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Abstract. We consider the action of a lattice gauge theory on a space of regular
gauge field configurations with fixed averages, and we prove that there exists a
minimum of this action. The minimum is unique up to gauge transformations.
This minimal configuration is called a background field, and it serves as a basis of
an expansion and perturbative methods.

It was explained in [1] that the fundamental step in our renormalization group
approach is to find solutions of the variational problem and to investigate their
regularity properties and expansions. Let us state the problem precisely. To
formulate it we recall some definitions introduced in [3,4,6]. This paper is based on
the results of those papers, and we refer the reader to them for more detailed
explanations of the definitions and the results.

At first let us recall the geometric setting. We assume that a sequence of domains
ΩJ9 j = 0, l , . . . ,/c, is given, satisfying the following conditions: Ωj<=Tη, Ω0^Ω1

ID ••• ID Ωk, Ωj is a union of big block of the size M^Ljη,

(LjηΓldist(Ωc

j,Ωj+1)>RM1, (1)

where R ̂  Rl9 the numbers Rί9 M1 are fixed in such a way that all the results of
[3,5,6] hold for these numbers. We identify domains Ωj with sets of bonds 01
plaquettes in the usual way, as sets of bonds with at least one end-point belonging to
ΩJ, or sets of plaquettes with at least one corner belonging to Ωj. This remark
applies to other sets also. The sets A 3 and 33k are defined as

^ Ω + 1 = 0, or B\A)
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The space Uk({Ωj}9ε0) of gauge field configuration on configurations on Ω0

was defined in Sect. A of [6] by the conditions

for

\(D$dU)(b)\<ε0L-2S(lJηΓl=e<)η2(LsηΓ* for beΩj9 (2)

where ε0 > 0, and the space 33fe(93k, V) by the conditions

Uj=VoκΛj9 ; = 0, l , . . . , fc , (3)

where V is a fixed gauge field configuration define on 23fe. The space Uk({Ωj}9 ε0) is
gauge invariant, and the space $fc(33fe, V) is invariant with respect to gauge
transformations u satisfying

u(y)=l for yE®k. (4)

We consider the functional

A(U) = A"(U) = Σ ιjd-4[l-Retrl7(5p)], η = L~k (5)
pcί20

on the space of gauge field configurations

Uk({ί^,ε0)n^(23fc,F) (6)

This space and the action (5) are invariant with respect to the gauge transformations
(4). These transformations form a group and the space (6) is a union of orbits of this
group. Our problem is to find all critical orbits of the functional (5). We will prove
that for ε0 sufficiently small there is at most one critical orbit. To prove the existence
we have to assume that V satisfies some additional regularity property. More
precisely we assume that

\(dV)(pf)-l\<ε1 for p'eS, (7)

for ε1 sufficiently small. This requires an explanation. For some j between 0 and k
p'eΛj. If p' cΛj , i.e. all four vertices of p' belong to ΛJ9 then the meaning of the
symbol (dV)(p') is simple, then all four bonds of the boundary dp' belong to Λj and
we have (8V)(pr) = V(Sp'\ If p' intersects the boundary oϊΛj9 then some bonds b do
not belong to Λj and we replace Vb by Vb in the above equality. For example if p'
= < x , y > u < y , z > u < z , w > u < w , x > and <.y,z> do not belong to ΛJ9 then it means
that y.zeΛj.^ and we define

(dV)(p'} = V(x9 y)V(y, z)V(z, w)F(w, x).

Let us notice that if the space (6) is non-empty and ε0 is sufficiently small, then by
Proposition 2 [4] the configuration V satisfies (7) with εί = 0(ε0). Hence our
assumption has a meaning only for ε^^ smaller than ε0. We will prove that for εί

sufficiently small there exists a critical orbit of the functional (5). More exactly, we
will prove that there exists a minimal orbit. Elements of the minimal orbit are called
minimal configurations.

We will prove also some local regularity properties of the minimal configur-
ations. To formulate them we have to introduce a class of cubes. This class was
described in Sect. F [6]. Each cube Π of this class is contained in
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Bj(Λj)vBs+1(Λj+ί) = Ωj\Ωj+2 for some; between 0 and fe, and is a union of big
blocks of the L~ ̂ -lattice. More exactly we assume that Π has a size 2MJJη, where M
is a multiple of R^M^ , and that the cube Π of the size (2M + 4RlMl)Ljη and with the
same center as Π, is contained in Bj(Λj)vBj+l(Λj + 1\ but not in Bj+1(Λj+l). We
consider all cubes Π satisfying the above conditions.

Now let us formulate the main result of this paper.

Theorem 1. There exist positive constants aQ9al9B^9B4(βQ)9M(εl)9B^aί ^α0> sucn

that for an arbitrary configuration V satisfying (7) with ε^^a^ there exists a minimal
orbit in the space

U,({βJ.},B3ε1)n93,(aSt,F). (8)

This orbit is a unique critical orbit in the space (6) if B3ε1 ^ε0 and ε 05^α 0. The
minimal configurations U have the following regularity properties:

for an arbitrary cube Π in the class described above, of a size 2MLjη, M ̂  M^),
there exists a gauge transformation u defined on a neighborhood o/Π and such that
on Π,

1, \VηA\ < B3M

U\\ιtβ<Bt(β0)Msί(lJηr2-β for 0 £ β ̂  β0 = 1, (9)

\d**d'Ά\9\ΔηA\<B3Mεί(LjηΓ*. (10)

The constants aθ9al9B39 depend on d and L only, the constants B4(β0)9M(εl) depend
on the indicated parameters also. More exactly M(ε1) = R1M1(α1/ε1).

Minimal configurations will be denoted by Uk(V)9 or Uk.
The above theorem is the basic result of this paper. We will prove also some

theorems about minimal configurations Uk(V) as functions of F; for example we will
prove that they are analytic functions of V and we will find their expansions. These
results are very important for an analysis of fluctuation fields, see [1], but they will
be rather simple consequences of the proof of Theorem 1 and we defer their
formulations to the last section.

Theorem 1 will be proved by induction with respect to k. In the course of the
proof the constants B3, B4 will be described explicitly. The first step of the proof,
for k = 1, will be covered by the proof of a general case.

A, A Reduction of the Proof of Theorem 1

We start a proof of Theorem 1 for some k assuming that it is true for k — 1. We have a
configuration V defined on 23fc and satisfying (7). The set $$k determines the following

fc-l

set »i_!= U A';. Λ'j = Λj for 7 = 0, l , . . . , fc-2, Λ/

k.^=Λk.luB(Λk). We can
7 = 0

easily construct a configuration F0 on S^ such that it satisfies (7) on 9$k-l9 and

F 0 =F on ( j Λ j , V0=VonΛk. (11)
j = o

For example we can take F0 tb= Vb,9 for beB(b')9 b'eΛk and F0 5 = 1 for remaining
bonds of B(Λk). We assume that ε1 ^ aί9B3εί ^ ε0 ̂  α0 and we use the inductive
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assumption, i.e. we apply the Theorem 1 for k - 1 and the configuration V0. We get a
minimal configuration U0 = U^^VQ) belonging to the space

Uk^({Ωj}9 ΛaeJnS^ίβ ^Ko). (12)

From the conditions (11), and from the form (2) of the regularity conditions, it
follows that

l/0eUfc({ί2J.},B3L
3ε1)n3Sfc(®fc,F), (13)

hence U0 should be close to the minimal configuration we are looking for. To find
this configuration we will aply perturbative methods expanding the action ^4(17)
around l/0.

Having in view future applications we will consider a little bit more general
configuration U0 than this constructed above. We assume that we have a
configuration C/0 satisfying

V0eUk({ΩJ}9ClB3s1)9\Ui>-V\<Clεl on ΛJ9 ; = 0, l , . . . , fc , (14)

for some absolute constant Cv. The configuration U0 constructed above satisfies
(14) with C1 = L3.

Let us notice that for k = 1 we do not have any solutions of the variational
problem yet, and then we take simply U0 = F0, V0 constructed above.

We consider the functional A(U) on the space (6). An arbitrary element of this
space can be represented as

U=U'U0, U'^UUo1. (15)

A gauge transformation u applied to U implements the following transformation of

CHx, x') = ιι(x)l/'(x, x')Λ(l/o(*, x'))u- V), (16)

if U0 is fixed in the representation (15). Another point of view is that U and U0 are
subject to the same gauge transformation u, and then U' transforms as follows

(R(u)U')(x9 x') = K(n(x))t/'(x, x') (17)

Usually we will apply the first point of view, i.e. we consider the transformations (16).
The second point of view will be considered when we will discuss how our
constructions depend on gauge transformations of l/0.

We assume that the numbers aθ9a1 are so small that all the theorems of the
papers [4,6] are valid for the configurations 17, l/0.

Now we choose a gauge in the space (6). Using the transformations (16) with u
satisfying (4) we fix the axial gauge conditions Axk(^&k, U0) (see the definition (1.19) in
[6]). The functional (5) is gauge invariant, hence it is enough to consider it on the
space

(8fc, UQ). (18)

Next we apply the results of the paper [6], especially the Theorem 2. Configurations
U from the space (18), and t/0, satisfy the assumptions (1.33)-(1.35) of this theorem
withα0 = εθ9(x>1 = C1ε1. The additional regularity condition (3. 35)in(l. 33) is satisfied
for U0 also, because of the result of Sect. F. Thus for ε0,εi sufficiently small, more



Variational Problem and Background Fields for Lattice Gauge Theories 281

exactly for ε0 + Cίεl ^ c l 5 and for an arbitrary configuration U = U'U0 from (18)

there exists exactly one gauge transformation u satisfying R0u
j = l on ΛJ9 7 = 0,

l , . . . , f c ( t h u s w = 1 on Λ0), such that U1 = U'u~' satisfies the conditions (1.36)-(1. 39)
of [6]. These gauge transformations define a mapping of the space (18) into a
space of gauge field configurations L^L/O with U \ satisfying the conditions

17!=*"* \A\<ε2(UηΓ1, \Vl0A\<s2(ϋηΓ2

9

\D$0D10AI \Δl0A\<ε2(UηΓ* on Ω j 9 j = 09 I 9 . . . 9 k 9 (19)

Qj(UQ9ηA) = B on ΛJ9 j = 0, l , . . . ,/c, (20)

where B is given by the formulas (1.31) in [6], hence \B\ < 2dLCίεl9

D$0A = ̂  (21)

with s2 ^ #ι(ε0 + Ci^i)- The projection operator R(UQ) determining the Landau
gauge condition (21) was defined in [5,6].

The above mapping is one-to-one, hence using again the gauge invariance of the
functional (5), we have reduced a proof of the existence and the uniqueness of critical
configurations in the space (18), to a proof of the existence and the uniqueness in the
space of configurations U^U^ satisfying (19)-(21).

Let us summarize the discussion of this section in.

Proposition 2. All critical orbits of the functional (5) in the space (6), or all critical
configurations of this functional in the space (18), can be obtained by taking critical
configurations U γ of the functional A(UιUQ) in the space defined by (19)-(21\ where
U0 satisfies (14), and transforming them to the axial gauge Axk($k, U0) by gauge

transformations u satisfying the conditions R0u
j = 1 on A J9 0, 1, . . . , fc.

In the next four sections we will study the variational problem in the space (19)-
(21). We will prove that for ε l 5 ε 2 sufficiently small there exists exactly one critical
configuration, which is a minimum of the functional (5). This will prove Theorem 1
with worse bounds. Next we will improve the bounds and we will complete the proof
of this theorem.

B. An Expansion of the Action

In this section we will study an expansion of ^(l^l/o) with respect to A =
l/fylog U1. The configuration U0 and the scale η are fixed, so for simplicity let us
omit these symbols in notations below, e.g. we will write R, D instead of R(U0\ Dη

Uo,
etc.

We expand the action up to fourth order in A. We take

l/1 = eM =ί + ίηA+(J^:^+^.A3 + (^: A*R4(iηA), (22)
where

\Rn(iX)\ ^ 1 for arbitrary hermitian matrix X,

I Rn(X) I ̂  e[X{ for arbitrary matrix X. * '
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Using (1.21), (1.22) from [6] we have

trίt^l/oHδp) = tr a0ΪM(p),)EΌ(dp), (24)

where for p = <x,y,z, w>,

δ0I/ι((p),) = Λ(I/o(*. w))I/!(z, w)l/,(w, x)l/i(x, y)«(t/0(x, )'))C/1(y, z)

= 1 + iη(R(U0(x, w))A(z, w) + A(w, x) + A(x, y) + R(U0(x, y))A(y, z))

- W\. (R(U0(x, w))A(z, w))2 + 2R(U0(x, w))A(z, w)A(w, x)

+ 2R(U0(x, w))A(z, w)A(x, y) + 2R(U0(x, w))A(z, w)R(U0(x, y))A(y, z)

+ (A(w, x))2 + 2A(w, x)A(x, y) + 2A(w, x)R(U0(x, y))A(y, z)

+ (A(x, y))2 + 2A(x, y)R(U0(x, y))A(y, z) + (R(U0(x, y))A(y, z))2] + •

(25)

The expression in parenthesis (...) on the right-hand side is equal to η(DA)(p). This
expansion gives

^o(^), (26)
pcβ0

where the expansion of V0(A) begins with a third order polynomial. From
hermiticity of DA we have

X ηd~2lmtr(DA)(p)U0(dp)= £ ηd-2tτ(DA)(p)lm U0(8p) = <Λ^>, (27)
pcβ0 pcί20

where

on Ωp (28)

the bound holds by the assumption (14). The action A(U1 U0) is an analytic, and even
an entire function of A for Aeof, or for A in the space of all complex N x N matrices,
so V0(A) is such a function also. We need a bound for V0(A). To get such a bound we
have to decompose further

V4(A), (29)
or

^04) = Σ ndVQ(A9 dp), V0(A, dp) = V(3\A, dp) + V^A, dp), (30)
pcβQ

where V(3)(A) is a third order polynomial and the expansion of V4(A) begins with a
fourth order polynomial. We consider these functions for A belonging to the
complexified Lie algebra. A bound for V4 can be easily obtained. We have

\V4(A9dp)\^(\A\(dp))^A^\ (31)

Let us consider configurations A satisfying

Ljη\A\,(Ljη)2\VA\ < ε2 on Ωp where B^BQ + C^) ̂  ε2, (32)

and let us assume for simplicity that 32ε2 ̂  1. Later we will have to introduce much
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stronger restrictions on ε2. This implies eηlAl(dp} < e4ε2 < 2, hence

I V4(A,dp)\ (\A\(dp))4 g 25M|4 < 25ε*(ίΛ/Γ4. (33)

In [5] we have found the explicit expressions (3.7), (3.10) for the second order
term in expansion (26). Now we will find an explicit expression for the third order
term V(3}(A, dp). Let us define field variables A'(b) for bonds b a d(p)z by the
equalities

and let -< denote a natural ordering among bonds of the oriented contour d(p)z

= < z, w > u < w, x > u <*;, j; > u < y, z >. From the Baker-Cambell-Hausdorff formula
we have

do^i((/>)z) = exP iηR(U0(x9 w))A(z, w) exp iηA(w, x) exp iηA(x, y)

>expiηR(U0(x,y))A(y,z)

2^2 Σ IX(&ιM'(2 bl<b2

+ iV Σ (C^iU^^U
1Z 6^2

+ ̂ V Σ ([^iλ [^2X
D bί<b2<b2

A'(b3W +...}. (34)

If we write expansion (26) in the form

l-Retrδ0I/1((p)I)t/0(3p)=l-Retrl/o(3p) + »ί4 Σ V(i\A,dp) + η^(A,dp),
i=ί

(35)

then (34) yields

-pj»/tr X (ίίA'ibά iίA'φά A'(b2m
1Z (.,<*!

i[i\_A'(b,\ A'(b2)l A'(b2)])η-2Im U0(dp)
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i[i[_A'(b J, A'(b2)l A'(b3) ] )η~2lm U0(dp)

(36)

From this representation we obtain easily the bound

\V<3\A9 dp)\ ^\(DA)(p)\(\A\(dp))2

%ε2(LJηΓ2\(DA)(p)\

2C1£3ε1)(ZΛ?Γ4, peΩj. (37)

The first trace on the right-hand side of (36) depends on the derivative (DA)(p\ the
remaining expressions depend on the field variables A only, and to estimate them we
need to know bounds on A, not on derivatives of A. Let us separate the term with the
derivative. We have Re UQ(dp) = 1 + (Re U0(dp) - 1), and

\η-2(ReU0(dp)-l)\<C1Bsε1(lJηr2

9 peΩj9 (38)

so the expression with Re U0(dp) — 1 has a hidden additional factor η2. One factor η
cancels η~* in the derivative (DA)(p\ and the expression can be estimated by

2- Thus we can write

VQ(A9 dp) = ±ir(DA)(p) X ilA'(bά Λ'(&2)] 4- V'Q(A9 dp)9 (39)
b1<b2

where Vf

Q(A9 dp) is defined by this equality, and satisfies the bound

(40)

Here we have used only the first bound (32) on the field A alone.
The quadratic form ^(A,ΔAy was thoroughly investigated in [5]. We will use

the results of that paper for operators defined by this form. Now we use the fact that
the configurations A satisfy the Landau gauge condition RD*A = 0, and we replace
the form A by Δπ defined in [5], the formulas (3.119), (3.120). The form Δπ is more
convenient to work with because the operator H has a simpler connection with it.

Let us formulate again the variational problem. We are looking for a minimum
of the functional

+ <A9jy+$<A9ΔκAy + V0(A) (41)

on the space of field configurations A satisfying

= 09 Q(ηA) = B on S fc,|B|<2dLC1e1, (42)
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\A\<ε2(tiηΓ\ \VA\<ε2(LjηΓ2 onΩj9j = Q9!9...9k. (43)

We would like to prove that for ε0, εί , ε2 properly restricted there exists exactly one
minimal configuration and we would like to find some preliminary bounds for it.

Our next step will be to make a change of variables such that the function Q will
become a linear function.

C. A Construction of the Linearizing Transformation

This construction will be almost identical to the construction of the corresponding
linearizing transformation in the Sect. E of [6]. The Proposition 4 of [4] implies

QjηA) = UηQjA + Cμ*ηA\ \ Cj(tiηA) \ ^ C2(tiη)2\ A\2. (44)

The operators Δ9 Q and R define the operator H. Let us recall that it is an operator
defined on configurations B and giving a minimum of the quadratic form ^(A,ΔAy
under the restrictions LlηQjA = B on Λj9j = 0, 1, . . . , fc, RD*A = 0. Thus it has the
following properties

LJηQjHB = B on ΛJ9 RD*HB = Q, (45)

and the Theorem 3.12 from [5] implies

\HB\£B0(LJηΓl\B\9 \VHB\£B0(UηΓ2\B\ on Ωs. (46)

We will construct the linearizing transformation in the form

A = A'-HD(A'\ (47)

where D will be a mapping defined on configurations A and with values in
configurations on SJfc. This mapping has to satisfy the equations

βjM' - ηHD(A')) = UηQjA - LjηQjHD(A ') + CβJηA' - LjηHD(A'))

= LjηQjA' on ΛJ9 (48)
or

CμJηA' - UηHD(A)) = D(A'} on Λj. (49)

Thus the function D(A'} is a fixed point of the transformation

X -> CμίηA' - LJηHX) on Λj9j = 0, 1, . . . , fc. (50)

We consider configurations A\ X with values in the complexified Lie algebra gc, and
satisfying

\A'\<ε3(LjηΓl on Ωp X = Q on/\ 0 , \X\<^- on 33k.Bo
(51)

The transformation (50) calculated at such configurations satisfies

I CμlηA' - tiηHX) \ £ C2(tiη \A + Ljη \ HX \ )2 < 4C2ε
2

3 , (52)

and its value is in the set 1 :̂̂  = 0 on Λ0, \X\<ε3/B0} if 4C2εl^ε3/B0, i.e.
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We prove that the transformation (50) is contractive on this set, for ε3 sufficiently
small. We have for Xl, X2 from the set

1 d
Cj(LjηA' - UηHXJ - Cj(LjηA' - LjηHX2) = ^dt—C^UηA - LJηH^X,

o dt

+ (l-ί)A 2))

i / δC
= -]dt( ~(LJηA' - UηH(tXι + (1 - t)X2)), L1ηH(X1 - X2]o \ oA

' - L1ηH(tXl + (1 - t)X2) + τUηH(X, - X2)). (53)
o jτ |= r

Taking r = ε3(B0 \ X1 -X2\)~l

9vte get

ICjitiηA-UηHXJ- CβJηA' - LjηHX2)\ ^-C2(2ε3 + rB0\X, - X2\)2

= 9C2B0ε3\X1-X2\. (54)

Hence the transformation is contractive if 9C2#0ε3 < 1; for example we take
9C2£0ε3 = 1/2, i e % ̂  (18C2J?o)~1 The contraction maping theorem implies that
for arbitrary A', satisfying Ljη\A'\< ε3 on ί2J5 there exists exactly one fixed point of
the transformation (50), thus exactly one solution of Eq. (49). This solution is a limit
of uniformly convergent sequence of successive approximations and it is an analytic
function of A. It satisfies the bound |D(v4')| < ε3/#0, but ε3 was arbitrary, so we can
take it arbitrarily close to sup,- Ljη sup Ωj \ A \ = \ A \ ( _ 1 } , and we get the bound | D(A') \

^BO Ί ^ Ί - - From Eq (49) we obtain

\D(A)\ = \Cj(UηA - tiηHD(A))\ ̂  C2(Uη\A'\ + 50l^(^)i)2 ̂  4C2| A\^1}. (55)

This implies that a power series expansion of D(A) begins with second order terms.
We can find this expression from Eq. (49) and the expansion (136) [4] of the function
Cji

Cj(lJηA'-LJηHD(A'))= £ Cf(ϋηA'-lJηH £ D™(A')}= £ D^(A'), (56)
n=2 \ m = 2 / n = 2

where C("\ D(n) are homogeneous polynomials of nth order. From Eq. (56) a sequence
of recursive equations for D(n) follows. It can be solved easily. For example we have
on Λ

D(2\A] = C(2\LjηA\ D(3\A) = C(^(LjηA) - 2C(2\LjηA, LjηHC(2\A'}\

and so on. Here Cf\A',A") denotes a symmetric bilinear form obtained by
polarization from the quadratic form C(2\A\ and C(2\A) = C(2\LjηA'} on Λj.

The bound (55) implies that the transformation (47) is defined and analytic on
configurations A satisfying Ljη\A'\ < ε3 on ί2y, and the values A of this transform-
ation satisfy

\A\£\A'\ + B0(UηΓl4C2\A'\ί 1} <(ε3 + 4C2B0εi)(L^)-1 < 2ε3(L^)'1 on Ω3.
(57)
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If we assume also \VA'\ < ε3(ZΛ/)~2, then

I VA I ^ I VA'\ + BQ(Uη) ~ 24C2 1 X' | f_ 1} < (e3 + 4C2B0ε
2) (Uη) ~ 2 < 2ε,(Uη) ~2. (58)

The transformation is defined for ε3 satisfying 2ε3 ̂  c4 (see Proposition 4 in [4])
and ε3^(18C2β0Γ

1.
We want to prove that for ε2 sufficiently small the range of the transformation

(47) contains the set (43). To solve the equation

A' - HD(A'} = A (59)

for a given A, we take A' = A + HX, and we get the following equation for X,

D(A 4- EX) = X. (60)

A solution of this equation is a fixed point of the transformation

X-*D(A + HX), (61)

and we can repeat the whole reasoning connected with the solution of (49), (50), the
only change is that the constant C2 is replaced by 4C2 . Thus for ε2 ?g ^ε3 , there exists
exactly one fixed point of (61) satisfying \X\ < #o~^2, and there exists exactly one
solution of Eq. (59) satisfying

Ljη\A'\9(Lsη)2\VA'\<ε2 + l6C2B0ε
2

2 < 2ε2 ^|ε3 onβ,., (62)

as it follows from (57), (58). This proves the statement about the range of the
transformation (47).

Let us remark that there are many linearizing transformations. Even if we specify
them requiring that they have the form A — A — hD(A'\ we still have many possible
choices of the operator h. Our choice h = H is a convenient one because we have
investigated the operator H in [5] and we know all the necessary properties, but it is
by no means a unique choice.

A second remark concerns regularity properties of D(A'}. We know that it is an
analytic function of A' for gc valued configurations A' satisfying |^4 / | (_1 )<ε3. It is a
function of the configuration 17 0 also, and it is easy to see that it is an analytic
function of L70, because the averaging operations Qj{Uθ9ηA) and the operator H(U0)
are analytic in U0. The analyticity domain is smaller for H(U0) and was described in
[5], so D(A') has the same analyticity domain as H(U0).

Besides these regularity properties and the bound (55) we will also need some
pseudo-locality property of the function D(A') and the transformation (47). A
pseudo-locality property we are interested in means that a value of D(A') at a bond
ceSfe depends weakly on a configuration A at bonds b far apart from c. More
precisely this property can be formulated in terms of decay properties of a functional
derivative oϊD(A'). The functional derivative is a kernel of the linear operator acting
on functions δA' and defined as

(63)
τ = 0,δA' ' " / dτ

The functions δA' are defined at bonds of Ω0, and values of this linear operator are



288 T. Balaban

functions defined at bonds of

3>(X';c,&) =

. Let us denote

δ

δA'(b]
D(A',c). (64)

We will prove that this function has an exponential decay. It satisfies an integral
equation which can be obtained by differentiation of Eq. (49):

hence

δC

'))' c) Σ (LJ'η)"H(b', c'WA'; c', b)

= ΐ>(A';c,b), ceλj, beΩ0, (66)

where we have suppressed matrix indices of operators acting on the Lie algebra
valued functions. We may write this equation in the form

oA

= ΐ)(Ar) on Λ j .

This gives the following equation on T>:

' - HD(A'))) - tiη (LJη(A' - HD(A'))),HV(A')

(67)

/ 4- ' - HD(AI))\H\]^(A') = ' - HD(A'))) on Λj.

(68)

As it is easily seen from (66) this equation is an equation on X) as a function of the
variable ce33fc. The variable b is fixed and treated as a parameter. We have the bound

^(Ljη(A' - HD(A'))), H ) (c, c')|
δA I)

f

'-HD(A') + τH( ,c')\c)

1 / ^2

;-C 2(2ε 3 + r sup Ljη\H(b,c')
' \ .

where we have taken r = ε3(B0(Lj'η) d

e-*o<Kc-f-)) \ CeΛj9 cΈΛr, (see [3] for a
definition of the distance d(y, y'\ y, /eSfc). The above bound shows that the operator
in the square bracket in (68) (without the identity operator) is of the same type as the
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operators R studied in [3, 5]. Let us denote it by 9?. Equation (68) is uniquely
solvable by a convergent Neumann series,

C\A - HD(A')), (70)

where j(c) =j for cE/i j? and C(A,c) = Cj(LjηA,c) for ceΛj. A kernel of the operator
(/ + 5R)" 1 satisfies the bound

•'-> (71)

for ε3 sufficiently small, which follows from Lemma 2.1 [3]. Proposition 5 of [4]
implies that

*r
HD(A')) ^ L/^(L^)~dC32ε3. (72)

Let us notice that the factor (Lfη)~d comes from the change of scale: the derivative of
Cj has the estimate (157) in [4] on L~ j-scale, and here we consider the derivative on
τ/-scale. The formula (70) and the inequalities (71), (72) give finally the following
inequality,

d(c->y\ beBj(y), yeλj. (73)

Let us gather the results of this section in

Proposition 3. The transformation (47) satisfying the identity (48), i.e. linearizing the
averaging operation Q(ηA\ is defined and analytic for A satisfying (43) with ε3

sufficiently small (e.g. \%C2B0dc1(^)ε3 ^ 1, 2ε3 ̂  c4). The range of this transformation
contains the set (43) with ε2 ^iε3, and is contained in the corresponding set with 2ε3

instead ofε2. The function D(A) satisfies the bound (55) and its functional derivative
satisfies the bound (73).

In the next section we will need the following remark. The operator ΐ)(A) is an
analytic function in A\ and its expansion begins with a linear term in A', coming
from the differentiation of D(2\A) = C(2\Af). If we subtract these terms from ΐ>(A')9

then we get an operator Q2(A) for which we have the bound (73) with ε3 instead of

£3-

D. Equations for a Solution of the Variational Problem

Let us come back to the variational problem (41)-(43). We make the change of
variables (47) and we consider the functional

' - HD(A'\ Δπ(A - HD(A)) > + VQ(A' - HD(A)) (74)

on the space of field configurations A satisfying

LjηQjA' = B on/l7 ,7-0,l,.. .,/c, \B\<2dLC1ε1, (75)

RD*(A' - HD(A')) = RD*A = 0, (76)
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\A'\<B3(LJηΓl,\VA'\<ε3(LjηΓ2 onΩj9j = Q,l,...9k. (77)

We assume that ε3 is so small that the range of the transformation (47) is contained in
the set of configurations A for which the representations and the inequalities of the
previous sections hold. We assume also that ε2 ̂  iε3> hence by Proposition 2 it is
enough to prove that the functional g considered on configurations A' satisfying
(75)-(77) has exactly one critical configuration.

Let us now decompose the functional *$(A') into a sum of terms of zeroth, first,
second and higher, orders in A'. The zeroth order term is A(U0). Similarly, the first
order term is the same as before and equal to </Γ, J>. The expression (HD(A'\jy
may be decomposed into terms of second and higher orders. Taking into account
that the second order term D(2\A) in the expansion of D(A') is equal to C(2\A)
= CΦ(LjηA') on ΛJ9 we have

jy = <HC(2\A')9jy + (HD3(A'\jy. (78)

Thus a quadratic form in the expansion of $(A') is equal to

(79)

where we have used again the fact that A' satisfy the Landau gauge condition
RD*A = 0.

Now let us write higher order terms. They determine the functional

V(A') = - <H/>3(ΛV> ~ <A',ΔπHD(A')y

+ ̂ HD(A\ ΔπHD(A')y + V0(A' - HD(A'}}. (80)

It is analytic in A' for A' with values in the complexified algebra and satisfying (77).

We consider the functional

on the space of configurations A' satisfying (75)-(77). To find critical points of this
functional we have to find A' in the considered space, such that the equation

o (82)

holds for all δA in the tangent space, that is δA satisfying the conditions

QδA = 0, RD*δA = 0. (83)

We have to calculate the functional derivative of 8M'). From (81) we have

(84)

The functional derivatives above are calculated without any restrictions on
variations, these restrictions are imposed on A'. Of course we use the fact that the
functional %(A') is defined on the space of all configurations A with the regularity
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restrictions only. Let us calculate and estimate the functional derivative of each term
in V(A') separately. For the first term we have

b'
" 1 '

and from the bound (73) it follows that

Σ (L^ηγtτJ(bf)H(bf

9c^2(Af'9cl9b)9 (85)

ϊ ~ 3

^ -d+le-(l/2)60d(Cl^,y)

(86)

We have gathered together all the constants into an absolute constant 0(1).
For the second term we have

')y = (A'9(Δκ + DRD*)HD(A'))y

(87)
hence the functional derivative is equal to

β*(βGβ*)~ \U( '}η)~ 1D(A) - Q*a(Lj( '^)~ 1D(A')

(88)

Applying the inequalities (3.132) from [5], (55), (73), and remembering that the
symbol a above represents the operator of multiplication by (Lj('}η)~2 (we put the
constant a = 1), we can estimate this functional derivative by O(l)εl(Ljη)~3 on Ωj.

The functional derivative of the third term in V(A') is equal to

%*(A')H*ΔπHD(A)

= 3>*(>0(J^ΓW (89)

and can be estimated by 0(l)εl(LJη)~* on Ωj.
An analysis of the last term on the right-hand side of (80) is more difficult because

the functional V0 depends on derivatives DA also. We decompose V0 according to
the formula (39), and we consider the functional V0 at first. We have

V'0](A'-HD(A'),Sp)
pest(b)\OA(0) )

\ (90)
pest( )\θ )

where st(b) denotes a set of plaquettes p such that b c dp. The derivative
((d/dA(b))V'0)(A9dp) satisfies a bound similar to the bound (40) for the function
V'0(A9dp)9 but with the power of \A\ lower by 1, and with a different absolute
constant. This implies that the functional derivative (90) can be estimated by

Finally we have to consider terms connected with the first expression on the
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right-hand side of the equality (39). Let us notice that the "primes" in this expression
have a different meaning than here, they are connected with an application of the
operators R(U0). Now we denote the corresponding expressions by A" instead of A'.
When we make the change of variables (47), we get many terms. The functional
derivative of these terms can be easily estimated by O(l}&\(Uη}~^, if the covariant
derivative in (39) acts on HD(A'). Let us consider the terms with the derivative acting
on A'. A typical term is

i\_A\ A"^ , (91)

the other terms are obtained by replacing some A' in the commutator by — HD(A').
The functional differentiation gives three terms

A"^ + [X",δX"])>, (92)

and the functional derivatives connected with the second and third terms are
estimated easily by 0(1)|ZX4'| \A'\. We transform the first term integrating by parts,
and we get the functional derivative given by

iD*£/[Λ",/l"3. (93)

This expression was already investigated in Sect. C of [6]. Let us recall that for a
plaquette p = <x, x + ηeμ,x + ηeμ + ηev,x + ηevy, μ < v, we have by (1.50) of that
paper

2iη[A'μ(x),(DμA'v)(x) ]

+ 2iη[(DvA
f

μ)(x)9A'v(x)] - iη

- iη[(DμA'v)(x\ Av(x)-] - iη2l(DμA'v)(x), (DVA ;)(*)]. (94)

If we apply the derivative D* to all the terms on the right-hand side of the above
equation except the first, then we can use the factor η to replace this derivative by a
simple difference operation. Thus these terms in (93) can be estimated by
0(l)|Vv4'| \A'\. Applying D* to the first term gives the expression

i Σ (/>*IX,4J)(x)-i X (D*[4,,/Γv])M. (95)
v < μ v > μ

Further let us recall the formula (1.52) from [6]:

x)]. (96)

From this it follows that the expression (95) can be estimated by 0(1) | VA'\ \A\ also.
Gathering together all these estimates we get the following proposition.

Proposition 4. Let us consider the functional V(A'} on the space of configurations A
with values in the complexified Lie algebra cjc, and satisfying the inequalities (77), i.e.
maxH/l ' l j - ! ) , \VA' (-2)} <ε3?/o r £3 = aι> where α3 is a sufficiently small positive
constant. The functional derivative ofV(A') is an analytic function on this space, and
satisfies the estimate
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δ

δA'
V <C4εl(LjηΓ*onΩp 7 = 0, 1,...,*. (97)

The constants <z3, C4 depend on d and L only. The above estimate can be formulated
also in the following way:

, , |VΛ') ^C4(max{μVi),(V,4Ί(-2)})2, (98)
<^4' / (-3)

and it is valid ί/max{|^' | (_1 ) ? |V^4'|(-2)} = az
Now let us consider the variational Eq. (82). Using (84) we get the equation

> + <δAt

9Δ1A
fy + δA',-V(A')=Q. (99)

\ oA

This equation has to be satisfied for all δA' satisfying

QδA' = 0 (i.e. Q δA' = 0 on Λj)9 RD*δA' = 0, (100)

and we are looking for a solution A' satisfying the conditions (75)-(77). We take the
operators Hl9 ^ defined by the operator A1. Let us recall that φ is an orthogonal
projection in a space of configurations A' with a scalar product defined by the
operator Δ± + D*RD + aQ*Q, onto a subspace of A satisfying the conditions
QA = 0, RD*A' = 0. We make the translation A = Al + H^B. Using the identity

=0 following from the definitions of H1 ? we get the equations

<δA',J> + <<5Λ',/Mι> + δA'~VA, + H.B) = 0, (101)δA

QδA' = Q9 RD*δA' = Q, QAί=09 RD*A1=Q. (102)

Because the regularity conditions (77) hold for A', and

\H1B\<B02dLC1εί(LjηΓ\ \VHiB\<BQ2dLC^i(LjηΓ2 on ΩJ9

2dLB0Clεί < BiCίε1 < ε3, (103)

so A1 satisfies

. (104)

Thus the set of configurations A restricted by (77) is contained in the range of the
translation A' = Al + H±B, defined on the set of Aγ restricted by (104). Let us notice
that if we take all Aί satisfying (104), then the image of the translation is contained in
the set of A' satisfying (77) with 3£3 instead of e3. All the representations and the
estimates obtained up to now hold in this situation also, if we impose correspond-
ingly stronger restrictions on ε3 and change the constants.

Now we will write equations obtained from (101) by removing the variations δA'.
We have to take into account Eqs. (102) for δA'. By the definition of ̂  we obtain all
the variations δA' satisfying (102), if we take δA' = tyδA for all variations δA9

without any restrictions. We get the equalities

*J>, (105)
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DRD* + aQ*Q)Ai >

lAvy, (106)

Applying them in (101) and using the fact that now δA are arbitrary, we get the
equations

(108)

QAι=Q, RD*Aί=Q. (109)

They are equivalent to Eqs. (101), (102). We denote by Gl an inverse operator to the
operator Av + DRD* + aQ*Q. Obviously we have Δ1Al = G^lAl and Eq. (108)
implies

+l/1B) = 0. (110)

In [5] we have proved that the operator G xφ* is equal to the operator (5 defined by
(3.148) and satisfying the equalities Q(S = 0, RD*($> = 0. Thus any solution of (110)
satisfies automatically Eq. (108), (109). Let us rewrite this equation using the
operator (5,

(Aι+HlB) = 0. (Il l)
δA

Let us summarize the results of the discussion concerning the variational
problem.

Proposition 5. All critical configurations U1 of the functional A(Ό ̂ U^) in the space
defined by (1 9)-(21 ), U0 satisfies (1 4), can be obtained from solutions ofEq. ( I l l ) in the
space (104) by the transformation

17 ! - exp iη [̂  + H^B - HD(A1 + H^)]. (1 12)

Let us make some remarks about the constants ε0, ε l s ε2, ε3. In the previous
sections they were independent, although restricted by the conditions:

£38^80, B 1(ε 0-fC 1ε 1)gε 2, ε2^iε3, (113)

ε3 sufficiently small. We get best restrictions on ε0,ε1 (i.e. largest constants aθ9 aj if
we take

62 = ̂ 1(60 + ̂ 6!), ε3 - 4ε2 - 4^1(ε0 + Cl£l). (114)

Restrictions on ε3 are transformed into restrictions on ε0, ε^ In the future we will
keep using different ε's.

E. An Analysis of Equation (111)

Let us consider this equation for configurations Al in the space

i.e. maxd^^, |VA 1 | ( _ 2 ) }<ε 4 .

(115)



Variational Problem and Background Fields for Lattice Gauge Theories 295

We will prove that for ε4 sufficiently small the equation has a unique solution, and
the solution is in the space (115) with ε4 = 0(ε1).

A solution of Eq. (Il l) is a fixed point of the transformation

A, - <5J - <S --
δA

At first let us investigate for which ε4 this transformation maps the space (115) into
itself. By Theorem 3.13 of [5] the norm max{| | ( _ 1 ) 9 |V | ( _ 2 ) } of the transformation
can be estimated by

* ,
~δA (-3)

(117)

if ε4 + B0\B\ ^ α3. Further, we have the bound B\ < 2dLC1ε1; hence the transform-
ation (116) transforms the space (115) into itself if

ε4 + 2dLB0C1ε1 ^ α3, B0C4(ε4 + 2dLB0Cίεΐ)
2 ^ ε4. (118)

These conditions are satisfied if e.g. 2B0C1B3ε1 ^ ε4 and ε4 ̂  a4 for a sufficiently
small a4.

Next, let us investigate when the transformation (1 16) is contractive. A difference
of its values at configurations Al9 A2 can be written as

0

J (119)

The norm max{\ \(-ί}, |V | (_ 2 )} of this expression can be estimated by

δ

δA' (-3)

— sup sup

^BO^ ,

^2)|(-2)}, (120)

where we have taken r = (ε4 + B0\B\) (maxd^ — A2 (-D, \V(Aί — -42)l(-2)})"1

We have to assume also that 2(ε4 + B0\B\) ^ α3, in order to be able to apply
Proposition 4. Thus the transformation is contractive if

2ε4 450C4(ε4 + 2dLB0C1εί) ^ (121)

Assuming 2B0ClB3εl ^ ε4, the above conditions are satisfied if ε4 ̂  α4, where a4 is a
sufficiently small, absolute constant. Thus we have proved the following

Proposition 6. There exists a positive, absolute constant a4 such, that for ε4 ̂  a4 and
ε1 satisfying 2B0C1B3ε1 ^ ε4 Eq. ( I l l ) has exactly one solution in the space (115). This
solution satisfies the bounds (115) with ε4 = 3B0ClB3εl. Moreover, if we replace the
configuration H^Bbyan arbitrary configuration $1 with values in the complexified Lie
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algebra, and satisfying the same bounds asH^B, then the above statement is again true
and the solution is an analytic function o/$ί.

Only the last statement requires an additional comment. The first part of it is
obvious, and the analyticity follows from the fact that the solution can be
constructed as a uniform limit of a sequence of successive approximations. The
analyticity of these approximations follows from the analyticity of δ/δA' V(A') as a
function of A'.

Now let us draw some conclusions concerning the basic variational problems (5),
(19)-(21), and (5), (6). Let us consider the first problem. If we take ε4 = 8ε2, and if we
assume 8ε2 ̂  a*. and 2£0ClJB3ε1 rg 8ε2, then by Propositions 5 and 6 there is at most
one critical configuration of (5) in (19)-(21). We get the same conclusion for the
second problem if we take ε2 — ^ι(εo + ̂ ιcι) an<^ assume the above restrictions. To
get simpler formulations let us take ε2 = B^Q + 5dLB0C1B3ε1 (we have B±
= 5dLB0), then the second condition above is satisfied automatically. The first
condition gives restrictions on ε0, ε^ To simplify them let us use the assumption
#3^1 ^ε0. We have

8ε2 ^ SBiβo + SB^fio ^ lό^C^o, (122)

thus if Jβ3ε1 ^ ε0 and IβB^C^Q ^ α4, then the functional (5) has at most one critical
orbit in the space (6).

Equation (111) has a solution belonging to the space (1 1 5) with ε4 = 2B0C1B3ε1 ,
if 2£0C1B3ε1 ^α4. This solution determines a critical configuration Uί by the
transformation (112), such that A = l/iη\og U1 belongs to (115) with ε4 given, for
example, by ε4 - 2(2B0C1B3εl + 2dLB0C1ε1) ^ 5dLBQC1B3ε1 = B1C1B3ε1 . This
gives us a critical configuration U1 satisfying almost all conditions (19)-(21), except
the bounds for the second order operators in (19). Unfortunately the regularity
properties of the operator (5 formulated in Theorem 3.13 [5] do not give us these
second order bounds. We need them because we want to conclude that the
configuration L^f/o belongs to the space (6) with ε0 = 0(εl), and then to apply the
results of [6], especially those of the Sect. F. To prove the second order bounds we
have to repeat some of the previous arguments with slight changes.

We have constructed a critical configuration of the functional A(U <JJ^ in the
space of field configurations satisfying (42), (43) with ε2 ̂  B1C1B3ε1. We want to
show that this configuration is also a critical configuration of the functional
considered on the space of field configurations satisfying (43) and

RD*A=f, /eΛ, |/ | ( _ 2 ) <yε 2 , (123)

where γ will be chosen as a sufficiently small, positive constant. To prove it we will
show that configurations with/ Φ 0 can be obtained from configurations with/ = 0,
i.e. satisfying (42), (43), by gauge transformations. Let us take a field A satisfying (42),
(43), and the configuration U1 = eiηA. We can consider Uί as obtained from some Uf

satisfying the axial gauge conditions Axfc(93fc,(70) by a gauge transformation u1

satisfying the conditions (1.29) [6], i.e.

j ' Λ 7 = 0,1,...,*. (124)

The gauge transformation u± is determined uniquely by U1 and is given by the
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formula (106) [5]. It was investigated in [6], and satisfies the bounds (1.70)-(1.74) of
that paper, with B1(α0 + α1) replaced by ε2. Now we are looking for a gauge

transformation uf satisfying the conditions RQU'UI — 1 on Λj9j = 0, 1, . . . ,fe, and such
that ul(u'Uί)~1 = Uuί~ί satisfies the second condition (123), i.e. u' satisfies the
following system of equations,

RD*— logt/ΐ '" 1 =/, ufί=RQu'u^= 1 on Λj. (125)

It differs from the equations considered in Sect. D of [6] only by the function/ on the
right-hand side above. For functions / small, e.g. satisfying the last condition in
(123), all the results of that section are valid, and Eqs. (125) have a unique solution.
This solution defines a configuration A = l/iηlogU*'1 satisfying (123). Thus the
space (43), (123) can be represented as a union of submanifolds, each submanifold
intersecting the subspace (42), (43) at exactly one point, and contained in an orbit of
the group of gauge transformations. This implies that the functional A(UJJ^ is
constant on the submanifolds, and a critical point in the subspace (42), (43) is also a
critical point in the space (43), (123). This conclusion applies to the constructed
critical configuration.

Now we apply the linearizing transformation to configurations in the space (43),
(123), and we get the functional (74), with the operator Δ instead of Δπ9 on the space
of field configurations satisfying (77) with ε3 ̂  4ε2, and the conditions

' = B on ΛJ9 j = 0, 1,. . .,fe, RD*A' =/, /eJR, (126)

/in the small neighborhood of 0. The constructed critical configuration A\ is in this
space. Let us notice that locally the only restriction on the configurations in the
space are given by the first equations in (126), therefore we obtain the following
equation on A\9

^ (127)

for all δA' satisfying QδA' = 0. The configuration A\ satisfies RD*A\ = 0, hence the
above equation can be written as

<(5^J> + <<5^4^>-<^ (128)

where Δa = Δ + DRD* + Q*aQ (the constant a = 1). For the operator Δ~ 1 = G we
have proved Theorem 3.3 in [5], and especially the bounds (3.42) for the second
order operator. This will allow us to improve the regularity properties of A\ .

We decompose A\ = A0 + H0B, where H0B is defined as a minimum of the
quadratic form j < A'9 ΔaA > on the subspace Lj('}ηQA' = B. We find easily that H0B is
given by

and satisfies the bound (3.133) [5] with the additional inequality for the covariant
Laplace operator
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KΛcAμvH*,/)! ^ B0(LJηΓ3(LJ'ηΓde-δod(y>y'\

xεΔ(y), yeΛj9 yfeΛJ,9 or \ΔUoHΌB\(-3)^B0\B\. (130)

By the definition of HQB and the condition QδA' = 0 we have (δA',ΔaH0By = Q.
Next, let us construct a projection P0 onto the subspace {A'.QA = 0} in the

space of fields A' onί20, with the scalar product ( ,zlα >. It is again very easy to find
that the projection is given by

-1β. (131)

Taking δA' = P0A', where A' is arbitrary, and substituting into Eq. (128), we get the
following equation,

= o.

(132)

By the definition of H0B we have QA0 = Q, hence POAQ = AQ, ΔaA0 =
(A -f DRD*)AQ. The above equation is satisfied for arbitrary A, hence we get

(133)

The bound (28), the inequality (3.137) [5] for the operator Δ (2\ the inequality (97) of
Proposition 4, and the bounds | A\ \( _ υ, | VA\ \( _ 2) < ^B1 C1B3s1 imply that the right-
hand side of (133) can be estimated by 0(\)C1B3>εί(Ljη)~3 on Ωj. The configuration
AO = AΊ — H0B satisfies similar bounds as A'l9 and we have

(Δ + DRD*)A0 = (D*D + DD*)AQ + (Δ'- DPD*)AQ, (134)

(D*DA0)μ(x) + (DD*A0)μ(x) = (Δ UoAQ,μ)(x)

0(x, x + ηeμ)U0(x -h f?eμ, x + ηeμ - ηev))

+ nev\ (135)

where p'μv(x) = < x + ryeμ - ^yev, x + fyeμ, x, x - ηev > , Δ ' and P were defined in [5] by
(3.10), (3.25). This way we have expressed (A + DRD*)A0 as a sum of /d^^o and a
bounded operator acting on A0. The bound for this operator follows from the
inequality (3.49) [5] for DPD*, the inequality (3.69) [5] for Δ, and the regularity
condition (14) for the configuration U0. This together with (133) and the discussion
following it implies the bound \ΔUoA0\(^3} < 0(l)C1B3εl, hence finally the bound

\ΔUoA'1\<0(l)C1B3ε1(LJηΓ* on ΩJ9 j = 0, l,...,/c. (136)

Now we apply the transformation (47) to the critical configuration A\ , and we want
to prove that the second term HD(A'1) in this transformation satisfies the above
bound also, besides the usual bounds following from (46), (55). We have to prove that
the operator H has better regularity properties than these described in (3.133) [5],
especially D*DH, ΔUoH are bounded in the norm | | (_ 3 ) . Indeed, (3.126) [5] yields

ΔπH = (Δπ + DRD* + Q*aQ)H - Q*a(Li(']ηΓ^
l(LJ('}ηΓl- Q*a(LJ"ηΓl, (137)
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hence \AJΆB\(-^ 0(1)|B|. Above we have used the equality RD*H = Q. This
equality implies also that Δ'πH simplifies essentially, where Δn = A — Δ'n is defined by
the formula (3.120) [5]. From this formula we get

y, (138)

and G'RD* is a bounded operator in the norm | |(1). The properties of HB and J
imply the bound

|, hence \ΔHB\(-3)£0(l)\B\. (139)

Finally we use the decomposition (3.10) [5], i.e. Δ = D*D + Δ', Δ' is a local, bounded
operator satisfying the bound |4Ήβ|(_3)^0(ε1)|J5|. This implies the bound

| (_ 3 ) ̂  0(l)\B\, hence

To get a bound for ΔUoHB, we write

- (D*D + DRD*)HB = (D*D + DD*)HB - DPD*HB, (140)

and we use again the formula (135), and the fact that DPD* is a bounded operator.
This gives the bound \ΔUoHB\(-3) ^ O(l)\B\.

Thus the transformation (47) applied to A\ yields the configuration A\
- HD(A\) = l/iη log U^ satisfying all the conditions (19)-(21) with ε2 = 0(l)C1J33ε1 ,
where 0(1) is an absolute constant depending on d and L only. Now we take the
configuration U^U0 and we apply to it a gauge transformation u satisfying the

conditions R0u = 1 on /ij9 and such that the gauge transformed configuration
(l/iϊ/o)" satisfies the axial gauge conditions Axk($$k, l/0). Let us define
Uk = (U1Uo)u. Proposition 7 [6] implies that Uk belongs to the space (18) with
ε0 = 0(l)C1B3ε1. It is a critical configuration of the functional (5). To see that Uk

is a minimum we apply the whole procedure with the configuration Uk instead of
UQ. We get a functional ^(Ar) for which the critical configuration is equal to 0.
This implies that a differential of g(A') at A = 0 is equal to <<5Λ',./> and Eq. (93)
has the form

/> = 0 for all δA':QδA' = 0, RD*δA' = 0. (141)

Further, let us notice that B = Q, hence the configurations A' satisfy the same
conditions as δ A, and we have </Γ,J> = 0. Thus the expansion (81) for this
functional has the form

$(A') = A(Uk) + $<A'9ΔίA'y + V(A'). (142)

A second order differential atA' = 0 is given by the quadratic form above, and it is
positive definite. Hence A' = 0 is a minimum of the functional (143) and this implies
that Uk is a minimal configuration of the functional A(U).

Let us formulate the above conclusions concerning the problem (5), (6) in

Proposition 7. There exist positive, absolute constants α0, a\ such that for ε0 :§ α0 and
#3ει ^ εo the variational problem (5), (6) has at most one critical orbit. Ifε^ :§ a\ , then
there exists a minimal orbit in the space (6) with ε0 = O(l)ClB3εί.

This proposition implies Theorem 1 but with worse bounds on the minimal
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configuration, and without the regularity results (9), (10). These regularity results
and the improved bounds will be proved in the next section.

Let us make few remarks about the alternative equation for the minimal
configuration. Multiplying Eq. (133) by G = Δ~l we obtain

A0 = - GPξJ + G

where A\ = A0 + H0B. By (131) we have the equality

GP* - G - Gβ*(βGβ*Γ 1 = &,

hence the above equation can be written as

Λ0 = ~ GJ + GΔ <2>μ0 + H0B) - G(^-V\AO + H0B). (143)

This equation has all the properties of Eq. (1 1 1) and Proposition 6 is valid for it also.
In fact it has better regularity properties, which we have used in the proof of
Proposition 7. However it cannot replace Eq. (Ill), for example it does not imply
necessarily that solutions satisfy the Landau gauge condition, which was used in the
derivation of (143). Thus we have to use both equations, (111) for proving the
existence, and (143) for regularity properties. In the future we will use more
frequently Eq. (143).

¥. Regularity Properties of Minimal Configurations

In this section we will prove all the regularity properties of minimal configurations
Uk. We will use only the fact that they are critical configurations of the functional (5)
and that they belong to the spaces (6) with ε0 sufficiently small.

Let us take a cube Π intersecting Ωj but not Ωj+1, of a size 2MLίη. We are
interested in two cases. To prove that Uk is in the space (8) we will take M = RίMl.
To prove the regularity properties (9), (10) we will admit more general M, depending
on ελ . In both cases M ̂  RιMλ and we assume that M is a multiple of R^M^ , i.e. M
= M'R1M1 , M' is an integer. We will use the notations and the results of the Sect. ¥
from [6], so we refer the reader for explanations to that paper. For a given Π we
construct the sequence of cubes (DM}> and the cube Π Let us recall that

D o ^ D i ^D^D, dist(ΠΛ + ι,Dc

B) = KιM1L"ι/, n = 0, 1,...J, (144)

and Π is a cube with dist(Π, Dc) = 2K1M1lΛ/. Thus Π / = D } u Π J , D}
c Bj~ l(Λj_ J, ΠJ c Bj(Λj) and Q c Bj~ l(A^ J u Bj(Λj) c β,._ x . For simplicity of
notations we assume that; = fe, a general case can be obtained by obvious rescalings.
Now we repeat all the constructions of the Sect. F in [6]. Applying a gauge

transformation to Uk we get a configuration Uk such, that U'kEAxk(£](k\ 1), and U'k
satisfies the generalized axial gauge conditions on Π(k). The configuration Uk

belongs to the space (2) with ε0 sufficiently small, hence U'k satisfies the conditions (2)
on Π with L2ε0f/2 on the right-hand side. This, Proposition 2 from [4], and the
generalized axial gauge conditions imply
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I Ϊ7~fc

k(x, x') - 1 1 < \χ - y\2L2ε0 ^ 4d(M + R^M^L2^ ^ 8dL2Mε0 (145)

for <x,x'> c Q(fc), y is a point of Π(fc) The inequality (1.65) [6] implies further

ε0 - ε0,

for <x,x'><=Dω, 7 = 0,1,...,*.

Let us notice that the gauge transformation changing Uk into U'k does not belong
to the subgroup (4) leaving the space (3) invariant. In fact the configuration V
defining this space is changed into a configuration V. We will be interested in V
restricted to Π/c More exactly V is defined on (Π/ί<^Λc-ι)u(Π/cnΛc) =
Πfc ( k~υ^ Πfc(k), and if we define V\ as

F; = F' onΠί(k), FΊ = K' onΠfe ( f c ), (147)

then FI satisfies the generalized axial gauge conditions on Πlk) with a center at the
point y.

We define

^^^(ΠΓΛDΓ^uDf-^ Λί=DΪ ( k ). 048)

Let us introduce a configuration V" defined on (Efc by

F"=ϊ/ϊ J onyl}, j = 0, l, . . . ,/c, hence K" - K' on Π f c

( / c~υu Πf0. (149)

This definition implies

E fc, 1), (150)

where fl}=Πj, 7 = 0, l,...,/c- 1, β;= Πϊ-
The configuration U'k is a minimum of the functional (5) in the space (6) with V

instead of F, hence it is a minimum of this functional in the space (150), because this
space is defined by more restrictive functional conditions and a sufficiently small
neighborhood of U'k in (150) is contained in (6). The bounds (146) imply

|F"-l |<9dL 2Mε 0-c 0 on(£k. (151)

Now we apply Theorem 2 of the paper [6] to the pair of configurations Uk, I (in
place of U'UQ9 U0 in that paper). We assume that 9dL2Mε0 g cl . Then there exists a
unique gauge transformation u satisfying the restrictions ΰj = 1 on Λ'J9 and such that

Ljη\A\, (LJη)2\VA\, (Ljη}3\d"*d*A\, (L^)3|4M| < 9dL2BlMε0

on Ω'p ; = 0, l , . . . , / c ; (152)

Rdη*A = Q9 (153)

where the operator R is defined for the sequence {ί2}};

ϊ/i(x,x')= F"(x,x')for<x,x/>e/i;., x^'eΛ},
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, for
_ xιeB(x)

<x,x'>e/l}, xeΛi-!, x'eΛ}, (154)

by Eqs. (1.31) in [6]. If we denote by Vl the configuration on the right-hand sides of
(154), then

K! = £»''* with |£|<18d2L3Mε0, (155)

for cl sufficiently small, and the equalities (154) can be written as

Qj(ηA) = B on Λ'p j = 0, 1, . . . ,/c, or simply βfaΛ) = β. (156)

Now we proceed as in the previous sections, i.e. we make the change of variables
A = A' — HD(A'). The configuration A' satisfies (152) with 36 instead of 9 on the
right-hand side. We have to assume that 36dL2B1Mε0 ^ α3 in order to have a well-
defined functional 'ft(A'). It is much simpler now and can be written as

' - HD(A!\ d**d\A' - HD(A'))y + V0(A' - HD(A'))

' = Q, LjηQjA' = B on Λ'J9 j = 0, l , . . . ,/c. (157)

Of course we can apply these transformations to all configurations in the space (150)
and we get an open set of configurations A' satisfying (152) with the bound
36dL2£1Mε0, and the above equalities. Repeating the arguments of Sect. E we
extend the domain of A to configurations satisfying (123) instead of (157). The image
of U'k is a minimum of g(A'), thus representing it as A1 -f HB, we obtain Eq. (143) for
A ±. In the considered case it can be written as

( e \

— V\(A1+HB) = 0. (158)

The configurations HB and A1 satisfy (152) with the bounds 4dL2B1Mε0 and
40dL2B1Mε0 correspondingly. The image of U'k translated by — HB satisfies Eq.
(158). We assume that it belongs to the domain on which this equation has a unique
solution, i.e. we assume that 40dL251M ε0 ̂  04. We can write it as an assumption on
ε1 using Proposition 7, more exactly the equality ε0 = 0(l)C153ε1 . Let us notice that
for the purpose of the proof of the regularity properties we can take Cl = L3, as it
follows from the constructions at the beginning of the Sect. A. Thus our assumption
is of the form O(l)B^Mε1 ^ α4.

Let us notice that all the operators in this section are taken without any external
gauge field configuration (or alternatively with the configuration equal to 1). These
operators were considered in [2,3].

We have to consider two situations. To prove that Uk belongs to the space (8) we
have to prove the inequalities (2) with ε0 = 53ε1 . They are local, and for a plaquette
p, or a bond fe, we take a unit cube Δ0 c Bj(Λj) containing p or b. The cube Δ0 is
contained in a big cube of the size 2R1M1L

jη and we take Π as this big cube. It is
enough to prove the inequalities (2) for the configuration U'k, and for plaquettes and
bonds belonging to Δθ9 with ε0 = B3ε1 and j = fc. These inequalities, and the gauge
invariance of the left-hand sides of (2), imply that Uk belongs to the space (8). In this
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case we take y as a point defining Δθ9 i.e., Δ0 = Bk(y). We have to prove also the
regularity conditions (9), (10) for a cube Π of a size 2M. In this case y is a center of Π

We have constructed the configuration U^ = eιηA, and A is given by

A = Aγ + HB - HD(Al + HB), (159)

where Av satisfies Eq. (158). We know also that Av + HB satisfies the bounds (152)
with 36dL2BlMε0 = 0(\)B^Mε^ on the right-hand side. Let us consider the
configuration HB on the cube Π Now we use the assumption (7) for K, hence for V.
It implies that | V\(dp) - 1 1 < ε1 for pe Πfc(fe)> and | V\(dp) - 1 1 < 2L2εί for p c Πf }

and 6j_ small, where the configuration V\ was defined by (147). It satisfies the
generalized axial gauge conditions on Π[fc) with a center at the point y, hence
\V\(x,x')-l <\x-y\2L2ε1 for <x,x'> c Πlk) If <x,x'>eΠΪ ( lk), then F'^x')
= F'(x, x') = V"(x, x') = Ft(x, x'), the last equality follows from the definition of Vί in
(154) and from the assumption that V" = V on Πfe k ~ 1 ) and V'eAx^Π™* 1)» hence

K//(JΓC>X1)= 1 for x^^x), xeΠ!tί/c) Thus the above estimate implies that |β(x,x')|
< |x — y|4L2ε1. If <x,x 7> c Πίcί/c)

? then we apply the Lemma 1 of [6]. We consider
the set Λ ' = B(x) u B(x'), and the assumptions of this lemma are satisfied for V = V"
= V1 with a0 = L2ε1, oc1 — \x — y\2L2ε1. The lemma implies that \ V 1 ( x ί , x f

1 ) — ί\
<4d2L2ε1 + |x-y|2L2ε1 for <x1,x'1> c B(x)uB(xf), hence \B(x1,x'ι)\<&d2L2εί

-f \xί — _y|4L2ε1. Finally we have

|J5(x,x/)|<(8J2L2 + 4L2 |x-j;|)ε1 for <x,x'>eΠf "υu π;/(/c). (160)

This bound and the global bound (152) imply the following bounds on the cube
Δ(yl\ Δ ( y 1 ) = Δ0 or

\HB\9\VηHB\,\dη*dηHB\,

<dB0 X e-

where >Ίe45 and M Δ = 1 for 1̂ = 40, M^ = M for ^4 = Π It is now clear how we
should define B3 . Let us take

Γ1' (162)
(£k JΊ y2e^k

It follows from the inequalities (2.47)-(2.51) of [3] that B3 depends on d and L only.
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We may assume that R1M1 is sufficiently big, so that

Then we get on Δ

\HB\, \VηHB\, \dη*dηHB\, \Δ'ΉB\<%MΔmax{B3ε1,$ε0}. (164)

This bound, the equality (159) and Eq. (158) imply

\A\,\VA\, |d**Λ4|, |4M|<iM4max{B3 f i l,i f i o}

+ B0C4(36dL2B1Mε0)
2 + B04C2(36dL2B1Mε0)

2

^$MΔmax{B3εl^ε0}+B0(C4 + 4C2)(36dL2B1R1M1)
2(M'ε0)

2, (165)

where M' = 1 in the first case, where Π is a cube of the size R1M1 containing Δ09 and
M' = (R1M1)~1M in the second case. We take a largest absolute number a5 such
that M 'ε0 ̂  α5 implies all the previous restrictions on ε0, and such that

BQ(C4 + 4C2)(36dL2BlRiMl)
2a5 ^ £. (166)

If M'ε0 ̂  a59 then we get

1 4 1, |VM|, |<^*<3M|, |4M|<iM4max{B3ε l 5iε0}+iM'ε0 on A

(167)

Now let us draw conclusions concerning the regularity of U'k from the above
inequality. We take Δ = ΔQ9 hence MΔ= 1, M' = 1, and we have this inequality with
ε' =imax{B3ε l J^-ε0} on the right-hand side. This and the inequality (1.54) of [6]
imply

I < ε' + 86dε'2 < 2ε' on ΔΌ (168)

for ε' small, similarly for \dU1 — ί . Again using the fact that U1 is a gauge
transformed £/£ on Δθ9 and that the conditions (2) are gauge invariant, we conclude
that U'k satisfies (2) on Δ0 with max{β3ε1,|ε0} instead of ε0. The cube Δ0 is an
arbitrary cube Δ(y) = Bj(y), if yeΛj9 hence Uk belongs to the space (2) with
max{B3εί,^ε0} instead of ε0. If yε0 ^ B3ε1? then the required regularity is proved. If
^ε0 >B3εl9 then we apply again the whole reasoning with ^ε0 instead of ε0. We
continue this way until we reach the bound B^ε^.

Let us formulate this result in

Proposition 8. There exists a positive, absolute constant a5 such, that ifU is a critical
configuration of (5) in the space (6) with V satisfying (7), and ifεQ ^ α5, then U belongs
to the space (8).

We have constructed the minimal configuration Uk in the space (2) with
e0 = 0(l)#3εl5 hence we have the additional restriction on ε^ 0(l)53ε1 ̂  a5. Now
we define al as a largest constant such, that the restriction ε^^a^ implies all the
other restrictions we have imposed on ε^ . Especially it implies that Uk is in the space
(8).

Let us consider the second case, i.e. Δ = Π with a size M. We may take
advantage of the fact that we have proved the regularity property (8), thus we take
ε0 = 53ε1. Assuming M'53ε1 ̂  a59 we get from the inequality (167),
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(the left-hand side of (167)) < ̂ MB^ + iM'jB3ε1 < ̂ MB^ . (169)

The condition M'ε1 ^ aί implies M'B33ί rg α5, hence we have proved the regularity
conditions (9), (10), and the proof of Theorem 1 is completed.

G. Analyticity and an Expansion of Uk

The minimal configuration Uk is a (multi- valued) function of the average variables V,
Uk = Uk(V). We will show that it is an analytic function of V in the following sense: if
V = VΎ09 V small, l/0 = Uk(V0)9 and if we fix a gauge condition for Uk(VΎ0)Uo \
then it is an analytic function of B = 1/ilog V and it has an expansion as a power
series in B. In fact we are interested more in this expansion than in an analyticity
property, because a particular example of it is the expansion in fluctuation variables.
This is one of the main steps in our procedure.

Let us make a remark concerning the minimal configurations Uk. If we take such
a configuration as U0 in the expansion (74), then Eqs. (82), (99) are satisfied for
A. = 0, hence we have

> = O f o r δA':Q(Uk)δA' = Q, R(Uk)D1j*kδA' -0, (170)

where

The above condition can be written simply as the equation

Φ*(Uk)J = Q (171)

Now let us take V = VΎ0, VQ satisfies the condition (7), V satisfies

\V'-\\<Clεl9 hence V' = eίB'9 \Bf\<2C1ε1 on 93fc, (172)

for Si sufficiently small. We take U0 = Uk(VQ) and we consider the pair of
configurations Uk(VΎ0)9 U0. We repeat the whole procedure of Sects. A-E for this
pair. At first we fix the Landau gauge for the configuration Uk(VrV0)UQ 1 = U1 , and
we have

U1 = exp ίη 2tf(B\ tf satisfies the conditions (19)-(21) with

ε2 = B1(B3(1 + 4(̂ 1 + C^O ̂  6B1β3C1ε1 - B^. (173)

We assume that C1 is an absolute constant, hence B5 is such a constant also. The
configuration 2? is represented as

+ H^B\ (174)

where stf v satisfies the equation

5)"α (175)

and the regularity conditions (19) with s2 = ^B5ε1 . The function on the right-hand
side of (174) is an analytic function of ̂ 1 + H1B, and we have discussed its
expansion in Sect. C. It is generated by Eq. (56) and by recursive equations obtained
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from it. The function stf 1 , as a solution of Eq. (175), is an analytic function of H ^B,
hence of B. An expansion of stf ^ in H^B can be obtained again by taking an
expansion oΐ((δ/δA')V)(A') in A', substituting it in (175) together with the unknown
expansion of stf ^ , and then solving a recursive system of equations. Let us notice that
it begins with a term of second order in H^B, more exactly we have

This implies that the expansion of 2tf begins with the first order term H ίB. Let us
write first and second order terms in it

}+'". (Ill]
OA

We can generate this way terms of an arbitrary order in the expansion.
Now let us write the alternative condition for the minimal configuration Uk, and

the alternative equations for J^f and stf. The condition follows from Eq. (127). We
take U0 = Uk, and then it is satisfied for A\ = 0, hence we obtain

<<5,4',J> = 0 for δA' .Q(Uk)δA' = Q9 (178)

or

This is obviously a more general and natural condition, because it does not involve
any gauge fixing restrictions on δA', and none such restrictions appear in the
formulation of the variational problem either. This condition can be written in
several different forms also, for example we can use the averaging operations Q
instead of Q, or mix these operations. The configuration ffl can be represented as

H0B\ (179)

where j/0 satisfies the equation obtained from (143),

We may simplify this equation including the operator — Δ(2) into the definition of G,
i.e. defining G = (Δa - Δ(2))~ *. From the estimate (3.137) it follows that Δ(2) is a
small perturbation of Δa, and the new operator G has exactly the same properties as
Δ~l. Using this new operator G we obtain the equation

S/Q - GΔ(2}H0B + G( —-V W0 + //Oβ) - 0. (180)
VM /

It is an equation of the same type as (175), and it has the same analyticίty properties,
and an expansion of the solution j/0 can be generated in the same way as for (175),
i.e. we have the corresponding formulas (176), (177). The advantage is that the
operators in (180) have better regularity properties than the operators in (175)-(177).

Independently of the representation chosen, the function ffl(B) is an analytic
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function of cjc- valued configurations B defined on 23fc and satisfying (172). We make
the gauge transformation inverse to the one applied previously, i.e. we transform the
configuration in the Landau gauge back to the axial gauge. This transformation is
an analytic function of <#? , hence of B, and we obtain a gauge field configuration in
the axial gauge, which we denote also by Uk(W0). It is an analytic function of V, for
V with values in a small neighborhood of the identity in Gc, and for V with values in
G it coincides with the minimal configuration constructed in the previous sections.
This function can be extended further using gauge transformations. For the minimal
configurations in the axial gauge we have

Vk(V»)=Uk(V)*9 (181)

where ϋ is constant on blocks B\y\ ye/ly, and equal to v (y). This equality extends by
analyticity to Gc-valued configurations V described above, and then, again by
analyticity, to Gc-valued gauge transformations v in a small neighborhood of G-
valued transformations. This means that we can prove the equality (181) for all these
v for which Vv is in the analyticity domain of Uk. We can extend it to all Gc-valued v-
treating the equality as a definition for the remaining v . Thus Uk(V) is defined on all
orbits of the group of Gc-valued transformations, which contain elements V = V'V0

described before. It is an analytic function on the union of the set of orbits, and it
satisfies (181). We will use these statements in a subsequent paper.

Now we consider another important problem connected with the function j^f(B).
In the future we will have to use decay properties of the functional derivative
(δ/δB)J^(B). We will prove that this derivative has regularity and decay properties
identical to the propagator H, or HQ. The proof will be similar to the proof of the
decay property (73) for the derivative (δ/δA')D(A'). The functional derivative
(δ/δB)J^(B) satisfies a linear equation obtained by differentiations of the equations
determining 3tf(B\ For example we consider Eqs. (179), (180). Differentiation of (179)
yields

~^=^^0 + H0-H(^(s/0 + H0B),~^0 + H0\, (182)
oJb On \ OD I

where the last scalar product is with respect to bonds in Ω0 in f/-scale. Differentiation
of (180) yields

/SR~^ υ ' ~ \ l ζ Af ' iv^*" υ ' " υ~/5 £ r > ' L ' s ' ' < J | - " υ / "-•<-• "υ H*-^/

Let us denote 2l0(fe, c) = (^/(55(c))j3/0(B, ft). We may fix a bond ce93fc and consider the
above equation as an equation for the function 2l0( ,c). This equation can be
written as

(184)

where the derivative (δ2/δA'2)V is treated as a kernel of a linear operator. For a
configuration A' satisfying (77) with ε3 sufficiently small we have
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r τ _ 0 = -ϊ- f !ίi .JL-F (Λ' + τSl)1 τ-υ /% . j 2 \ s ΛI / v 7

and taking

we get from Proposition 4

δ2

(185)

JA'

This implies the bound

δ2

(-3)

(-D

-2)J (186)

(-2)

(187)

for εx sufficiently small, hence the norm of the linear operator is small also. Thus Eq.
(184) can be solved by the Neumann series expansion

(188)
To prove an exponential decay we have to investigate more closely the kernel
((δ2/δA'2)V)(Af). This is, unfortunately, a very awkward and complicated problem,
although quite straightforward. Already the first derivative of V is complicated and
given by many formulas, see (85), (88), (89), (90), (93). Now we have to differentiate
those expressions second time. We do not perform these calculations here, we have
obtained all necessary results to do the calculations and estimates, let us formulate a
final result only. We have

2

1

(189)
for supp$ί c Ά(y'\ A' satisfying (77),
This inequality, the formula (188) and Lemma 2.1, and finally Proposition 2 and
(181), yield

v(/)

'μ(B,x), Δlt

'fμ(B>: •ΓMOT̂

for xeΔ(y), or supp ζ cΆ(y\ yeΛj9 y'eΛr.
There is another important dependence of the function ffl. It depends on the

gauge field configuration Uk through the functions and the operators in Eqs. (174),
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(175), or (179), (180). These functions and operators can be extended to arbitrary,
regular configurations (7, precise definitions are given in [4-6]. They are analytic
functions of these configurations, having the properties and bounds as described
above, and the equations determine an analytic function 2tf. All the above
considerations and properties are valid for this function also.

Let us formulate the results of this section.

Proposition 9. The minimal configuration Uk(V) = Uk(V V0) in the axial gauge has an
extension to an analytic function of Gc-valued small configurations V on 23Λ. It can be
extended further to all orbits of such configurations V'VQ by the equality (181). The
function U^V'V^U^V^'1 transformed to the Landau gauge is, by the definition, equal
to exp iηJ4?(B)9 where B = 1/ilog V. The function 3f(B} is determined by Eqs. (174),
(175), or (179), (180). It is an analytic function ofB, and also of the external gauge field
configuration U satisfying the regularity conditions (3.35)-(3.38) [5], or (1.7)-(1.9) [6].
It satisfies the conditions (19)-(21) with &2

 = ̂ 5&ι (see (^73)), and its functional
derivative (182) satisfies the inequalities (190).
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