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Abstract. A new class of integrable Euler equations on the Lie algebra so(2n)
describing two n-dimensional interacting rigid bodies is found. A Lax
representation of equations of motion which depends on a spectral parameter
is given and complete integrability is proved. The double hamiltonian structure
and the Lax representation of the general flow is discussed.

1. Introduction

The Euler equations on the SO(n) Lie group, which describe the rotation of a free
^-dimensional rigid body about a fixed point, have the following set of n quadratic,
mutually commuting, integrals of motion

κt= Σ -̂ - (i=ι,...,κ), (i.i)
j=l Xi-ttj

j*i

where /tj are the angular momentum dynamical variables and apj=l,...,n are
real parameters. Integrals of the form (1.1) have been for the first time considered
by Uhlenbeck (see [1]) for the motion of a mass point on a unit sphere under the
influence of a harmonic potential. But they play a special role in the motion of
an n-dimensional rigid body, since the Manakov [2] integrable system corre-
sponds to the hamiltonian

1 n 1 /?. — ft.
τi— v'/? K — V — _ t^/2 Π 9ΪU-~λ. PAi- ̂  JL - ~^ϋ> v1-^2 t = ι 2 i<j at — tt

where βj are real parameters and the summation is taken over all pairs i <j.
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For two w-dimensional interacting rigid bodies described by dynamical
variables t^ m^ , ij= !,...,«, little is known about integrable cases. Here we
consider the following extension of the Uhlenbeck integrals (1.1),

which are also quadratic in dynamical variables and mutually commute, as may be
shown by direct calculations. Therefore the hamiltonian

(1.4)

becomes a natural candidate for an integrable case of two interacting rigid bodies.
Indeed, for the Hamilton's equations of motion generated by (1.4), we have

found a Lax representation which depends on a spectral parameter λ and reduces
to the Manakov [2] representation when ̂ ij = mij. It turns out that the eigenvalues
of the Lax matrix L(/l) corresponding to different values of the spectral parameter
commute, which implies that all integrals of motion derived from the Lax matrix
commute, too.

Actually, there are more than necessary integrals of motion coming from
Tr(L(Λ))2fc, fc= !,...,« and, because of commutativity, not all of them can be

functionally independent; however, among them there are ^n(n—l)—\-

functionally independent expressions ([x] is the integer part of x) so that the
hamiltonian (1.4) is completely integrable.

In Sect. 2 we construct a Lax representation of the flow generated by (1.4) and
explain the relationship between the quadratic integrals of motion (1.3) and the
eigenvalues of the Lax matrix L(λ). Section 3 is concerned with the proof of
complete integrability of the hamiltonian (1.4) on the symplectic manifold defined
by constant values of all Casimir functions constructed from f^ and mtjt In Sect. 4
we give a Lax representation of the higher flows generated by Tr(L(/l))2k, and
exhibit a double hamiltonian structure of this hierarchy of flows which helps to
prove, in a simpler way, the commutativity of all integrals of motion associated
with L(λ). Finally, in Sect. 5 some open questions are briefly discussed.

2. Lax Representation

2.1. The Hamilton's equations of motion generated by (1.4) have the form

where dot denotes time derivative and { , } is the Poisson bracket defined by the
commutation relations

{^pq> ^rs} — <>p/rq + &p/qs + & q/pr + &q/sp ? (2-2)

{mpq, mrs} = δpsmrq + δprmqs + δqsmpr + δqrmsp, (2.3)
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of the generators of two so(rc) Lie algebras. Such a Poisson structure is
degenerated, and in order to investigate integrability of (1.4), we have to restrict it
to an invariant manifold defined by constant values of Casimir functions of so(n)
(both for (^ and w^ ) on which { , } is not degenerated. But in order to find a Lax
representation it is, for a while, more convenient to work with the Poisson bracket
defined by (2.2) and (2.3).

The right-hand side of (2.1) is quadratic in (^ mtp and for such systems both
matrices in a Lax representation are usually linear in dynamical variables. The
most natural building blocks are the n x n matrices £ij9 mij9 and it takes a bit of
experimenting to find the correct ansatz for 2n x 2n matrices,

(2.4)

(2.5)
m

in order to make Eqs. (2.1) equivalent to

L = [M,L], (2.6)

where [ , ] denotes the usual matrix commutator.
The ingredients of (2.4), (2.5) are defined as (S)ij = Sij, (m)ij = mip

(?) .. = di/ij + biβHip (m)tj = ct/ij + dtjmip a = diag (oq , . . . , αrt), b = diag (βl9..., βj.
From comparison of (2.6) with (2.1) it follows that

- -
a — " —

(I i A
By performing a similarity transformation S 1LS, S 1MS with 5 = - -i - -) , we

V \-
get another representation for Lax matrices, namely:

with a more transparent dependence on the spectral parameter. We will assume
that λ is real to make L(λ) skew-adjoint. Note that

(/-m)0.= ^(/-m)0., (2.9)

andH=-(l/2)trL0M0.

2.2. To this representation we can apply immediately Dubrovin's theorem [3],
which states that any equation of the type [̂ 4, F] = [[5, F], [v4, F]], where Fis an
arbitrary matrix with zero diagonal elements and A, B are arbitrary diagonal
matrices, is solvable in terms of Riemann θ-functions: namely we can take
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V= I --- f — I , where uij = (£ — m)ίj/[2(tti — aj)~] for iΦj, 1̂  = 0 for 7=1, ...,n
\ — v i —uj

and t ^ = (/ + m)ί7 /[2(αj + α,-)]. So the system (1.4) is, in principle, integrable but the
formal verification of the conditions of Liouville's theorem [4] is more involving.
We will do this in the next section.

2.3. We show now the relationship between the starting integrals (1.3) and the
eigenvalues of the Lax matrix (2.7) which, by (2.6), are integrals of motion, too. For
this purpose we assume for the moment that our dynamical variables are defined
as

where of (q^pi) and (q^p^ i=l , ...,n, we can think of as a set of 2n pairs of
canonically conjugate variables. However, we shall not make use of the standard
Poisson bracket relations [q^ p3] = δ^ and {qt, p}] = δtj.

In terms of (qh pt\ (qh pf) we can write the Lax matrix (2.7) as a perturbation of
rank 4,

(2.10)

where

β = 2"1/2(β l,...,ήfB; ί l,...,9 l l), P-2-1/2(p1,...,pM;P l,...,pM),

δ = 2-1/2(ί1,...,ίn; -«!,...,-«„), P = 2-V2(pί,...,pn; -p^ ..., -pn).

Then to the matrix (2.10) we can apply a Weinstein-Aronszajn formula [5] which
says that

-
l z)

if L'(λ) has the general form L'(λ) = iλA + X xk® yk, and Wz is the matrix defined as
k

(Wz)kl = ((Iz — iλA) ~ 1xk, yf\ I denotes the identity matrix and ( , ) is a real scalar
product. For L(λ) given by (2.10) we may read off vectors xk, yk to find the 4 x 4
matrix
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where tj — (z2 + λ2aj) ~1. The calculation of det (/ — Wz) is somewhat involving, but
at the end we obtain

det(f.-L'(A))
det(/2-ιX4)

ι Q 2 v1 x^ ~/~/r jk""jk i 3 .
~| Λ/ / / _, ϊj ^ nj ^ ^ ^ "| Λ

ι _ 2 ' ) 2 y ^ V V V
i ^ ^ Z^ Z^ Z^ Z^ fji , ι 2 _ 2 \ / .

')' (2.H)

which is completely expressed in terms of the dynamical variables f^m^.
Therefore, we can forget about variables (qt, p^ (qt, pf), which were used here as a
vehicle to obtain formula (2.11), and consider just (2.11). The simple change of
variables ζ = z/λ gives

det(/z-ιX4)

1 .
V

ml

, ,-2

from which we infer that there are no poles of order higher than first. The
coefficients of λ~2 of the residues at the simple poles ±iα7 read

which are proportional to integrals (1.3) and are quadratic in dynamical variables.
The coefficients of λ ~4 of the residues at ± ioy yield another set of n integrals of
motion which are quartic in dynamical variables. The formulas are so messy that
we shall not give them here. What seems worthwhile to point out is that the matrix
L(λ) considered as a function of dynamical variables (qi7pi)y (q^Pi) is probably the
first example in which by using the Weinstein-Aronszajn formula we get an
additional set of n integrals which are quartic in momenta pί9 pt (see also [6, 7]).
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3. Integrability

3.1. As is known [4] the Poisson structure defined by (2.2, 2.3) is degenerated.
Indeed, all Casimir functions constructed from (^ and mtj variables, which are
generated by TrLok, k= 1,..., n, belong to the kernel of the Poisson bracket and
give rise to trivial dynamics. So it is necessary to restrict the hamiltonian system
(1.4) on the invariant manifold defined by constant values of Casimir functions. On
the so defined manifold of even dimension, { , } is nondegenerate and thus
Liouville's theorem can be applied to prove integrability of (1.4).

In our case of two interacting rigid bodies we have n(n— 1) dynamical

variables, 2 - Casimir functions, so that the number of degrees of freedom is

d = — . Hence we need d commuting and functionally independent

integrals of motion. For counting the number of integrals coming from the
expansion of

2k

(3.1)

into powers of (iλ) [L2kίY denotes the matrix coefficient of (U)1"], we note that traces
of odd powers of L(λ) vanish [which is more obvious from (2.4)] and we obtain
nontrivial expressions only at even powers of λ in (3.1), whose coefficients contain
an even number of factors L0 and A. The Tr (L2^\ k = 1 , . . . , n are Casimir functions,
and thus the number of nontrivial integrals of motion arising from (3.1) is ̂ n(n — 1),
i.e. higher than necessary. Hence they have to be functionally dependent because
they all commute as we shall show below, and the Poisson bracket (2.2), (2.3) is
nondegenerated on the manifold of constant values of Casimir functions.

3.2. In order to prove that the integrals I2k,r are in involution we show first that
the Poisson bracket of the eigenvalues of the L(λ) matrix (2.4) corresponding to
two different values of the real spectral parameter, say λ and λ' vanish. Let μ(λ\ v(λ')
be two eigenvalues

with the corresponding normalized <ιp, φ> = <φ, φ> = 1 eigenvectors ψ and φ. The
symbol < , > denotes here complex scalar product of 2n-dimensional vectors. The
eigenvalues μ, v are purely imaginary quantities because the matrix L is skew-
adjoint. They can be expressed as

Taking into account the bilinearity of < , >, the normalization of eigenvectors, the
differentiation property of { , } and the commutation rules (2.2, 2.3), we get:
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')} = (ψ, (Uλ), v(λ')}Ψ)

= Σ Σ ΨR{LM v(λ')}ψs =
R=l S=l R S

= Σ Σ y>R9T{LRS(k\LT
R,S T,W

Σ ΨrΦrΨ
t rsw

ΣΦSψs<P^wrΨr + Σ
rsw Q,σ,τ

Σ ΨρΦρψσ™σ-n,ω-nφ<o
Qσω

Σ Φσψσφ<o™a>-n,Q-nΨQ> (3 2)

where the summation over big latin indices runs from 1 to 2n, over the
corresponding small latin indices runs from 1 to n and over the greek indices runs
from n+l to 2n. A bar over ψt and other components denotes complex
conjugation. Next we can eliminate all *fίs and m τ _ n j ί ? _ n from (3.2) by the use of the
eigenequations

-iΛ°W?>, (3-3)
S

Σ tswΨ
(V = 4^ - iλ'wί2 ' , (3.4)

w

(3.5)

(3.6)
ω

and their complex conjugate expressions (note that α τ _ n = αί if τ = t + n). Then all
coefficients of μ and v cancel by themselves and the remaining terms are

- iλ Σ ψrφr(φ{l} , V2)) ~ W Σ ΨrΦr(ψ(1\ «φ(2)) + iλ' Σ Vsφs(ψ(1\ aφ™)
r r s

sψs(φ(1>, aψm) - ̂  Σ ψeφe(Φ(2\ Vυ)
ρ

σ(ψ(2\ aψw) , (3.7)

where the factors of type (φ(1), aψ(2}) denote, for a moment, the real scalar product
of (φ(ι\...9φP) with (αit//!2*, ...,αΛv>«2)) Further we can eliminate terms like

rΦr? etc ? by making use of the identities

(μ — v) Σ ΦtΨt= iλ(φ , αφ( ') -

(μ - v) Σ Φτψτ = iλ(φ(2\ αφ(1)) - iλ'(ψ(2\ aφw),
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the first two of which simply follow from the skew-symmetry of tt& = — /sί by
multiplying (3.3) by φf

(1), (3.4) by ψ(

s

1} and summing over indices t and s. The other
two follow in a similar way from (3.5) and (3.6). After substitution of these identities
we can immediately see that the coefficients of (μ — v)"1 and (μ-fv)"1 vanish
independently and thus [μ(λ\ v(λ')} = 0.

Now, since the eigenvalues of L(λ) and L(λ') commute, we can conclude that the
coefficients K2k(λ) and K2f(λf) of the expansion of the characteristic polynomial
into powers of μ2,

Π(μ-μ/λ)) = det(/μ-!#))= Σ K2n-2k(λ)μ2k,
.7=1 k = 0

are in involution for any two different values λ, λf of the spectral parameter. Thus
also all the coefficients K2k)2r °f

k

^2kW— Σ K2kί2rλ
 r

r= 1

mutually commute, and thus the same holds for I2k,2r since, by the Newton
identities, we can express (K2k(λ)) in terms of (I2k(λ)).

The proof of functional independence of d integrals of motion of type I2kt 2r
goes essentially along the lines of the work [8] and we will not repeat the
arguments used there.

4. Higher Flows and Double Hamiltonian Structure

The higher flows of the system (1.4) are those generated by the integrals I2k> 2r in the
expansion (3.1), which are of higher (than second) order in dynamical variables.
They are all integrable since we have proved that integrals J2/Cj 2r commute, and

d = — of them are independent.

More interesting is the fact that for each flow generated by I2kj2r we can
construct a Lax representation, and the hierarchy of vectorfields generated by
^2/c,2r is endowed with a double hamiltonian structure as it is the case for soliton
equations. This double hamiltonian structure may be used for giving another
simpler proof that all I2kf2r are in involution.

First let us recall that our matrix L0 is an element of the Lie algebra so(2n) with
the natural Cartan-Killing scalar product defined as

(x, y) = -iTr (xy) = 0y,,*xy/fc (4.1)

for x, yeso(2n), x = xίjeij9 y = yk*ekt, where etj is a basis of so(2n) and the
summation convention over repeated indices is used. On the right-hand side of
(4.1) we have a coordinate description of the scalar product with gij^k = δijίk^ as
may be easily found by the use of the basis (etj)rs = δirδjs — δisδjr The gradient of a
function f ( x ) of elements of the simple Lie algebra so (2n) is again an element of
the same Lie algebra and in the coordinate description it reads

rf(x) = exd«f = exg*e-t, (4.2)
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where α labels the elements of a basis of so(2n) and gaβ is the inverse of the metric
tensor gΛβ, which here is just the identity. In particular, if f ( x ) = Ύr(xk), where
x e so (2n), we get Vf(x) = kxk~1.

The standard Poisson bracket of two functions on a Lie algebra is defined as

{/(*), h(x)} = (x, [F/, ΓΛ]) - x?gΛβcζδdγd>h , (4.3)

where c^ are the structure constants of the Lie algebra: \_er eδ]=cβ

γδeβ, and, due to
the definition of the Cartan-Killing scalar product, we have the identities

(x, \yf, VKΆ = (?h, IX P/]) = (F/, [FΛ, x]) . (4.4)

It may be verified that for so(n) Lie algebra the Poisson bracket (4.3) agrees with
(2.2) and the hamiltonian vectorfield of h(x) is just equal to

{x,Λ} = [x,PΛ]. (4.5)

In the case of the hamiltonian (l/4k)I2k> 2r,
 we Set (̂ V4k)/2/c, 2r = ̂ 2/c - 1 , 2r> which is

the matrix multiplying (i/l)4"2'""1 in the expansion of tΐ(L0-\-iλA)2k~l. So the
equations of motion read

— L0^ JL0, — /2Λ f

where s denotes the time conjugate to (l/4fc)/2fc,2r Equation (4.6) has a Lax form,
which, however, not involving a spectral parameter, is not very useful since TrL^,
k = l , ...,n give rise to trivial dynamics. However, we can introduce a spectral
parameter into Eq. (4.6) by making use of the identity

0 - [L0 + iλA, (L0 + iλAJ] = [L0, (L0 + iλAγ] + iλ\_A, (L0 + iλAf]

= ΓLO, Σ Lrs(ίλγ] +a\A, Σ Lrs(ίλγ],
\_ s = 0 _\ \_ s = 0 J

which implies

r>s] = 0 (s = 0,...,r-l), (4.7)

since [A,Lrr~] = [A,Ar~]=Q is satisfied automatically. Then it is easy to see that
due to (4.7),'

— (LO + iλA) - [LO + iλA, L2k_ί>

where (•)+ means that we have to take only the positive part of the power

expansion in the bracket. For a general hamiltonian — Tr(L0 + iλA)2k, we have

ds'
Γ 2k~1 Ί

JLil A\ — Γ Jί-i) A V (v -L.λ\T ( i ϊ \ s \rQ ι ^ t/l-Λl ί — I J-^Q ~Γ" t Λyl, / I o ~~\~ 1 iΛ-J2k i s! t A J J .

L ' = 0 J
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The identity (4.7), which gives a relationship between the gradients of two
subsequent hamiltonians (l/4r)Ir?s+1 and (l/4r)/^ s+2, indicates the possibility of
introducing [9] a second Poisson bracket for which [A, Lr s] will also be a
vectorfield of (l/4r)/r?s+1. Namely we can define

{f(x),Kx)}A=(A,[rf,rK}), (4.8)
and verify that { , }A is skew-symmetric and satisfies the Jacobi identity. In fact,
the Jacobi identity is fulfilled here without making use of the Jacobi identity for a
Lie algebra bracket: skew-symmetry of structure constants c^y is sufficient. For
{' 9 * }A we also have the identities:

(A9[Tf, FΛ])KFΛ,[^F/]MF/,[FM]). (4.9)

Now by the use of the second hamiltonian structure, or more precisely by the
use of (4.7), (4.4), and (4.9), we may prove directly, in a standard way,
commutativity of I2k> 2j and I2r> 2s. Namely we have

TΓ ^2fc, 2p ^Γ~ ^2r, 2s j = WO? L^2k - 1, 2p ^2r - 1, 2sj)

— (^2r - 1, 2s - 19 L.L2k - 1 ? 2p A]) = \^2r - 1, 2s - 1 > C^O? ^2/c - 1, 2j + 1 ])

J2r-l,2s-2j)

By definition I2k,2k = rTΐA2k = const and I2k^ = ΊτL2Q, which commuted with all
dynamical variables. Thus after subsequent applications of the identity (4.10) we
may see that the Poisson bracket vanishes if either 2j + 2t (t = 0,1,...) reaches 2k or
2s — 2ί reaches 0.

5. Conclusions

In this paper we have found a Lax representation and have proved integrability of
the equations of motion generated by the hamiltonian (1.4) and of the hierarchy of
flow associated with (1.4). Equations generated by (1.4) are understood as
describing the motion of two n-dimensional interacting rigid bodies since the
hamiltonian (1.4) is different from the simple sum of two integrable hamiltonians of
type (1.2) corresponding to variables {^ and w^ , respectively. It is clear from the
Lax representation (2.7), (2.8) that, because of (2.9), the integrable case studied here
is closely related with the integrable Manakov case for so(2n) Lie algebra. It is, in
fact, an example of nontrivial integrable reduction (L0)ί<7 = (L0)ί+IIίj+π, (L0)ί>J +π

= -(L0)Λί+M, ij =!,...,«, of the general, L0eso(2n), Manakov case which
suggests that it is worthwhile to study a general reduction problem for the Euler
equations on Lie groups. In particular, it would be interesting to find other
nontrivial reductions of the Manakov case and to have them classified.

Another question which naturally arises in connection with the study of the
system (1.4) is whether there exist some values of the parameters %pβj which



Integrability of Two Interacting Rigid Bodies 583

correspond to real physical situations. In principle equations following from (1.4)
have for n = 3 the same underlying Lie algebra so (3) x so (3) = so (4) as two
interacting 3-dimensional rigid bodies or a single rigid body with an ellipsoidal
cavity filled with an ideal incompressible fluid. Similarly for n = 4 the underlying
Lie algebra is

so (4) x so (4) = so (3) x so (3) x so (3) x so (3),

and the system (1.4) could be interpreted either as two interacting rigid bodies with
an ellipsoidal cavity each or as one 3-dimensional rigid body with three ellipsoidal
cavities filled with an ideal incompressible fluid. However, it is quite a nontrivial
problem to investigate whether the physically admissible set of parameters has a
nonvoid intersection with the set of parameters in (1.4). For instance, an important
question is the physical meaning of the interaction term in the hamiltonian (1.4). At
the moment these questions remain open.
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