Commun. Math. Phys. 102, 517-519 (1985)

Comments

On the Concept of Attractor: Correction and Remarks

John Milnor

Institute for Advanced Study, Princeton, NJ 08540, USA

The following consists of three unrelated comments on the author's paper [1].

1. Correction

Let f be a continuous map from a compact metric space X to itself, with n^{th} iterate denoted by f^n , and let $A \in X$ be a closed non-vacuous subset with f(A) = A. Consider the following two properties of A.

(I) For any sufficiently small neighborhood U of A, the intersection of the images $f^{n}(U)$ for $n \ge 0$ is equal to A (compare Smale [2, p. 786]).

(II) (Asymptotic stability) For any sufficiently small neighborhood U, the successive images $f^{n}(U)$ converge to A, in the sense that for any neighborhood V there exists n_{0} so that $f^{n}(U) \subset V$, for $n \ge n_{0}$.

In [1, Sect. 1] the author mistakenly described an example satisfying (I) but not (II). (The example was based on a remark of Besicovitch [3], which was corrected in a later paper [4].) In fact, (I) implies (II). The following proof is a minor modification of Hurley [8, Lemma 1.6], which demonstrates a corresponding statement for flows on a compact manifold. The proof shows also that (I) implies the existence of arbitrarily small neighborhoods $W \supset A$ with $f(W) \subset W$.

Proof that (I) *implies* (II). Let U be an open neighborhood which is small enough so that the intersection of the forward images of the closure \overline{U} is equal to A. Let U_n be the open neighborhood consisting of all points x such that $f^i(x) \in U$ for $0 \leq i \leq n$. Thus $U = U_0 \supset U_1 \supset \ldots \supset A$ and $f(U_n) \subset U_{n-1}$. Hence the intersection W of the U_n satisfies $f(W) \in W$. We will show that W is equal to U_n for n sufficiently large, and hence that W is an open set. Otherwise, for infinitely many integers n there must exist a point x_n which belongs to U_n but not U_{n+1} . Let $y_n = f^n(x_n) \in U$. Then we can choose some subsequence of these points y_n which converges to a point $y \in \overline{U}$. Since y_n belongs to the intersection of the sets $f^i(\overline{U})$ for $0 \leq i \leq n$, it follows that y belongs to the intersection of all of the $f^{i}(\overline{U})$, which is equal to A by hypothesis. But $f(y_n) \notin U$, hence $f(y) \notin U$, contradicting the hypothesis that $f(A) = A \in U$. This proves that W is open. Hence the compact set $\overline{W} \in \overline{U}$ is a neighborhood of A with $f(\overline{W}) \in \overline{W}$. It follows easily from compactness that the successive images $\overline{W} \supset f(\overline{W}) \supset f^2(\overline{W}) \supset \dots$ with intersection A actually converge to A in the sense described in (II).

Here is an example. Let $U \subset X$ be any open set satisfying $f^n(\overline{U}) \subset U$ for some n, and suppose that the intersection $B = \overline{U} \cap f(\overline{U}) \cap \ldots \cap f^{n-1}(\overline{U})$ is non-vacuous. Then the intersection of the forward images of B is a non-vacuous, compact, f-invariant set which satisfies (I) and (II). The proof is not difficult.

In the context of a smooth flow, Conley [5] uses the term *attractor* for a compact, non-vacuous invariant set satisfying the analogues of conditions (I) and (II), while Auslander et al. [6] call such a set an [asymptotically] *stable attractor*. Note, however, that the word attractor is used in a quite different sense in [1]. Here is an example: Let f be the map of the unit square given by f(x, y) = (1-x)(x, y). Then the edge x=0 is the unique compact invariant set satisfying (I) and (II). However, the omega limit set $\omega(x, y)$ is equal to the origin for almost every point (x, y) in the square, hence by the definitions of [1] the origin is the unique attractor.

2. Remark

In order to know that the concept of "minimal attractor," as defined in [1], is reasonable and useful, one would at least like an affirmative answer to the following. For a C^k -generic map or flow on a compact manifold, is it true that almost every point belongs to the realm of attraction of some "minimal attractor"? Using standard definitions, a related question would be the following: Does the chainrecurrent set of a C^k -generic map or flow have at most a countable number of chain components? Whenever this is true, one can at least say that almost every point belongs to the realm of attraction $\varrho(A)$ for some chain component A which is "attractive" in the sense that $\varrho(A)$ has strictly positive measure.

For some of the known generic and non-generic properties of maps or flows, see [7-12] below.

3. Addendum

The discussion of an attractor related to the solenoid in [1, Appendix 3] should have included a reference to Mayer and Roepstorff [13], which contains a detailed discussion of a similar example.

References

- 1. Milnor, J.: On the concept of attractor. Commun. Math. Phys. 99, 177-195 (1985)
- 2. Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747-817 (1967)
- 3. Besicovitch, A.S.: A problem on topological transformation of the plane. Fundam. Math. 27, 61–65 (1937) (compare [4])
- 4. Besicovitch, A.S.: A problem on topological transformations of the plane. II. Proc. Camb. Phil. Soc. 47, 38-45 (1951)
- 5. Conley, C.: Isolated invariant sets and the Morse index. CBMS-NSF Reg. Conf. 38, Am. Math. Soc. 1978
- 6. Auslander, J., Bhatia, N.P., Seibert, P.: Attractors in dynamical systems. Bol. Soc. Mat. Mex. 9, 55–66 (1964)

Comment on "Concept of Attractor"

- 7. Dobrynskii, V.A., Sarkovskii, A.N.: Genericity of dynamical systems almost all orbits of which are stable under sustained perturbations. Sov. Math. Dokl. **14**, 997–1005 (1973)
- 8. Hurley, M.: Attractors: persistence, and density of their basins. Trans. Am. Math. Soc. 269, 247–271 (1982) (compare [9])
- 9. Hurley, M.: Bifurcation and chain recurrence. Ergodic Theory Dyn. Syst. 3, 231-240 (1983)
- 10. Newhouse, S.: Lectures on dynamical systems, pp. 1–114 of "Dynamical Systems". Guckenheimer, Moser, Newhouse (ed.). Boston, Basel, Stuttgart: Birkhäuser 1980
- 11. Robinson, R.C., Williams, R.F.: Finite stability is not generic, pp. 451–462 of "Dynamical Systems". Peixoto, M. (ed.). New York: Academic Press 1973
- 12. Takens, F.: Tolerance stability, pp. 293–304 of "Dynamical Systems". Lecture Notes in Mathematics, Vol. 468, Manning, A. (ed.). Berlin, Heidelberg, New York: Springer 1975
- 13. Mayer, D., Roepstorff, G.: Strange attractors and asymptotic measures of discrete-time dissipative systems. J. Stat. Phys. **31**, 309–326 (1983)

Communicated by A. Jaffe

Received September 3, 1985