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Abstract. Lattice monodromy fields are defined and the massive scaling regime
is controlled.

Introduction

In this paper we introduce a family of lattice fields in two dimensions which are
related to and include the two dimensional Ising field. The introduction of these
fields was inspired by work of Sato, Miwa, and Jimbo (SMJ) on the Riemann-
Hilbert problem [17,11] and the analysis of the Euclidean Dirac equation in [17,111]
and [17, IV]. In a sense explained in Sect. 2, the fields introduced here are lattice
analogues of the continuum fields used by SMJ in [17, IV].

I believe these lattice fields are interesting for a number of reasons. First, by
working on the lattice and controlling the scaling limit one may make mathemati-
cally precise sense of the Euclidean wave functions used to such good effect in SMJ
[17, IV]. Much of the present paper is devoted to laying the foundation for an
analysis of the scaled correlations carried out along the lines of the analysis of the
Ising correlations in [9]. Second, the numerous analogues of continuum structures
on the lattice suggests the possibility of a discrete "SMJ" analysis of the lattice
correlations. Work of McCoy, Wu and Perk [3-5,11], which demonstrates that the
Ising model correlations may be expressed in terms of the solutions to non-linear
partial difference equations leaves one with little doubt for the future success of such
a program for the more general models considered here. The second section of this
paper is devoted to a cursory look at the lattice wave functions, the finite difference
equation they satisfy and the characterization of a finite dimensional family of
solutions with prescribed branch points and monodromy (Theorem 2.0). The
difference between the lattice case and the continuum case is instructive and I believe
the role of the τ-function is considerably clarified in the lattice formulation (see the
proof of Theorem 2.0). A third reason I am interested in these fields concerns critical
scaling limits. By such a scaling limit we mean the large scale asymptotics for the
correlations at the critical temperature (zero mass limit). It is something of a scandal
that despite the enormous amount of work that has been done on the two
dimensional Ising correlations there is still no definitive account of the large scale
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asymptotics for the higher n-point functions at Tc (by definitive I do not mean
mathematically rigorous, I mean an account which informed physicists agree settles
the matter). I believe the reason is a somewhat hidden mathematical subtlety in the
Ising model and that the matter will not be resolved short of a rigorous
demonstration. In a sequel to this paper we will rigorously calculate the long range
critical asymptotics for a subclass of the monodromy fields considered here. It will be
seen that the Ising model sits on a branch cut for these asymptotics as a function of
the monodromy parameter. In this paper, the special role of the Ising monodromy
parameter λ = — 1 can also be seen in the third section on the massive scaling limit.
Finally the fields introduced here may be used to write down "solvable" lattice
approximations to the Euclidean versions of the Federbush and massless Thirring
models. Recently, S. Ruijsenaars has established the Wightman axioms for the
Federbush model [13]. Ruijsenaars works directly in the Minkowski regime and
interprets his fields as densely defined quadratic forms. In his work relativistic
covariance is easy but locality is hard. This situation is reversed in the Euclidean
lattice approach (see [9]). In other work Ruijsenaars has established scattering
theory results for the Federbush and massless Thirring fields [15] and has
determined the short distance singularities of the two point functions for these fields
[16]. The results of the present paper might be used to make a Euclidean attack on
these problems with additional results expressing the correlations in terms of
solutions to nonlinear differential equations.

This paper depends heavily on the formalism developed in [10] which in turn
was inspired by Segal and Wilson's paper [18]. The reader is referred to these works
and [7] for the material on spin representations necessary to understand what is
going on here. We are now prepared to describe the results in this paper.

Section 1 contains a detailed analysis of the "spin operator" ε and its relation to
the transfer and translation operators. The joint spectrum of transfer and translation
is shown to be an elliptic curve Mc following [17, V]. There is a splitting of the
Hubert space on which the induced rotation for the transfer matrix acts which
determines the representation in which the monodromy fields act. This splitting can
be realized as L2(M+,C)0L2(M_,C), where M± are two distinguished cycles on
Mc. When the matrix elements of ε relative to this splitting are analysed it turns out
that they are convolution operators with respect to the parametrization of the
cycles given by the integral of the abelian differential. The kernels of these
convolution operators are elliptic functions (see 1.12) and this permits a diagonaliz-
ation which is carried out at the end of Sect. 1 and which is used extensively in the 3rd
section on massive scaling limits. In part this is an elaboration of the early work of
Yang [19] on the calculation of the spontaneous magnetization in the Ising model
(and was also suggested by results of Ruijsenaars [14] in a continuum limit). We
have tried to keep track of what is happening on the full complex curve as this will
facilitate the residue calculations of integrals such as those encountered in the
analysis of local expansions in [9]. We also wished to expose the geometry of the
situation as clearly as possible in the hope that a better understanding would clarify
the relation with elliptic substitutions that produce difference kernels in more
complicated situations (see Baxter [1] p. 272). This common feature of solvable
lattice models does not seem to be well understood. We calculate the one point
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functions for the monodromy fields as a ratio of theta functions (1.14a) and their
asymptotics as the critical temperature is approached (1.14b). At the end of this first
section we also indicate what happens "at the critical temperature" where Mc

degenerates to a singular curve.
In Sect. 2 we introduce the monodromy fields σ(M) ana attempt to motivate this

terminology. The correlations for these fields are lattice analogues of the τ-functions
introduced by Sato, Miwa and Jimbo [17, IV] for monodromy preserving
deformations, and by Miwa, Kashiwara, Jimbo and Date [2] for "spectrum"
preserving deformations.

We construct a family of solutions to a lattice analogue of the Euclidean Dirac
equation with prescribed branch points α l 5 . . . ,απ and monodromy M l 5 . . . ,Mn. We
show that there are finite dimensional families of such solutions which can be
characterized in much the same way that SMJ characterized a distinguished family
of solutions to the Euclidean Dirac equation [17,111] (see Theorem 2.0). It is
interesting that "most of the time" (τ(α, M) / 0) there are no non-trivial solutions to
the homogeneous finite difference equations with prescribed monodromy which
vanish at oo. There are however families of solutions with localized inhomogeneities.
The solutions are uniquely determined by the inhomogeneous term precisely when
the τ-function (τ(α,M)) does not vanish. The formula (2.8) for the wave functions
with localized inhomogeneity is then a group theoretic Fredholm formula for the
solution of a linear equation. It is interesting to see what happens when the lattice
solutions are scaled to their continuum limits. The inhomogeneity can be "hidden"
at the branch points (this is done for the Ising case in [9]) or it can be left "out in the
open" to become a normalization point (as is done for the Riemann-Hilbert
problem [17, II], see also the recent work of Malgrange [6] for a beautiful geometric
analysis of the deformation problem). Section 2 concludes with some results for
monodromy fields σα(M)σb(M~l). Such products can be expressed as path ordered
exponentials of "currents" for paths joining α to b on the lattice. The monodromy M
can be thought of as emerging at M and then disappearing at b. This "containment"
of monodromy seems to be important for results concerning limits of correlations as
the critical temperature is approached. In a sequel we will study the behavior of the
critical correlations for products of pairs σα.(Mί)σb.(Mί~

 1)(i = 1,... ή). We also show
that the critical correlations <σfl.(M1)...σflM(Mn)) exist when M 1 . . .MΠ=1, by
making use of the similar result for such paired correlations. Finally (2.23) shows
that conjugation by the induced rotations for the monodromy fields preserves the
finite difference band structure of the transfer matrix. This is reminiscent of the iso-
spectral deformation of Toda type and may be a "reason" for the surprisingly
intimate relationship between s(M) and T revealed in Sect. 1.

In the third section we prove the convergence of the τ-functions in the massive
scaling regime. We also obtain explicit formulas for these functions as determinants,
but they are not written out in the general case; the general formulas being somewhat
unenlightening. We don't expect that these "mixed" τ-functions will be the
Schwinger functions of a quantum field theory except when all the monodromy
matrices are taken to be equal. In this case we do expect to be able to prove the
Osterwalder-Schrader axioms along the lines developed in [9] for the scaling limit
of the Ising model. In that analysis symmetry, positivity and clustering are easy. The
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hard axioms is rotational invariance. Local rotational invariance (in FKN sectors)
turns out to be a consequence of the association of the τ-functions with solutions to
non-linear differential equations that have a rotational symmetry and global
rotational invariance follows from invariance of the correlations under rotation by
π/2 radians (known in the Ising case). This last invariance property is not anticipated
for the monodromy fields considered here, but there are intriguing relations between
rotation by π/2, a shift of the cycles M± on Mc, and the duality transformation for
the Ising model which remain to be investigated (see Sect. 2).

Section 1

In the analysis of the 2-dimensional Ising model which is presented in [17, V, 8,9]
there are two principal ingredients, the transfer matrix and the spin operator. In this
section we will introduce the analogous operators for the scalar monodromy fields
that we consider first. As in the Ising case both operators belong to a group
representation which lives in the spin representation of a Clifford algebra. We begin
with a description of the induced rotation for the transfer matrix. It is essentially a
direct sum of two copies of the Ising model version, but because we use the formalism
of [10] rather than [7] it will not at first appear to be so. We use the Ising transfer
matrix since we wish to make applications of these results to critical scaling
calculations later on. Let H = L2(Sl, C2) and define the matrix valued multiplication
operator T by:

Tf(β\ = f(Q\
J U [s sin θ + i(c/s - c cos θ) c2/s - cos Θ\J l j'

where c> 0, s > 0 and c2 — s2 = 1. In the notation of [8], c = cosh 2 X*. When 5 < 1
this is the Ising model below the critical temperature, at s = 1 it is the critical Ising
model, and s > 1 corresponds to the Ising model above the critical temperature. In
the present section we will restrict our attention to the noncritical values s < 1. As in
[8] we introduce functions y(θ) > 0 and α(θ) defined by:

cosh y(θ) = c2/s — cos θ,

sinh y(θ}eia(θ} = (c/s — c cos θ) + is sin θ.

For s Φ 1 the functions y(θ) and α(#) may be chosen so that they are smooth on the
circle. The curve θ -> eί(X(θ} has winding number 0 when s < 1 and winding number
— 1 when 5 > 1. In each case we fix a determination of α(0) by requiring α(0) = 0. It is
easy to check that T(θ) = exp [ - y(θ)Q(θ)t]9 where

0 ieία(θ)Ί

*-«•"> o J
Multiplication by Q(θ) is a self-adjoint idempotent which we denote by Q. Let

Q+ = i(l ± δ) Let H denote the Hubert space conjugate to H. It is the same real
Hubert space as H except that complex multiplication is given by ( — i) instead of i. If
X is a linear map on H it induces a linear map X on H (given by X = X with the
obvious abuse of notation). Let W = H®H, and write P for the conjugation on W
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given by x®y = y®x. Then Qw = Q®(~ Q) is a self-adjoint idempotent on W
which anti-commutes with P. We are interested in the Qw Fock state on the Clifford
algebra C(W,P) whose associated representation lives on the alternating tensor
algebra A(W+\ where W± = Qw W and β^ = ̂ \± Qw] [10]. In this representation
the complex orthogonal T®T*~1 (complex orthogonal in the sense that it
preserves the complex bilinear form <v~» induces an automorphism of C(W,P)
which is implemented by

V2 = I®f Θ(f(χ)T)e ' ,

where f = (Q + T)®(β_7*"x) = (β + T)®(Q-T~ 1)-"multiplication by e~y(())®
g-y(β)" as may be easily checked. The operator V2 is a self adjoint contraction on
A(W+), which we refer to as the transfer matrix (it is isomorphic to the tensor
product of two copies of the Ising transfer matrix).

Next we introduce the induced rotations for the scalar monodromy fields. Let

1 π

2π -π

denote the half integer Fourier coefficients of/. Define a map ε on H by ε/(k) =
sgn(fc)/(k), and write s(λ) = ^((\ — ε) + (1 + ε)Λ) for λeC (the Ising field is related
to the case λ = — 1). In the terminology of [10] we wish to show that s(Λ,)eGlβ(H). If
H + ® //_ is the decomposition of H into the + 1 and — 1 eigenspaces for β, we must

show that the matrix / _ „ Λ x of s(λ) relative to this decomposition consists of
\_c(λ) d(λ)_\

transformations a(λ) and d(λ) which are Fredholm of index 0 and transformations
b(λ) and c(λ) which are in the Schmidt class [10]. It is easy to see that the off diagonal
parts b(λ) and c(λ) will be in the Schmidt class provided the commutator of β and s(λ)
is in the Schmidt class. Thus it is enough to prove this for [β, ε]. It is not hard to show
that the Schmidt norm of [β,ε] is proportional to £ nΊr(Q(ή)Q(— ή)\ where

Z+ = set of positive integers. This will be finite when s Φ 1 since α(0) may be chosen
to be smooth on S1 in this event. In a moment we will consider the problem of
diagonalizing d(λ). This will prove possible for s < 1 and will show at the same time
that d(λ) is invertible (except for an explicit sequence of negative values for λ} and
hence of index 0. Once this is proved we know from [10] that there is an element
σ(Λ)e(?/β(H) whose induced rotation is s(λ) and whose vacuum expectation <σ(A)>
does not vanish. We postpone describing precisely the normalization we choose for
σ(λ) until after we have diagonalized d(λ\ but note here that the normalization will
make σ(λ) unitary when | A | = 1. Now let Vί denote the element of G\Q(H) whose
induced rotation on H is eiθ normalized so that Vl 1 = 1 (V1 is spacial translation by
one unit). For αeZ2 let V(a)=VγVa

2

2, and write σa(λ)=V(a)σ(λ)V(aΓl. Then

σa(λ)EG\Q(H), and we shall be interested in correlations of the form

where Γis "time" ordering: the elements in the product are ordered so that the
second coordinates of the a} are increasing as one moves from left to right in the
product. We will see later that if a and b have the same second coordinate, then σa(λ)
and σb(μ) commute so that there is no ambiguity in this definition. When λ = — 1
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these are squares of Ising correlations when the fields σ(λ) are normalized as
described below.

Next we present an analysis of the operators d(λ). For this purpose it is
convenient to first analyse the spectral decomposition of the transfer matrix in
more detail. Let z = eίθ, following [17, V] we consider the characteristic equation
det(T(z) — w/) = 0. After a little calculation one finds this is equivalent to:

Z -f Z" 1 W + W " 1

 Ί ,

For s Φ ± 1,0 this determines a non-singular elliptic curve Mc. For the spectral
analysis of T the relevant part of this complex curve consists of the two cycles

M+-{(z,w)eM|(z,wH(^V~7(θ))} and M_ = {(z,w)eM|(z,w) = (e"ίβ,ey(β))}. (The
orientation on M_ is reversed to make the holomorphic differential, introduced
later, positive on each cycle M±). Curiously, some features of the diagonalization of
d(λ) depend on constructions which are natural on the complex curve Mc, in
particular the holomorphic differential on Mc and the associated uniformization
parameter. Again following [17, K] we introduce homogeneous coordinates
(CoίCiίG) so that z = Ci/ίo and w = (i/Co The branch points in the two sheeted
covering projection Mc3(ζ0,ζl,ζ2)-*(ζQ>ζι)εP1(ty (i.e., the projection on z) are
easily seen to be the zeros of the discriminant:

2 f2 , rl

^1 ^°

or in terms of z (since Co = 0 does not produce a root):

c2 z2 +

.* 2

which has the 4 roots:

_ ( c - s)(c - 1) _ χ _(c + s)(c+1) _(c + s)(c-

A holomorphic differential on M is thus given by idz/πyj(z — cίί)(z — oίί

 1)
(z —α2)(z —αj1), which after some calculation is seen to be ω = ίdz/πz(w~w~1)
(making an arbitrary choice of sign which is fixed hereafter). On M± this differential
is thus dθ/2π sinh γ(θ).

Living on the curve M is a line bundle whose fiber over (z, w) is the null space of
T(z) — wl. It is natural to realize the direct integral decomposition of L2(S'1,C2)
which diagonalizes T(θ) as a direct sum of L2 sections of this bundle lying over the
cycles M+. We will make the transformation to this direct integral decomposition
explicit by using the abelian differential dθ/2π sinh (θ) as a measure on the cycles M±

and by choosing trivializations of the line bundle over M±. To motivate this observe
that

T(θ) = e-γ(θ)



Monodromy Fields on /2

1Γ 1 ±ieiΛ(θ)Ί
where Q±(θ) = -\ _ . _ia(θ} . It is clear from this that β± (± 0) projects

onto the fiber in the bundle over the point (e±ίθ,e^(θ)} in M± . lϊf(θ)εL2(S\ C2), then
(sinh y(θ) ) 1 /2 Q + (θ) f(θ) is the part of/ lying o ver M + (square integrable with respect
to d0/2πsinhy(θ)) and (sinhy(0))1/2Q_(- θ)f(- θ) is the analogous part of/ lying
over M_. Observe that

iei^l2f2(θ)}e+(θ\

(sinhy(0))1/2β_(0)/(0) = (smhy(θ)/2)l/2(e-i^/2f1(θ) - ieίΛ(^2f2(θ)}e_(θ\ (1.1)

Λ(θ)/2

where e+(0) = — ̂ =\ _ . iΛ(θ]/2 The reason for choosing the trivializations e+(θ)
_J_Γ e>«(θ}

^jii+ie*
has to do with the fact that the coefficients (sinhye± ί α)1 / 2 are somewhat easier to
work with than (sinhy)1/2 or ei<x/2 separately.

Based on (1.1) we introduce:

+(0) - (sinh γ(θ)l/2(e-ia(θ}/2fl(θ) -f ieίa(θ}/2f2(θ)\ -π^θ^π,
(1.2)

(e-ί^/2fί(- θ) -f ieiΛ(θ}l2J2(-θ)\ -π^θ^π.

The functions f± may be regarded as functions on M±. We have changed
θ to — θ in /_ to match the orientation on M_, and we have also intro-
duced complex conjugation in /_ so that the real orthogonal map

(/i J2) ̂  (/->/+) from L2(SSC2) to L2(M_)ΘL2(M+) will take the complex
structure A = iQ into i on L2(M_)0L2(M+). This has the useful consequence that

the decomposition of s(λ) into I 1 and I 1 corresponds to the
\ 0 d(λ)J \c(λ) 0 )

linear-conjugate linear decomposition of Ds(λ)D*. We are now prepared to consider
the diagonalization ofd(λ). It is evident from s(λ) = (1 -f ε)/2 + λ(l - ε)/2, that it will
suffice to diagonalize β_εβ_. Let s(θ) = 2e~iθ/2/(l - e~iθ); then we have the
principal value representation:

β/(0) = i j [s(0 - ff + iO) + 5(0 - θ' .
o 2π

We will use ( 1 .2) to transform this integral operator to L2(M _ ) 0 L2(M + ). We will
then introduce a uniformization parameter u such that du = dθ/2π sinh y(θ) and
verify that the operators Q±εQ± become convolution operators in the u variable. At
this point it is convenient to restrict our attention to the case 5 < 1. In this event

eιa(β) gjβjj yjβ ^ ̂ as wjncjing number 0 and we may choose a unique continuous square

root on the circle by requiring that this square root is positive for 0 = 0. This choice
will be implicit in (1.2) for the rest of this section. Before proceeding further it will
also be useful to make a fractional linear transformation of z = eiθ, which puts the
branch points αf 1, αj1 into canonical positions 0, oo, /c2, 1 where fe = s2. This will
allow us to use the standard Jacobi elliptic functions. A fractional linear
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transformation that does this is:

_ Z — Oίi X + fti/C
* = /c- ί-, z = - !-. (1.3)

1 —α t z /c + oqx

As z winds counterclockwise around the circle |z = 1, the variable x winds
counterclockwise around the circle | x \ = k. Let zί = eiθ, z2 = eίθ\ then the kernel for ε
is the principal value determination of

where the square roots are taken with arg(Zj)e[0,2π). We transform this kernel into
the x variables, making use of:

dz fc(l-α?) dx

2πiz (1+o^/cx 1)(/c -f

z =

where 1 + o^/cx" * and /c -f- a x x have winding number 0 on |x| = k and square roots
normalized to + (1 -f o^)1/2 and -f (/c(l + o<ι))1/2 at x = fc. The square root of x which
appears is fixed by argxE[0,2π).

The map:

is a unitary transformation from L^S1, dzβniz) to L2(5^ , dx/2πix), where 5^ = circle
of radius /c. Under this transformation the kernel for ε becomes the principal value

determination of s ( x 2 , X ι ) = 2 ^ / X 2 1 ^/^/(l —x^Xi)- The abelian differential in
the x variables is (substitute z = z(x) in dz and (z — afl) in the formula for ω):

l j

where the sign ambiguity in the square root on the right-hand side cannot, of course,
be resolved in the x coordinates. In order to use (1.1) we wish to transform
(e±ία^sinhy(0))1/2 into the x variables. Since eίaί(Θ} sinh y(θ) = ((c + l)/2s)(l - o^z)-
(1 — α2z"1), one finds

s nsm
χ (fe + αιχ)(l + ̂ /

so that

(1.7)

The square roots are all normalized so that they are positive at x = k. Since z -+ z
induces the transformation x -> x, we may rewrite (1.2) in the x variables taking into
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account (1.7) and composition with (1.5) as follows:

(1.7)

where q(x) = [sφ + l)(c - s)]" 1/2(1 - k2x~ 1)1/2. The inverse map is

) = rfxΓ'CMx) +/-(*)),

The transformation of ε using (1.6) and (1.7) yields:

(1.9)

_ Aγ

+ ^s(x2,x1)Re(ί?(x2)ί(x1)-1)/_(x1)r-rL-.
el ^TCIX i
Sk l

To give this a more symmetrical look we may change the integration variable xl

to jq in the equation for (ε/)_(x2), make use of s(x2, x^ = s(x2, xj, q(xl) = q(x^ ) and
take care with the orientation of the integrals to obtain:

(1-10)

In (1.9) and (1.10) we now replace the measure dxjlnix^ with the abelian differential
(1.6). Those integrals in (1.9) and (1.10) which involve /+ may be thought of as
integrals on M +. On M+ we have

k112 dx
ω = -

where the square root is taken to be positive (note (1 — k2x x)(l — x) > 0 for )x| = k).
Those integrals in (1.9) and (1.10) which involve/_ may be thought of as integrals on
M _ . On M_ we have

k112 dx
^* •- , * Γ~T Λ \ , ^ x -. -1

where the square root is again taken to be positive. We may thus rewrite (1.9) and
(1.10):
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-- ~ J S(x2,x1)lm((l-/c2x2-
1)1/2(l-x1)

1/2)7_(χ1)ω(χ1),

J ^z.
^

j s(x2,Xl)Im((l -JAcJ1)1/^! -*ι)1/2)7+(*ι)ω(*ι), (1.11)

where we made use of the fact that [(1 - k2x[" *)(! - xA)]1/2 is real and all the square
roots in (1.1 1) are normalized to be positive when x = k. We also integrate over M_
with the orientation given by θ-^>(e~iθ,eγ(θ)). The integrals in (1.11) are ripe for an
elliptic substitution. Since we don't want to lose contact with the curve Mc we will
not do this in the most direct fashion. Instead we now introduce a convenient
uniformization of the entire curve Mc. Let p0 = (—l,e~y(π}) (z variables) =
( - k, e~ y(π})(x variables). Then p0eM + . Let IK' denote the imaginary quarter period
associated with the elliptic modulus k. Define:

ik' n P

The abelian differential is ω = N/fe[(l-fc2χ-1)(l-x)]"1/2 dxβπix. The sign of the
square root is determined on M+ so that ω is positive on counterclockwise oriented
tangent vectors. Now let x = sn~ 2(v + + iKr /2), where ~K^v+^K. Then ι?+->
sn~2(v+ + iK'/2) runs counterclockwise around |x| = k starting at x = k as v +

goes from - X to K. For peM + we have:

where

J iKr

idn\ v+ +— cnl v+ +-r-

on M + , and we used cn2(w)-h sn2(u)= 1, rfn2(w) + k2sn2(u) = 1 and d(sn(w)) =
cn(u)dn(u)du. Thus on M+ we have w = ϋ+ 4- ίK'/2 and x = sn~2(u). We next wish
to locate M_ in the period parallelograms of u:

-K^ Re(u) g X, - K' ^ Im(u) ̂  K'.

M_ is determined by |x| = k and (w — w~ 1 )>0. From (1.6),

_ , lίO-k^'^l-x))1'2 -2idn(u)cn(u)sn-ί(u)
w — w = - . - — = — - - - on M , .

(1 4- α jkx" x)(k + α tx) (1 -h α^x" ̂ (k + α^)

Both the left- and right-hand sides are meromorphic on all of M, and since
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(1 + α 1 fcx~ 1 )(fc + α 1x)>0 for |x| = k the condition that (x, w)eM_ becomes

I sn ~ 2(u) I = fc, - ίdn(u)cn(u)sn ~1(u)> 0.

These conditions are satisfied for u = v- — ίK'/2 with — K ^ f _ ^ K. The curve
ι?_ ->sn~2(ι;_ — iX72) winds clockwise around |x | = k starting at x = k as u _ goes
from — X to K. This is the appropriate orientation for M_ and we find
ω = (k/π)dv_ on M_.

Finally we make the substitutions xj = sn~2(Vj' +iK'/2) when x7 eM + and Xj =
sn~2(v]~ - iK'/2) when x, eM_ in (1.11) (deciding x7 eM ± if it is the argument of a
function g+). It is useful to observe that since x,- = k2/Xj we have:

2Re((l - /c2x2-
 1YI2(1 - x t)

1/2) = (1 - /c2x2

 x)1/2(l - x,)112

fc2x2-
 l)i/2(l - Xi)1 / 2) - (1 - /c2x2

 l )

-(l-x 2) 1 / 2(l-fc 2xΓ 1) 1 / 2

The result is:

(υ;-vϊ)f+(vϊ)dυϊ -- f cn(t;2

+ - ι;Γ)7-(- »Γ)Λ>Γ>
π -K π -K

' K I K

^ ί dφ2" -t^Γ)/-(^Γ)rft;Γ -- ί cφj -ϋί)7+(-^ί^ί, (1-12)

where we made use of ds(w2-w1) = (51ί/1c2 + 52J2c1)/(52-s2) with Sj = sn(Uj), d^
dn(Uj) and Cj = cn(Uj) and ds(u + iK')= -ikcn(u). (Note ds(u) = dn(u)/sn(u\) The
integrals involving ds( ) should be interpreted in the principal value sense. We also

made use of the fact that since x = k2/x we have ns2(v + (iK'/2)) = k2sn2(v + (iK'/2)).
But k2sn2(v + (iK'/2)) = ns2(v-(iK'/2)) (see Table 16.8 in [20]) and ns2(υ-(iK'/2)) =
ns2( — υ + (iK'/2)). Thus x-»x is equivalent to v-> —v.

If ε = , in the H+ ®H- decomposition of //, then as mentioned earlier,
|_c d]

Eq. (1.12) gives a particularly simple form for the kernels of α, b, c, d. The subspaces
H+ and H_ are identified with L2(M+,ω) and L2(M_,ω) respectively. Thus for
/eL2(M_,ω) we have:

i κ

df(x)= -- f ds(x — y)f(y)dy (principal value),
π -K

&/(*)=-- f cφ-^/ί-j;)^.
π -x

We are now prepared to diagonalize d. Let g = e~πK'/κ, then

7Γ 77"ί>/ ITT

u l ? ί ^ l β (U3)

(see 16.23.1 1 in [20]), where Z1/2 = Z + 1/2 and ε(0 = sgn(/). Replace csc(πw/2K) with
(l/2)(cscπ(w + iε)/2K -f cscπ(w — iε)/2K) in the last formula and call the result dsε(u)
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(taking principal values of the "regular" part is unnecessary). Then d is given by the
limit ε— >0 of convolution with —(ί/π)dε on the interval [ — K,K]. Suppose /eZ 1 / 2,
then

- } dsε(x-y)e(ilπ/κ»dy = - *]* dsε(- y)e(

π -K 71 -K-X

H
L π -

This last equality follows from the fact that dε( — y) e(ilπ/K}y is a 2K periodic function
of y, although this is not true for the factors separately. Thus the functions eilπxlκ are

K
eigenfunctions for convolution with dsε, with eigenvalues J dsε(y)e(~llniκ}y dy. A

-x
simple residue calculations shows that:

2κ

2X 2K

where /eZ1 / 2. It follows from this and (1.13) that the eigenvalues for convolution
with -(i/π)dsε are - sgn(/)(e-'/|e-2(?2|/l/(l+^2|/l))with eigenfunctions e

(ilπ/K)x. The
limit ε->0 is now obvious and reveals eigenvalues — sgn (/)(! — qm}/(l + qm} =
(-l+q2l)/(l+q21) for d. Since s(λ) = (λ + 1)/2 + ((λ - l)/2)ε it follows that
d(λ) = (λ+ l)/2 + ((λ - l)/2)d. Thus d(λ) is Fredholm for λeC, and as is easily seen it
is invertible for λ / — q21, /eZ1 / 2 . (Note that when λ is not a negative number, d(λ) is
invertible for the completely trivial reason that d is self-adjoint with spectrum
between — 1 and 1.)

We are now prepared to discuss the normalization of σ(λ). Recall from [10] that
(j\Q(H ) is a semi-direct product of the subgroup of GIQ(H) with the "d slot" =

identity 4- trace class, and the subgroup of elements of the form .A choice of

normalization for σ(λ) is equivalent to a choice of factorization d(λ) = d(λ)D(λ) where
(d(λ)—l) is in the trace class, and D(λ) is invertible. The diagonalization of d(λ)
suggests we choose D(λ) to be multiplication by (λ+l)/2 — ((λ— l)/2)sgn(f) on the
eigenfunctions eiπly/κ for d(λ). It is easy to see that d(λ) = d(λ)D(λ)~l = 1 + trace class.

If we define σ(λ) = ΓQΓ^j jjj^l /T J M with 6(λ) = fc(λ)/)(λ), this normali-

zation is equivalent to:

_ i -r q L + q

where /eZ1 / 2. It is also not hard to check that when \λ\ = 1, D(λ) is unitary. This
implies σ(λ) is unitary as well [10]. In the case λ = - 1 the quantity <σ( - 1)> is the
square of the spontaneous magnetization for the Ising model. The behavior of this
quantity as the temperature approaches the critical temperature is a famous result of
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Onsager first proved by Yang in 1952 [19]. Yang's proof suggested that an elliptic
substitution would be fruitful in the present work. The formula (1.14) for <σ(A)> as
an infinite product may be reexpressed as ratio of θ functions. Namely

»3 -

/log λ

See Henrici [21, 8.26] and formula (16.27.3) in [20]. Presumably information about
0 functions could be used to extract the critical behavior for <σ(Λ,)>(fc| 1). Here we
observe that taking the logarithmic derivative of <σ(Λ)> permits an elementary
analysis. A simple calculation using (1.14) shows that:

Suppose λ is not negative or 0 and let Cλ denote a contour which joins 1 to A without
crossing the negative axis or going through 0. Then:

log<σ(λ)>=
cλ *>o

Now multiply both sides of this last equation by π/K and introduce x = Iπ/K. One
finds:

cλ *>υ

Next observe that K'->π/2 as fcfl, so dominated convergence implies:

CO

lim log < σ(λ) >π/* - J dz(z - z ~l) J (z + e ~ πx)' l(z + O" ldx
kn cλ o

1 , log z (log λ)2

~πc'λ z 2π '

where the branch cut of log z is taken along the negative axis and log 1 = 0. It is know

that lim[K-ilog(16/(l-fe2))]-0 (see (17.3.24) [20]), so this last limit may also

be written:

(log A)2

lim————= . (1.145)
- 4π2 v }

Next we calculate the R matrix associated with s(λ) in the terminology of [10].
Here we require λ + — q21 (/eZ1/2); we refer to such λ as nonexceptional. The matrix
tfis:

__.-b(λ)d(λ)~lc(λ) b(λ)d(λ)~

It will be enough to illustrate the calculation for b(λ)d(λ) l. First define a
conjugation J on L2(M±) by Jf(v±) =J( — υ±). Using ds( — u)=— ds(u) and the fact
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that ds(u) is real when u is real, it is easy to see that Jd = dJ. Using s(λ) = (λ + l)/2 +
((/l-l)/2)ε, it is easy to see that b(λ) = ((λ- l)/2)fc. Thus b(λ)d(λΓl =
b(λ)Jd(λ)~1J. But b(λ)J is convolution with ((1 — λ)k/2n)cn(u\ and since

fcZ,

(see (16.23.2) in [20]) it follows that b(λ)J has eigenvectors e(I'π//*)w (/eZ1/2) with
eigenvalues (1 -^/(l +ςr2/) Thus 6μ)Jd(λ)"r is multiplication by (1 - λ)ql/(l + q21)
((λ + q-^Kl + q-^Γ^V-MKl+λq21) °n the eigenfunction e

(iπl/K)u. Similar
calculations for d(λ}~^c(λ] and -b(λ)d(λ}~lc(λ) suggest the following definitions:

~;~ ^(1+V)"1^'11^ (1-15)

With these definitions:

-K

= J Rλ

b(u - v)f( - υ)dv, (1.16)
-x
K _

(note that in the case λ = — 1 the function R£ is simply related to sn(u\ see (16.23.1) in
[20]).

We conclude this section with a remark which will be useful when we turn to the
consideration of scaling limits. The substitution we used to diagonalize a(λ) and d(λ)
was normalized so that z = 1 or x = k corresponds to v± = ± K. This is important if
we want the substitution to remain sensible in the limit fc| 1. In this limit the curve
Mc becomes singular with the real quarter period K tending to oo. In this limit the
elliptic substitution goes over to the hyperbolic one:

x = tanh~ 2 (v + ± ίπ/4) i K' = ~ ),
V 2 /

and the operator ε becomes:

I

+ (vϊ) = - J csch(vϊ-vΐ)f+(vϊ)dvϊ (principal value)

* ? +
πΛ S e C (V2 ~vι>J-(~vι> vι> (1.17)

i °°
(εf)-(υϊ)=-- J csch(v2 -υϊ)f_(vϊ)dυϊ (principal value)

π _"c

-- J
Jl — no
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where csch(x) = l/sinh(x) and sech(x) = l/cosh(x). The monodromy fields σ(λ) no
longer exist (in G\Q(H)) since the off diagonal pieces of s(λ) are not Schmidt class
operators. One could perhaps still use (1.17) to study the critical model using
quadratic form ideas like those used by Ruijsenaars in his study of the massless
Thirring model [15]. This will not be attempted here, however. In this paper we will
mainly consider the massive scaling limit, as in [8,9]. This scaling limit emphasizes
large scale behaviour of the correlations coming from the vicinity of z = 1. It is
inconvenient to have z = 1 correspond to ± K in the v± variables. A simple way to
remedy this is to change the substitution x = sn~2(v± ± iK'/2) to:

-K^v±£K. (1.18)

Then x-»x still corresponds to v+-*~v+ and (1.12), (1.15) and (1.16) remain
unaltered. It is this substitution we will use when we consider the massive scaling
limit. Observe that z = 1 corresponds to v+ = 0.

Section 2

In this section we introduce a broader class of fields than the scalar monodromy
fields considered in Sect. 1. Let p denote a positive integer and write Hp =
L2(S1,C2)®CP = H®CP. Let T denote the induced rotation for the transfer
matrix on H defined in Sect. 1. Let Q denote the difference of spectral projections for
T defined in Sect. 1. Let z denote the operator of multiplication by elθ on H —
L2(Sl,C2). We extend these transformations to Hp in the following manner: T =
T®Ip,Q = Q®Ip, and z = z®Ip, making use of the abuse of notation implicit in
these definitions whenever it proves convenient.

Write Wp = Hp © Hp and define the conjugation P on Wp by P(x © y) = x © y =

y@x. Then QW = Q®( — 6) *s a self-adjoint idempotent on Wp which anti-
commutes with P. We are interested in the Qw Fock state of the Clifford algebra
C(WP, P) whose associated representation lives in the alternating tensor algebra
A(WP

+), where Wp

± = Q^WP and Q&=(1± Qw)/2.
Suppose weWp. Then the generators of Qw Fock representation are given by:

where the operators α*( ), α( ) are the usual creation and annihilation operators on
A(WP

+) [7]. Let UEHP; it will be useful to introduce ψ(u) = F(tιφO). Observe that

ψ*(u) = ψ(u)* = F(Oφw). Let {βj} denote the standard basis for Cp. For ueH we
write \l/j{u) = ψ(u ® βj) and ψ*(u) = ψ*(u ® βj).

We next define the restricted general linear group GIQ(HP). This group consists of
bounded invertible linear maps on Hp with bounded inverses whose matrices

relative to the Hp+ φ HL splitting of Hp have elements b and c which are

Schmidt class operators and elements a and d which are Fredholm maps of index 0.
Let G\Q

Q(HP] denote the subgroup of elements g of G\Q(HP) defined by the condition
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that d(g) is a trace class perturbation of the identity on HL . Suppose D is a linear
space, then we write L(D) for the collection of linear maps from D into D.

One of the principal results of [10] is that there exists a dense linear domain
D^A(WP

+) and a group homomorphism ΓQ:G\Q(HP)-*L(D) with the following
property:

ΓQ(g)F(w) = F(g®g*-^)ΓQ(g\ geG\°Q(Hp), (2.1)

which is understood as an equality on D.
Let G\Q(HP) denote the subgroup of elements g of G\Q(HP) such that b(g) =

c(g) = Q. Then there exists a homomorphism Γ\G\Q(HP)-+L(D} so that:

Γfe)F(w) = F(g 0 0* - 1 w)Γ(0), 0eGl£(H") (2.2)

(see [10]).
It is also proved in [10] that Γ acts on ΓQ:

^ (2.3)

If G\Q(HP) x G\Q(HP) is the semi-direct product with composition rule gi x h1-g2 x
h2 = glh1g2h^1 x / ι 1 Λ 2 » then (2-1), (2.2) and (2.3) may be summarized by saying
that g x h -> ΓQ(g)Γ(h) is a homomorphism. The kernel K of this homomorphism is
{ 0 x Λ | 0 f t = l and det d(g)=l}. The group G1Q(/F) - Gl°Q(Hp) x G1^(JF)/K is an
interesting central extension of G\Q(HP) [18]. One may check that (g x h)K-+gh is a
well defined homomorphism T:G\Q(HP) -» G\Q(HP) with kernel C*. From now on we
identify G\Q(HP) with its image in L(D\ If geG\Q(Hp) then (2.1) and (2.2) imply:

. (2.4)

Equality is understood on D. One may translate (2.4) into:

ueHp. ( ' }

We are now prepared to introduce the monodromy fields σ(M). Let MeGL(p, C).
Then M acts on Hp ~ H ® Cp by / ® M . Let ε denote the operator on H studied in
Sect. 1, and write ε± = (1 ± ε)/2. Define:

The results of Sect. 1 imply that s(M)eG\Q(Hp). We will define σ(M)eG\Q(Hp) so
that T(σ(M)) = s(M). As in Sect. 1 what is needed is an appropriate factorization of
s(M). We now describe the factorization we will use. Let P+ (P_) denote the
orthogonal projection on the subspace in L2([ — X, K],C) whose elements have
Fourier expansions in exp(z'π/x/K) with no / negative (positive) terms. In Sect. 1 we
introduced D(λ) = / + ®(P++λP_)_, where /+ is the identity on H+ and (P+ +
/IP_)_ acts on H_ ^L2([- K,/C],C). In the matrix case we define D(M) =
/+ φ(P + ®/p + P _ ® M ) _ , where /+ is the identity on Hp

+ and (P+®/ p +
P_®M)_ acts on //p_ -L2([-K,K]), C)®CP. Using the results of Sect. 1 it is

not hard to see that 5(M)d-s(M)D(M)~1GGl^(Hp). Thus we may define:

= ΓQ(s(M))Γ(D(M)).
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One very useful feature of this choice of normalization for σ(M) is that M -> σ(M) is a
homomorphism. This follows from the easily verified fact that M->s(M) and M->
D(M) are homomorphisms and the calculation:

σ(Ml)σ(M2) = ΓQ(s(M,))Γ(D(Mi))ΓQ(s_(M2))Γ(D(M2))

= ΓQ(s(M,)s(M2}D(M2)D(M2Γ ^(M.Γ i)Γ(D(M1))Γ(D(M2))

= ΓQ(s(MiM2)D(MiM2Γ
1)Γ(D(MiM2)) = σ(M1M2),

where we used the fact that ΓQ(-) and Γ( ) are homomorphisms and
Γ(D)ΓQ(s)Γ(D) ' 1 = ΓQ(Ds_D ~ 1).

For αeZ2 we write V(a) = Γ(T)α2Γ(z)fll which acts on D c A(WP

+), and we define
σα(M)= V(a)σ(M)V(a)~l. We next introduce some notation that will allow us to
formulate the principal result of this section: a relation between monodromy fields
and the solution to finite difference equations on Z2 with prescribed monodromy
and exponential decay at oo . The Fourier coefficients:

identify L2(S1, C2) with /2(Z1/2, C
2). On I2 the transfer matrix T is a finite difference

operator which may be written

Tf(k) = Γ_z- lf(k) + T0f(k) + T+2

where z±lf(k) =f(k + 1) and

ι Γ 1 - He + sϊ1_£ l KC + S) \

2(_/(c-s) 1 J'

Γ I Γ — 7 "Ί

T0=£ L (2.6)
s\_ι cj

1

Now let e+(/c) = δ(k - )[o] and e_(/c) = δ(k -•)[?] denote the standard basis for
/2(Z1/2,C

2). For keZ1/2 x Z define:

c, ±) = Γ(7f ̂ JM

ψ?(k, ±) = ΓCT ί̂̂ ί

Observe that φβι,k2, ±)* = ̂ 1, - fe2, ±) Let

Then ι^*(/c) satisfies the following difference equation:

^(/c1,/c2-l)=Γ(2)^(fc1)/c2). (2.7)
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To see this observe that if A is a 2 x 2 complex matrix, then

(Note: u-*\//f(u) is conjugate linear in ueH.) Also

Thus

where T(z)* -
Consulting (2.6) one sees that T(z)* = T(z). Thus T(z)\l/J(k) = ψ*(kl9k2 - 1).

We next present the "wave function" construction of SMJ [17 IX] in a
Euclidean incarnation. Let MfeGL(p, C) ( i=l , . . . ,n) . Write τ(α) =
<7σσι(M1) σαn(MII)>, where the time ordering T puts σβl(Mί) in order of
increasing second coordinates for the 0 feZ2 (we suppose there are no coincidences
among the second coordinates). Write

= <T^(M)^,^ (M1)...σJMn))i

τ(α)

where (fe,α) and (/,j8) are in Z1/2 x Z x { + , -} and the time ordering T puts the
operators in order of increasing second coordinates for fe, /, « l 5 . . . , f l n with a sign
change when ι^*(/c, α) is moved past i^//, jS), all other operators formally commuting.
This prescription determines the value of Wtj{k, α; /, β) except when fc lies on the
horizontal ray to the right of one of the points at or when k = l We first examine the
ambiguity when π2(fe) = π2(ar). For simplicity write Mr = M, 0, = α and suppose

πι(α) = 0. The ambiguity at π2(k) = π2(a) in (2.5) results because ψ*(k, α)σα(M) and
σa(M)φJ(k, α) are not equal. However, there is an interesting relation between the
vectors formed from these operators for; =!,...,«. To see this relation observe first
that

σa(M)ψ?(k,a) =

where we used k2 = π2(α) and π^α) = 0. Now

Thus

fc^O. (2.9)

Let w(/c)+ denote the column vector with components σ(M)ιj/f(eaί(k)), i = 1, . . . ,p. Let
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w(/c)_ denote the column vector with components \l/f(ea(k))σ(M\ ί= 1, . . . ,p. The ±
subscripts attached to w(/c) are intended to suggest "boundary values" arising when
k2 arrives π2(α) from above ( + ) or from below ( — ). The relation (2.9) becomes

w( )+=s(M)"1w( )- or

w( )-=s(M)w( )+ (2.10)

A little thought shows that we may interpret (2.10) in the following manner. Let
W(k, α) denote the n x n matrix with (ίj) entry W{j{k9 α; /, β). Because of (2.7) the
entries of W(k, α) may be thought of as solutions to the finite difference equation (2.7)
in the (/c, α) variables. For k near ar these solutions are multi-valued in the sense that
if k makes a counterclockwise circuit of ar starting on the ray to the right of ar then
when k returns to this ray the upper boundary value W(k,a)+ is transformed to
W(k9<x)-=MrW(k,<x)+.

We turn next to the ambiguity in (2.8) along the line π2(k) = π2(l\ Since
\l/f(k, α)f, (/, β) + ψβ9 β)ψf(k, α) - δ^klδΛβ when π2(fc) - π2(/), it follows that the time
ordering convention with the sign adjustment described earlier results in an
ambiguity only when k = I. Here we settle this ambiguity by choosing
— φj{l9 β)ψf(k, α) in definition of Wtj atk = l. This choice has as a consequence that
Wy7c,α) satisfies the difference equation (2.7) for k2^l2. To be more specific, let

Wij(kl,k2)-T(z)Wij(kΐίk2 + 1)= -5Λ*

The inhomogeneity in (2.11) arises from the two possible choices for Wtj at k = L
With one choice (the one we made) the homogeneous equation (2.7) is satisfied for
π2(k) ^ π2(/). For the other choice (2.7) is satisfied for n2(k) ^ π2(/). The difference
between the two choices is determined by the anti-commutator between ψ*(k, α) and
ψj(l9 β) given above for π2(/c) = π2(ί) and leads to precisely the inhomogeneous term
in (2. 11).

The columns of Wtj{k9 α) span a vector space which may be characterized in much
the same way that SMJ [17, III] characterize a space of multivalued solutions to the
Euclidean Dirac equation. Let w denote a map w:Z1/2 x Z -> C2 (x) Cp. Then if vv(fc)
satisfies

vv(fc) - T(z) ® Ipw(k + e2) = δktlv (2.12)

for some /eZ1 / 2 x Z and some v eC2 ® Cp, then we will say that the solution w(/c) to
(2.12) has an inhomogeneity localized at k = I. Let

I l w ( ,/c 2 ) | | 2 = Σ IW/c^/c,)!!2,
Λ l e Z l/2

where || w(k l 5 fe 2 ) | | is the usual Euclidean norm in C2(χ)Cp. If ||w( ,k2)|| < oo for
each kεZ and lim ||w( ,k2)|| =0, we will say that w(k) vanishes at oo. In the

/C2-+±co

following definition we write M for (M1 ?M2,...,MJ and 4α' for (a1...an)e(Z2)n.
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Definition. Let Wa(l, M) denote the space of maps w:Z1/2 x Z -> C2 ® Cp satisfying
the following 3 conditions:

(a) w(/c) is a solution to (2.12) with an inhomogeneity localized at k = I
(b) w(/c) is multivalued with branch cuts to the right of the points ^eZ2. The

vector vv(fc) transforms to / ® M w(k) as fe makes a counterclockwise circuit of
dj (near α7 ) starting on the ray to the right of α,-.

(c) w(k) vanishes at oo .

Proposition 2.0. //τ(α) 7^ 0 ί/zen ί/ze space VFa(/, M) ίsβnίte dimensional with dimension
2p. The columns of W(k, a) for β = ( + ) and β = ( - ) span Wβ(/, M).

Proof. Write 0j = (bj9 Cj). To simplify the discussion we suppose that the second
coordinates of a1, 02,...,απ occur in increasing order c1<c2--<cn and that
π2(/) = 12 < Cl. (We leave it to the reader to check that these assumptions are not
really necessary.)

Suppose weWa(l,M). Then property (c) implies that w( ,fc2)E/2(Z1 / 2,C2)(χ) Cp.
Choose fc2 eZ such that /c2 > cn. Since w(/c) satisfies (2.7) (the homogeneous version of
(2.12)) for k2^k°2 we have w( ,k2)= Tk°-kι\v(',k°2) for /c 2 ^/c§. However, since

lim || Γ*°-*2 w( , fcθ) || = 0 and Γ - e~ yβ+ 4- eyβ- , it follows that w( , fe§) must be in
/C2~~* °O

the range of Q _ . That is Q _ w( , /c2) = w( , /c2). We may also use the transfer matrix to
propagate w( , /c2) down to the first branch cut at k2 = cn. Thus the upper boundary
value is w+( ,cj= Tk2~Cnw( ,k2). To obtain the correct lower boundary value we
apply the monodromy map sbm0(Mπ). Hence w _ ( ,cn) = sbn ̂ (Mn)Tk2~Cnw(-,k2). We
proceed in this fashion until we encounter the inhomogeneity at k2 = l2. One finds:

W(s/2 + l)=Γ- l2-1sβ^ι) -Sαn(M l i)TfcSw(-,fc2), (2.13)

where sfl(M)= T f l2zαιs(M)z"αιT~α2. At k2 = /2 one has:

/2 + l)-h5( ,/1)ι?. (2.14)

However, because w( ,λ;2) - T ί2" fe2w( ,/2) for /c 2 </ 2 , lim || w( ,/c2)|| -0, and
k2~* ~ oo

T=^- yβ+-f e yρ_, it follows that β_w( ,/2) = 0. Substituting (2.13) into (2.14)
and then applying Q _ , one finds

T-/2ρ_5^M1)...5αn(Mπ)β_Γ^w( ,^)--ρ_[(5( -/1)ί;], (2.15)

where we've made use of <2_w( ,/c2) = w( ,/c2). From (2.15) one sees that w( ,/c2) is
uniquely determined by v precisely when d(saι(Mί)"'San(Mn)) is invertible. But
d(saι(Ml)'"San(Ml)) will be invertible precisely when τ(α) =
<σf l l(M1) σβn(Mll)> ^0, since τ = det(rf) for some factorization d = dD with D
invertible and d a trace class perturbation of the identity. We have seen that if
φ)^0 then dim Wa(l, M) ̂  2p. But Q_δ( ,l1)e+ and ρ.^ ,/^- are linearly
independent, and by reversing the reasoning above one finds that solutions to (2.15)
may be used to construct elements of Wa(l, M). Thus dim Wa(l, M) = 2p if τ(α) ̂  0.

From (2.9) and (2.1 1) it is clear that the columns of W(k, α) (for β = + , -) will
span Wa(l, M) provided the columns are elements of Wa(l, M) (i.e., vanish at oo). First
we check that ty0{ ,/e2,α)e/2(Z1/2, C). Since ^f(/c,α) - ^*(Γ~fc2eα(/c1)(8)^) and only
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the annihilation part of ψf(k, α) contributes to M^/fc, α) for k2 sufficiently negative it
follows that:

where fa( )εL2(S\C). Thus by the Plancherel Theorem Wίj{ ,k2,oί)el2(Zί/2,C) and
lim ||W(χ ,fc 2) | |=0.

k2~> — 00

In a similar fashion only the creation part of ψf(k, α) contributes to the inner
product defining Wu(k, α) when k2 is sufficiently positive and one finds:

where g(X(')EL2(S1,C) and k2 is sufficiently positive.
Thus Wij{',k2,oc) has I2 norm which vanishes in the limits &2-> ± oo. Since

W^k, α) satisfies (2.1 1), it follows that || W / , /c2, α) || < oo for all k2 and this finishes
our proof of Proposition 2.0

It is instructive to think of this proposition in conjunction with the continuum
results of SMJ [17 II], [17 IV], (see also [9]). If one "hides" the inhomogeneities in
the difference equation next to the branch points and then scales to the critical point
(as in [9] ) with the lattice spacing going to zero and the correlation length fixed, one
finds the wave functions for the Euclidean Dirac equation described in [17 III]
(massive scaling regime). On the other hand one can sit at the critical point, leave the
inhomogeneity "out in the open" and pass to the long range asymptotics to obtain a
fundamental solutions to the Cauchy-Riemann equtions for the vector bundle
over C — {al , . . . , an] with holonomy M; at a^ which vanishes like l/x at oo (massless
regime).

In this paper we develop the massive scaling results to the point where the first
scenario may be confirmed. The mass zero asymptotics are technically more difficult
and we have only partial results which will be presented in a sequel to this paper.

To conclude this section we will examine what happens when the branch points
a !,..., an are displaced. This will be used to establish identities for low order
expansion coefficients in the continuum limit (see [9]), to establish continuity results
for the τ-functions at the critical point, and to prove that σα(M) and σb(M) commute
when π2(a) = π2(b).

Comparing two monodromy fields at adjacent points one is lead to consider
σa(M)σa + e.(MΓl = V(a)σ0(M)σe.(MΓ1V(aΓ^ But the induced rotation for
σ0(M)σej(M)~ί is s0(M)5βj.(M)~1, which is a finite dimensional perturbation of the
identity. Thus

<70(M)<7ej(M)- ' = CjΓQ(So(M)sej(MΓ '), j = 1, 2, (2.16)

for some constants Cj. It is not hard to use the formalism of [10] to give formulas for
Cj as determinants. We have s(M) = s(M)£>(M) = sD. Thus σ0(M) = ΓQ(s)Γ(D\ and:

σeι(M) = Γ(z)ΓQ(s)Γ(D)Γ(zΓ ', σβ2(M) = Γ(T)ΓQ(s)Γ(D)Γ(TΓ '.
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Thus

σ0(M)σeι(M)-1-ΓQ[(S2s-1z-1)(z/)z-1D-1)]Γ(ί)zD-1z-1),

σ0(M)σe2(MΓ1=ΓQ\:(sTs-1T-l)(TDT-lD-1)^Γ(DTD-1T-1)ί (2.17)

where we made use of (2.3) and the fact that ΓQ(-) and Γ( ) are homomorphisms.
Since szs^z'1 =s(M)sβl(M)"1 and sTs'1!1'1 = sίMJs^M)"1, it follows from
(2.17) that

c^άQ^Q-zDz'^D-^Q.l c 2-det(β_TDT- 1D" 1β_) (2.18)

(an examination of the calculation leading to (2.17) shows that the arguments of the
determinants in (2.18) are Id. -I- trace class on Q~H).

To simplify the discussion we now concentrate on the scalar case D(M) = D(λ\
We calculate d/dλ log Cj{λ) to find

laλ dλ dλ

dλ

Without difficulty one sees that (dD/dλ)D~l = λ~ X P_ . Thus we are interested in
calculating Tr(P_ -z~1P_z)Q _H and Tr(P_ - TP_T~\ _H. Using the Fourier
expansion for csc(w — iε) already recorded in Sect. 1, one finds

X + K

It is appropriate to apply this integral operator to anti-periodic functions (these are
the ones with "nice" expansions in exp(iπ/x/X)). For such a function/ the formula
for P_/(x) simplifies to:

sin [π(x -y-

The kernel for P_ — z - 1 P_z is thus:

4iK v 'sm(π(x - y)/2K)'

Denote the preceding kernel by G(x, y). It is easy to check that G(x, y) is a smooth
function of (x,y) for |x| < K and \y\<K. The function G(x,y) is the restriction to
x |^X, bl^^ of a smooth 2K antiperiodic function in x and y (which we

continue to denote by G(x9y)). Antiperiodicity is just G(x + 2K,y) = — G(x,y) and
G(x9y + 2K) = - G(x,y). Let e,(x) - (2KΓll2e~ίπlxl2K (/eZ1/2) denote the standard
antiperiodic basis for L2( - K, K). The trace of the integral operator with kernel G is
the sum of the diagonal matrix elements of G relative to this basis and may be written
in the form:

Σ ί 0(x9I)φ)dx,
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K
where 6(xJ)= f G(x,y)el(y)dy. Integration by parts using the fact that y-»

-K
G(x,y)el(y) is a smooth 2K periodic function shows that |G(x, ί)| < CN\l\~N for
each integer N with a constant that does not depend on x. Since G(x, y) is smooth in y

and antiperiodic, the Fourier series £ G(x, /)e/(x) converges pointwise to G(x, x)
/ e Z j / 2 ^

(even at x = ± K). The estimate just given for the Fourier coefficients G(x, /) (N = 2)
shows that the Fourier series converges uniformly for — K g x :g K. This is enough
to interchange summation and integration in the formula for the trace, and we find
the trace is given by:

f G(x,x)</x.
-K

Thus:

.z) = -ίτ f z-\x)~dx = ~(\ogz(K)-\og(z(-K))=~l,
2πι -K dx 2nι

1 κ dw
_w)- — f w'Hx) — dx = 0,

2πi -x αx

where the first equality follows from the fact that zeM _ and the second follows from
the fact that w(x) is a real period function on [ — K, K]. We have then

— logC l(A)=--, —
aλ λ aλ

Since it is clear that c^l) = c2(l) = 1, it follows that

cl(λ) = λ~1 and c 2 (A)=l . (2.19)

The matrix case may be handled in a similar fashion. One finds:

c1(λ) = (A 1 . . .λ l,Γ 1=(detM)- 1, c 2(λ)=l, (2.20)

where A 1 ? . . . ,ΛP are the eigenvalues for M. By translating and taking products (2.16)
coupled with (2.20) may be rewritten more generally as:

* = (det M)^m^Γ^sm(M)sJiM)-ί). (2.21)

It is a simple consequence of (2.21) that σm(M) and σM(M) commute when
π2(m) = π2(n). To see this substitute M"1 for M in (2.21), make use of σ(M-1) =
σ(M)"1 (M-^σ(M) is a homomorphism) and interchange the sites m and n.
Then since (detM~1) = (detM)~1, 5(M-1) - s(M)'1 and 5W(M) and 5Π(M)
commute when π2(m — n) = 0, it follows that σm(M)σn(M)~1 = σn(M)~1σm(M),
when π2(m — n) = 0.

Next we calculate s0(M)sej(M)~1. Let Pk denote the projection on the span of
e±(k)®βj (j = l,...,p). Then without difficulty one may verify that

s(M)zs(M)~1 - z -f (I® (M - /))P1/2z,

s(M)z-1s(M)~1 =z- 1 -h(/®(M~ 1 -/))P_ 1 / 2 z- 1 . (2.22)

If we write T(z) = T+z -f T0 + T_z~ : (see 2.6) and use the two preceding results, we
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find

s(M}T(z}s(MΓi = T(z}^(T+®(M-I)}Pll2z + (T^®(M-l-l}}P^l2z-^ (2.23)

It is trivial to see from (2.22) and (2.23) that s(M)zs(M)~lz~l and
s(M)Ts(M)~ 1 T~ l are finite rank perturbations of the identity. One may use formula
(1.1) in [10] to calculate finite expansions for ΓQ(s0(M)sej(M)~ l ) in terms of the basis
[φj(ea(k)\ φj(ea(k))} for the Clifford algebra. This may be used to establish difference
identities useful for the analysis of the continuum limit along the lines developed in
[9] for the Ising model. By taking products on the lattice one also finds formulas for
ΓQ(sa(M)sb(M)~ l ) (a.beZ2) as finite sums of finite products of Clifford generators. In
a sequel [22] we will use this to show that the vacuum expectation of a product of
operators ΓQ(sa (M)sbj(M)~ *) has a limit as fej 1 (the "critical temperature"). We also
show that lim (σ^Mi) . . . σαn(M „)> exists provided M1...Mn = Ipby making use of

k\\
this last result and the homomorphism property for M->σ(M).

We have one further observation concerning (2.23). Note that conjugation of
T(z) by s(M) produces an operator with the same (block) band difference structure as
T(z). This is reminiscent of isospectral deformations for Jacobi matrices and we
suspect this is behind the intimate connection between s and T revealed in Sect. 1 .

Before proceeding with the consideration of the massive scaling regime in the
next section we make some more or less obvious remarks concerning the matrix

of s(M) relative to the HP

+®H*L decomposition of Hp. If M =
_ ^
SJj^S"1, where JM is the Jordan normal form for M with eigenvalues λ1 . . . λp on
the diagonal and Γs on the superdiagonal in elementary Jordan blocks, then clearly
α(M) = (/ ® S)a(JM)(I OS"1), b(M) = (/ (g) S)b(JM)(I ® S~ *) etc. The operators b(JM)
and c(JM) have entries b(λj) and c(λj) on the diagonal (b(λ\ c(λ) are the operators

described in Sect. 1 and superdiagonal terms which are 0 or Q+ε + Q_=b+ or

β_ε + 6 + d = C + , ( ε + = ( l + ε)/2). The operators a(JM) and d(JM) have a(λj) and d(λj)
on the diagonal with superdiagonal terms which are zero or Q±ε + Q±; the terms

Q + ε + Q +

 d=a+ and Q_ε + β_= f r f + live in elementary Jordan blocks with diagonal

entries a(λj) or d(λ3) respectively (/' fixed). If the eigenvalues λl9...,λp are non-
exceptional so that d(λj) is invertible for j = 1, ...,/?, then d(M) is also invertible. The

inversion of an elementary Jordan block - .t ' ' , , . may be accomplished in
[_ 0 fl(λ)fl+J

the usual fashion by factoring out the diagonal and expanding the remainder in a
finite geometric series:

~d(λ) d+ 0"

0 d(λ) d+

-1

N

= Σ
0 d(λΓ1d+ 0

'

0 0

1. (2.24)
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Section 3

In this section we will consider the massive scaling regime for the correlations of the
monodromy fields defined in Sect. 2. This regime is determined by sending the lattice
spacing to zero and at the same time forcing the "temperature" to approach the
critical "temperature" in such a fashion as to make the correlation length asymptotic
to a non-zero constant (which we take to be 1 for simplicity). There is no
"temperature" in our models, but since the correlation length is essentially
determined by the transfer matrix, we will be able to fix the correlation length by
sending s| 1, as this corresponds to sending Tf Tc in the Ising model. We proceed
along the same lines as the proof in [9] of the convergence of the scaling limit for the
Ising model. The appropriately scaled correlations at lattice spacing δ and modulus
s| are given by determinants det2(l + LδRδ). We will embed the operators Lδ and Rδ

in a fixed Hubert space, and then prove that LδRδ converges in Schmidt norm as
δ-+Q.

Following the prescription in [9, p. 364], we set

or

X

0(δ2)(sδis the root <1). (3.1)

It is inconvenient to carry around the δ subscript. Throughout this section we write
s = sδ and c = cδ = [sj + 1]1/2. We will also write k = sj and K = Kδ for the real
quarter period associated with elliptic modulus k. Because it is hard to transform the
kernels (1.15) back into the z = eίθ variables, we will work instead in the
uniformization variables v± given by (1.3) and (1.18). This requires a preliminary
study of the substitutions (1.3) and (1.18) which was not required in the Ising case.
Our first result concerns the translation of z and w = e+y into the variables v±. For
simplicity we concentrate on v+ which we write as v. The addition formula for sn( )
and the table of values 16.5 [20] imply that:

'/ ί l j ^ l

i K ' \ cn(v)dn(v) - ί(l - k)sn(v)
ksn{ V + K + -— } = :—γ-τ . (3.2)

\ 2 J l-ksn2(v)

(This may be used, incidently, to see that v -> ̂ fksn(v + K + ίK'/2) winds around the
unit circle as described earlier.) If we combine (3.2) with the first order (in (1 — k2))
asymptotics of sn( \ cn(-) and dn(-) in terms of hyperbolic functions near k = 1 (see
(16.15.1), (16.15.2), (16.15.3) in [20]) then one finds:

0(δ2\

which is to be understood as an asymptotic result at fixed v uniform for v in a fixed
compact subset of R. Combining this result with the substitution (1.3) one finds:

z = 1 + id sinh (2υ) + 0(δ2). (3.3)
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The second order terms for ^fksn(v + K + iK'/2) do not directly contribute to
the lowest order for z + z~1. The result is

Z - ~ = 1 - sinh2 (2v) + 0(n

from which it follows that

_ 1 z + z-1 δ2

coshy = s + s l = 1 H cosh2(2ι;)-f O(<r),
2 2

and finally

e~y= 1 - δ cosh(2v) + 0(δ2). (3.4)

Next we require a t -uniform estimate for e~y in the v variables. Presumably one
could substitute (3.2) into:

coshy = — α x -

sinhy = 2cs(l +5)0^-
~l (fc + α ιxXx + α ιfc) '

and make the appropriate estimates. We did not see how to do this and so we will
proceed differently. We will obtain the upper bound for e~y which we desire by
proving a lower bound for y. The estimate (4.3) in [9] for y is easily seen to be
equivalent to

y(θ)>ωδ(θ)(l+ωδ(θ)Γ\

where ω2

δ(θ) = δ2 + (1 -cos0). But (1 +ωa(θ))"1 ^ 1/3, when δ < jΐ so that
γ(θ) ^ mωδ(θ\ where m is a constant independent of θ and δ. Now let z = elθ and
x = k(z — OLi)/(l — oqz) = 6^ ( — π<ψ -^n). Then from (1.4) one sees

s + s
(3.5)

It follows from this that the graph of θ(φ) is concave down between 0 and π. Since
0(0) = 0 and 0(π) = π it follows that <A ^ 0 (0 ̂  0 ̂  π). Hence

γ(θ) ^ mωδ(0) ̂  wωa(^), 0 ̂  0 ̂  π.

We turn our attention to the estimation of ωl(\jj) = δ2 + (1 — cos ^) from below.
The full elliptic substitution is rather awkward even at this stage so we introduce a
hyperbolic substitution which is asymptotically correct (i.e. = υ) as δ -> 0. Let

^=v 2
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then one easily calculates

/cosh2(2w) + — sinh2(2wV

(3.6)

l-h~sinh2(2u)

Next we need the relationship between u and v. This is most easily seen by
calculating the abelian differential (1.6) in the u coordinates. One finds

2 " cosh(2u)du
υ = - Γ f-

1 4- fc Γ δ* I1/2'
[cosh2(2u) + 0(<5)]1/2 1 + γsinh2(2w)

where the term 0(δ) is uniformly 0(δ) in the u variables. It follows that

du
v<M

δ2 V / 2 ?

— sinh2(2w)

where M = 1 + 0(δ) is w-uniform. Now make the estimate sinh2 (2u) ^ (e4u — 2)/4 in
the preceding integral and calculate the resulting integral. One finds

M, Γ l + Π+fl1 1 / 2

Without difficulty one may use this to show that

,̂,M 2(2 + «K"

The right-hand side is less than or equal to (const) δ 2ωj(ψ\ as one may see from
(3.6), (e2")2 ^ 4(cosh(2w))2 and e4u ̂  (sinh(2w))2. Thus we have proved

( Ί
—
M

for some constants m, M > 0 independent of δ and v. But y(v) is an even function of v
so

\v\^K. (3.7)

The changes that are required in (3.3), (3.4) and (3.7) using the substitution x =
sinh~ 2 (v_ -I- K — iK'/2) may all be deduced from sn(u + iK') = k~ίsn~1(u). The
only one of these results that is changed is (3.3) which becomes

z=l-iδ sinh(2ί;_) + 0(δ). (3.8)

In taking the limit δ —> 0 we will not be able to say anything for those values of λ at
which d(λ) fails to be invertible. These are the values λ = q2l = e~2πK'llκ (/eZ1/2).
Observe that δ —> 0 we have K —> oo and K' ->• π/2. Thus the exceptional values λ
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become dense on the negative real axis. At any small non-zero value of δ these
exceptional values cluster at — oo and 0. As δ is decreased they all march towards
— 1. The point — 1 on the negative axis is unusual in that every other point on the
negative axis is crossed infinitely often by exceptional values, but — 1 is only
"exceptional" in the limit δ -> 0. In our discussion of scaling limits we will confine our
attention to those values of λ not on the jiegative axis and λ = — 1 (the Ising case).

Let σ(M) denote the element of G\Q(H) whose induced rotation is s(M)
normalized as in Sect. 2. For aeU2 define σα(M)= V(a)σ(M)V(d)~l. Let
MjeGL(p, C) (j = 1, . . . ,n) be matrices whose spectrum intersects the negative axis at
most at — 1. We shall prove the convergence of:

lim f[ <σ(M j)>^4<f(jfl l/ί(M1)...σfln/,(MII)>fcβfca,
δlQ J = l

where α 1 ? α2,...,β,,e[R2, the second coordinates are non-coincident
π2(aj) Φ π2(ak)(j φ fc), the "time" ordering T puts the operators σa /δ(Mj) in order of
increasing second coordinate from left to right and k = kδ refers to the fact that T and
Q are evaluated at fc = kδ. By relabeling we may assume π 2 ( a ί ) < π2(a2)~ < ^2(α«)
Then the expectation we are interested in is:

Π <σ(M,)>-4<σ01/,(M1)...σan/ί(Mn)>^ta. (3.9)
7 = 1

As in the case of the Ising model it is convenient to take advantage of the smoothing
properties of the transfer matrix. Instead of the product in (3.9) we introduce: &j =
V((aj — aj,ί)/2δ)σ(Mj)V((aj+1—aj}/2δ}, where α0 and αn + 1 are arbitrary except
for π2(α0) < π2(α1) and π2(an) < π2(an + 1). Using V(a)l = 1 and V*(ά)\ = 1, one finds
(3.9) can be written:

According to Theorem (3.2) in [10] this ratio of vacuum expectations is a
determinant, det2(/ + LδRd), where the matrix Lδ is the n x n block matrix with
entries

where 71̂

and Rδ = R(&1)®'~® R(σn), where
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The transformation from L2(S\ C2) to L2([ - K, K], C2) described in Sect. 1 is a
unitary equivalence. In an obvious fashion we may identify L2(S'1,C2)(χ)Cp with
L2([-K,X], C2)(χ)Cp. We now introduce the injection of Hp into a fixed Hubert
space that we will use for scaling. It is the natural isometric inclusion,

L2([-K,K],Cw)ΛL2([R,Cm). We will show that ϊl^ΐ* converges in the strong
topology on L2(R,C2p)0"'®L2([R,C2p) (n summands) and that iRdi* converges
in Schmidt norm on the same space. Since i is the natural injection we will- drop
it in further considerations when confusion seems unlikely (an operator X on
L2([-K,K],Cm) we extend to L2(R,CW) as iXi*, which vanishes on the
orthogonal complement of L2([- K, X], Cm) in L2(1R, Cm). A glance at the formulas
for Lό shows that we need only prove strong convergence (δ -> 0) for aj and d]~ 1

on L2((R, Cp) and Schmidt norm convergence ((5->0) for —bjd]~1cj,bjd~j~1 and
dj ίcj on L2([R, Cp) to obtain the desired result. Now let mj = π^^ — Oy_ J/2) and
nj = π2((aj-aj-l)/2). The results of Sect. 2 and the relation between T(&j)
and T(σ(Mj)) show that to prove the strong convergence of aj and d]~ 1 it suffices to
establish the strong convergence of operators of the form:

zmι/δwnιlδa(λ)\vn2/δzm2/δ,

zmι/δwnι/δa + w"2/δzm2/^ (3.10)

where z = eiθ, w = e±y(θ\ nj > 0 (j = 1, 2), and i is a non-negative integer. In a similar
fashion one may reduce the proof of convergence for bjdj~ 1 , dj 1c_ /, — b/// Xc7- to a
proof of convergence in Schmidt norm for the following sorts of operators:

We now restrict our attention to those /leC not on the negative real axis. The
case λ = — 1 is interesting but its investigation is more complicated and will be
reserved for a later treatment (see [9] for the scalar Ising case). We first illustrate a
method for dealing with the operators in (3.1 1) by examining the last case; the other
cases may be dealt with in a precisely analogous fashion. The results of Sect. 1 show
that b(λ)(d(λ)~1d+)i d(λ)~l c(λ) has eigenvalues (1 - λ)2 (λ + q-21)'1'1 (1 + q2l)~\
and is given by convolution with

Σ μ + ί-^-'-^i + β21)"1^1"^ (3.12)2K /eZ 1/2

where q = e πK'/κ and k = s2 is the elliptic modulus. We wish to calculate lim/(κ, k)
/ c T l

(fc|l as (5->0). Observe that with x = πl/K the expression (3.12) is an infinite
"Riemann sum" approximation to the following integral (we use K' | π/2 and K | oo
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a s / c t l )

(i _ y\2 oo
f(u) = ~ f (λ + eπ x)" ί~ 1(l-fe"π x)~V x l <dx. (3.13)

-^TC — oo

The exponential decrease of the summand in (3.12) makes it clear that dominated
convergence applies and we have \imf(u9k)=f(u). We will now show that this

k T i
convergence takes place in L . The Plancheral Theorem implies that the square of

K
the L2 norm J |/(w,k)\ 2du is given by:

ri {__, l ' u ' *2 I V A ' 1 / j-^ ^.A l y

Z7ϋ ^2 ^

Again using g = e~πK'/κ, one sees this is the "Riemann sum approximation" to an
integral in the variable x = Iπ/K, Dominated convergence applies in (3.14) as k | l
and one easily checks that the resulting limit is, by the Plancherel Theorem, equal to

J \f(u)\2du. Thus:
- oo

lim f \f(u,k)\2du = j \f(u)\2du.
k 11 ~ K - oo

It is an exercise in Rudin ([12] page 73) that this and pointwise convergence together
imply /(u, k) converges to f(u) in L2 (note /(u, k) = 0 for \u\ ^ K!).

Next observe that (3.3), (3.4) and (3.8) imply that

lim zm/δ = e

±lmsmh(2υ±\ lim w"/<5 = e+™™Wv±)^ (3.15)
<5->0 <5-»0

Furthermore the estimate w±π/<5^£-mncosh(2ί;±)/M, which follows from (3.7) shows that
multiplication by w±n/δ (defined to be 0 outside \v±\^K] converges uniformly to
multiplication by e~

ncosh(2v±) when n > 0 and δ-+Q. The convergence of zm/δ to

e±imsmh(2v±) js uniform on f lxecj compact intervals for υ± as <S->0 and this shows (since

|z| = 1) that zmlδw±n/δ converges uniformly as a multiplication operator on L2(R,C2).
Let M denote v± and write g(u,k) = zmlδw±n/δ, where k = kδ. Consider the integral
operator on L2(ΪR, C) with kernel G(u, v\ k) = Xκ(u)g(u, k)f(u — υ, k)Xκ(υ\ where Xκ(u)

! = . Using the fact that g and/converge in L2 as k-> 1 it is easy to see
(0 | w | > K

that G(w,ι;,k) converges in L2([R2) as k-> 1. Thus the operator determined by the
kernel G(w, v, k) converges in Schmidt norm, and it follows that the same can be said
for the last operator appearing in (3.11).

Next we turn to the strong convergence results needed for (3.10). For λ not on the
negative real axis it is trivial to supply uniform (in <5) estimates for the operator
norms of all the operators in (3.10). Thus it is sufficient to prove strong convergence
on a dense set. We choose the dense set C^((R) for this purpose. We illustrate the
method for the middle case in (3.10). Suppose FeC^tR) and write F(x) =

oo K

J F(u)e~ixudu. Then for X sufficiently large f ( x ) = J F(u)e~ixudu, and it follows
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that:

Since F is rapidly decreasing, dominated convergence applies to this last "Riemann
sum approximation" and we find pointwise convergence to

-̂ ? —-—P(x)eixudx92π -Joo 1 + eπx

as δ-+Q. Since (1 + eπx}~1 is bounded, the L2 norms converge in the appropriate
sense and it follows that a + converges in the strong operator topology as δ -> 0. Since
the product of a strongly convergent sequence of operators and a sequence of
operators converging in Schmidt norm also converges in Schmidt norm, it follows
that LδRδ converges in Schmidt norm. But det2(/ -f A) is continuous in A in the
Schmidt norm. Thus we have proved:

Theorem3.0. Suppose Mt EGl(/?, C)(/ = 1,... ,n) and no M, has an eigenvalue on the
negative real axis. //π2(α1) < π2(α2)... < π2(αj, then

n

lim f] < σ(Mj) >fc~=

1

ki < σαι/ί(MJ... σanfδ(Mn) \=k exists.
δ-*Qj=l

The same technique suffices to establish the convergence of suitably scaled wave
functions (2.5) using the formulas from [7]. This will be taken up in another place
where the local expansion results are also derived.
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