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Abstract. A suggestion by Berezin for a method of integration on supermani-
folds is given a precise differential geometric meaning by assuming that a
supermanifold is the total space of a fibre bundle with connection. The relevant
objects for integration are identified as suitable horizontal/vertical projections
of hyperforms. The latter are generalizations of differential forms having both
covariant and contravariant indices. The exterior calculus of these projected
hyperforms is developed, analogously to the Cartan calculus, by introducing
appropriate derivations and determining their commutators, respectively
anticommutators.

1. Introduction

The concepts of rigid and curved superspace have turned out to be of great
importance in current research on supersymmetry and supergravity. As originally
introduced by Salam and Strathdee [1] superspace has, besides the coordinates xμ

(μ = 0, ...,3), which are commuting (even, bosonic), additional anticommuting
(odd, fermionic) coordinates #α(α = 1,..., 4). Superfields are functions depending on
these variables and encode both bosonic and fermionic fields by means of a Taylor
expansion in the odd variables. Integration of superfields with respect to the odd
variables is given an operational definition by the Berezin integration rules [2].
Also a (super)-tensor calculus and the notions of (suρer)-connection, -torsion and
-curvature are used frequently in the physics literature [3, 4].

Many authors have investigated how to make these more or less heuristic ideas
mathematically rigorous. Rogers [5] introduced the concept of a DQ + D^
dimensional supermanifold modelled over l^f0'^0, a space obtained from a
Grassmann algebra BL. Several modifications of her approach have been proposed
[4,6-8]. The construction of tensor bundles on supermanifolds broadly resembles
the procedure for C°° manifolds.

What is still lacking is a fully satisfactory theory of integration on supermani-
folds mimicking the Berezin integration rules. For C°° manifolds the relevant
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objects for an integration theory are differential forms. This is not true for
supermanifolds. In his last article Berezin [9] pointed out, that in this case one
must consider more general tensors with both covariant and contravariant
components (which we shall call hyperforms in the sequel). Although he was able
to define a consistent supermanifold integral, his definition uses an ad hoc recipe
for which we shall give a geometric interpretation. By this means we arrive at a
truly geometric, chart-independent integration theory.

In Sect. 2 we make some informal remarks on superspace and supermanifolds.
We would like to point out that superspace B(£Λ} is not yet rigid superspace in
physicists'jargon. Rigid superspace is a manifold modelled over B(£Λ\ but with
more structure. This is to be compared with Minkowski space, which is a quasi-
Riemannian manifold modelled over R4 with the Poincare group as isometry
group. Similarly a G°° function is not the same as a superfield, of which one
demands that it transforms according to some representation of the graded
Poincare group. These additional structures are however of no relevance for our
arguments.

In Sect. 3 we discuss integration on supermanifolds. The first part of this
section is largely a repetition of Berezin's arguments [9] (see also [10-12]), about
why one needs hyperforms. Berezin's proposal for a supermanifold integration
contains, in our view, a non-geometric ingredient. We overcome this by assuming
that the supermanifold is the total space of a bundle with connection. The volume
form turns out to be a P-hyperform constructed out of suitable pieces of the
horizontal and vertical tangent and cotangent spaces of the bundle.

After having identified P-hyperforms as the relevant objects for integration on
G00 supermanifolds (comparable to differential forms for C00 manifolds), we
improve in Sect. 4 on the previous coordinate-based formulation of Sect. 3.
P-hyperforms are now obtained from hyperforms by a projection.

Next we aim at an exterior calculus for P-hyperforms. We arrive at it in two
steps: first in Sect. 5 we develop an exterior calculus for hyperforms, then in Sect. 6
we "project" this onto P-hyperforms. The operations are an exterior product >x, an
exterior derivative dl, contractions with respect to a vector field ίx, and derivations
obtained from dl and ix by taking suitable commutators or anticommutators. The
exterior derivative d is a covariant derivative acting on vector-valued forms. On
the space of P-hyperforms we can also define a Hodge duality operation.

In our conclusions in Sect. 7 we briefly discuss a possible enrichment of the
exterior calculus on P-hyperforms by adding further derivations. Finally, since this
article is mainly intended to be mathematical, we merely indicate why and how the
calculus may be applied to supersymmetric field theories, leaving further details for
future articles.

2. Superspace and Supermanifolds

The supermanifolds we are dealing with are modelled over flat superspace B(£Q'Dl\
the Cartesian product of D0 copies of BL 0 and Dv copies of BL 1? where BL 0 and
BL 1 are the even, respectively odd, subspaces of a real Grassmann algebra BL (with
Lanticommuting generators). Functions from B^0^ to BL will be taken to be G00,
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i.e. infinitely differentiable with respect to all arguments, which in turn implies that
the function admits a finite Taylor series expansion in the odd arguments, with
infinitely differentiable functions of the even arguments as coefficients [5]. A
(D0 + I>ι)-dimensional supermanifold M(DO>DI) is constructed from B(L°'DI) in the
usual way by means of an atlas of charts \J (17,., φf) with 17. an open cover of

iel

M(DQ'Dί) and a homeomorphism φi of Ut onto an open subset of B(LQ'Di\ If the
overlap l^n 177 is non-empty we require the transition function ψj o φ.~* to be G°°.

A chart map φ induces coordinates φM(m) = ZM = {xμ, 0α} (M = 1,..., D0 + D x,
μ=l, ... ?i>o> oc = l, . . . jDJfor me 17. If we change to other coordinates we require
this change to respect evenness/oddness in the following sense: if (X) denotes the
grading of a Grassmann element X, i.e. (X) = 0 if X is even and (X) = 1 if X is odd,
then under a coordinate change ZM-»ZM we require (ZM) = (ZM).

Equipped with the notion of differentiability in B(f°'Dl} one can construct the
tangent bundle TM(D°'Dί\ At a point m e U C M(Do'^l} the tangent space (TM(D° Dl)

is spanned (in a coordinate basis) by \ Md = —^ \ (we use the de Witt [4]
( dz )

conventions for index manipulation, which conveniently avoid factors of ( —1)).
The dual space to (7JM(Do'Dl) denoted (^*M(D°'Dl) is spanned by {dzM}, where

(Nd\dzMy = NδM (the Kronecker delta). This is in turn gives rise to the cotangent
bundle Γ*M. In general tensor fields of type (p, r) are elements of

The components of a tensor of type (p, r) are displayed in a coordinate basis as:

In the following sections we will need tensors with special symmetry properties,
which generalize the differential forms of ordinary differential geometry. This
subspace of (p,r) tensors is denoted Λr

p(M(D°'Dί)) and is spanned by

dzNί A ... /\dzN?®Mrd v ... v Mld

where Λ is the graded antisymmetric wedge product, and

dzN Λ dzM = dz[N Λ dzM) =-(- 1)(]V) Mdz

where (JV) = (dzN), and v is the graded symmetric product

We will call an element of Λr

p(M(D°'Dl}) a (p, r) hyperform. For p = 0 a hyperform is
also called a derivative r-form; for r = 0 a hyperform is a differential p-form.

3. Integration on Superspace and Supermanifolds

The standard method in "supersymmetric physics" to evaluate integrals of
functions on superspace is the following: after expanding a G°° function f(zM) from
C7cM ( i ) o '1 ) l )toBLas

)^...θS (3.1)
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one evaluates the Berezin integral $ as

I /(x, ΘJd^xdθ1.. .dθDί = $ fτ(x)dD°x, (3.2)

where the $ integral is meant to be an ordinary Riemann integral. Formally this is
achieved by the Berezin integration rules

0, $θdθ=l. (3.3)

These rules are as they stand void of any measure-theoretic meaning (no
integration limits are prescribed). They demand that under a change of variables
(x, θ)-»(x, 9) the "volume element" dD°xdDiθ transforms according to

where ̂  is the superdeterminant of the matrix

dxμ dxμ\
7 W

M =

ϊxv d~6

(3.4a)

Le" ~ - - < Λ Λ , /3F\det —2 . (3.4b)
,dxv,

(
j-χ-μX

-^7), and for D0 = 0 to & = /~1

We would like to point out that, contrary to common belief, the expression (3.2)
is not invariant under a change of variables for arbitrary f(z). This failure is not
caused by the Berezin rules (3.3), but by the fact that the xμ are even Grassmann
algebra elements, instead of real variables [13]. The ill-defined recipe (3.2) can
however be replaced by a well-defined one [4,13], essentially by treating the
integration with respect to the even variables as a contour integration.

For integrals on supermanifolds the procedure will roughly be to define
integration in a chart by integration in the model space B(f°tDl\ and then to patch
the results from the different charts together.

To perform the first step, one has to make sure that one integrates objects on
the manifold which locally have the same transformation properties as the
integrands in the model space. It is well known that for D-dimensional C°°
manifolds these objects are D-forms. This is also true for G°° supermanifolds
M(D°'°\ Both the volume element dD°x and the (D0,0) hyperform

Q = —-dχμ ι Λ ... Λ dxμD°(μD ε), (3.5)
DO' °'"

(μD ...μιε) being the Levi-Cίvίta symbol, transform with the Jacobian determinant:
if {V}->{xμ}, Ω(Dθt0)-+/Ω(Dθf0). This comes about since the (graded antisym-
metric) Λ product is antisymmetric for even differential one-forms dxμ.
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In the other extreme case, i.e. a supermanifold with only odd coordinates, the
"volume element" dD*θ in the model space B(®'Dί) transforms with & = /~l (see
(3.4)). This shows that a 'W in dDίθ, despite its appearance, cannot be a
differential one-form, and that the volume form cannot be a differential Deform.
The object with the appropriate transformation property is the derivative Z^-form

This is because the (graded symmetric) v product is an antisymmetric product for

the odd derivative one-forms ad, and since α<9 = — βd\ βd: = ̂  I therefore Ω^.DO
-

The previous cases lead one to suspect that the volume form on M(D° DI} is the
(DQ^D}) hyperform

Ω — O 6?)O(Do,Dι) — iώ(Do» O)^ (Q,Dι)

= ΪΓ7ΪΓΪ * A "' Λ D°'uθo Mιε)®(εαi'"αDlαDι^Λ " Λαι^) (3-7)

Under a change of coordinates (x, θ)-+(x, 9),

(3'8)

So one immediately observes that, whereas Ω(DθtDl) is a product of even differential
forms dxμ and odd derivative forms αδ, a coordinate transformation leads to terms
containing odd differential forms dθa and even derivative forms μδ:

where R(DθfDl) contains all unwanted terms with factors dθ* or μd.
Berezin [9] proposed to define the integral of a (D05^i) hyperform only with

respect to the part that transforms correctly (i.e. with J*). In our notation, if A is a
(D0, DO hyperform,

A= i ^ ^ 1 Λ '" AdzMDθ(M^MίA
Nl "ND^®NDld v ... v Nld,

one may split it as A = AP + AR, where ^lp is proportional to Ω(DθtDί)9

Ap = a(z)Ω(Do Di}. Berezin proposes

ΪA=ίAp=$a(x9θ)dx*...dxD°dθ1...dθDί. (3.10)

If we change coordinates z->z = h(z) and denote A expressed in terms of z as A,
then

..dθDl, (3.11)
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which is consistent with the transformation of the Berezin integral under the same
coordinate transformation.

Although Berezin's proposal leads to a consistent definition, one feels unsure
about the neglection of the terms AR. One would like to have a differential-
geometric, i.e. ultimately a chart independent, understanding of this procedure.
This is offered by the observation from (3.8), that all the terms in R(Do,Dί) (see 3.9)

dxμ dxμ

contain factors -^=- and/or —-. Therefore R(Do,Di} would be identically zero, if one

dxμ

were to restrict the coordinate change by requiring —- =0. Equally, if AR = Q in
_ Vv

one chart, this would imply AR = 0 in the new chart. Such restricted coordinate
transformations "smell like" bundle morphisms in the following sense (the precise
notions will be given in the next section; here an informal approach is sufficient):
we regard the supermanifold M(DO>DI) as the total space of a fibre bundle
E = (M(D°>Dί\ π, £0, FJ with an (even) base space £0, and (odd) fibre F^. Natural
coordinates in M(DO'DI) are coordinates inherited from coordinates in B0 (via a
section) and coordinates in the fibre Fl9 which may be different (i.e. x dependent)
for each fibre. A bundle morphism is described locally by a change

from one set of natural coordinates to another. This corresponds to the choice of a
different section and a change of basis in the fibres.

If E possesses a connection, the canonical basis in the tangent space to M(DO'DI}

is {μD = μd + μy
ct

ad, αδ}, where {μD} is called the horizontal lift of {μd} into the
bundle. {μD} and {α<3} are bases for the horizontal and vertical tangent spaces of
M(D°'Dl\ Under bundle morphisms (3.12) μy

α transforms like a connection

^_8x^ β(ffi dxv dθ«
μ dxμ v δθ^ dxμ dxv'

such that

The canonical bases (with respect to natural coordinates) in the cotangent
spaces to B0, F1 and M(D°>Di) are respectively {dxμ}, {dθ«} and {dxμ, Dθ« = dθ"
— dxμ

μγ"}. Under bundle morphisms (3.12) this gives

The hyperform (3.7) is then the volume form in M(D°'Dl) in the canonical basis. We
call it a (D^,D\) hyperform. In later sections it will also be called a (D^D^
P-hyperform.

We are now in a position to make precise the relationship between the
supermanifold integration and the Berezin/Riemann integration:

Definition 7. Let M(D°'Dί) be the total space of a fibre bundle E = (M(D° Dl\ π, B0,
FO, and let peM(D°>Dl}. Let (π~l(U),φ) be a chart on the G°° supermanifold,
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where UcB0 and π(p)e U. Because of the local trivialisation property we take
π~ 1(f7) = U x F1. Let A be a (D ,̂ D\) hyperform with compact support in φ(U)
C 0, where 0 is open in B% °0. In natural coordinates ZM = φM(p), and with respect
to the canonical bases,

. . . a i " - a < 5 v . . . v d .(Do,Dύ

Theίl J A:= $ a(x,θ)dxl...dxD°dθ1...dθD>. (3.13)
π-Htt) Ox BE,1!

We remark that it makes no sense to demand that A has compact support "in the θ
direction," as e.g. for B(£> υ the only G°° function of θ which has compact support is
f(β) — 0. By construction the left-hand side of the definition (3.13) transforms with
the Berezinian under a change of natural coordinates (3.12). We emphasize that
this definition is no less a recipe than the equivalent definition relating integrals of
differential forms to Riemann integrals. The recipe consists of replacing the one-
forms dxμ by the integration symbols "dx"", the derivative one-forms αδ by the
integration symbols "d#α", and deleting the Λ and v products. This procedure is
justified by the fact that both sides transform identically under the coordinate
transformations (3.12).

At first sight the restriction to bundle morphisms, described in natural
coordinates by (3.12), seems too strong, as it appears to exclude supersymmetry
transformations (xμ-*xμ + (yμ)0iβθ*ηβ, #α-»#α + ?f, η* constant). However one
should observe that in non-natural coordinates (yμ, φα) a (Dξ, D\) hyperform is not

jt
just a product of dyμ and -— terms. To make this point clear, we demonstrate what

happens if one chooses coordinates

instead of the (natural) coordinates {xμ, θα}. One finds

0,5 = ̂ "^ + ̂  = :jt, dx" = dy»-dψ\λx = :<*,

and the volume form becomes

1 1

Λ

and although containing terms with -— and dip*, this form is the natural choice
vy

with respect to the bundle structure. The integral of a (D^,D\) hyperform
A = a(y,ιp)Ω(Do,Di} is defined by

i.e. replacing the eμ and αβ on the left-hand side by the symbols dyμ and dip" in the
Berezin integral on the right-hand side (and deleting the Λ and v products).
Again the definition is independent of the choice of coordinates, provided the
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dxμ

coordinate change corresponds to a bundle morphism. The restriction -—- = 0 for
du

changes of natural coordinates places a restriction on transformations (yμ, ιpa)
-»(yμ, φα) of non-natural coordinates: one finds

yμ(y> v) = fμ(yv - ψ^) + 9\y, ψ)^μ , v>*(y, v) - f(y* ψ)
with fμ and g* being G°° functions of the arguments indicated. Furthermore

Λ u ' Λdyμ d

and hence Ώ(DO> ̂ transforms into <9(y, ψ)Ω(Do>Dί}, where J*(y, φ) is the Berezinian

det ( -^ 1 det I —^ 1 written in (y, ψ) coordinates. As the Berezinians of the other
\UX / \OU / ^ ^

transformations (y9 ψ)-*(x, θ) and (x, θ)-+(y, ψ) are both 1, this gives precisely the
. J Jcorrect answer, i.e. det - — det ^—^ .

\dyvj \dψβj
This example suggests the possibility of an integration on supermanifolds

which have the opposite fibration to E = (M(D°'Dί\ π, 50, FJ. By this we mean a
fibration characterized by odd coordinates in the base and even coordinates in the
fibre. We denote it by E = (M(D"'Dί\ π, £1? F0). Natural coordinates {θa,xμ} on
M(D°'Dl) are induced from coordinates on B1 and F0 respectively, similarly to the
previous case. The canonical bases for the tangent spaces of B l5 F0 and M(DO'DI} are
{yd}, {μd} and {αD = αδ + αΓ

μ

μ3, μd} respectively. The canonical bases for the
cotangent spaces are {dθa}, {dxμ} and {dθ*, Dxμ = dxμ-dθ*ΆΓ

μ}. Bundle mor-
phisms are coordinate transformations {θα, xμ}-^{θ<x(θ), xμ(x,θ)} (in natural
coordinates). They transform horizontal bases ({αD} and {dθ*}) into horizontal
ones and vertical bases ({μd} and {Dxμ}) into vertical ones. The natural volume
form is the (D^, Df ) hyperform

Ω
<Do.Dι)= 7Π7ΓΪ - Do...

^o!^ι! (3>14)

By construction it transforms with the Berezinian under bundle morphism. This
allows us to define the integral of a (Do,Df) hyperform:

Definition 2. Let M(D°'Dl) be the total space of a fibre bundle £ - (M (D°'Dl), π, B l 5

FO), and let p e M (X>0'Dl). Assuming the bundle is trivial, i.e. there is a homeomor-
phism h:B1 x F0->π~ XB^, let (h(Bί x [/), φ) be a chart in M(D°'Di} with p e /

x U) and 17 open in B£O

O Let ^ be a (Do?^f) hyperform with (for all
compact support in φ(h(b x I/)) C 0, where 0 open in Bf °0. In natural coordinates

Z

M = φM(p), and in the canonical bases, A may be written

A = a(z)Ω(Do,Dl} = -f -p (Z)χ^ A . . . Λ /)^DO) μι^-β^GDli) v ... v βlD) .
1/0 ^1

Then we define

I A:= $ a(x,θ)dx1...dxDodθί...dθD^. (3.15)
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We are not quite ready with the complete definition of integration on
supermanifolds because in the previous definitions the integration was only
defined on appropriate charts of M(DO'DI}. The chart integrations should ultimately
be patched together over the manifold. For C00 manifolds one gets rid of the
demand for compact support of a Z)-form in the domain of its chart map by using a
partition of unity, which exists if the manifold is paracompact. For both definitions
(3.12) and (3.15), the charts for which integration is explained in terms of
Berezin/Riemann integration cover the complete odd sector of M(D°tDl\ Hence
there is no patching in the odd directions. For the even sector, assuming
paracompactness, the patching can again be performed by introducing a partition
of unity.

In this section we argued in a local manner. This is sufficient for defining
supermanifold integrals in terms of superspace integrals, provided the objects one
is dealing with can be given a coordinate independent definition. In addition,
knowing the objects which are relevant for integration is not enough, because one
ultimately wants to manipulate them without referring to charts. This is possible if
one has an exterior calculus for hyperforms. Such a calculus will be presented in
Sects. 5 and 6, after we define in a chart independent way horizontal and vertical
tensor fields in the next section.

4. Hyperforms and F-Hyperforms

We showed in the last section that a satisfactorily geometric interpretation of
integration on a G°° supermanifold M(D°'Dύ is possible if one considers the
supermanifold (for D0ΦO, D1ή^0) as the total space of a fibre bundle with
connection. Two types of fibrations are possible, namely (M^0'^1*, π, #0, Fx) with
even base and odd fibre, and (M(D°*Dl\ π, B1? F0) with odd base and even fibre (even
and odd referring to the grading of the coordinates). For application to
supersymmetric field theories, the second choice seems to be more appropriate, as
we shall explain below. Therefore in the following we shall develop the differential
geometry for (M (°Q>Dί\ π, B1? F0), and point out at the end the changes that occur
for the other fϊbration.

1. The fibre bundle E = (M(D° Dl\ π, B l5 F0) has as total space M(D°'Dl), a G°°
supermanifold modelled over B^iO-B^V The projection π maps from M(DO'DI) to
J5l5 and we have the local trivializations π~ 1(C7)^ 17 x F0 for U open in Blt The
fibre π"1^) is isomorphic to F0 for all b^B1.

Locally, as described in the previous section, we have natural coordinates {ZN

= φN(m)} = {$α, xμ}, which are inherited from coordinates in the base and the fibre.
2. We assume that E possesses a connection. Then, for each m e E, there exists

a unique split of the tangent space TE (for convenience we will frequently refer to
(m)

E when we actually mean the total space M(ί>0'βl) of £):

(4.1)
(m) (m) (m)

such that πJhoτ TE\ = T B< , (4.2)
*^ (m) J π(m) 1 ? V >

where π*: TΈ-» T B is the push-forward induced by the projection π.
* (m) π(m) F J F J
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Locally we choose a basis {ME} in TE, which splits into a basis {ΛE= : — EJ
(m)

for hor TE, and LE = :E } for ver TE. In a natural coordinate basis {ME} = {αD(m) ^ (m)

= αδ + αΓ
μ

μδ, μd} where αΓ
μ are the components of the connection one-form in B1

(see below). These notions of horizontality and verticality extend naturally to
(contra variant) vector fields X e £(E) (i.e. the space of sections of the tangent
bundle).

3. The action of a (super) vector field X on functions / e g(l/) is denoted by
X - f. The vector fields form a module over the ring of functions with an additional
(super) Lie algebra sturcture:

with IX, Y} f = χ.(Y.f)-(-iγχWγ.(X ./). Here and in the following we
assume that all tensor fields introduced are pure, i.e. have a definite grading. Due to
the split (4.1) of TE any vector field splits uniquely as X = XH + XV.

(m)

Locally, X = XN

NE = EN

NX (using de Witt conventions [4]). In general we have
[NE, ME} =NMCK

KE, where NMCK is the object of anholonomicity. In the natural
coordinate basis the components of C are zero apart from ΛβC

μ = aβQ
μ = a_d(βΓμ)

+ βd(an. In this basis χ.f = X«(ΰ[Df) + Xμ(μdf\
4. The (super)cotangent space at m 6 E, denoted TE, is the dual space of TE

(m) (m)

i.e. BL linear maps from TE to BL : T*E = LBτ ( TE; BL\ The action of an element
(m) (m) \(m) J

ω of T*E on an element X of TE is denoted <Z|ω>. (Following the practice in

most of the literature we will not distinguish in our notation between elements of
tensor spaces and sections of tensor bundles.) T*E splits as

(m)

T*E = hor T*Eφver T*E, (4.3)
(m) (m) (m)

where ωehor T*E if <XF |ω>=0 for all vectors Xv and ωever T*E if
(m) (m)

<XH|ω> = 0 for all vectors XH. As before we extend the splitting to covariant
vector fields ω 6 £*(£).

Locally we choose a basis {EM: = ME} in T*E, which is dual to the basis {NE}
(m)

of TE : (NE\EMy = NδM. In a natural coordinate basis we have {EM} = {dθa, Dxμ

(m)

= dxμ-dθ\Γμ}; ωH = dθ\ω, ωv = Dxμ

μω. The vertical forms Dxμ define a
connection on E. Their exterior derivative yields the curvature d(Dxμ) = Ωμ

=^dθ«Λdθβ

xβΩ
μ. The pull-back of Dxμ onto Bί is dθ\Γμ.

5. The super tensor spaces 7T(E) at m e E are defined by the BL multilinear
(m)

maps:

E,.... TE, T*E,..., T*E'Bτ\ = ®pT*E®®rTE. (4.4)
) (w) (m) (m) ^J (m) (m)

A tensor field is a section of the tensor bundle 7J(E)= (J T^(E). We also define
T'O/ZΛ _ <7ί/I7Λ m^
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Locally a tensor field Γ is displayed as

where

TMι...Mr / 77
„,...„! =<JVp^ »

6. The hyperform spaces Λ^(£) are defined by the graded multilinear maps

T Ϊ7 T1 T7J. I-j « ...« L JLJ .
(m) (m) ' " (w)

which are graded antisymmetric in the first p arguments and graded symmetric in
the final r arguments. The elements of Λr

p(E) are called (p, r) hyperforms. We also
define the direct sum of all (p,r) hyperform spaces Λ(E):= @Λr

p(E), and the

spaces difΛ(E):= ®Λ°p(E) of differential forms and derΛ(E):= @Λr

0(E) of
P r

derivative forms.
Locally an element φ of Λr

p(E) is expressed in terms of the basis

as

φ=^\7\ £Nί'"Np® (N^.N^-^M^ME . (4.5)

7. Finally we define the P-hyperform spaces Ωr

p(E)cΛr

p(E) by means of a
projection

P : Λτ

p(E)-+fϊp(E) , φh-»Pφ = φp , (4.6)

where

...,ωf> (4.7)

for all Xt e 3E(£) and ωt e 3E*(£). Elements of Ω^(£) are called (p, r)p hyperforms or
(pv,rH) hyperforms, as in the differential (derivative) form part the horizontal
(vertical) pieces are projected away. For functions/p = /, for contravariant vectors
Xp = XH and for co variant vectors ωp = ωv. If φ and φ are elements of Λ(E), then

= φp(S)φp. Analogously to the definition in point 6, we define the spaces
), difΩ(£), derΩ(E), where the summations now only run over r^D1 and

Locally we have for φ given by (4.5):

Pφ = ψP=^E^ ^(μp,,,μιφ^%^E. (4.5)"

Observe that μ ...μιφ"r'"aι is completely antisymmetric in both its upper and lower
indices.
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5. Exterior Calculus of Hyperforms

1. In the spaces of differential and derivative forms, one has an exterior product
( Λ and v respectively). We wish to extend this to an exterior product w in
Λ(E):

* : Λ'p(E) x Λ\(E)-*Λr+fq(E) , (φ, φ)^φ x* φ .

The product xx is defined by its action on the basis elements:

ENκEM: = ENΛEM,

NEκME:=NEvME,

ENκME:=EN®ME,

MEκEN: = (-iyN)(M)EN®ME.

For φ 6 Λr

p(E)9 φ e Λs

q(E) we have the symmetry property,

φ XX φ = (- iγ9 + (9)(Φ)φ w φ . (5>2)

2. A map δ : Ar

p(E)-^Ar

p+n(E) defined for all r, p^O is called a derivation of
type (π,(<5)), where (<5):=(<5φ) — (φ), if the following properties are satisfied

δ(Λ'p(E)) = Q for

= (δφ)λ + (^φ)I λ, Ie 5L , ("BL-/meαrzίy") , (5.3)

) : = (δ) (φ) + πp .

If (5f are derivations of type (πb (δ^\ the supercommutator

(5.4)

is a derivation of type (πι + πj9 (δt) + (<57 )). Of course the supercommutator may just
be the trivial derivation 0.

3. Since below we shall arrive at an exterior calculus on Λ(E) partly by using
the Cartan calculus on diLd(E), we state here the rules for the latter theory (see e.g.
[4]): the exterior derivative d and the contraction ίx with respect to a vector field X
are derivations on dίfΛ(E) of type (1,0) and ( — 1,(JQ) respectively, with

Px,iy}=0, [d,iχ} = flχ, (5.5)

where fix is the Lie derivative with respect to the vector field X. The
supercommutators involving 2X are

4. We extend the Cartan calculus from diL4(£) to A(E) by considering a (p, r)
hyperform as a vector-valued differential form:

1

j ! ^ (5.7)

p j *„...*!<?
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So φfp)'"Mr is a differential p-form with values in Λr

Q(E). The derivations introduced
below only "see" the differential form part of a hyperform:

5. The exterior derivative on Λ(E) is defined as a covariant derivative on
vector-valued forms. It is obtained in the following way: a covariant derivate V on
tensor fields is a BL linear map:

with

(i) Vf=df for

(ii) P(T1®T2) = F

(iii) <Γ|F<X|ω>> = <7|FX|ω> + <y,X|Fω) for X, YeX(E),

By these requirements F is completely determined on any tensor field by specifying
its action on a contravariant base vector NE:

where ω is the connection one-form (linear connection in E). The action of F on a
hyperform φ can be expressed as an action F on the components of φ:

The resulting object is however in general not a hyperform. Therefore we define the
exterior covariant derivative dl on a hyperform as

and get as special cases <Άφ(p) = dφ(p) and <Άφ$'"Mr = Vφ^-'Mr. dl is a derivation on
Λ(E) of type (1, 0).

6. The contraction of a hyperform with respect to a contravariant vector field
X is a map

with
(i) for fixed X, ίx is a derivation of type ( — 1,(

(ii) <y1...yp_1 |i^|ω1...ωr>: = <y1...y |,_1J!f|φ|ω1...ω r>. (5.9)

7. It turns out to be convenient to introduce the following notation: let NWM

be a matrix of differential g-forms. Then for a (p, r) hyperform we define
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Thus we can express (5.8) compactly as dl^d + ω°. It is straightforward to prove
the following statements:

(i) If δ is a derivation in Λ(E) of type (π, (δ)\ then

φ. (5.11)

(ii) If Wt are matrices of differential qt forms, then

Wγ o (W2 o φ) = (- i)«ι«2 + (^ι)(^2)(^2 Λ tfΛ) o φ . (5.12)

8. The supercommutators of ctt and ix are found to be

[d, d} = 2(0 o) , [d, i*} - I* , [iX9 iγ} = 0, (5.13)

where Ώ is the curvature

NΩM:=dNojM-NωκΛκω
M, (5.14)

and the covariant Lie derivative lx can be expressed in terms of the Lie derivative
flxas

lx = Άx + (ίxω)o. (5.15)

Here we take &x to act only on the differential form part of a hyperform. (Ω o) and
lx are derivations of type (2, 0) and (0, (X)) respectively.

9. By forming supercommutators with lx and (Ώ o), one finds

Thus further derivations appear on the right-hand side of the supercommutators.
If we denote by δt any of the derivations from the set (dl, ix, lx}, the chains (6£H)°,
(6$$)°, etc. are also derivations. Let us denote these collectively by (ί2/°). For
supercommutators involving (Ω/°), we have

[Ω, o,

6. Exterior Calculus of P-Hyperforms

1. We define an exterior product O = P ) K 5

Y . (6.1)

Since (φ xx φ)p = φpwφp = φpO φp, one has [P, jκ] = P)κ — >κP = 0. Therefore for
P-hyperforms O and w can be identified.
2. A derivation Δ of type (π,(J)) on Ω(E) is a BL linear map
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with

and obeying similar postulates to (5.3).
3. If δ is a derivation in Λ(E), it is in general not a derivation in

δ .Cϊp(E)^Λ'r+.(E),_ _

where we introduced R — id^) — P. As a consequence one can state: if δ is a
derivation of type (π, (δ)) in Λ(E\ then Pδ is a derivation of the same type in Ω(E).
Pδ is in general not a derivation in Λ(E):

Pδ(φ κφ) = (Pδφ)Oφ + (- 1)(<5' φ)φ O (Pδφ)

φ (P<ty) xx φ + ( - 1)(<5' *V xx (Wφ) (6-3)

4. Let c); be derivations of type (πί? (<5f)) in /!(£). Call zl t = Pδt the corresponding
derivations in Ω(E\ By applying P to the supercommutator [δί5 δj}9 one obtains

J} = 2lί5J-(-l)^ί^i. (6.4)

By writing δj = Aj + Rδj9 one gets

[4, ̂ } = J(ii Λ-(φ0-(- l)(5ί'^) , (6.5)

where ιpij: = AiRδj. One can show that φ^ is itself a derivation in
5. We introduced the derivations d and ix in /L(£). By projection we get the

derivations D: = Pdl and Ix: = Pίx in Ω(E). They satisfy the following two special
properties:

(i) DP = D, (6.6)

(ϋ) IχP = ίχP

We show (i) just for X e X(£) and ω e 3E*(£). By the derivation property of D, the
proof can be extended to arbitrary hyperforms. Firstly ΛX = (ΛXN)NE, hence

Secondly we have

d ω = dω = dEN

Nω — EN Λ dNω ,

Dω = (dEN)p

Nω -EμA (dμω)p ,

Dωp = (dEμ)p

μω -EμΛ (dμω)p ,

and the result follows from

when we recall that vμC
α = 0 (since \XV \ YV}H = 0).
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It is sufficient to show (ii) for differential forms ω. From the definition we have

= <Yp...Yp.1X
p\ωpy.

This demonstrates that on Ω(E) the derivation Ix is identical with ix, and that
1XH ^0 on Ω(E). A consequence of (6.6) and (6.7) is that some of the derivations iptj

defined in (6.5) are trivial:

= on

6. The rules stated in Sect. 5 allow one to obtain the supercommutators of
derivations in Ω(E). We only list those coming from D and Ix:

7. We assume that the supermanifold possesses a Riemannian (super)metric
#eT0

2(£) satisfying:
(i) <x9Y\gy=(-iyx><Y><Y9x\gy.

(ii) g is non-degenerate, i.e. if (for all 7) (X, 7|g> = 0, then X = 0.
The signature of g denoted sign(g) is the dimension of the maximal subspace

of (T}(E) for which <Z, X|#><0 (for all m).
Locally

Under a change of basis

where

is the supertranspose of A, g changes according to

n—FK(y\ ΛM π (N A \T&)LF—FK6b π LFg — £ <J9KΛ MVN\ ΛL) 09 -C' — ̂  y9κVL ^

such that
\g\ = \g\(sdet(NAM))2.

8. One can define a Hodge duality operation * in Ω(E),
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Locally for φ given by

_ 1 1

r |p[ μp. μi α r...αι

we have

*φ= £μp+ι. μDo( *^+1" α Dι)Oα α E,
(D0-p)! (D!-r)! ^0-.^ + i Dl... ,+ ι

where

and ̂ M with upper indices denotes the inverse of NgM. From this one can show

where indices are raised and lowered the metric and its inverse. Furthermore
Ω = * 1 is the canonical volume form

pμi. μΌQ
! £) ! μD0...

7. Conclusions

We have shown that the ad hoc prescription for integration on supermanifolds
proposed by Berezin can be justified by postulating that the supermanifold is the
total space of a fibre bundle with connection. In the fibration E = (M(D°'Dl\ π, B l5

FQ) the volume hyperform consists of pieces "living in" the horizontal tangent
space and the vertical cotangent space of the bundle. The transition from a
supermanifold integral to a superspace (Riemann/Berezin) integral only makes
sense in canonical bases in the horizontal and vertical tangent and cotangent
spaces. Under coordinate transformations which are natural with respect to the
bundle structure (i.e. bundle morphisms) the volume hyperform transforms with
the Berezinian. Under arbitrary coordinate transformations the invariant notions
of horizontality and verticality preserve the right transformation properties.

We extended the Cartan calculus for differential forms to hyperforms by
considering these as vector- valued differential forms. This gave rise to a covariant
exterior derivative d. Here we do not agree with Rogers, who in [11] essentially
sets d(Nd) = 0. As a consequence one would get for a vector field d(XM

Md)
= dXM®Md = dzN(NdXM)®Md. However NdXM is not a tensor. The only reason-
able thing one can do is to work with covariant derivatives. We described the chain
of derivations which arise by forming supercommutators of earlier derivations.
Finally, we obtained the exterior calculus for P-hyperforms by making use of the
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projection P. To our own suprise, this procedure yields derivations not present
before the projection. They may not be of much importance for "practical"
calculations, but we find them rather intriguing from a structural point of view. At
present we are investigating whether one can make general statements about the
supercommutators of the additional derivations on Ω(E). We also plan to enrich
the exterior calculus with relations involving the Hodge duality operation.

In the Cartan calculus on differential forms, the Lie derivative &x is a
derivation obtainable from d and ix(2x = ίxd + dίx). On hyperforms this corre-
sponds to lx — ίx<Ά + <Άix. Like dl and ίx,lx acts only on the "differential form
part" of a hyperform. For instance, for a (1, 1) hyperform:

lx(φN

NE) = (lxφ
N)NE = (Qxφ

N - φM Λ ίXMωN)NE .

However 2X is itself a respectable derivation on hyperforms (acting on both parts)
and could be added from the beginning to dl and ix. This could be of use since
Qx is related to diffeomorphisms and PΆX to bundle morphisms.

One could also introduce into the exterior calculus a contraction iω of a
hyperform with a one-form ω (now only acting on the "derivative form part"). By
generalizing the concept of a derivation δ to maps δ : Λr

p(E)-^Λr

p\
Q

n(E\ ίω would be
a derivation with π^O, ρ= — 1.

We would like to remark that our hyperforms and P-hyperforms bear some
resemblance to constructs used in gauge theories. There one is also dealing with
mixed tensors. A Lie algebra- value p-form A(Ae Λ(M, )̂ ^ the Lie algebra of the
gauge group G) is given locally by

Here the £f are the Lie algebra generators, which we may regard as spanning the
vertical part of the tangent space of a principal bundle. One can think of A as a
(p, 1) hyperform. The exterior product Λ for vector-valued forms (A/\B
= Aί®ξi Λ Bj®ξj = A1 Λ Bj®[ξb ξj]) is to be compared with our rc product. The
gauge covariant derivative D(D = d + AΛ,A being the vector potential one-form),
the contractions ix, and the covariant Lie derivative ΊLX = ixO + ΊDίx (all acting on
the "differential form part" of A) are derivations in A(M, &). The derivations
generically denoted (Ωj o) in Sect. 5 are analogous to (Fj °), where F is the field
strength F = dA+^A/\A. The projection P for gauge theories is the restriction to a
sub-group H of G. In order that from a derivation δ on Λ(M, &), one obtains Pδ as
a derivation on Λ(M, ffl\ the system H C G must be weakly reductive.

In Sects. 4-6 we worked out the details for the fibration (M φo'1)l), π, Bl9 F0), i.e.,
for odd base and even fibre. The only thing that changes if one has the opposite
case (M(D° Dί\ π, jB0, f\) is the definition of the projection P: in this case one obtains
from a hyperform φ the components of φp as

Thus in all definitions in Sects. 4 to 6 not referring to charts, one only has to
exchange H and V. The canonical basis (with respect to natural coordinates in
(M(D° D°\ π, Bί9 F0)) of the tangent space to the bundle is given by {aD = ad
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+ ΛΓ
μ

μd, μd}. The appearance of αD is the reason why we preferred this fibration to
the other one. The derivatives J) are used in supersymmetric theories since they
anticommute with (a realisation of) the supertranslation operators βα of the
graded Poincare group. It has been shown [14] that these covariant derivatives
stem from a fibred structure existing on Salam-Strathdee superspace: rigid
superspace can be regarded as a principal bundle whose base is the supertransla-
tion group and whose structure group is the ordinary translation group
(translations in Minkowski space). This situation exactly reflects our fibration with
θ variables as coordinates in the base and x variables as coordinates in the fibres.

We would like to point out that the exterior calculus on P-hyperforms provides
all the necessary ingredients for a coordinate-free formulation of superfield
actions. The superfields one is dealing with are components of differential forms,
say ω generically. The ω and their exterior derivatives dω are building blocks for
the action. We emphasize that the action density has to be a (D0, Dx) P-hyperform
(thus at least one P-hyperform is a necessary ingredient of the theory!) and so one
cannot avoid introducing an operation to provide the missing "derivative form
part," and this operation is the Hodge *.

One should also observe that in working with P-hyperforms one throws away
all θ derivatives. This is precisely what occurs in the usual formulation of superfield
theories, where the θ derivatives are obtained via Berezin integration. It is indeed
possible to define this as a (local) operation J : Λr

p(E)\-> Λr

p~
 1(E). We will come back

to this point in a later publication.
There are several hints that constraints introduced both in global and local

supersymmetric theories are of geometric origin. For instance, the chiral
constraints on a complex scalar superfield φ (Wess-Zumino model) can be stated
as the vanishing of certain horizontal components of dφ. In super gravity there is
still no systematic method to determine which constraints one has to impose on the
torsion in order to reduce the number of components of a superfield (see for
instance [3]). We speculate that they emerge geometrically by formulating
supergravity in terms of supermanifold integrals. This speculation is supported by
the observation [15] that one can derive from a Lagrangian four-form on a
supermanifold the constraints for N = 1 supergravity as part of the field equations.
The problem in this approach, namely the lack of invariance under
(super)diffeomorphisms, could be overcome by choosing a (4, 4) P-hyperform as
the Lagrangian. The supermanifold integration and the exterior calculus of
hyperforms also provide a geometric foundation for the rheonomy conditions in
the group manifold approach to supergravity [12]. A further application we have
in mind is the formulation of locally supersymmetric Yang-Mills type theories for
gravitation and, more generally, of graded Poincare gauge theories.

Finally, we hope to have convinced Bryce de Witt that Berezin's approach to
supermanifold integration is a first step towards a de Rham theory; see his
sceptical comments on p. 121 of [4], We are also pleased to assure Tullio Regge
that the "formalism and symbolism" attitude taken by workers in "superphysics"
may not be far from acquiring a concrete status; see his remarks on p. 946 in [16].
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Note added in proof. After completion of this work we received an article from A. Rogers entitled
"On the existence of global integral forms on supermanifolds" (King's College London preprint,
1984), which also deals with Berezin's approach to integration on supermanifolds. What we
interpreted as bundle morphisms in a fibre bundle with connection, are interpreted by A. Rogers as
restricted transition functions in a subatlas covering the supermanifold.




