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Integrability of Two Interacting
N-Dimensional Rigid Bodies

A. M. Perelomov*, O. Ragnisco**, and S. Wojciechowski***
Dipartimento di Fisica, Universita di Roma, P. le A. Moro 2, 1-00185 Rome, Italy

Abstract. A new class of integrable Euler equations on the Lie algebra so(2n)
describing two n-dimensional interacting rigid bodies is found. A Lax
representation of equations of motion which depends on a spectral parameter
is given and complete integrability is proved. The double hamiltonian structure
and the Lax representation of the general flow is discussed.

1. Introduction

The Euler equations on the SO (n) Lie group, which describe the rotation of a free
n-dimensional rigid body about a fixed point, have the following set of n quadratic,
mutually commuting, integrals of motion

n g2

K=Y 4 (i=1,..,n), (L.1)
ji=1 ai_aj ’
JjFi

where /;; are the angular momentum dynamical variables and %s j=1,...,nare
real parameters Integrals of the form (1.1) have been for the first time c0n81dered
by Uhlenbeck (see [1]) for the motion of a mass point on a unit sphere under the
influence of a harmonic potential. But they play a special role in the motion of
an n-dimensional rigid body, since the Manakov [2] integrable system corre-
sponds to the hamiltonian

Z%iiﬂK-*Zﬁ ﬁjz (1.2)

l<j a . j l]’
where fi; are real parameters and the summation is taken over all pairs i <j.
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For two n-dimensional interacting rigid bodies described by dynamical
variables Z;;, my;, i,j=1,...,n, little is known about integrable cases. Here we
consider the following extension of the Uhlenbeck integrals (1.1),

(¢; +mi,-)2 + Z": (fij—mij)z’ (1.3)

OCi—OC‘ ji=1 OCI+O(J
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which are also quadratic in dynamical variables and mutually commute, as may be
shown by direct calculations. Therefore the hamiltonian

H= K.
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becomes a natural candidate for an integrable case of two interacting rigid bodies.

Indeed, for the Hamilton’s equations of motion generated by (1.4), we have
found a Lax representation which depends on a spectral parameter 4 and reduces
to the Manakov [2] representation when ¢;;=m;;. It turns out that the eigenvalues
of the Lax matrix L(A) corresponding to different values of the spectral parameter
commute, which implies that all integrals of motion derived from the Lax matrix
commute, too.

Actually, there are more than necessary integrals of motion coming from
Tr(L(A))*, k=1, ...,n and, because of commutativity, not all of them can be
functionally independent; however, among them there are %n(n— 1)— [g}
functionally independent expressions ([x] is the integer part of x) so that the
hamiltonian (1.4) is completely integrable.

In Sect. 2 we construct a Lax representation of the flow generated by (1.4) and
explain the relationship between the quadratic integrals of motion (1.3) and the
eigenvalues of the Lax matrix L(4). Section 3 is concerned with the proof of
complete integrability of the hamiltonian (1.4) on the symplectic manifold defined
by constant values of all Casimir functions constructed from ¢;; and m;;. In Sect. 4
we give a Lax representation of the higher flows generated by Tr(L(4))*, and
exhibit a double hamiltonian structure of this hierarchy of flows which helps to
prove, in a simpler way, the commutativity of all integrals of motion associated
with L(A). Finally, in Sect. 5 some open questions are briefly discussed.

2. Lax Representation
2.1. The Hamilton’s equations of motion generated by (1.4) have the form

={¢ipH}, ={m;;, H}, (2.1)

where dot denotes time denvatwe and {-,- } is the Poisson bracket defined by the
commutation relations

{/pq7 /rs} = 5ps/rq + 5prqu + 5qs[pr + 5qr/sp s (22)
{mpzp mrs} = 5psmrq + 5prmqs + 5qsmpr + 5qrmsp > (23)
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of the generators of two so(n) Lie algebras. Such a Poisson structure is
degenerated, and in order to investigate integrability of (1.4), we have to restrict it
to an invariant manifold defined by constant values of Casimir functions of so(n)
(both for #;; and m;;) on which { -, - } is not degenerated. But in order to find a Lax
representatlon itis, for a while, more convenient to work with the Poisson bracket
defined by (2.2) and (2.3).

The rlght hand side of (2.1) is quadratic in Z;;, m; p and for such systems both
matrices in a Lax representation are usually linear in dynamical variables. The
most natural building blocks are the n x n matrices 7, m;;, and it takes a bit of
experimenting to find the correct ansatz for 2n x 2n matrices,

¢ ila
L= <lla| m) 24)
7 i
in order to make Egs. (2.1) equivalent to
L=[M,L], (2.6)
where [ -, -] denotes the usual matrix commutator.
The ingredients of (2.4), (2.5) are defined as (/)-~— g (m)=my,

(Z)lj——a / +b mzp (m)l_] C / +d mtp a=diag(oc1, e O n) dlag(ﬁl’ .. Bn)
From compar1son of (2.6) w1th (2.1) it follows that

a=d= lﬁl Jﬁ" b: =_——a‘lﬂl_alﬁj

af —of of —o;
. o . 1 1 . I |
By performing a similarity transformation S™ LS, S™*MS with S= —I—I—I— , We
\—
get another representation for Lax matrices, namely:
1(t+m! £ —m al o0
‘D==-==+= == +ill=-1-=):= j )
L'(4) 2</_ w7 im >+zi<0 |~a> Lo+il4, 2.7)
1(l+m! 7—m b ' 0
M@)=|-"5 .+ iA|\——1- =)= ' .
(A) 2</~ /+m>+zi<0 |—b) M,+ilB, (2.8)

with a more transparent dependence on the spectral parameter. We will assume
that A is real to make L(4) skew-adjoint. Note that

(/"I‘ ~)U_ ﬁ ﬂj (f+m)lj’ (/_ N)U iliﬁj (Z m),], (29)

and H=—(1/2)trLyM,,.

2.2. To this representation we can apply immediately Dubrovin’s theorem [3],
which states that any equation of the type [4, V]1=[[B, V1, [A4, V1], where V is an
arbitrary matrix with zero diagonal elements and A4, B are arbitrary diagonal
matrices, is solvable in terms of Riemann O-functions: namely we can take
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|
V= (— —Z+ - 2), where u;;= (£ —m);;/[2(;— ;)] for i%j, u;=0 for j=1,...,n
—v | -
and v;;= (¢ +m);;/[2(«; +«;)]. So the system (1.4) is, in principle, integrable but the
formal verification of the conditions of Liouville’s theorem [4] is more involving.
We will do this in the next section.

2.3. We show now the relationship between the starting integrals (1.3) and the
eigenvalues of the Lax matrix (2.7) which, by (2.6), are integrals of motion, too. For
this purpose we assume for the moment that our dynamical variables are defined
as

/ij3=‘1ipj_51jpi§ M =q;p;—4;P;
where of (g;,p;) and (G;,p,), i=1,...,n, we can think of as a set of 2n pairs of
canonically conjugate variables. However, we shall not make use of the standard
Poisson bracket relations {q;, p;} =9;; and {g;, p;} =6;;.
In terms of (g;, p,), (G;, P;) Wwe can write the Lax matrix (2.7) as a perturbation of
rank 4,

L(A)=ilA+Q®P—-PR0+Q0®P—-PR®Q, (2.10)
where
Q:2_1/2(Q1a ceesps qla RS Qn)’ P=2_1/2(p15 “'apn; D1> '”apn)a
Q—=2—1/2(q‘1’ cees q-n; _q—l’ cery _Qn) ’ p=2~1/2(ﬁ19 ceey pn; _ﬁl’ ceey _‘p_n)
Then to the matrix (2.10) we can apply a Weinstein-Aronszajn formula [5] which
says that

det(Iz—L'(1)

det(lz—iia) ~detU—W)

if L'(A) has the general form L'(A) =il4 + Y. x,®y,, and W, is the matrix defined as
k

W)u=(Iz—ilA)"*x,, y,). I denotes the identity matrix and (-, - ) is a real scalar
product. For L(2) given by (2.10) we may read off vectors x,, y; to find the 4 x 4
matrix ‘

I-W,
12 ; tipidss -2 AJV: L7 - “; by TP |
2 ; tp; 1+2 ; tipid;s i ; %tiPipj; iA ; ot ;pid;
i —ik ; aitipg;; ik ; aitiqq; 12 ; t54;D5 =2 EJ: t4; |

A otp;pjs iAot iP5 2thﬁf; 1423154
J J J J
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where t;=(z> + A*«}) . The calculation of det(I — W,) is somewhat involving, but
at the end we obtain

det(I,— L'(%)
det(I,—ilA)

-(1-Zx (P> N
- 25 k*j(Zz-}-)vZO!};)(ZZ-{—)uZ(Z,%) 2 T iF; (ZZ-!-J»ZO(?)(ZZ-{—)@ZOC,%)

00l I 00l 2
A2 JUKC GKTY ik +14 JOKY GKTjK
RN e R S EE v ey
o j“l/ jr/ KM st M

212
TERLY L Cr D D@ D) (211

which is completely expressed in terms of the dynamical variables 7, m;
Therefore, we can forget about variables (g;, p;), (§;, p;), which were used here as a
vehicle to obtain formula (2.11), and consider just (2.11). The simple change of
variables { =z/A gives

det(I,— (1))
det(I,—ilA)

—(1_1(;2,1—2 3 _L_>
a 2 7 (o)) of)

.<1_1C2,1~2 >3 —mlzk_..,__>
2 T F (e o)

s o0 M ool M 2
4 7 kgj P+ +op ) <Z kgj (C2+062)(C2+oc,f)>

000l L
+ 2/1—4 JAKRY et k! js ks ,
R B OO+ DO+

from which we infer that there are no poles of order higher than first. The
coefficients of 272 of the residues at the simple poles +ix; read

+i/d Z (/Jk“'m,k) +(/jk‘mjk)2 i

k=1 aj"—ak Ocj-ka 4
k*j

which are proportional to integrals (1.3) and are quadratic in dynamical variables.
The coefficients of A~* of the residues at +io; yield another set of n integrals of
motion which are quartic in dynamical variables. The formulas are so messy that
we shall not give them here. What seems worthwhile to point out is that the matrix
L(A) considered as a function of dynamical variables (g;, p;), (¢;, P;) is probably the
first example in which by using the Weinstein-Aronszajn formula we get an
additional set of n integrals which are quartic in momenta p,, p; (see also [6, 7]).
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3. Integrability

3.1. As is known [4] the Poisson structure defined by (2.2, 2.3) is degenerated.
Indeed, all Casimir functions constructed from #;; and m;; variables, which are
generated by TrL2¥, k=1, ..., n, belong to the kernel of the Poisson bracket and
give rise to trivial dynamics. So it is necessary to restrict the hamiltonian system
(1.4) on the invariant manifold defined by constant values of Casimir functions. On
the so defined manifold of even dimension, {-,-} is nondegenerate and thus
Liouville’s theorem can be applied to prove integrability of (1.4).

In our case of two interacting rigid bodies we have n(n—1) dynamical

variables, 2 [g] Casimir functions, so that the number of degrees of freedom is

2 2
integrals of motion. For counting the number of integrals coming from the
expansion of

d= nn=1) liﬁ] Hence we need d commuting and functionally independent

2k 2k
Tr(L0+i/lA)2":=Tr< 3 LZ,C,,(M)'> = 3 Ly (iR (3.1)
r=0 r=0

into powers of (i4) [L,, , denotes the matrix coefficient of (i1)"], we note that traces
of odd powers of L(A) vanish [which is more obvious from (2.4)] and we obtain
nontrivial expressions only at even powers of A in (3.1), whose coefficients contain
an even number of factors L, and 4. The Tr(L3), k=1, ..., n are Casimir functions,
and thus the number of nontrivial integrals of motion arising from (3.1)is n(n— 1),
i.e. higher than necessary. Hence they have to be functionally dependent because
they all commute as we shall show below, and the Poisson bracket (2.2), (2.3) is
nondegenerated on the manifold of constant values of Casimir functions.

3.2. In order to prove that the integrals I, , are in involution we show first that
the Poisson bracket of the eigenvalues of the L(1) matrix (2.4) corresponding to
two different values of the real spectral parameter, say 4 and A’ vanish. Let u(4), v(1")
be two eigenvalues

L(/Uw = M(ﬂ)w ’ Y= (1P1’ oV Puts e lp2n) : =(1P(11), cees 1/)5.1)2 1P(12), ) W§2)) s
L(/Q'/)(D = V(i/)(p s @ =((p1: coos Dy Pt 15005 (PZn) : =(§0(11)7 cees (pﬁl); (P(12)= ey (p;Z)) >
with the corresponding normalized {y, > =<, ¢ =1 eigenvectors p and ¢. The
symbol { -, - ) denotes here complex scalar product of 2n-dimensional vectors. The

eigenvalues p,v are purely imaginary quantities because the matrix L is skew-
adjoint. They can be expressed as

p=<{p,Lyy;  v=<{¢,Lo).

Taking into account the bilinearity of { -, - >, the normalization of eigenvectors, the
differentiation property of {-,-} and the commutation rules (2.2, 2.3), we get:



Integrability of Two Interacting Rigid Bodies 579

{u(2), (2}
= {<w, LA, v(A)} = (p, {L(A), v(A)}y)

2n

=3 3 PrlLas (W) ps= % 5 4o (Las L0 s

R=1 S=1

= Z TZ PrO7{Lrs(A) Lrw(A)} opps

= Zwer, w5Ws+ Z PP L 5P+ 2 WP Py

rst rst

+ 2 QWP By + Z wg%% o —nWo

rsw

t 2 PP oWoMy—n, - ,.%+ Zwacoawg PR

Qow 0T

+ Z qoulpoq)w m—n,g—nlpga (32)

00w

where the summation over big latin indices runs from 1 to 2n, over the
corresponding small latin indices runs from 1 to n and over the greek indices runs
from n+1 to 2n. A bar over y, and other components denotes complex
conjugation. Next we can eliminate all /,;and m,_,, ,_, from (3.2) by the use of the
eigenequations

g 20 = p(DpD —idap®, (3.3)
Z/sw(p(w}) V(A )l —id o, (34)
- W = p(p2, —ide, i, (3.5
Zma no-nPaln=VA)QR =ik, 08, (3.6)

and their complex conjugate expressions (note that «, , =0, if 7=t+n). Then all
coefficients of u and v cancel by themselves and the remaining terms are

- M’ Z 'Pr(Pr((P(l) aw(Z)) - l)‘/ Z lpr(ﬁr(lp(l)’ a(p(Z)) + 1/1/ Z ws@s(u—’(l)a a(p(Z))
+iA Y o @™, ap®) =il Y P ,0,(¢, ap?)
s e
— i Y P, 3, (W?, apM) + ik T ,0,(PP, agM) +il Y ¢, (0P, apM), (3.7)
Q 4 o

where the factors of type (¢, ay®) denote, for a moment, the real scalar product
of (a1, ..., with (a; 9P, ...,0,p'?). Further we can eliminate terms like
> ,0,, etc., by making use of the identities

r

(n—v) ; B0, =iMGD, ap®) — il (pD, ag?),
W+ o =iko™, ap®)+id (', ap®?),
(1= T Gap.=iAG?, ap™) ~i2 (', ag"),

L+ Y 0w, =il@P, ap™) +ik (p®, apV),
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the first two of which simply follow from the skew-symmetry of /= —7, by
multiplying (3.3) by @), (3.4) by (" and summing over indices r and s. The other
two follow in a similar way from (3.5) and (3.6). After substitution of these identities
we can immediately see that the coefficients of (u—v)™! and (u+v)~ ! vanish
independently and thus {u(4), v(1)} =0.

Now, since the eigenvalues of L(4) and L(4") commute, we can conclude that the
coefficients K, (1) and K,,(1") of the expansion of the characteristic polynomial
into powers of u?,

I G =det =L = £ Koy i

are in involution for any two different values 4, 1" of the spectral parameter. Thus
also all the coefficients K,; ,, of

k
KZk()“) = =Z1 sz, 2r)'2r

mutually commute, and thus the same holds for I,, ,, since, by the Newton
identities, we can express (K, (1)) in terms of (I,,(4)).

The proof of functional independence of d integrals of motion of type I, ,,
goes essentially along the lines of the work [8] and we will not repeat the
arguments used there.

4. Higher Flows and Double Hamiltonian Structure

The higher flows of the system (1.4) are those generated by the integrals I,, ,,in the
expansion (3.1), which are of higher (than second) order in dynamical variables.
They are all integrable since we have proved that integrals I,, ,, commute, and
d= n(n ; D_ [g] of them are independent.

More interesting is the fact that for each flow generated by I, ,, we can
construct a Lax representation, and the hierarchy of vectorfields generated by
I, 5, is endowed with a double hamiltonian structure as it is the case for soliton
equations. This double hamiltonian structure may be used for giving another
simpler proof that all I,, ,, are in involution.

First let us recall that our matrix L, is an element of the Lie algebra so(2n) with
the natural Cartan-Killing scalar product defined as

(x,y)=—3Tr(xy)= 9ij, kaijy[k 4.1

for x,yeso(2n), x=x"e;, y=y"e,, where ¢; is a basis of so(2n) and the
summation convention over repeated indices is used. On the right-hand side of
(4.1) we have a coordinate description of the scalar product with g;; 4 =d;; 4, s
may be easily found by the use of the basis (e;;),, = 0,6 ;— ;0. The gradient of a
function f(x) of elements of the simple Lie algebra so (2n) is again an element of
the same Lie algebra and in the coordinate description it reads

S = = e . 42
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where o labels the elements of a basis of so(2n) and g* is the inverse of the metric
tensor g, which here is just the identity. In particular, if f(x)=Tr(x*), where
x €s50(2n), we get Vf(x)=kx* 1.

The standard Poisson bracket of two functions on a Lie algebra is defined as

{f(), h(x)} = (x, [V, Vh]) = X"g,pc}50"f 0°h, (4.3)

where c’;a are the structure constants of the Lie algebra: [e,, e;] = cféeﬂ, and, due to
the definition of the Cartan-Killing scalar product, we have the identities

O [V V)= h, [x, Vi) = (Vf, [Vh x]). (44)

It may be verified that for so(n) Lie algebra the Poisson bracket (4.3) agrees with
(2.2) and the hamiltonian vectorfield of h(x) is just equal to

{x, b} =[x, Vh]. (4.5)

In the case of the hamiltonian (1/4k)I,; ,,, we get V(1/4k),; 5, =L,y 1 ,,, Whichis
the matrix multiplying (i4)* ~! in the expansion of tr(L,+ii4)?* . So the
equations of motion read

d 1
%I@: {Loa@IZk,Zr} = [LO>L2k—1,2r] s (4-6)

where s denotes the time conjugate to (1/4k)I,, ,,. Equation (4.6) has a Lax form,
which, however, not involving a spectral parameter, is not very useful since Tr L2¥,
k=1,...,n give rise to trivial dynamics. However, we can introduce a spectral
parameter into Eq. (4.6) by making use of the identity

0=[Lo+ilA, (Lo +iAAY1=[Ly, (Lo +iAAY]+il[ A, (Lo +ilA)]
- [Lo, > L,smr] +il [A, > L,sw],
s=0 s=0
which implies
[LoLy s 1+[A L, ]=0 (s=0,...,r—1), @.7)

since [A4, L, ,]=[A4, A"]1=0 is satisfied automatically. Then it is easy to see that
due to (4.7),

d . . ;
%(LO‘FD‘{A):[L()'*'I/{A, L2k_1’2,.+l/1L2k_1,2,.+1+ e

S ) R PRSP (V) Elat ity PP
=[Lo+id4, (iA) " *(L+ilA)* 1), 1,

where (-); means that we have to take only the positive part of the power

expansion in the bracket. For a general hamiltonian ZlETr(LO +ilA)*, we have

d 2k—1
%(LO + llA) = |:L0 + IA,A, sgo (S + I)LZk*‘ l's(i).)s:l .






