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Abstract. We study how to set up systematic summation rules that could
permit us to interpret the divergent expressions arising in the perturbation
theory of : P(φ) :d when one does not allow any renormalization besides the
usual coupling constants, mass and wave function renormalizations.

1. Introduction

Our main result is that it is possible to express the Schwinger functions (or the
effective potentials) as formal power series of objects which we call "form factors"
which, although divergent to all orders of perturbation theory if the cut-off N is
removed, obey to all orders a formal equation which retains its meaning as JV->oo.

We show that if the formal equation admits a solution verifying suitable
bounds, then the formal power series for the Schwinger functions in terms of the
form factors is bounded to all orders.

Hence there is the possibility of giving a meaning to perturbation theory of
non-renromalizable interactions without introducing infinitely many new coun-
terterms, but rather introducing infinitely many new constants, the form factors,
which however are not independent but are related by an equation (which may or
may not have some non-trivial solution).

We restrict ourselves to the case of renormalizable (but not superrenormaliz-
able) or non-renormalizable polynomial interactions in integer dimension d^.3.
The superrenormalizable cases would require a separate treatment. It is conceiv-
able that something like the results of this paper hold for some non-polynomial
interactions (like sine-Gordon field in two dimensions): however the whole
problem should be studied starting again from scratch.

While the ideas involved in this paper are partly already in the literature (see
Parisi, 1973, 1975; Symanzik, 1973, and references therein) the bounds that we
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present here do not seem to have been studied so far, probably because of the
difficulties related to the treatment of the "overlapping divergences" present in the
usual approaches the renormalization theory.

2. Notations

Let φ(-N} be the free field with cut-off at length y~N, where γ > 1 is a fixed scale
parameter,

φ(=N}= Σ φ$, (2.1)
j=o

where φ(j\ φ(J/) are free fields, independent for jφ /, with propagators

O= ίΓ2^/Γ2WP(χ-^P, (2.2)

and, if Fj is the Fourier transform of Ff.

oo 1- -

all), alls^4.

The (2.3) imply that the free field samples φϋ) are very smooth and

119%= sup Σ \d'φV>\y~~Jγ-*J>B, (2.4)
xeΛ p = 0

with probability exp — B2 - const, if A is fixed. Actually for simplicity we shall fix A
to be a torus with side size L and periodize over A the propagators (2.2), for each j.

We define a :P(φ):d interaction on scale N to be any element of the
ί-dimensional space J>Ή spanned by:

where the : : always denote Wick ordering (with respect to the covariance of the
random variable appearing in their argument). Note that

Given t constants λN = (λ$\ . . ., Λ$~ 1}) with λ$~ 1} > 0 one defines the "effective
potential F(K) on scale K" as:

5 if

α = 0
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and V(k} admits a formal power series expansion in λN

v(k}= Σ eWsfc);ΛO,,A£, (2.6)
m — (WQ> •••> nit - i)

where Vm are suitable functions of φ(-k\
Simple is the rule to build V^\ Given any family x l 9 . . ., xn of random variables

and denoting <?(•) the integration on their distribution one defines the "truncated
expectation" of x l 5 ..., xn as

d" ίτ(xί,...,xn)=— —log<ί(exp
ω = 0

Then, if (̂ ) denotes the integration over the distribution of <

(2.7)

..., (2.8)
and "= 1 / z !

= Σ ^4-ι ( Σ n<^(W>, ..., v^\ ..., Σ A<^(ΛΓ>, ..., vm*)} , (2.9)
fc=ιfc! \ h = ι Λ ! h=ιnl J

so that in general F(7c) can be described in terms of "trees." A tree is an object built
as follows:

1) Draw a horizontal segment rv : r is the "root" of the tree and rv its "trunk."
2) In v draw s segments, s^O, ending mvl9...,vs, numbered from 1 to s from

top to bottom

3) From each Vj draw sv. ̂  0 segments ending in vjl9 . . . , vjs numbered from 1
to sv from top to bottom, etc., stopping after finitely many steps, having created a
"tree" θ with n endpoints (the "degree" of θ is n).

To each vertex v of θ one can append a "frequency label" /!„ compatibly with the
order of the tree : hv, < hv ifv'<v (v' <vifυ' is created first in building θ) hr, if r = root
of θ, is the "root frequency" of the frequency assignment h to θ. The endpoints will
conventionally be assigned index N + 1 .

Given a non-trivial tree θ, i.e. with one inner vertex at least, there are svo trees
Θί9 . . ., θSv , which have root v0 ^first vertex of θ: clearly if θ is given a frequency
assignment h then θί9...9θSυ inherit from θ frequency assignments h l 9 . . ., hSυ with
root frequency hvo.

Then given a tree θ with frequency assignments h, we define

h1),...>V(θSva,hsJ) (2.9)

for θ non-trivial, while if θ = Θ0 = - ̂ 0
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The (2.9), (2.10) define inductively V(θ,b), and it is easy to check that

V*\φ^)=Σ Σ
θ h:hr = k n

where the sum runs over all trees θ admitting labelings h with hr = k, hv^N (i.e.
which do not have too many inner vertices), and n(θ) is a combinatorial factor

n(θ)=ΓK! (2-12)
veθ

if sv = number of lines into which θ bifuncates at v. By the multilinearity of the
truncated expectations V(θ, h) is a part of the πth order effective potential if degree
θ = n.

In general, fixed θ

Σ V(θ, h) diverges as N -> oo for most φ( = k} . (2. 1 3)
h,hr = k

One therefore defines
, (2.14)

where λ are constants to be determined, called "renormalized constants", and one
tries to define the coefficients fm(N) so that V(k} re-expressed as a formal power
series in λ via (2.14), (2.6),

is such that V^\φ(-k)',N\ is convergent as N-+OO for all φ(-k} such that
Ilφ (~ f e )il3< 0° (see (2.4)), i.e. with proability 1.

Clearly, if there is one choice of £m(N) for which this happens, any formal
power series

λ = λ'+ Σ LJS* (2.16)
|m|^2

permits, by substitution into (2.14), (2.15) and rearrangement, to define a new
choice of /m(JV). But, of course, there is no reason that even one single choice of
/m(JV) exists.

Theories for which "counterterms" £m(N) can be found are called renormaliz-
able while the others are called non-renormalizable.

The above models are renormalizable if d = 2, for all t, if d = 3 for t = 4, 5
C':φ4:3; :φ

6:3"), if d = 4 for ί = 4 (":φ4:4"), only.

3. Expansion in Powers of the Form Factors

We now introduce scale dependent form factors (or running coupling constants)
which describe the component of the effective potentials V(k} along the interaction
space. Let J^ be the space of the interactions with cut-off k (see (2.5).. Assume that
there is a family JS?Λ, fc = 0, 1, ... of projections on </fe,

(3.1)
such that

(3.2)
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If F0(p)>0, see (2.3), as we shall assume for simplicity, a sequence of &k can be
constructed as follows: JS?0 is defined as a projection P on ,/0,

PV= *Σ <?ί)α)( W , Fe L2(P(dφ^)) , (3.3)
α = 0

where 5(α) are suitable linear functionals. Then define, for VeL2(P(dφ(-k}}\

ί-l

ζ^ 17—^kv — 2
α

and j£?fe, fc = 0, 1, ..., verify (3.1), (3.2). A simple choice of J2?k is given by

j :f /7 — Π 4ax> "~ ' '

ς^ . (^Λ) (^fc) . _ Γ . rn(^fc)2 . Λγ l
^k'Ψxi Ψx2 •TTΓJ rΛ: α:)C

 0|/l| yi

where if L = side size of the box Λ:

1 / Λ
d 1-cos — (Xf-^f)

-*2)π

2= Σ - T - (*ι-*2)2 (3.6)

See Appendix A for an interpretation of (3.5) as orthogonal projection on "</_/'.
The effective potential on scale k can be decomposed into its component along

./fc and the component transversal to J>k. This gives a new recursion relation
between the 7(/c)'s: _

where 3%k = i — JSfk. The coefficients r(α)(fc), defined by (3.7) are called (dimensional)
form factors. This recursion relation generates again a tree expansion, with the
difference that each branching point of the trees bears an &k operator, and the bare
coupling constants are replaced by form factors

V(k}=Σ Σ VR(θ,V)/n(θ), (3.8)
θ h:hr = k

with the recursive definition (to compare with (2.9), (2.10)),

F*(θ,hH<^+1..Λ A ji (vR(θM,...9vRφ89}L$90 ,_! (3.9)

α = 0

where Θ0 is the trivial tree. Equations (3.8), (3.9) provide an expansion of the
effective potentials in powers of the form factors. We next derive a recursion
relation between the form factors themselves. We write the recursive definition of
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the effective potentials as

oo J ί-1

s = l S f . ' ' α = 0

JV oo I

+ Σ Σ —,#k + ι £h-ι#h(V(h\—>V(h})' (3 10)
h=k+ίs=2S\

(Notice that r(α)(ΛΓ) = λ$.) Acting on this equation with Sf^ and using (3.7) we get
the relation

r(«)(fc)=r(«)(jv)+ £ Σ r"^> C3-1 1)
0non-trivial h,hr = k ft(y)

where r(α)(0, h) is given by

α = 0

Subtracting (3.11) from the corresponding equation for r(α)(/c+ 1) gives

r(«)(fc +1) _ r(α)(/c) = — Σ Σ Γ(Λ)(^' h)
θ non-trivial h,hr

 = k w(ff\ ' '
hv=k+l αW

hv^N

This relation is, via (3.9), a recursion between form factors on different scales. It is
the analogue of the "flow equations" of the renormalization group.

4. Dimensionless Form Factors and Their "Natural Bounds"

In Sect. 3 we have reorganized perturbation theory in such a way that the effective
potentials are expressed as power series in the "form factors," which obey a
recursion relation (3.13).

Renormalizability of a theory implies that the effective potentials, and in
particular the form factors, on some fixed scale fe0, can be expressed as power series
in the renormalized coupling constants with finite coefficients. This means that, up
to a finite renormalization (2.16), we can choose the renormalized coupling
constant to be the form factors on some scale fc0, e.g. fc0 — 0, if the theory is
renormalizable.

A way to proceed to "renormalize a non-renormalizable field theory" (as well
as a renormalizable one) is simply to imagine that the form factors are the primary
objects and that the power series for the Schwinger functions and the effective
potentials have good convergence properties, at least at fixed order in the form
factors. One can think that the non-renormalizability of a theory manifests itself
only via the fact that the power series of the form factors in terms of the
renormalized coupling constants has divergent coefficients. This is in fact very
appealing: it is, indeed, clear that while the renormalized coupling constants have
no direct physical meaning and can be thought of only as a device to classify
divergences and organize their removal, the form factors are objects with direct
physical meaning being in some sense the effective coupling constants on the
various scales.
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To insist on this viewpoint one has to check that the form factors should admit
bounds good enough to ensure that V(k} can be written as a sum of terms of various
orders in the form factors which are well-defined even if one lets N-+OO.

Although this can only be answered in a satisfactory way after the theory of the
model is completed, it is remarkable that it admits a "perturbative treatment."

To discuss this question we introduce the notion of "dimensionless form
factors": the size of an interaction

/»>(?)= ί:^SΛί)2 :dx (4.1)
A

1 r\

is yσ(α)N with σ(α) = — d + 2α . It measures the size of J : φ(

x-
 N)2α: dx, when A is a

2 A
box of size y~N and, therefore, measures the size of the interaction as it appears
when we wish to integrate over the highest frequency component φ(N} of φ(-N\ This
size is proportional to yσ^N. Similarly the dimension of $:(dφ(^N))2:dx is

d — 2
σ(t — 1) = 0, in the same sense. The — d comes from \Δ \ = y "dN and ——— comes from

Therefore it is natural to think that the form factors r(α) are written as

rW(k) = y~ σ(«)kλ(a)(k), (4.2)

where the (/l(α)(/c))^L0 will be called the "dimensionless form factors".

If λ("\k)« 0(1) for all fc, then the projection of V(k} on Sk gives an energy of 0(1)
in each box of size y~k. We shall say that a sequence of form factorsχis "regular" if
|/l(α)(/c)| is polynomially bounded as fc->oo.

This means that the dimensional form factors corresponding to "relevant
interactions", σ(α)<0, can grow exponentially fast with the frequency k still
keeping finite energy per box of size γ~\ while the dimensional form factors
corresponding to "irrelevant interactions," σ(α) > 0, have to vanish exponentially
fast as fc-κx) to keep finite the amount of energy that they contribute per box of
side y~k.

We collect in the form of three theorems the results of our analytical work.

Theorem 1. Assume that r(α)(fc) is a regular solution to (3.13) such that sup|A(α)(fc)|
α,fe

= ||λ|| < oo. Then V(k} is a formal power series in the form factors and its nth order
term is a sum of terms like

I V*\xl,...,xn;P)P(xί,...,xn)dxί,...,dxn, (4.3)
A i x ... x Δn

where P is a Wick monomial, of degree p, in the fields φ(

x-
k\ dφ(

x~
k). Then

(n(t — 2ΪV
<fc) | | jΛ V "' s,-κykd(Aι An) (A Λ\

' ^ n\
 β ' (4 4)

where Λί9 -..,Δn are n boxes of side y~k, K and C are suitable positive constants,
ϊ is a suitable function of the degree p of P.
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More generally one can get bounds of the same type if

μ ( α )(fe)|<(X)? (4.5)
K,a

but Cn~v is replaced by (Cfc 7)""1, essentially.
This is a generalization of the nl-bounds in φ* of de Calan-Rivasseau, 1982,

along the lines of Gallavotti-Nicolό, 1984; Gallavotti, 1984.
More interesting is the following theorem which puts bounds on the

coefficients of (3.13).
First we rewrite (3.13) as an equation for the dimensionless form factors, 0 ̂  k

^N:
χ(«\k} = y - σ(αU(α)(fc + 1) + Σ Σ β("\θ, h, α) Π ̂ (^ , (4.6)

θ non-trivial h, hVn = k +1 i
/£ = *
hv^N

where the last product is over the endpoints of θ and ht is the frequency attributed
to the first inner vertex of θ to which the endpoint ί is attached; v0 is the first non-
trivial vertex of θ.

Note that the β are JV-independent (no N appears in the defining relation
(3.13)). Then:

Theorem 2. The coefficients β in (4.6) verify

t inner

for some ρ>0, C>0 and VΛΓ, if n is the number of endpoints of θ.

The proof also gives that the coefficient in square brackets can be omitted if one
considers the planar theory.

We call this series in (4.6) the "beta functional" because of its resemblance to the
beta function of field theory: note that

(β*λ)(β)(fc)= Σ Σ /nβAαOlWΛ,) (4 8)
θ non-trivial h:hr = k i

hVQ = k+l
hv^N

is not a function of few variables (as the usual beta function is): in (4.8)

Since the jS's are iV-independent it is clear that the "beta functional" without
cut-off,

λ)(α)(fc)= Σ Σ
θ non-trivial h:hr = k ί

hVQ = k+l

has coefficients verifying the same bounds (4.7).
The above theorem extends the analogous results for φ* of Gallavotti-Nicolό,

1984; Gallavotti, 1984.
It is tempting to try to define a perturbation theory for P(φ)d looking for a

solution to
Λ(β)(fc) = 7-ff(βU(β)(fc+ l) + (£λ)(α)(/c) , (4.10)

in which /l(α)(/c) depend in a C°°-way on μ(α) = A(α)(0).
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One can find a formal solution to (4.10) as a power series in μ(α) if one writes
(4.10) as

(«) <* + 1 ) ( α ) σ(α) (fc + * y α)

α), fc = 0,l,2, (4.11)

and then setting

fc=o,ι,2,..., t

ι) ( α )(fe+l).

This recursive solution gives a power series finite to all order for renormaliz-
able theories, i.e. if all σ(α)^0. However, if for some α one has σ(α)>0, as the
dangerous factor yσ<αH fc+1) suggests, one expects divergences to appear. This is in
fact the case for non-renormalizable theories. One is therefore lead to the idea of
solving (4.10) with cut-off N finite, as a power series in (A(α)(0))σ(α)^0, and
(λ(Λ\N))σ(a) > 0. Instead of (4. 1 1), we write

λ<β)(fc) = ̂ «>y«) + (^λ)(β)(k), for σ(α)^0,

λ<β>(fc) - y - σ(α) (N - k} v(α) + (^λ)(α)(fc) , for σ(α) > 0 ,

where μ(α) = Λ(α)(0), vία) = λ(oc}(N). This equation can be solved recursively as in (4.12).
The following theorem holds:

Theorem3. (i) // the theory is renormalίzable, the recursive solution (4.12) of
(4.10) -yields

λ(«\k} = yσ(a)kμ^+ Σ ^(α)(m; /c)μm (4.14)
|m|^2

for some /(m, k)< oo, and "slowly" growing in k:

|m|(t-3)-l (R1ΛJ

KCm^^C^-HlmKί-S)-!)! Σ ^/~. (4.15)
7=0 !

(ii) // the theory is not renormalizable, then the solution of the analogue of (4. 10)
with BN replacing B obtained with the algorithm analogue to (4.12) yields Λ(α)(/c; N)
as a power series of the form (4.14) with coefficients /^(m; k), which diverge as
JV-xx), in general.

If σ(α)>0, then most of the coefficients ^(m; k) with mαφO diverge.
(iii) The recursive solution of (4.13) is

A<α>(k) - y-ωy «) + Σ 4α)(m, n, k)μmvn ,
M + l-1^2

λ<«)(fc) = y - ̂ «) (̂  - fc)v

(α) + Σ 4α)(m, n, k)μmvn ,
|m| + |n|^2

for some £$(m,n, k)< oo, wiί/i finite limit as N-+CO. However,

[0 if nφO

where /(α)(m; k) are the coefficients appearing in (4.14).
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The first part of the theorem is essentially contained in Gallavotti-Nicolό,
1984; Gallavotti, 1984. The second part is nothing but the rephrasing of the non-
renormalizability property. The third part is a "perturbative triviality" result. It
expresses the fact that if one includes non-renormalizable interactions and
expands in powers of the bare dimensionless coupling constants for these
interactions, one is back to the theory without these interactions in the limit N -> oo.
Nevertheless one can think of compensating the vanishing of these coefficients by
the divergence of the full series. This possibility is expected to occur if there is a
non-gaussian ultraviolet stable fixed point, and one can demonstrate this in the
planar approximation. See Felder (to appear).

5. Proof of the Theorems

We follow here rather closely the ideas in Gallavotti-Nicolό, 1984; Galίavotti,
1984; however, technically the proof below contains a few new developments. In
particular, the construction of the subtractions in terms of projection operators
was only limited in Gallavotti, 1984b, while in the above papers the subtractions
were discussed in a more empirical way.

The first task is to develop an algorithm to represent the truncated
expectations appearing in (3.9).

We first develop the algorithm to represent the truncated expectations like
(3.9), but modified by replacing l-^^ by 1 in the first of (3.9).

As the reader expects, the algorithm is based on Feynman graphs. Withouth
entering into details we simply describe the result which can be easily proved by
induction, using the Wick theorem, see Gallavotti, 1984a, for a suitable formula-
tion of Wick theorem (Appendix C).

1) Draw n points in Rd, xl9 ...,%„, and to each of them associate an index
α = 0,l,...,ί-l.

2) If α^ί —2, draw 2αf distinct lines (called "half lines") emerging from the
vertex xt. If α = t — 1, draw two lines marked by a symbol d. These "half lines" are
meant to be a symbolic representation of fields φx. or dφx. (if they bear a d symbol).

3) Connect some pairs of the above half lines to obtain a connected graph of
"complete lines." The graph should be connected in such a way that if v e θ is a
vertex of the tree θ, being considered in (3.9), and if ai9..., anv are the endpoints that
can be reached by climbing the tree starting from v, then the set of complete lines
with endpoints in xβl, ...,xβt? ("cluster of vertices corresponding to ueθ") is
connected.

In this way one obtains a graph G of some half lines and some complete lines and
a family Gv, veθ, of subgraphs of G with the property that Gv is connected by
complete lines. The complete lines which connect vertices of the cluster corre-
sponding to v ("cluster v") are said to be "internal to the cluster v"

4) Mark each complete line with an index h or s ("hard" or "soft") so that in
each subgraph Gv,veθ the hard lines still connect the vertices of Gv, i.e. the points
in the cluster v.

5) Suppose that G contains some half lines left as external lines, and suppose
that they emerge from the vertices xlV ...,xiq9 yjl9 ...9yip: from the first q of them
emerge lines not marked d but from the last p emerge lines marked d. Then one
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defines

Pβ=:Πφ(^fl3φ^:, (5.1)
r=1 s= 1 s

where k is the root frequency of θ in the frequency assignment h.
Assuming that the degree n trees θ give to VR(Θ, h), defined as in (3.9) but with

1 — & replaced by 1, the contribution:

ΣίV(θ9h9CfίPGdxl...dxn9 (5.2)
G

where G is a decorated Feynman graph constructed in the above five steps ("F-
graph compatible with θ"), then it is easy to prove inductively (using the above-
mentioned Wick theorem) that

V(θ,h,G)= Π Ci<k*> Π C?*> Π τ* *(hύ, (5.3)
A soft λ hard endpoints

where the products over λ run over the complete lines λ of soft or hard type. The
meaning of C(/hλ} or C Jλ) is the following: if λ is a complete line it is an inner line for
some subgraph Gv for some v and all its predecessors in θ but not for its followers; if
hv is the frequency of v in (θ, h) we say that λ has frequency hλ = /v Then C(

λ

<hλ) or
CjΛ) represent the covariances of the pair of fields symbolized by the two half lines
forming λ, considered respectively as φ(hλ\ dφ(hλ} or as φ(<hλ\ dφ(<hλ} (as
appropriate).

In general, one can associate a frequency to each half line: it is the "frequency hυ

of the smallest graph Gυ" which contains the vertex of the half line. A complete line
has the frequency of the smallest frequency half line composing it.

Having understood how to represent graphically (3.9) with the simplification
that 1 — JS? is replaced by 1, we can discuss (3.9) itself.

For this purpose it is useful to introduce auxiliary fields different from φ, dφ\

Dxy = φx-φy, Sxy = φx-φy-(x-y)π-dφy,

Txy = φx-φy-(x-y)n - dφη- ̂ (x-y)l - d2φy, Dl

xy = dφx-dφy, (5.4)

Siχy = dφx-dφy-(x-y)π ddφy, ^xyz = (x - y\ - Dj,,

where (x — y)κ is a "periodized version" of (x — y), e.g.
/•»

L . 2π
Ξ—sin —(Xf-^j). (5.5)

The introduction of the above fields allows us to describe inductively the
structure of VR in terms of the form factors r.

The fields (5.4) have to be thought of as carrying a cut-off label (h) or (^ h) as
usual.
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Assume that the VR(Θ9 h) from a tree of degree n and frequency assignments h is
described in terms of graphs G via a formula like (5.2) but using graphs G
constructed via steps l)-5) above, modifying 5) as follows:

S7) Add to the graph G extra labels βv labeling each of the subgraphs Gv,veθ.
The labels βv can take values /? = 0,1,...,βQ for some fixed β0 (see below).

According to the value of β attached to Gy, the half lines emerging from Gv

change meaning and can mean any of the fields (5.4) as well as φ, dφ, with position
indices x9 y belonging to the set of vertices of Gv. The precise rule to perform this
change of meaning of the lines is specified below.

Starting from the innermost υeθ, one changes the meaning to the lines as
prescribed by the β indices: a given line which is external to many G/s can
therefore change meaning several times.

One the above process of reinterpretation of the half lines is done we take G to
represent a monomial PG in the fields (5.4) given by the product of the fields
associated with the external lines.

Assuming that VR in (3.9) is given by (5.2) with the sum over G running on the
graphs with the extra decorations described in 5X) above and a suitable VR(Θ, h, G)
replacing F(#,h, G), it is easy to prove by induction on n = degree of θ that

V*(θ,h,G)= Π Ci<fc*> Π C?*> Π ^(λi), (5.7)
λsoΐt λ hard endpoints

where C(

λ'
} is the covariance of the two fields represented by the two half lines

forming the complete line λ.
The induction argument is as follows.
Assume that the contribution VR(Θ9 h) to the effective potential is given by

ΣίF*(θ,h,G)PG^1?...,^n (5.8)
G

for all trees θ with degree n ̂  n0 for some suitable rule to interpret the /^-indices
appended to each subgraph of G: we do not specify here this rule because it is going
to be determined inductively as well.

Let θ be a non-trivial tree of degree n0 +1 which bifurcates at its first non-trivial
vertex VQ into s trees Θi9 ...9ΘS at frequency hvo = h.

To proceed we must understand the action of the operator <£h on monomials in
the fields φ dφ and (5.4). ̂ h being defined by (3.5), it is clear that JS?hP vanishes
unless P has degree <£ 2(ί - 2). If P has degree p ̂  2(ί - 2), the action of JS? vanishes
if p Φ 2 and Pcontains any of the fields (5.4) or any dφ field (see the second of (3.5)).
If P = :φXi, ...9φx :, 2Φp^2(ί —2), the action of <£h is clear from the second of
(3.5). Therefore the cases to be understood are those with p = 2.

To understand, from the third of (3.5), the action of JS?Λ on the second order
monomials P in φ, dφ and (5.4), it is convenient to write P as a sum of a "local term"
involving only fields computed in the same point and of non-local terms which
vanish to some order ^ σ(P) when the points appearing as indices in the fields of P
coincide.

Denote x l 5 x2> simply by 1,2,... and (X2~xι)π = ̂ 2i5 and let

σ(p ) = d-nd--n'-v, (5.9)
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where n or nr are the numbers of fields of type zero in P, i.e. of fields φ, D, S, T, of
type 1 in P, i.e. of fields dφ, D1, S1, &1, and v is the order of zero of P, i.e. one unit per
each D, D1 field in P, two units per each S, S1, & field and three units per each T
field.

Then we write each P of second order as follows:

:<513 - dφ3δ23 dφ3:

:^12^34 : — [ :^12^34 :J ? :^12^34 : — C : ^12^34 :J ?

:r12^3: = [:T12^3:], :Γ12Z)34: = [:Γ12D34:],

: 7i2S34: = D T^SlΛ , :dφldφ2: = :dφ1dφl : + [ δφ^ii G ,

δ^D^^DaφjD^:], δφjS^^Dθφ^,,:] ,

:£>12Z>34: = [:D12,D34:], :Dj2S34: = [:£»ί2S34:] ,

:Sl2S34: = [:Si2S34:], :(any field)® }23: = [: same:]. (5.10)

It is now easy to evaluate .Sf in a useful form using (3.5) and its consequences:

JS?:φ 1aφ 1:=0,

, (5.Π)
—l™,
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where δ^ denotes the Kronecker delta symbol (to avoid confusion with dtj — (xt

-*Λ)
One finds, denoting [ί2] the result of the action of 3? on the square bracket

terms in (5.10) (one would have [i2]==0 if (xt — xj)* could be "replaced" by (xt

— Xj)2: see comments after (5.15)), using (5.10), (5.11):

F-1>+ίa],
(5.12)

J?? : P : = [Ω] for the other P's of second degree,

J2':φ1...<jV = ^l/(β'2) for ί = 4,6,...,2(ί-2),0.

We can now compute the result of the action of (1 — ̂ ?h_ j) on the monomials of
interest.

Using the inductive hypothesis

, h)= Σ ίJk+1..Λ-ιO-^
GI,...,GS

.F^^h^GO. .n^h^G^!...^^, (5.13)

and using the Wick theorem

a9G^dxl...dxno+l9 (5.14)

where G is a decorated Feynman graph with the additional βv indices on the t 's
following υ0 but not on υθ9 because of our inductive assumption.

The (5.12) imply, for general kernels W which are assumed translation
invariant on Λ and rotation covariant for rotations of multiples of f in any
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direction (the only ones which make sense on Λ), that

(1-^)1=0,

= $W(l,2):φ1φ2:dld2

- J W(l,2)dl :φ2

2:

= $ΣWj(l,2):φl(S1

21)j:dld2 + ω,

:Dl2δ34D42:-:S12δ34D42:)dld2d3d4 +

(\-&)ίW(l,2,...,q):φι...φq:dl...dq

= $W(l,2,l):φ1T23:dld2dl + ω,

-^)ί ̂ Wj(l,2}:φίdjφ2:dU2 (5.15)

p=l

(1 - jSf ) J WP= ω for all other second order P's in (5.10) ,
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where ω denotes a term proportional to I(t ~ 1} = J : (dφx)
2: dx, of course different in

each expression. Λ

The (5.15) follows from (5.11), (5.12) simply using the symmetry properties of
the W's and integration by parts: one does not use the approximation (x^ — x2)

2

&(xl~x2)
2. If such approximation was used, disregarding the consistency

problems which arise from the fact that (x^ — x2)
2 is not periodic on Λ and

proceeding formally, one would have found Ω = 0, ω = 0 in the above formulae.
By inspection on (5.15), (5.10) one can summarize the above algebraic

calculations by saying that (1 — J^^)^ is represented by

(l-&h-1)lWPdxi...dxn=lWRPdxl...dxn,

where R has the form, if ω( ) are suitable functions:

#1=0, Λ:φ 1 φ 2 : = :φ1T21: + ω(1)(12):(δ(p1)
2:,

+ S^^

q-l

Λ : φ ι ..φβ: = Σ <PΪDplφp+l...φq:9
p=ί

RP = ω(P):(dφ1)
2: for the remaining second order polynomials,

RP = P for all other polynomials . (5.16)

The ω's are suitable functions which vanish to order >σ(P) when all the
arguments coincide and to the order of the zeros of P when the appropriate subsets
of the arguments in which P has zeros degenerate into single points.

We now label by β = Q, 1, ..., /?0 the various terms in each of (5.16), where β0 is
large enough, /?0 =max(2(f — 2) — 1, 6) (the 6 is to take into account the "worse in

(5.16)," RD12D34 and 2(f-2)- 1 = max(g- 1)).
q

If β = 0, it means that jRP = P, if β = 1, . . ., it means that RP Φ P and we choose
the βih term in the expression (5.16) of RP: is β is too large and no such βth term
exists we take this to mean that we choose 0. Also if β = 0 but RP Φ P, we take this
to mean that we choose 0.

Calling Gβ the graph G with the label β associated with the vertex vθ9 it is clear
that we can write (5.14) as

Gs)PGβdx1...dxno + ίί (5.17)
G,β

where PGβ is obtained by changing the meaning of some external lines according to
the value of βvo = β.
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This proves the inductive hypothesis for nQ +1: since it is valid, obviously, for
n0 = 1 our proof of the evaluation rule by graphs of VR is complete.

In (5.16) there are several terms (i.e. the ones with the ω's) proportional to
'.(dφ^2: which could be eliminated, thus reducing greatly the formal calculations
necessary in any real computation: this could be achieved as follows:

1) By letting L-*oo at the end of the discussion because they give a vanishing
contribution in this limit (in fact, their presence is due to the fact that (xx — x2)π

=K*1 ~*2)2> but (X1 -X2)πJ^ Ol ~*2)2);

2) or by modifying the definitions of <£ and R giving up linearity.
Then 2) has a strong disadvantage because if one eliminates the ω's in (5.15) and

the ffs in (5.12), & and R are no longer linear operators but just operations on
functions, and one has to be careful to avoid, possible ambiguities (e.g. ^φίφ2

-^φ1φ3 + ̂ φiD23): see Gallavotti-Nicolό, 1984, Gallavotti, 1984, where this
choice is adopted.

The 1) has been adopted in Felder (to appear). However, the considerations
below could equally well be performed if one decided to pursue one of the two
alternatives above. In particular, all the bounds would be qualitatively left
unchanged.

Using (5.7) it is very easy to put bounds on VR(θ,h9 G).
Assume that

r(β)(Λ) = yβr(β)fcλ(β)(Λ), sup \λ(Λ\h)\ = ||λ|| < oo . (5.18)
Λ,h

7 r\ Ί

Let ne = degree of PGί σ = — d + ne

0 —~ h n\ -, where ne

0 is the number of φ, D,

S, T fields in PG, n\ is the number of dφ, D1, S1 fields in PG:n
e = ne

0 + nl.
Then the bound (2.3) on the covariances immediately gives us the bound

• yσkydk FT K1/2v 2 λ Π Kll2r\>2 λ IT vσ(αί)hl

/ / A A / A A / A A /
1/2 lines λ 1/2 lines A ΐendpoints
of type 0 of type 1

ί exp / - K Σ yh*W\ Π Π (/w d(υ]
AιX...xΛn I A complete / w i n n e r λ external

\ hard / in Gv

with d(v) = graphical diameter of the vertices of Gv,
1 and where ζ(λ, υ) is the

variation of the order of zero carried by λ(D,D1 have order of zero 1, 5, S1 have
order of zero 2, T, ̂ 1 have order of zero 3) due to the fact that λ may change
meaning as an external line of G,, because of the R-operation; wλ<ι; is the vertex
of θ such that λ becomes internal to GW A "for the first time" (i.e. GW A is the smallest
graph Gv, i eO such that λ is internal to GJ; wλ = r if λ is external.

In (5.19) K, C, κ>0 are constants and Cmm! sup|φ;|m is a bound on
:φ1φ2...φm:.

To bound (5.19) one uses the inequalities

Σ /^(l-Γ^Σ^Φ), (5 2°)
A complete v

hard

1 The graphical distance of n points is the length of the shortest set of lines connecting them
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which are a consequence of the connectedness of each Gv and of yh^(l — y"1) (yh

The last product in (5.19) is bounded by observing

Π Π (y*W Λ 7" "f u'u) Π (γh"d(υ))¥(λ v>
v inner λ external v

inGt,

= JJ ,,-(*„ -*,,)»(,.) J-[ (y»u

where 0(ϋ) = l — ( — d-\—^—ne

0^v+-ne

lίV\ if —d-\—~—riQtV+-ne

ltV^Q and

θ(v) = 0 otherwise; so that since Σ C(^> ι>) ̂  3, the last product in (5.19) is bounded

for any s > 0 by

Π Γ(" )W^expΣe/''Φ), (5.22)
v inner o y

which if combined with

f /,-κΣyhvίί(F)/Jv. Jv <• /^n^.-dk τ~τ ,..-d(sv- l)hv (ς. Λ O \j e υ u Λ j > . . . α Λ / I ^ L ^ y II y ^j.zoj
f inner

which is easily proved for some C > 0, if K > 0 (if sv = number of lines emerging from
v in θ) and some simple counting of the number of lines gives that the integral in
(5.19) is bounded by

f inner

if D is a suitable constant and d(Δί9..., Δn) is the graphical distance between the
cubes Δl9 ...9Δn; clearly for some ρ>0:

The exponential factor in (5.24) is obtained trivially by extracting
K* K"

exp— — Xyh A |/l |^exp— — d(Δί9 ...,^lπ) from the exponential in (5.19) before

processing it, via (5.20), (5.23).

It is now easy to bound the total contribution to the effective potential due to
the trees θ with n endpoints and due to the Wick monomials of degree ne.

The basic facts to use are
1) The bound (5.24);
2) There are C[ different trees θ with n endpoints;
3) A given unlabeled Feynman graph can be labeled to be compatible with θ so

that the subgraph Gv has ne

v external lines in at most

n(θ)C"εe
ε

v iLer"
g (5.26)

ways, for all ε>0;

(4) There are at most :—- unlabeled topologically non equivalent
Feynman graphs.
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Clearly the above four statements imply

Σ. , ,...
β,G d j χ . . . χ d n n(v) n\

•Cnenel\\φ(=k)\]n

3

eEn U y-<*»-*">« + "'», (5.27)
v inner

having taken ε small enough compared to ρ a'nd having used (5.25): in (5.27) the
sum is extended to all trees θ with n endpoints and to all Feynman graphs
compatible with θ and with ne external lines.

This completes the proof of Theorem 1 because the sum over ne

v can be
performed in (5.27).

To prove Theorem 2 one starts from (3.13) which shows that the /?'s in (4.6) are

θ non-trivial ^(υ)

.<5<«>(,?1.. A-ΛW0ι,hι), .... V\θ^), (5.28)

with VR evaluated using dimensionless form factors identically 1.
Of course the estimate of (5.28) is identical to the one in (5.27): it is true that no

(1 — J5fk) acts after <ίk

r, but the purpose of (1 — Jδ?k) was to produce a zero of order
σ(α) in the external fields which was subsequently bounded by y~σ(α)k.

In (5.28) the factor γ~σ^k is already in front of the sum to bound: therefore we
can use the bound (5.27) with ne = 2α if α = 0, . . ., ί — 2, and ne = 2iϊa = t—\, and the
result is Theorem 2.

Theorem 3 i) is proved in Gallavotti-Nicolό, 1984; Gallavotti, 1984, for φ\\ the
same proof applies to the other renormalizable cases (it is in fact a simple corollary
of Theorem 2); in the case of the non-renormalizable theories, Theorem 3 ii), it is
essentially a rephrasing of the non-renormalizability property and it is left to the
reader to check it by taking the lowest non-trivial divergent graph which
requires, to be renormalized in the usual sense, terms which are not present in </N

e.g.

We now sketch the proof of iii). The solution of (4.13) can be represented as in
Gallavotti-Nicolό, 1984; Gallavotti, 1984, in terms of "framed trees." In this
representation one draws a frame around a subtree at each insertion of λ(Λ\k'},
(σ(α)rgθ), in the right-hand side of (4.13). The expansion in powers of v(α) is the
usual perturbation expansion in terms of the bare coupling constants, up to the
dimensional factor y-*(«)<*-*). This means that we have an expansion in trees
which is identical with the one one would have in the theory without the non-
renormalizable interactions, with the exception that some of the endpoints bear an
α index with σ(α)>0. For each of these endpoints we have a factor y-*<*)<*-•*),
where j is the frequency assigned to the vertex to which the endpoint is attached.
From this factor, corresponding to one endpoint, togehter with the factors
γ-Q(hv-hv>) on j-j^ way cjown from the endpoint to the root, we can extract a factor
γ-δ(N-k) for eacj1 tree containing at least one non-renormalizable endpoint, where
k = hr, c)>0. Then we simply delete all non-renormalizable endpoints, by
estimating the remaining y-*<*)<*-./> factors by 1 and we are left with tree
contributions of the renormalizable theory times a factor y~ w~k)-»0, JV->oo.
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6. Concluding Remarks

The spirit of our method has some analogies with the paper by Polchinski, 1984. In
the latter paper, which deals with the renormalizable case, however the problem of
deriving the concrete bounds (4.4), (4.7), (4.15) is not tackled (essentially only cut-
off-uniform finiteness is proved); also there is no separation between the flow of the
coupling constants λ(k) and that of all the other irrelevant local and non-local
couplings of the effective interaction. In the case of a renormalizable theory this
could perhaps be considered a matter of taste; however part (i) of Theorem 3 seems
to show that this is an essential change in point of view in the non-renormalizable
case.

Without introducing a subtraction procedure it is possible to introduce "form
factors" describing the theory of scalar fields, whether interacting via a renormaliz-
able or via a non-renormalizable polynomial interaction in any dimension d>2.
Perturbation theory appears when one tries to solve by a power series the relations
between the form factors.

Alternatively, the form factors could be introduced on the basis of a purely
perturbative approach in which one introduces subtractions only for the operators
in the interaction defining the model (see (2.5) for a (t — 2)th order interaction).
Proceeding as in Gallavotti-Nicolό, 1984; or Gallavotti, 1984 (see Sect. 9) one
would eventually obtain the same results of Sect. 3 in this paper: the amount of
work would be essentially equivalent and we preferred the derivation of Sect. 3
because it is clearly more intrinsic and one does not have to provide arguments for
the analysis of the meaning of the formal renormalized coupling constants.

If the theory is not renormalizable one obtains a nice expansion of the effective
potential in terms of form factors on various scales: they turn out to be functions of
the renormalized constants given by formal power series whose coefficients diverge
with the cut-off essentially in every order of perturbation theory, at least if they are
non-trivial coefficients.

However the form factors verify, as long as the cut-off N is fixed, to all orders in
perturbation theory an equation whose coefficients stay uniformly bounded in the
ultraviolet cut-off.

One can decide to define the theory in terms of the form factors and one defines
the form factors as solutions to the above-mentioned equations which have the
property of remaining uniformly finite in the cut-off and in their frequency index k
(the form factors are functions of a discrete index fe, called their frequency, and for
each k there is one form factor per coupling constant in the lagrangian).

In this way one can avoid the introduction of the renormalized coupling
constants, provided of course one finds a solution to the form factor equations with
the required boundedness properties. One also avoids the ambiguities of the
arbitrariness of the subtraction constants because the equation obeyed by the form
factors in independent on the arbitrary subtraction constants.

Optimistically, the impossibility of writing the form factors as formal power
series of a ί-parameter family of constants (see Theorem 3 i), ii)) indicates just that
one should not expect to find ί-parameter solutions of the form factor equations.
On the other hand, it may well be that such equations do not admit any non-trivial
solution (see Theorem 3 Hi)). The triviality suspicion looms on the solutions of the
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form factors equation, at least if H λ H ^ is small. The situation is not so clear if
λ("\N)~l, not even in dimension 3, for instance: this is because l(α)(JV)~l is
outside the domain where constructive field theory applies (in constructive φ\ one

Moreover, the appearance of non-Gaussian fixed points can drastically
change the situation; see remarks after Theorem 3.

There is also another phenomenon which might happen: namely, the solution
of the form factor equation in the presence of the cut-off

A<α>(fc) - y ~ σ(α)/l(α)(fe + 1) + (£Nλ)(α) (fe) 5 Q^k^N, (6.1)

see (4.8), may not commute with the limit as ΛΓ-»oo. In this case it may be that

= y ~ σ(α)/l(α)(/c + 1) + (£λ)(α)(fc) , 0 ̂  k < oo , (6.2)

see (4.10), may have a bounded solution although (6.1) does not have a uniformly
bounded solution as N varies.

This apparently impossible event can actually happen only if the series defining
EN and B do not converge absolutely for |λ(fe)| ̂  ||λ|| < oo, which of course has very
little chance to be the case because of the bound in Theorem 2 which depends
factorially on the order.

In other words it is even very unclear what could be the rigorous meaning to
attach to expressions like B(λ) or BN(λ) which will probably make sense only for
special choices of λ, and it might be that the λ's for which B(λ) makes sense are not
such that BN(λ) makes sense in that one cannot construct a solution of (6.1) from
one of (6.2).

If the above phenomenon whereby the cut-off equations (6.1) do not admit a
solution λN such that \\λN\\ is uniformly bounded in AT but the (6.2) do have a
solution λ with || λ || < oo, then the field theory that one constructs from the solution
of (6.2) could not be obtained in the usual way of introducing a cut-off and letting
JV-»oo, an interesting possibility which unfortunately remains a speculative one
for lack of examples.

The above properties of the solutions of (6.1), (6.2) are also strongly dependent
on the regularization used. We briefly discuss the usual nearest neighbor lattice
regularization because in this case it is known that : φ4:d,d>4 is trivial, Aizenman,
1982, Frόhlich, 1982.

Consider a lattice regularization in Λ: so Λ is replaced by a lattice with mesh a
and periodic boundary conditions at distance fixed throughout the discussion.

To compare the two regularizations we can decompose into scaling fields, the
lattice co variance thus representing the lattice field as a sum of an infinite sequence
of lattice fields which live on scale 7 ~j. Since there is the lattice cut-off a there is no
need to introduce the cut-off fields φ(-N\ Nevertheless, it makes sense to
investigate the effective potential V(k} on scale k defined, as in this paper, by
integration of the exponential of the bare interaction over the high frequencies.

One can also define the beta functional B(Λ). It should be clear that E(a) and B ,̂
B are strongly related because the B(α)-coefficients β(0ί)(θ, h, α), although α-dependent
will be almost identical to β(α)(θ,h,α) if max/'^α'1.

However, for yh of the order of a~ 1 there will be major differences between the
coefficients of B(α) and of B. This means that the two approaches cannot be really
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compared exactly for the same reasons for which one cannot establish a relation
between (6.1), (6.2).

If one tries to compare BN and B(β) with y~N~a, one has to start to apply B (α) to
a bare interaction which is not of the same type as that to which one applies BN: in
fact, the integration over the modes of the lattice field with frequencies larger than
N should be rather trivial because such fields are essentially independent on the
lattices sites (because the lattice spacing is α). However, it seems that the effective
interaction that one gets on scale a after integrating the high frequency parts looks
very gentle compared to the bare interaction: this is so because the exponential of
the interaction in a given site appears as a convolution of the exponential of the
bare interaction and a very flat gaussian (representing the high frequency
components of the free field).

Therefore again it is unclear whether one can really compare the two
approaches and it remains an open question to understand the deep implications
of the triviality theorems on the solutions of (6.1), (6.2).

Finally, last but not least, even if the (6.2) did admit a bounded non-trivial
solution, there would be a long way to go before really constructing a P(φ)d theory:
one would have to understand the convergence properties and the summation
rules to reconstruct the effective potentials from the form factors, check the
necessary positivity properties for the effective potential necessary so that exp V(k}

can be interpreted as a probability density, and also one should check the basic
euclidean invariance, cluster properties and Osterwalder-Schrader positivity (or
equivalent properties) necessary to deduce that the objects constructed really
represent a physically interesting quantum field theory.

Appendix A: Interpretation of (3.5)

Let us consider a field

φ = φ<-1>4V0)+..., (A.I)

where φ(~1} has an arbitrary covariance C and is independent of φ(0), φ(1),... which
have the same meaning as in the rest of the paper.

Then, if </ _ l C L2(P(dφ( ~1}) is defined as the linear span of the function in (2.5)
with k= — 1, one can easily compute the orthogonal projection jS?ίf\ on «/_!.

Using the Graham-Schmidt orthogonalization method to compute the
projection on the two-dimensional space spanned by the "quadratic interactions"
(ί :φ2: and J :(δφ)2:) one finds:

$CXXl...CXXpdx
£e(c} ω(~l} ω(~1} -- (\ Tί^,.φxι ...φxp .- , (A.2)

pq

(A'3)
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If the covariance, so far arbitrary, C is taken the "simplest possible": i.e., in
Fourier transform (on the torus A), as

|β'|<l ε>0. (A.4)
a

One finds that (A.2), (A.3) converge to the first two of (3.5) when one takes the limits
lim lim, at least formally, and concludes our heuristic motivation of (3.5).
ε->0 ε'-> 0

The theory of the operator (3.4) with the choice (3.5) requires the (easy) analysis
of the continuity properties of the operators <5(

0

α) in L2(P(dφ(0)): the functionals <5(α)0

are well-defined if F0(p), see (2.3), is strictly positive.
If FQ does not have this property, the operators ££k can be defined, when

(x - y)l is chosen as in (3.6), only for k large enough end one could carry through all
our analysis along the same lines with a few minor modifications which we do not
discuss.
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