remark that our hyperforms and P-hyperforms bear some
resemblance to constructs used in gauge theories. There one is also dealing with
mixed tensors. A Lie algebra-value p-form A (4 € A(M, %); % the Lie algebra of the
gauge group G) is given locally by

A= EITALW‘Lde’“ AdxPP@E;.
Here the &, are the Lie algebra generators, which we may regard as spanning the
vertical part of the tangent space of a principal bundle. One can think of 4 as a
(p, 1) hyperform. The exterior product A for vector-valued forms (AAB
=A'QEABE=A'AB'®[E, £]) is to be compared with our x product. The
gauge covariant derivative D(ID=d + A A, 4 being the vector potential one-form),
the contractions iy, and the covariant Lie derivative ILy = iyID + IDiy (all acting on
the “differential form part” of A) are derivations in A(M,%). The derivations
generically denoted (€, ) in Sect. 5 are analogous to (F, ), where F is the field
strength F=dA -+ A A A. The projection P for gauge theories is the restriction to a
sub-group H of G. In order that from a derivation 6 on A(M, %), one obtains P as
a derivation on A(M, ), the system H CG must be weakly reductive.

In Sects. 4-6 we worked out the details for the fibration (M®?Y, 7, B,, F ), i.e.,
for odd base and even fibre. The only thing that changes if one has the opposite
case (MPP) 7 B, F,)is the definition of the projection P: in this case one obtains
from a hyperform ¢ the components of ¢ as

(X1 X, o0 oo =<{XT.. . XTo|o]..0) ).

Thus in all definitions in Sects. 4 to 6 not referring to charts, one only has to
exchange H and V. The canonical basis (with respect to natural coordinates in
(M®o-Do) 7 B, F.)) of the tangent space to the bundle is given by { D=0
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+,I™",0, ,0}. The appearance of ,D is the reason why we preferred this fibration to
the other one. The derivatives ,D are used in supersymmetric theories since they
anticommute with (a realisation of) the supertranslation operators Q, of the
graded Poincaré group. It has been shown [14] that these covariant derivatives
stem from a fibred structure existing on Salam-Strathdee superspace: rigid
superspace can be regarded as a principal bundle whose base is the supertransia-
tion group and whose structure group is the ordinary translation group
(translations in Minkowski space). This situation exactly reflects our fibration with
0 variables as coordinates in the base and x variables as coordinates in the fibres.

We would like to point out that the exterior calculus on P-hyperforms provides
all the necessary ingredients for a coordinate-free formulation of superfield
actions. The superfields one is dealing with are components of differential forms,
say w generically. The w and their exterior derivatives dw are building blocks for
the action. We emphasize that the action density has to be a (D, D) P-hyperform
(thus at least one P-hyperform is a necessary ingredient of the theory!) and so one
cannot avoid introducing an operation to provide the missing “derivative form
part,” and this operation is the Hodge *.

One should also observe that in working with P-hyperforms one throws away
all f derivatives. This is precisely what occurs in the usual formulation of superfield
theories, where the 6 derivatives are obtained via Berezin integration. It is indeed
possible to define this as a (local) operation | : A5(E)— A, '(E). We will come back
to this point in a later publication.

There are several hints that constraints introduced both in global and local
supersymmetric theories are of geometric origin. For instance, the chiral
constraints on a complex scalar superfield ¢ (Wess-Zumino model) can be stated
as the vanishing of certain horizontal components of d¢. In supergravity there is
still no systematic method to determine which constraints one has to impose on the
torsion in order to reduce the number of components of a superfield (see for
instance [3]). We speculate that they emerge geometrically by formulating
supergravity in terms of supermanifold integrals. This speculation is supported by
the observation [15] that one can derive from a Lagrangian four-form on a
supermanifold the constraints for N =1 supergravity as part of the field equations.
The problem in this approach, namely the lack of invariance under
(super)diffeomorphisms, could be overcome by choosing a (4, 4) P-hyperform as
the Lagrangian. The supermanifold integration and the exterior calculus of
hyperforms also provide a geometric foundation for the rheonomy conditions in
the group manifold approach to supergravity [12]. A further application we have
in mind is the formulation of locally supersymmetric Yang-Mills type theories for
gravitation and, more generally, of graded Poincaré gauge theories.

Finally, we hope to have convinced Bryce de Witt that Berezin’s approach to
supermanifold integration is a first step towards a de Rham theory; see his
sceptical comments on p. 121 of [4]. We are also pleased to assure Tullio Regge
that the “formalism and symbolism” attitude taken by workers in “superphysics”
may not be far from acquiring a concrete status; see his remarks on p. 946 in [16].
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Note added in proof. After completion of this work we received an article from A. Rogers entitled
“On the existence of global integral forms on supermanifolds” (King’s College London preprint,
1984), which also deals with Berezin’s approach to integration on supermanifolds. What we
interpreted as bundle morphisms in a fibre bundle with connection, are interpreted by A. Rogers as
restricted transition functions in a subatlas covering the supermanifold.





