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Abstract. Combining the constraints of Kdhler differential geometry with the
universality of the normal coordinate expansion in the background field method,
we study the ultraviolet behavior of 2-dimensional supersymmetric non-linear -
models with target space an arbitrary riemannian manifold M. We show that the
constraint of N = 2 supersymmetry requires that all counterterms to the metric
beyond one-loop order be cohomologically trivial. It follows that such
supersymmetric non-linear g-models defined on locally symmetric spaces are
super-renormalizable and that N =4 models are on-shell ultraviolet finite to all
orders of perturbation theory.

1. Introduction

Non-linear g-models are the quantum field theories of maps from spacetime into a
riemannian manifold M. A few years ago, it was shown [1] that the ultraviolet
properties of supersymmetric non-linear g-models can be studied using the
geometrical properties of Kahler manifolds. In particular, it was shown [1,2] that
supersymmetric o-models on 2-dimensional spacetimes with target space M a Ricci
flat manifold are ultraviolet finite up to three-loop order, and it was conjectured that
such models were ultraviolet finite to all orders of perturbation theory. Specific
examples of Ricci flat manifolds were shown in [3] to result in supersymmetric o-
models finite to all orders of perturbation theory, but these examples were not
sufficiently general to imply the result for arbitrary Ricci flat manifolds. In this
paper we will provide a proof that N = 4 supersymmetric g-models are indeed finite
to all orders of perturbation theory. We regard such theories as consequently likely
to admit exact solutions. We also discuss extensions of our methods here to the case
of arbitrary Ricci flat manifolds. Our intent is to illustrate as cleanly as possible
the qualitative features underlying the finiteness of these models. On this basis we
occasionally resort to compelling arguments rather than to truly rigorous proofs to
establish certain intermediate results.

Part of the motivation for clarifying these issues is provided by recent progress
[4] in string theory which suggests that certain 10-dimensional supersymmetric
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string theories provide a nearly unique framework in which quantum gravity may be
consistently defined and unified with other known interactions. Phenomenological
applications [5] require that the string theory be defined on a manifold of the form
M, x Mg, where M, is assumed to be a maximally symmetric 4-dimensional space
time and M, is a compact 6-dimensional internal space (in the Kaluza-Klein sense).
Whether string ground states of this form actually exist is intimately connected with
the ultraviolet finiteness of 2-dimensional supersymmetric non-linear g-models,
where the 2 spacetime dimensions of the o-model play the role of the internal
coordinates on the string world sheet and the target space M plays the role of the
compactified M. Ultraviolet finiteness implies that the theory is conformally
invariant, and this in turn is required for a consistent formulation of the string theory
on such backgrounds. The results of this paper suggest that only internal spaces M
which are Ricci flat should be considered, and these are in any event preferred for
phenomenological reasons [5].

We shall begin in Sect. 2 with a review of known results concerning 2-
dimensional supersymmetry, some geometrical preliminaries, and the basic features
of the background field method in superspace which will enter into our subsequent
analysis. In Sect. 3, we detail some important restrictions imposed on counterterms
by the constraints of N = 2 supersymmetry, and give various interpretations of the
result. In Sect. 4, we combine the results of Sect. 3 with certain uniqueness properties
of Ricci flat manifolds which act to constrain their geometry. Renormalization of the
metric in perturbation theory is effectively prevented, proving that N = 4 supersym-
metric theories are finite to all orders of perturbation theory. We conclude with some
comments concerning the application of our methods to the cases of N =2 and
N =1 supersymmetric models.

2. Background

Let (M,,g) be an n-dimensional riemannian manifold with metric g;;. For 2-
dimensional spacetime, an N = 1 supersymmetric o-model with scalar fields taking
values on M, is given by the lagrangian [6],

¥ = %gij(¢)a[l¢lau¢1 + Egij‘pr”Du‘//J + 11_2Rijkt VAl

. . . ) (2.1)
DulV = auwz + F}kau(bjwks 70 =03, yl = ial’
where I, is the Christoffel connection and R, is the Riemann curvature tensor.
The y”s are here and throughout two-component Majorana fermions. The
supersymmetry transformation rules for (2.1) are given by

¢ =Y, Oy = —igdle — Iy~ 22

The superspace form of the action (2.1) can be written in terms of a 2-dimensional
real superfield @' = ¢' + Oy’ + $00F', where 0 is a real two-component constant
Majorana spinor. The superspace form of (2.1) is just the naive extension of the
purely bosonic g-model
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with the superfield supersymmetry transformation rule given by
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Note that for 2-dimensional spacetimes, it is always possible to write an N =1
supersymmetric o-model for an arbitrary manifold M as long as it possesses a
riemannian structure (this is as opposed to the case of 4-dimensions [7], where the
chirality constraint in N = 1 supersymmetry naturally requires in addition a Kahler
structure for M; such a model dimensionally reduces to the N =2 model in 2-
dimensions, to be discussed shortly). Furthermore, the supersymmetry transform-
ation rules (2.2), though apparently non-covariant, commute with coordinate
reparametrizations of M: under an infinitesimal coordinate reparametrization
8.9' = &), 54" = (0, W, it is easy to check that [4,,6]=0 acting on ¢’ and y'.

The action (2.1), (2.3) admits a second supersymmetry [7,3] if and only if M is a
Kéhler manifold. (M,,, g) is said to be Kéhler if there exists a tensor f*; (the complex
structure) which satisfies

fif*= =47, (2.5a)
gijfikfjl = 9Gu> (2.5b)
Vifi=0. (2.5¢)

Equations (2.5a—c) first of all imply that M is a complex manifold, i.e. that M can be
covered smoothly with complex coordinate charts (z% z*) such that the transition
functions in overlapping coordinate patches are holomorphic. In these adapted
complex coordinates, the complex structure f*; becomes simply multiplication by
i(—i) on holomorphic (antiholomorphic) vectors (ie. [ =i0%, 5= — ié“_ﬁ;
f*=f%=0). The metric components in these coordinates are written g,z, so
that

d82 = gijdxi ® dx" = 2gaﬂdza ® dz—ﬂ (2'6)

The conditions (2.5a—c), giving V(g,;/*;) = 0, then moreover require that the Kdhler-
form J, defined as
J=3g;f*dx A dx! = igpdz* A dZP, 2.7

be closed: dJ = 0. This is equivalent to the curl-free conditions
0,9,5=0a0,p ;9.5 = 035> (2.8)

which tell us that the metric components g,; may be written locally as

2

95 = 32070 K(z,2), (2.9)



314 L. Alvarez-Gaumé and P. Ginsparg

where K(z,z) is known as the Kihler potential. K is unique up to Kihler
transformations K(z, z) - K(z, Z) + f (z) + f(2), where f(z) is a holomorphic function.

On a Kéhler manifold the standard formulae of riemannian geometry simplify
dramatically. For example, the only non-vanishing components of I', are I}, =
9*049,,and I'g; = (I';,)* (which are symmetricin f, y and B, 7, respectively, by (2.8)).
The curvature tensor becomes

R%;,,=0,15,, (2.10)

and the cyclic and Bianchi identities reduce to
R.p5=Ryps, Rops=Rsp (2.11q)
VlRaE*,'5= VaR).Byg’ VIRaEyb'= V{{Ra[yﬁ' (21 lb)

It is useful to notice that the only non-vanishing components R, 5 of the curvature
tensor on a Kéhler manifold have two holomorphic and two antiholomorphic
indices, and otherwise satisfy the usual symmetries of the Riemann tensor. Finally,
the Ricci tensor on a Kéhler manifold turns out to take the simple form

R,y =g"R;,;= — 8,0;Indet(g). (2.12)

The condition (2.5b) means that the metric is a hermitian tensor with respect to
the complex structure f*;. Generally, an arbitrary second rank tensor T;;is hermitian
if

Tuf 5f%1= Ta. (2.13)
In complex coordinates, this means that T,;=T,;=0, ie. only the mixed

components T ,zand T,; may be non-zero. A symmetric hermitian tensor Tj; is called
a Kaéhler tensor if it satisfies as well the Kahler condition

alTa5= aaT/g, 5)—7;5: 537;)— (2.14)

On a Kéhler manifold, we can consider forms which are p-times holomorphic
(contain p dz’s) and q times antiholomorphic (g dZ’s), so that the space of r-forms A"
splits naturally into A"=A"YPAT" V@ ...@ A©", Similarly, the exterior
derivative d and its adjoint § = d* can be splitasd = 0 + 7,6 = 0* + 0* (0* = — %0,
0% = —x0x), so that 0: AP AP 19§ APT AP 5% A9 5 AP LA gnd
0% APD - AP4~ 1 Tt also follows (see, for example, [8]) from the covariant
constancy of the complex structure that the laplacian on forms satisfies [1 = dd +

dd = 2(00* + 0*0) = 2(00* + 0*0), and that 00* + 0*0 = d0* + 0*0 =0. Since the
generators of the cohomology groups are the harmonic forms, we have
H' =H"O@H" *YVg@...@ H"", where H?? is generated by harmonic forms of
type (p, q). Equation (2.14) says that if T;; is a symmetric hermitian tensor, then the
type (1,1) 2-form*

1=3T;f*dx' A dx) =iT,gdz* A dZ*, (2.15)
is closed, dt =0, if and only if T;; is Kédhler. A Kéhler tensor thus represents a

cohomology class in the Hodge-DeRham group H!'}(M). In particular, for a

1 Note that Tkjf", is automatically antisymmetric in i and j due to the hermiticity condition (2.13) and
symmetry of T},
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compact manifold the Kihler form J of (2.7) always generates a non-trivial element
of H!'}(M). This is because for a compact manifold M of complex dimension n, the
volume form is expressable as J"/n!, and were this exact, the manifold would have
zero volume. Another hermitian tensor is the Ricci tensor R, ;, and from contracting
the Bianchiidentity (2.11b) or directly from (2.12), it is evident that it also satisfies the
Kihler condition (2.14). Its associated 2-forrn X' = iR zdz* A dz? known as the Ricci
form, can be shown [9] to represent the first Chern class of the manifold. This
characterization of the first Chern class in terms of the Ricci form plays a central role
in the Calabi conjecture [9] proven by Yau [10], to be discussed in Sect. 4.

Finally, it can be shown [3] that each supersymmetry beyond N = 2 requires an
independent Kihler structure f@; satisfying

f(a)ikf(b)kj +f(b)ikf(ajkj —— 25ij5ab' (216)

It should be clear that N = 3 supersymmetry automatically implies N = 4, because if
S and f® are two Kiihler structures which satisfy (2.5a—c) and (2.16), so also does
f = fDE @K I M is an irreducible manifold (i.e. does not split into a product of
lower dimensional manifolds), then N = 4 is the largest number of supersymmetries
that one can have. The reason is that any covariantly constant tensor is invariant
under the action of the holonomy group [11]. If the manifold is irreducible, the
tangent space provides a real irreducible representation of the holonomy group.
Since each of the /s is covariantly constant, any matrix H';in the holonomy group
satisfies H', f@*; = @i H*;. But by Schur’s lemma [12], a representation is real
irreducible only if all the matrices which commute with the representation form a
division algebra over tt: real numbers. The only non-trivial possibilities are the
complex numbers (in which case the single complex structure plays the role of the
imaginary unit) or the quaternions (in which case the f@’s, a = 1,2, 3, represent the
three imaginary units). The first case corresponds to N = 2 supersymmetry in which
the holonomy group of a manifold of 2n real dimensions is reduced from SO (2n) to
U(n), and the manifold is Kdhler. The second case is that of N = 4 supersymmetry in
which the holonomy group of a manifold of 4n real dimensions is further reduced to
the Sp(n) subgroup of U(2n), and the manifold is then called hyperkéahler.

We now briefly recall the methodology for analyzing the ultraviolet divergences
induced by quantum corrections to the o-model (2.3). Study of the ultraviolet
structure of (2.3) is greatly facilitated by use of the superspace background field
method (see [13] for details) which involves expanding @ around a generic solution
@, to equations of motion derived from (2.3). These classical field equations are the
superspace geodesic equations,

DD®, + IMy(®o)DDLD DY = 0. 2.17)

Since the S-matrix of the theory is expected to be reparametrization invariant, rather
than making the naive splitting of the field @' in terms of a classical solution plus a
quantum field: @' = @} + v/, it is preferable to parametrize @' in terms of normal
coordinates centred upon @i . @' is thereby parametrized in terms of the tangent
vector & at @k tangent to the unit speed geodesic joining @} to @

D =D+ & —FT(D)EE 4+ (2.18)

The advantage of this procedure is that the functional Taylor expansion of the
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action around @, has manifestly covariant coefficients which can be written
exclusively in terms of the curvature tensor and its covariant derivatives. For
example, expanding to second order in & gives [13]

1 _ . L _ .
& = 4—ifd29[gi,{¢o)D¢de’6 +gif(Po)DEDE + Ry ;&' DDLD DY + O(E3)].

(2.19)

It is easy then to verify that the one-loop divergences are proportional to
R D®,D®}, and are thus generated by the Ricci tensor.

Since the higher order effects simply duplicate the structure (2.3), the renormaliz-
ation of the original lagrangian can always be expressed in terms of changes in the
metric tensor. The renormalization group equations [14] are written in the form

d
ﬂaﬁgij= _Eij(g)s ﬂij(g)=aRij+"‘ ,

where o = 1/27 for the supersymmetric model (2.1). It is important to note that in the
normal coordinate expansion (2.19), the vertices of the theory contain explicitly
neither the metric nor the Ricci tensor; they involve only the Riemann tensor and its
covariant derivatives. Since loop computations involve only such vertices and their
contractions with the metric g¥ (the propagator of the quantum field & is
proportional to g'(®,)), the counterterms which can be generated in perturbation
theory are somewhat constrained. There is no way, for example, to generate
explicitly a counterterm of the form g;;S, where S is a scalar function constructed in
terms of curvatures and covariant derivatives (see [13] and references therein for
more details). It is possible to determine whether a given tensor may appear at a
given order in the loop expansion by probing with a constant conformal rescaling of
the metric: g;;— A~ 'g;;. Since this would be equivalent to a rescaling of 4 (had it
appeared) in the original action, it follows that 4 can be used as a loop counting
parameter. Thus if a tensor T;; appears at [-loop order, it must behave as
T,~j—>l’ - ’Tij under the conformal rescaling. For example, at one-loop order, only
tensor counterterms with zero conformal weight (I = 0) are allowed, and there are
only two such tensors: R;; and g;;R, where R is the Ricci scalar. But we have already
argued that g;;R cannot appear in perturbation theory so we quickly conclude that
the only possible tensor counterterm at the one-loop level is the Ricci tensor itself.

A crucial property of the background field expansion (2.19) is that the coefficients
of the divergences are universal, in the sense that they are independent of the local or
global properties of the manifold M on which the model is defined. This means that
geometrical constraints imposed on M may affect only the values of the curvature
polynomials themselves and not their numerical coefficients in the background field
expansion. For example, if the manifold is Ricci flat, then this universality together
with the discussion of the preceding paragraph suffice to show that the theory is
one-loop finite.

As mentioned, the on-shell renormalization of the model (2.3) is represented
by changes of the original metric g;;. If the theory is regulated with supersymmetric
dimensional regularization, the bare metric g is given in terms of the renormalized
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metric g®

gu_ﬂ |:gl]+ z

The tensors T¢(g®) are polynomials in the curvature tensor and its covariant
derivatives. Since poles of order v will appear first at v-loop order, T{?(g") can be
expressed in perturbation theory as a series

T(V)(QR)] (2.20)

V=Y TE 2.21)

ij oo
I=v—1

where T{}"" is a tensor with conformal weight ! with respect to rescalings of the
metric, generated in (I + 1)-loop order. The one- and two-loop results are [13]

1
T4 =5-Ry,
TR 2.22)
Fh=- 4(2m)? (VEViR;; + [V, VEIR,; + [V, VEIR ).

The generalized renormalization group equations [14] are obtained exactly as in
ordinary field theory, here by requiring that a change in the mass scale u in (2.20) be
compensated by a change in gf. The result is

)
u@g?} = —Biig"),

0
Bifg®)=egii +| 1+ |THPA ), (2.23)
04 =1
together with the generalized pole equations
0
: 1 G o+ -1gR
%ﬁ( ”ax)T 479"
0
= lim n- 1 |: T(v)<gR + ’,]( 1+ 16_/1) T(U(}.- lgR)> _ T(V)(gR)jl‘ (224)
n—0
A—1

As in the standard ’t Hooft renormalization group pole equations [15], the pole
terms 1/¢” with v = 2 are completely determined by the 1/¢ poles. This is quite useful
in providing a consistency check on multiloop computations. For example, the
tensor T{}! in (2.22) is completely determined by the one-loop counterterm T¢-®
and the pole equations (2.24). Up to two-loop order, we see from the vanishing of
T}V in(2.22) that the f-function defined in (2.23) is porportional to the Ricci tensor
alone. It thus follows that theories on Ricci flat manifolds are two-loop on-shell
finite. Further explicit computations [2] show that theories with R;; = 0 are as well
finite at the three-loop level.

Before closing this section, we wish to comment on issues concerning the
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regularization of (2.3). The most efficient way to compute Feynman diagrams
containing loops is to use the supersymmetric dimensional regularization scheme
known as dimensional reduction (for a review of supersymmetric regulators, see
[16]). No ambiguities arise up to three-loop order for either 2- or 4-dimensional
theories. The rules of dimensional reduction as they currently stand, however, are
not obviously consistent to higher order and this procedure may need some
modifications for complete reliability. In any event, a simple power counting
argument shows that the divergences expected in (2.3) are logarithmic, so a single
Pauli-Villars superfield should suffice as a regulator for 2-dimensional theories. We
shall thus assume (and all of our results to follow depend on this assumption) that
(2.3) may be regulated in a manner consistent with supersymmetry.

With this assumption, we still need to ask whether there is a regularization which
preserves extended supersymmetry for 2-dimensional models. For N = 2, we know
that (M, g) must be a Kdhler manifold. The theory (2.1) then admits a global, non-
chiral SO(2) symmetry,

oy =ef ", (2.25)
generated by the complex structure. In terms of coordinates adapted to the complex
structure, Y has components ¥* and ¥? and invariance under (2.25) simply
corresponds to infinitesimal invariance under the U(l) rotation y*—e™y®,

Yi—e % Similarly, for the case of N =4 supersymmetry, the hyperkihler
structure gives (2.1) a full SU(2) symmetry,

Syt = (81f(1)ij + 82f‘2”j + 83f(3)ij)l#j, (2.26)

generated by the three complex structures. This corresponds to a global SU(2)
rotation in the Sp(1) indices of the tangent space (see Sect. 4 for more details). Hence
the preservation of N =2 or N = 4 supersymmetry depends on having a regulator
which preserves the N = 1 supersymmetry and the SO(2) or SU(2) global symmetries
which exchange the different supercharges. This would be satisfied by dimensional
reduction, so it is likely that any consistent N = 1 regulator can be extended to the
higher cases as well.

We point out finally that there is a refinement of the normal coordinate
expansion which makes the SO(2) symmetry manifest. In the standard normal
coordinate expansion, the freedom to make coordinate reparametrizations is
completely fixed by the choice of normal coordinates. For a Kédhler manifold, some
extra care is necessary since arbitrary difffomorphisms will in general mix
holomorphic and antiholomorphic coordinates. This necessitates finding a method
of fixing the coordinate gauge which involves only holomorphic coordinate
reparametrizations. The simplest way of doing this is to impose at the point ¢, ¢,
(the origin of the normal coordinate system), the conditions

0,y 0, 9,0(d0s $o) =0, (227
aﬁl o a&"gyZ((ﬁO’ (50) = 05

to all orders in partial derivatives. Using the special properties of Kidhler geometry, it
is then easy to show that the background field expansion is manifestly covariant,
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and moreover that ¢*= ¢% + u*(¢P), where u is a holomorphic function of the
geodesic generating tangent vector £. Since the fermion fields transform like vectors,
the new quantum fermion field is obtained from y* according to y*— (du®/0EP)Y/P,
which has a well-defined transformation rule under SO(2). These properties of the
normal coordinate expansion for N =2 supersymmetry are useful because they
mean that the only on-shell counterterms which will be generated in perturbation
theory must be hermitian tensors with respect to the complex structure, and this will
be seen to simplify the classification of possible divergences.

3. Constraints on Counterterms

The renormalization counterterms generated in perturbation theory are given by
symmetric tensors constructed from the curvature tensor and its covariant
derivatives, with no further reference to the underlying geometry of the o-model
manifold M. If M were taken to be a Kdhler manifold, then preservation of N =2
supersymmetry would imply that the only possible on-shell counterterms are
Kahler tensors, i.e. tensors which satisfy the hermiticity condition (2.13) and curl
condition (2.14). Universality of the coefficients of the background field expansion
then tells us that the only tensors which may be generated on an arbitrary
riemannian manifold M are those which when restricted to Kéhler manifolds satisfy
these same conditions. Kéhler tensors come in two types: those which are generators
of non-trivial classes of H''*, and those which belong to the trivial class. Any tensor
of the first type can be written locally in terms of a Kihler potential T,; = 0,0;A(z, 2),
where A is not globally defined. A can instead only be defined patchwise, and
changes from patch to patch by a Kihler gauge transformation, A —» A + f(z) +f(2),
where f(z) depends on the holomorphic transition functions between coordinates on
the different patches. Kéhler tensors in the second class may be written similarly as
T,s = 0,055(2,2) = V,V;S8(z, 2), but where S is now a globally defined scalar function,
invariant from patch to patch.

We must now discuss when tensors of each of these types may appear in
perturbation theory. Counterterms generated in (I + 1)-loop order on a Kahler
manifold can always be written using the Bianchi identities as T,; = V,V;S, where S
and T,; both have conformal weight [ and S is a polynomial constructed from
curvatures and their covariant derivatives. If T, ; generates a non-trivial cohomology
class, then S must change from patch to patch according to S — S + f(z) + f(2). It is
not easy to see how a polynomial in the curvatures with all of its coordinate indices
covariantly contracted can be non-invariant under a change of coordinates. In fact,
the only way to construct such an S with well-defined conformal weight using only
the local tensor constructions available in perturbation theory is in the form
S =logdet M (products of logarithms, for example, would not have well-defined
conformal weight). Independent of the conformal weight of the tensor M 5, however,
T,;=V,V;S then necessarily has zero conformal weight, and hence non-trivial
generators of cohomology can only appear as tensor counterterms in one-loop
order. But we already know that the only counterterm generated in one-loop order is
the Ricci tensor R;;, so it follows that the only two-index tensor of the first type (i.e.
generating non-trivial H*! cohomology) which appears in g-model perturbation
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theory to any order is the Ricci form
X =iR zdz* A dZP. (3.1

All counterterms generated in g-model perturbation theory beyond one-loop order
are of the second type, i.e. cohomologically trivial.

(Although not necessary to our purposes in what follows, we mention that this
result is probably related to a much stronger mathematical result, namely that the
only generators of cohomology below the top dimension constructible from
polynomials in the curvature and its covariant derivatives are identically the
generators of the Pontryagin classes in the general riemannian case, and the Chern
classes in the Kdhler case. To prove this requires a strengthening of Gilkey’s lemma,
which plays an important role in the heat kernel derivation of the index theorem (for
details see [17] which also includes references to the earlier literature). The heat
kernel method allows the computation of the index density for an elliptic operator
on a manifold as a local function of its curvature, and in principle also its covariant
derivatives. Integrating this index density over the manifold then gives an index of
the operator in question, universal in the sense that it depends only on topological
properties of the manifold. This universality motivates, both from conceptual and
practical points of view (to simplify the heat kernel expansions), a characterization of
the universal cohomology classes generated by polynomials in the curvature and its
covariant derivatives. In [17], it is reported that the only generators of non-trivial
cohomology among such polynomials of conformal weight [ < 0 are the Pontryagin
and Chern classes (all having zero conformal weight). This result is easily
strengthened to encompass polynomials of arbitrary conformal weight [ 18], at least
for cohomology up to half the dimension of the manifold.)

The result may be made particularly transparent for superfield afficionados by
means of a manifestly N = 2 invariant superspace formulation [7] of the s-model
(2.1). In this formulation, a general superfield is a function @(x, 6,8), where the
spacetime coordinates x* (u = 1,2) and the constant complex 2-component spinors
and 0 parametrize superspace. Taylor expanding in 6 and 0, however, shows @ to
contain too many degrees of freedom to describe a single scalar multiplet, so instead
@ is required to be a chiral superfield by imposing the constraint D,® = 0, where D,
is the spinor derivative defined in (2.3) but with § and 0 now taken as independent
variables (see [ 16] for more details). In terms of chiral superfields, the lagrangian can
be written

& = [ d20420K (@', ), (3.2)

i.e., entirely in terms of the Kédhler potential. The counterterms in this formalism
then appear as corrections to the Kahler potential of the original metric. In the one-
loop approximation, the effective action is given as the superdeterminant of the
quadratic approximation to (3.2), and its divergent part turns out simply propor-
tional to log det 0,0;K, the Kahler potential for the Ricci tensor. Corrections to K
generated in higher loop orders, on the other hand, are proportional only to globally
defined scalar curvature polynomials S having non-zero conformal weight with
respect to the transformation K — 47 *K. This is because, as argued above, S =
logdet M,; would have zero conformal weight, and an S=K'P(R), with P(R) a
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curvature polynomial, cannot be generated because this would induce a counter-
term of the form g;;P(R), earlier argued to be excluded in riemannian perturbation
theory. New non-trivial log det’s can thus never occur and the induced higher order
counterterms T, 5 to the metric g,; = 9,0;K are then automatically of the form J,0;S,
with S globally defined. The only difficulty in carrying out this procedure explicitly is
that it is not known at present how to formulate the normal coordinate expansion
around a non-trivial background superfield @i in a way which preserves the
chirality constraint. Using instead a naive background field expansion, the vertices
derived from (3.2) are not necessarily manifestly covariant, although the on-shell
counterterms so calculated will of course emerge in covariant form. Modulo this
purely technical difficulty of simultaneously manifesting N = 2 supersymmetry and
coordinate covariance (which in any event is probably surmountable), the N =2
superspace formulation thus provides a straightforward and rather intuitive means
of understanding the trivial topological structure of counterterms generated beyond
one-loop.

In closing this section, we point out that N =2 o-models on locally symmetric
spaces (for which V,R;;,=0) are super-renormalizable. This is because the
Kaéhlerity together with the cohomological triviality of the counterterms beyond
one-loop forces them to take the form V,V;S with § a scalar curvature polynomial.
Expanded out, all such terms vanish because they necessarily contain covariant
derivatives acting on the curvature tensor, and the only non-vanishing counterterm
is hence the one-loop contribution from the Ricci tensor itself. This result could be
extended by universality to cover N = 1 models defined on locally symmetric spaces
as well by showing that there are no riemannian polynomials constructed purely
from the curvature tensor (i.e. without using covariant derivatives) which generically
vanish upon restriction to Kihler manifolds.

4. Finiteness of N =4 Models

In this section, we will show how the uniqueness of the Ricci flat metric satisfying the
conditions of the Calabi conjecture constraints the geometry sufficiently to prevent
any counterterms from appearing in perturbation theory.

Let us begin with a manifold M of real dimension 4n. The curvature 2-form

QY =3R'dx* A dx! 4.1

is valued in the Lie algebra of the holonomy group, typically SO(4n) for an arbitrary
riemannian manifold. If the manifold is Kdhler, then £ is instead valued in the Lie
algebra of U(2n), and (4.1) becomes

Q% = R%;.dz° A d7". 42)

The trace of the curvature 2-form picks out the U(1) part of the holonomy group and,
by (2.12) and (3.1), is related to the Ricci form X by

trQ =0°% =R dz’ A dZ’ = Rydz’ ndZ' = —iX. 4.3)

It follows that a Kdhler manifold has no U(1) holonomy if and only if it is Ricci flat.
Now if M is hyperkdhler, £2 is valued in the Lie algebra of Sp(n). Since Sp(n) lies
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entirely within the SU(2n) subgroup of U(2n), its generators are all traceless and we
learn that hyperkéhler manifolds are automatically Ricci flat. The case of N =4
supersymmetric o-models requires a manifold M which is hyperkdhler, and
moreover the preservation of N = 4 supersymmetry in perturbation theory requires
that the metric plus induced counterterm T;; preserve the consequent Ricci flatness.
Thus, for hyperkéhler manifolds it is guaranteed that

R;{g+T)=0. 4.4)

In the previous section, we argued that Kéhler tensors of the first kind, i.e. non-
trivial generators of cohomology classes, cannot appear as counterterms in
perturbation theory, and thus that T ;= 0,0,S, where S is a globally defined scalar
curvature polynomial. In order to show how this argument works together with the
Calabi conjecture to imply the finiteness of Ricci flat o-models, we now digress
momentarily to describe the conjecture and its implications.

Suppose M is a compact complex manifold admitting an infinitely differentiable
Kaéhler metric with Kéhler form J and Ricci form X. Calabi conjectured [9] that if X’
is any closed form of type (1, 1) cohomologous to X, then there exists a unique Kéhler
metric with associated Kdhler form J’' cohomologous to J and Ricci form equal to
2. Assuming the existence of such a metric, Calabi went on to prove its uniqueness;
Yau [10] later provided the proof of its existence. The work of Calabi and Yau in
particular establishes that if we have a manifold M whose first Chern class vanishes
(so that its Ricci form X is automatically cohomologous to zero), then for a given
cohomology class of the Kihler form there is a unique metric for which the Ricci
tensor vanishes identically. The interpretation of this result is straightforward: the
vanishing of the first Chern class represents a condition on the integral of the Ricci
form over arbitrary closed 2-surfaces in M and hence the absence of a global
(integrated) obstruction to the existence of a Ricci flat metric. Even in the absence of
such a global obstruction to removing the U(1) part of the holonomy, there might in
principle still be a problem smoothing it away locally. Yau’s work assures us that this
is not the case, i.e. that the absence of a global obstruction insures that there is no
local obstruction to removing the U(1) holonomy.

This uniqueness property of the metric for Ricci flat manifolds can now be used
to give an immediate proof of finiteness for hyperkédhler manifolds.? Substituting
T,5= 0,08 in(4.4) implies that R;{g + 00S) = 0, and then the uniqueness of the Ricci
flat metric within a given topological class requires that J,0;S = 0, since the original
metric g is already Ricci flat. Finiteness thus follows simply from the fact that
counterterms from perturbation theory cannot change the topological class of the
metric, and hence uniqueness of the Ricci flat metric allows no counterterms at all.
The N =4 condition is essential to this argument because otherwise the counter-
terms would not necessarily have to satisfy (4.4), i.e. in principle there might occur
counterterms which alter the metric structure to have a riemannian connection with
non-vanishing U(1) holonomy and uniqueness arguments would no longer apply.

Since we need here only the much more easily proven uniqueness result rather
than the full existence result, the essential features of this argument can be made

2 A different proof of the finiteness of N =4 supersymmetric -models has been given by Hull [19]
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more apparent by considering the linearized form of (4.4),

—3(V*V, T;; — V¥V, T,; — V¥V, T, + V,V,T*) = 0. 4.4y
We first rewrite (4.4) in the form
- (VkaTij + [V, V¥] T + [Vj’ V] Ty) = ALTij =0, 4.5)

having made use of the fact that Tj; is Kahler, and hence satisfies V¥T,; = 3V, T%,.
Since a hyperkahler manifold is in particular Kahler, (4.5) requires that T;; be a zero
mode of the Lichnerowicz laplacian of type (1, 1), i.e. 4, T,;= 0. Equivalently, this
means that the 2-form t = 3 T f*:dx' A dx) =iTydz* A dz* is harmonic of type (1, 1):
[0t = 0 (this is because (17 = (d6 + d)(t;dx" A dx’) = (A,7;;)dx' A dx’). But now we
have a contradiction because we have already established that counterterms
generated beyond one-loop order are associated with forms which are cohomologi-
cally trivial, i.e. exact. By the Hodge decomposition, the only way a form can be both
harmonic and exact is by vanishing identically. Thus the conflict between the
exactness of any counterterm T,; generated beyond one-loop and the linearized
condition (4.5) requiring that it be also harmonic renders supersymmetric o-models
on arbitrary hyperkdhler manifolds finite. We note that this argument excludes
counterterms from appearing in any order of perturbation theory on any Ricci flat
manifold in which a symmetry acts to maintain the Ricci flatness of the metric plus
counterterms. Although our argument has been formulated for compact hyperkdh-
ler manifolds, we may now appeal to the universality of the coefficient expansion to
extend the result to arbitrary hyperkdhler manifolds: any counterterm generated on
a non-compact hyperkéhler manifold is excluded by virtue of having a non-
vanishing analog on some compact hyperkéhler manifold.

To further elucidate our results, we introduce a formalism better suited to taking
advantage of the geometrical features of hyperkéhler manifolds (see, for example,
[207). Since the holonomy group of a hyperkdhler manifold is Sp(n) = SU(2n) <
SO(4n), we can covariantly split the tangent space as the tensor product of the 2-
dimensional representation of Sp(1) and the fundamental 2n-dimensional represent-
ation of Sp(n). Each tangent space index i can then be represented in terms of an Sp(1)
index o = 1, 2 and an Sp(n) index 4 = 1, 2n. The interpolation between indices i and
(o, A) is then provided by covariantly constant matrices o' 4 (this construction is the
natural generalization of the familiar decomposition of SO(4) > SU(2) x
SU(2) = Sp(1) x Sp(1) in which case the ¢’s are the usual o%; matrices). Taking &,
and &5 to be the fundamental antisymmetric invariant tensors of Sp(1) and Sp(n)
respectively, it follows that the metric g,; adapted to these Sp(1) x Sp(n) frames is
simply g,;0% 0% = &,4¢ 45- Because of the vanishing Sp(1) holonomy, the connection
1-form becomes w, 4 g5 = €,50 45, Where antisymmetry of w;; implies the symmetry
45 = Wpg,. Similarly, the curvature referred to these frames is

Ry a.8.9c.6p = Rijklo'iAo-{}Ba’;CaSD = £,45€,6824BCD> (4.6)
where the usual symmetries of R;;, imply that 5., is totally symmetric in
A,B,C, and D. The three Kiahler structures f@; are given in this language by
f‘“”‘jgkio;Aq{gB= {0ap€am> (T1)upbaps (T3)peap} (Where 7, and 7, are the usual
2 x 2 Pauli matrices). These tensors are manifestly antisymmetric in a4, B and
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covariantly constant (hence satisfy (2.5a—c)), and automatically satisfy the Clifford
algebra condition (2.16).

To see how our results fit into this framework, consider the symmetric tensor
counterterm T;; generated in perturbation theory, now written as T, 4 yp = Tjp o 4. If
the SU(2)~ Sp(1) global symmetry is preserved, preserving the hyperkdhler
condition, then we must have T,, sp=¢,;T4p With T p= — Tp,. In these Sp(n)
frames, (4.5) thus becomes

VAV, Tip — 2020455 TP = 0. 4.7)

Antisymmetry of T, together with the symmetry of £ ,5-, then reduces (4.7) to
V¥V, T = 0. Multiplying by T, and integrating by parts then gives V, T,z =0, as
usual by the positivity of the metric. But if the manifold is irreducible, then the only
covariantly constant tensor is ¢,5, and thus we have that T, ;5 = (const)-&,4¢ 45,
reproducing our result that T;; must be proportional to the metric tensor and thus
cannot be generated in perturbation theory (the metric itself, of course, cannot be
generated in higher loop perturbation theory because it has conformal weight — 1;
no polynomial in the curvatures accidentally proportional to the metric could be
generated because it would then generate non-trivial cohomology). The integration
by parts argument above requires working on either a compact hyperkéhler
manifold or on a non-compact one with appropriate decay of the curvature at
infinity. There are actually known examples of both types. Two infinite classes of
irreducible compact hyperkéhler manifolds of any real dimension 4n are exhibited in
[21], and an infinite class of asymptotically locally euclidean non-compact
manifolds, comprising the Calabi series of hyperkdhler metrics for the cotangent
bundle of CP" (the lowest dimensional example of which corresponds to the Eguchi-
Hanson gravitational instanton), is given in [22] (see also [23]). An appeal to
universality then establishes the result, as before, for all hyperkihler manifolds.?
Our finiteness arguments following (4.4) depended on a symmetry, in that case
N =4 supersymmetry, to maintain the Ricci flatness of the hyperkahler metric plus
counterterms, whereupon uniqueness of the Ricci flat metric excludes any counter-
terms. It turns out [24] that Ricci flat N = 2 models are distinguished among N = 2
models in having as well a symmetry, in this case a fermionic axial symmetry, which
acts to maintain the Ricci flatness of the Kahler metric in perturbation theory. The
methodology developed here then extends directly to a proof of finiteness to all
orders of perturbation theory for N =2 models (see [24]). Since we have no such
corresponding uniqueness properties for general riemannian metrices, a proof of
finiteness for N = 1 models must proceed on a different basis. As mentioned in Sect.
2, universality places rather severe restrictions on the tensor counterterms generated

3 Unless, as pointed out to us by C. Hull, there is some obscure reason for which all compact and
asymptotically locally euclidean hyperkdhler manifolds are so special that some combination of
curvature tensors happens to vanish automatically and hence wouldn’t necessarily be excluded by the
above arguments from appearing as a counterterm on some more general non-compact manifold. We
consider this unlikely since among the infinite classes of hyperkihler manifolds mentioned above are
some which are irreducible and have no isometries, and should thus be sufficiently generic to eliminate
any such accidental degenerate relations among curvature invariants
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in perturbation theory: they must reduce to Kihler tensors upon imposing the
Kaéhler condition on the metric. Those which reduce to non-vanishing Kahler
tensors are excluded by a proof of finiteness for N =2 models. The only potential
difficulty, then, would come from riemannian tensor counterterms which do not
vanish on Ricci flat manifolds but would vanish upon imposing the Kéhler
condition. Few, if any, such terms can appear, however, since the complex structure
f';is not generated explicitly in perturbation theory, forbidding the construction of
any obvious projection operators. (It should also be clear that no polynomial in the
curvature and covariant derivatives P'; generated in perturbation theory can be
accidentally equal to the complex structure. This is because the form P;dx’ A dx’
would then be proportional to the Kéhler form J, contradicting the result that no
non-trivial generators of cohomology can be generated in perturbation theory
beyond one-loop order.) We consequently expect that the proof of finiteness for
N =2 models can be extended to the N =1 case by showing that no potential
counterterms are lost in going from arbitrary Ricci flat riemannian to Kéhler
manifolds and then making use of the universal dimension independence of the
counterterms.
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