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Abstract. We study a φ\ planar euclidean quantum field theory with
propagator ί/p2 ~ε/2, ε > 0. With the help of the tree expansion of Gallavotti and
Nicolό [1], this non-renormalizable theory is shown to have a non-trivial
ultraviolet-stable fixed point at negative coupling constant. The vicinity of the
fixed point is discussed.

1. Introduction

We consider a φ^ theory with propagator l/p2 ~~ε/2, ε > 0. The coupling constant has
a mass dimension ε making the theory non-renormalizable and very similar to a
</>4+ε model. In particular, one expects to find an ultraviolet stable fixed point at
negative coupling. For the planar approximation (i.e. if we keep only the planar
Feynman graphs in perturbation theory) we prove that this fixed point does exist,
yielding a scale invariant field theory. An expansion about this fixed point provides
then a two-parameter family of continuum theories.

The method we used is the tree expansion of Gallavotti and Nicolό [1] which is
based on the ideas of Wilson [2] (see also [3], where a similar way of implementing
Wilson's ideas in perturbation theory is presented). The tree expansion is an
expansion in powers of the running coupling constants on all scales, which is finite
order by order (and convergent in planar theories) even if the theory is non-
renormalizable [4]. The running coupling constants are related to one another by
recursion relations (the flow equations) and the problem is reduced to the simpler
one of finding a solution to the flow equations which is in the convergence domain
of the tree expansion. If ε is small a two-parameter family of solutions is shown to
exist in the planar diagram approximation. This gives a rigorous meaning to the
ε-expansion [2] for the N-+OO limit of an NxN matrix model with tr^4

interaction.
The paper which is largely self-contained is organized as follows: Section 2 is a

summary of the methods in [1] applied to the present model: the tree expansion of
the effective potentials and the flow equations are formulas (2.14), (2.19). The
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convergence of the tree expansion (Theorem 3.1) is proven in Sect. 3 (see also [4]
where similar results are presented for general scalar theories with ε = 0). In Sect. 4
the fixed-point solution is constructed and in Sect. 5 an expansion around the fixed
point is shown to yield a two-parameter family of solutions of the flow equations.

For background on the tree expansion see [1]; for a discussion of planar
theories see [5b]. Results on 4-dimensional planar theories are presented in [5, 6].

2. The Tree Expansion and the Beta Functional

This section is a short review of the tree expansion of Gallavotti and Nicolό [1]
applied to our example. We define the main concepts in the full <^4-theory: the
planar approximation will be introduced in the computation of truncated
expectations.

We consider a perturbation of a free field φ9 a Gaussian random field with mean
zero and covariance

1 Γ * ----- - smaιι (2.1)

in four-dimensional euclidean space-time. We introduce a scale decomposition of
φ by writing +oo

Φ= Σ Φ®, (2-2)
j= -co

where φ(j} are independent Gaussian fields with mean zero and covariance (in
momentum space)

-2ϋ-i) ~ε/4

(2.3)
Γ(l-ε/4)

and y > 1 is some fixed scale factor (γ = 2, say). We have the scaling relations

ι τ β 4 (2-4)

'distr. '

/ 4 / Λ \Iμ \

and the bounds 5<= Π — Ί^Σ/J,
\ i=ι\OXμ/ μ J

, x)\ ̂  C,(l)y e-
c^ , (2.5)

where C^l) and C2 can be chosen independent of ε in some range, say — 1 gίεrg 1.
The model is defined by introducing a cut-off on scale yN and taking as bare

interaction the potential

= Σ y-σ(*NλΛ(N)βΛ(Φ-N), (2.6)
«=2',2,4

N N

where φ=N= Σ Φj is the cut-off free field with covariance C(-N)= Σ Cω.
j - - oo j = - oo
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By the recursive definition

e-v<*HΦ^ = Ek+ie-v*+»(φ^)9 fc= -oo,. ..,#_!, (2.7)

where £k+1 denotes expectations with respect to φ(k + 1\ we introduce a sequence
{V(k\φ(-k))}%= _ oo of effective potentials, which can be formally expanded in powers
of the fields

,*J:^*(xι) ^*(*J: (2.8)

for some euclidean invariant distributions V^\
For the planar theory we identify the effective potentials with the sequences

{^mk)}m=o from which all Schwinger functions can be computed (see [lb]).
The (dimensionless) running coupling constants (or form factors) λa(k) are

defined by
y~εkλ4(k) = f Ff (0, x2, x3, X4)dx2dx3dx4 = F4(0) ,

and we may decompose the effective potential in the following way :
(α)*W^-*)+ Σί *£U(*ι, ...,*J^|f) - ^ί*)=

m

(2.10)

where the linear localization (or Taylor) operator Lfe acts on Wick polynomials in
φ-k with euclidean invariant kernels V as

Ljnxi,...^m)^-*(xi)-.^*(xJ:=0, if m>4,

?...,x4):^^(x1))4:? (2.11)

[To be precise, since the Wick monomials in the fields are not given a meaning in
the planar theory, we should replace in the definition (2.11) \φ(xv) ...φ(xm): by
/ι(*ι) ---/mOmX for the test functions /l5 ...,/m.]

The cumulant expansion (for the irrelevant terms)

κ(k)=ΣΓff(β)t4(^.^s*)+(i-ί'*) Σ ^^£t

r

+1(κ<*+1>,...,κ<*+1>)
α s=l SI

(2 12)
generates by iteration terms of the type (k<h <j) '

(\-Lh^)

) (2.13)
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Fig. 1. A simple tree
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Fig. 2. A general tree

[we have used Eτ( •) = £(•), EkLk = Lk_1Ek

1, Ll = Lk~] which can be efficiently
labelled by trees θ. For instance the term (2.13) is labelled by the tree depicted in
Fig. 1.

In general, the tree expansion is written as

0,h,α
hV=k

ί endpoints of θ
(2.14)

where, if θ is a tree, h = (hv)Veθ are integer labels of the branching points V of θ with
hv,<hv» if V ' <V" in the ordering of θ. The endpoints ί of θ are given labels
αt e {2', 2, 4}, and ht is the label assigned to the branching point to which the
endpoint ί is connected. The root V0 is given the frequency label k of the effective
potential, and the sum in (2.14) is over all possible non-trivial trees, frequency
assignments h, and endpoint labels α. The combinatorial factor is

n(θ)=
Veθ

where sv is the number of subtrees into which θ branches at V. Figure 2 shows a
general tree with root V0 and first branching point V1. The tree coefficients
V(Θ9 h, α) can be computed by the following recursive formulas : if θ = Θ0 is the
trivial tree (consisting only of the trunk)

0, hVΰ, = (2-16)

1 This follows from Ek:φ
&k(Xl) ...ψίk(xj: = -.^
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and if θ branches at the first branching point Vt into trees Θ1; ..., θs,

<(Kren(β1,h1,α1),...,Kren(θs,hsαs), (2.17)

hr, αr being the restriction of h, α to θr, r = 1, . . ., s.
Note that (2.14) is an expansion in powers of all running coupling constants

λa(h) and that the only cut-off dependence arises from the fact that the sum in (2.14)
is restricted to hv ̂  N, Vε θ, so that the cut-off can be removed simply by ignoring
this restriction.

If we act with Lk on (2.7) in cumulant expansion

oo r _ _ s - ι
(2.18)

and insert (2.14) on the right-hand side, we recover a recursion relation between the
running coupling constants (the flow equations)

Σ -^r/fβ(θ,M) Π W, (2.19)
θ,h,α l*\") i endpoints

where, again, σ(2') = ε/2, σ(2)= — 2-f β/2, σ(4) = β are the dimensions of A r, /12, /14

and the sum is over all nontrivial trees. For a tree θ branching at Vv into Θ l 5 . . ., θs,
the frefα functional [1] coefficient jβα(0,h,α) is defined by

ΣΓσ(α)W,M^ Fren(θs,hs,αs)). (2.20)
α

Again, the cut-off is removed by summing over h in (2.19), without restriction.
If we expand Fren(θ, h, α) in powers of the fields,

KreJβ,h,α) = ΣίKcn(fth,α;x1,...,xJ:^^^(x1)...^^o(xj :, (2.21)
m

we can compute the kernels Fj,k) as sum over Feynman graphs, of which we keep
only the planar ones :

7 r e n(θ,h,α;x l 9...,xJ= Σ Fren)G(θ,h,α; x1? ...,xj, (2.22)
G comp. with θ,α

where the sum is over all labelled planar Feynman graphs with m external lines and
n vertices, if θ has n endpoints, which are compatible with θ, α. A graph G is
compatible with θ, ex if the following two conditions are satisfied:

(a) For i=l , ...,n, the ith vertex is an &Λi insertion, i.e. it has coordination
number 4 if αf = 4 and 2 if α = 2, 2X.

(b) G has two types of internal lines : hard lines (coming from the truncated
expectations El) and soft lines (coming from Wick reordering). If we draw a bubble
around the vertices corresponding to the endpoints of the subtrees of θ, then the
hard lines of G should connect all bubbles contained in any bubble.

Figure 3 shows a graph which is compatible with the tree of Fig. 1 the d's recall
that the 3rd vertex is a j :(dφ)2: insertion.
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Fig. 3. A Feynman graph compatible with the tree of Fig. 1, h = hard, s = soft. The d's symbolize
the gradients that act on the propagators

3. Convergence of the Tree Expansion for the Planar Theory

The effective potentials of the planar theory are formal power series in the fields

}= Σ (3.1)

where the kernels V^} are symmetric, euclidean invariant distributions. The
effective potentials are brought to the form (3.1) by a formal partial integration of a
sum of Wick monomials in φ-k and dφ-k. We assume therefore that
where

i = l
(3.2)

The kernels V$? can be computed in tree expansion (2.14) as a power series in
the running coupling constants λa(K), which verify the recursion relation (2.19). The
aim of this section is to prove that (2.14), (2.19) are convergent expansions for
small Aα's.

The dimension of a Wick monomial of degree m, with / gradients is defined by

(3.3)

The result of this section is the following:

Theorem 3.1. (i)Le£/1? ..., fm be ^QR.4)-test functions. Then for \ε\^ε0 and θ anon-
trivial tree,

rβn(θ,M;/ι,...,/J= Σ (3.4)
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where Fren>1eir0(R4m) and

ί l^ren^(°>*2> •• ,Xm)|dx2 d:Xm

Δ2* ... x d w

sn\ ~T'y' l vΌdist(0,J2,...,
7

(ii) For |ε|^ε0>

Π y-^-*^, (3.6)

n^2ίs the number of endpoints of θ; Δ2 . . . Δm are cubes in R4 with side size
y-hVo . dist(0, A 2, . . ., Am) is the length of the shortest graph connecting 0, A 2, . . . , Δm;
FO is the root of θ, Vl the first branching point, and, for Fe θ, Vf is the branching
point immediately preceding V (see Fig. 2) C0 = C0(ε0, y) is a positive constant and
C2 is the constant appearing in (2.5).

Discussion. The exponential decay factors γ ~ ̂ hv~hvϊ (recall that hv, < hv) allow us
to sum over all h. There are at most const" trees θ with n endpoints with labels α.
This means that the series (2.14), (2.19) are absolutely convergent if H λ H ^

= sup |/lα(/OI < R for some .R > 0, and define thus functions on {λ : || λ || ̂  < #} = BR :
a,h

vw=Σy-°(**λx(k)&x(</>ίk)+vM(λ), (3.7)
α

λx(k) = y-"^λa(k+l)-βf\λ). (3.8)

The scaling relations (2.4) imply the "renormalization group equations"

( ); λ), (3.9)
(3.10)

where σ is the shift operator: (σλ)α(/c) = λΛ(k— 1). These relations will be needed in
Sect. 4.

Proof of the Theorem. The proof is in three steps. First, we prove that the operator
1 — Lk generates irrelevant terms with "good" bounds. The second step is an
estimate on Feynman amplitudes and the third is an estimate of the sum over all
Feynman graphs compatible with a given tree.

1st Step. For Fe f~0(]R
4w) (i.e. a smooth function with decay at infinity times delta

functions), we introduce the weighted norm (V is assumed to be euclidean
invariant)

IIFH^ίlF^...^^^^—'^^...^, (3.11)
where ρ^O.

Proposition 3.2. Let Fe -T2(]R
4m) and

,...,xJ:^*(x1)...^
k(χJ:

...,Xm)^-*(x1)...^*(x ι l l):. (3.12)
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If V has a zero of order I in momentum space, i.e. if for some {/ι}fL i with Σ \h\ — '?
i

V(f ,,..., fJ = V(dl^...,dl-"fm), Fer0(lR4m), (3.13)

then

(i) ifσ(m,l)^l,Vtea=V,
(ii) if σ(m,0<l, i.e. (m,/) = (4,0), (2,0), (2, 1), (2,2),

Ken(/ι,. .,/J= Σ K^ff'A,...,^), Fren,{ίι)e<r0(R4), (3.14)

ίren is the smallest integer ^/ SMC/Z that σ(m, /ren)^l.

Proof, (i) follows from the definition of L4. To prove (ii) we discuss separately the
four cases :

a) m = 4, / = 0, F=F

b) m = 2, / = 0, V=V

II K:en,λμvllρ= 1 \ II r I I ρ

d) m = 2, /=2,

The most complicated case is b), which we prove explicitly. The other cases are
proven the same way, but are simpler. By the Taylor remainder theorem (with
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o 2!

This proves b) with

γ =JΆ^ t~ΊV\ Xl, *2 }xλ xβ xv (3.17)

The bound is

\V\\Q, (3.18)

where we have used

1 dt(ί - f)2M V |x |t- eρW\ βf duu2e~u^ ^eρW .
o ρ o ρ

2nd Step. We want now to estimate inductively tree coefficients Vren(θ, h, α) using
the recursion relation (2.17). Recalling that EfeLfe = Lfe_1£fc, we can write this
relation as

V(θ, h, α)- EhvQ ... Ehvι _ ,Eτ

hVί (Fren(θl5 h1? αι)? .., Vΐeΐl(θs, hs, αβ)), (3.19)

Fren(0, h, α) - (1 - LVo )K(Θ, h, α), (3.20)

and we focus on the contribution VG of a single graph G compatible with 0, α, with
subgraphs G1?..., Gs corresponding to 0 l5...,0S. We estimate FG by simple power
counting and then use Proposition 3.2 to estimate FreΠjG.

Proposition 3.3. Let G be a graph compatible with 0, α. Then, for |ε| < ε0,

r.n.O.tW , , , ! , . .-, „ , ^2i)
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Fig. 4. The setting of the inductive proof: the graph G contributing to the tree θ has subgraphs
G l 5 . . ., Gs corresponding to the subtrees Θί9...,θs

where n is the number of endpoints of θ (and of vertices of G) and mv is the number
of external lines of the subgraph Gv of G corresponding to the subtree θv of θ with
first branching point V. C and cf are positive constants.

Proof. The proof is inductive. We use (3.19) and compute the contribution of G to
7(0, h,α) from the contributions of the subgraphs G1 ?...,GS to
F(θ l Jh l Jα1), ...,F(θs,hs,αs) (see Fig. 4). Some of the 0t 's are trivial trees. They
contribute to the computation of VG a factor y~σ(^hv^ by (2.16). Assume now
inductively that the proposition holds for the non-trivial trees in the list 0 l5 ..., θs.
Then VG is given by a generalized convolution of the kernels VGr with propagators
on scale hVl:

VG(Θ, h, α; Λ, . . .,fm) = J Fren> βl . . . Fren, Gs Π C<** \xh Xj)

hard

• Π C^ \x, *,.) Π ffcύ Π d4xr . (3.23)
<«,./> i = l r
soft

For the trivial trees Θr9 VτetίtGr is replaced by y~σMhVί jn (2.23). After replacing
Ken,G rj ^ = l j . . . j s, by Fren>Gr>{/ι} and integrating over the internal vertices, VG

becomes an expression of the form (we suppress the 0, h, α-dependence) :

= Σ (3-24)

and, to estimate ||FG||^.C2yhVι, we note that

(3.25)

where XG are the points associated with the vertices of G connected to external
lines, and T is some tree subgraph of hard lines of G connecting G± , . . . , Gs. For the
propagators and their gradients we insert the bounds (2.5) (note that we have at
most 6 derivatives acting on a propagator):

(126)
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We keep the exponential decay factor e~
C2yh(Xi~Xj} only for (ij) e T. This allows us

to integrate over the internal vertices. The result is ί with c1 = max _ 2 j
\ =*=o i ^ y

- v p2 + ε/4)( ί^mr-m\+ ί^ \l^\ -1/|] hVl

i 2 27 i {/(!)}, . . . , {/(«)}

S _

/^Σmr — m DS- I-. — 4(s— ί)hy1 τ~τ ι ι τ/ ι ι

r= 1 l

<^B2™
r mC4n ™ry σ m' } κι Π y (τ κ r / , (3.27)

where |I| = Σ \lt\ and B19 B2

 are positive constants. For θr trivial, || Fren Gr {l(D}||£2 h. > r, t 2γ Vl

is replaced by y-^)^ with same bound. The coefficient (^ + c'mv) comes from

^i + cX, c/ = c/(ε0)>0, (3.28)

and mr is the number of external lines of Gr, r = 1,..., s. We then apply Proposition
3.2 to estimate Fren>Gs{/ί}:

II Vrεn,G,{ϊi}\\±c2γ
hr0= II ̂ en, (?, ί^lli^?'1^

< V v~^τ / ιOΠ~|ί | ) | | V II
•=. Δ* t II r G,{/i} l l i-C2y h vi

I'D J-J ^-(i+c'm^)(^-V)

V>Vi

I 'Ί) ΓT Λ,-(τ+c'm^)(Λ^~^κ') ^OQ^H 7 '. (A^J

Here VGί[li} are the terms in (3.24) that give Fren>GΛl> ι } under the action of (1 — LhVo).
Note that by Proposition 3.2, σ(m, |/|)^1. Proposition 3.3 is thus proven, with
C large compared to B2-

3rd Step. It is well-known [7] that there exist at most const" planar unlabelled
Feynman graphs with n vertices. A simple combinatorial argument (see [Ib,
Appendix F]) shows that an unlabelled graph with n vertices can be labelled in at
most Cn

δn(θ) expd Σ mv ways to be compatible with a tree θ such that, for all VE θ,
Veθ

the subgraph Gv corresponding to V has mv external lines δ can be chosen as
small as desired. We can thus sum over all graphs the bounds of Proposition 3.3:

|| f? (Ω I* /y Λ l l <*" ί^n ^vn^(m^\li\) T~T Λ , ~ %(hγ ~hv) f j ^lf\\
II ren {/ }v^? **?^? / II—C2y h ^o — ^O/ 1 1 7 \O.O\J)

V>V0

with δ = cf In 7, C0 = const CδC
4. The claim of the theorem follows by restricting the

integration in || || to the domain A2 x ... xAm.

4. Construction of the Fixed Point

The construction of a planar field theory is now simple: it is sufficient to find a
solution, λ, of (3.8), with λ e BR, and the effective potentials are then given by (3.7).
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One could think of finding a solution of (3.8) by expressing all λa(k) as power series
in /Iα(fe0) with e.g. k0 = 0 by iterating (3.8). This fails because the expansion in the
renormalized coupling constants is plagued with the ultraviolet divergences of a
non-renormalizable field theory (see [4] for a discussion of this point).

But (3.8) has a fixed-point solution as one can see by choosing the ansatz

λa(k) = λ*9 fc=-oo,...,+oo, (4.1)

and solving the equation [with βΐ\λJ(k) = λ*) = JΪΛ(λ*y]

9 (4.2)

where βΛ is an analytic function of the three variables λξ,,λ%,λ% for \λ$\^R. The
scaling relation (3.10) implies that, with this ansatz, all (3.8) are satisfies if (4.2) is,
and that βα does not depend on k.

The functions βa can be computed explicitly up to second order:

β4(λ) = β444λl + β424λ2λ4 + 0(λ*) ,

, (4.3)

and the coefficients coincide with the second order coefficients of the β and γ
functions of the physics literature.

We solve (4.2) by the analytic implicit function theorem: we define ε= 1 — y~ε

and write (4.2) as
P ; * _ ^ / ; # * *^— fcΛ4 — P4^A4 , Λ2 , Λ2>) ,

(y2-l)A! = /f2(Ai,AJ,A5-), (4.4)

which can be solved in a convergent ε expansion, if ε (and thus έ) is small enough :
the non-trivial solution

, (4.5)

correspond to a sequence of effective potentials via (3.7)

μα(/c) = A*) (4.6)

with the scale invariance property (3.9)

1+ε/4V-/c(y"k •))• (4-7)

The details of the application of the implicit function theorem for the solution
of (4.4) are contained in the Appendix.
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5. The Vicinity of the Fixed Point

In Sect. 4 we have constructed one single theory, the fixed point (scale invariant)
theory. In this section we show that one can construct a two parameter family of
solutions {λΛ(k)} of the flow equations with positive fc, which yields a two
parameter family of effective potentials on all scales k ̂  0. These solutions are such
that Λα(0) is very close to the fixed point and /lα(fc) approaches the fixed point
exponentially fast. The central idea in the proof is that if one expands around the
non-trivial fixed point there are two relevant directions and no marginal ones, so
that the situation is very similar to a superrenormalίzable theory!

The strategy is the following: we first expand the flow equations around the
fixed point and diagonalize the linearization of the beta functional at the fixed
point to first order in ε. Then the contraction principle yields a two parameter
family of solutions.

We first simplify the notation: the (convergent) power series (2.19) can be
written as

βΐ\V= Σ /£U», (5.1)
n

|n|^2

where n = {nα(fc)}fe6Z α== 2 4 2', λ
n = Π Λ,α(fc)Mk) and the sum is over all multiindices

α,fc

n with |n| = X nα(/c) < oo. It then follows easily from (3.6) that
α,/c

#»=0, if fcmin(n)</c, (5.2)

for some (ε-independent) constants C>0, ρ>l, where

^max(n) — max{Λ|wα(λ)Φθ for some α},

/ϊmin(n) = min{%α(/ί)ΦO for some α}.

To expand around the fixed point we have to generalize some simple properties
of power series to the infinite dimensional case:

Lemma 5.1. Let /(x) be a formal power series in x = {xα(fι)}h=o,ι,2,....
α= 1, . . . ,ΛΓ

/(x)= Σ /nx
n (5.4)

|n|^l

whose coefficients satisfy

l/J^C | n | + V*max(n)> C>0, ρ>l .

Then (5.4) is absolutely convergent for \\x\\ <κ<R = C~ΐ(l—ρ~'LIN). Moreover, if
\\x\\ao£R1<R, the series

χ)yn (5.5)
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is absolutely convergent for | |y| |Q O<JR(JR1) and

|n| + 1 - * (5.6)

for some

Proof. The first part of the lemma follows from

ln| + " Σ
h n:fcmax(n) = fc

|nl + 1

if ||x|| <C-1(1 — ρ"1/N). Similarly, using the explicit formula

a (x\ - y f Π Iί/mW~~ 2^ J n i l l
n:

«α(/ι)^mα(/ι

we get the bound

r
(5'9)

which proves (5.6), since, if R^ < R, ρ> 1,

We can now write λΆ(k) = λ% + ξa(k) and expand (5.1) in powers of ξΛ(k) by using
Lemma 5.1 with /= β(®} [this is sufficient since all β(^ are equal to β(®} up to scaling
(3.10)]. We get

β β,h>k

where L(1) is the linear part to first order in ε [which couples only ξ(k) to ξ(k +1)],
ε2L(2) is the remaining linear piece and Q(ξ) is higher order in ξ. More precisely,

aε 0

,2-ε/6 C£

/ε y'ε/2

(5.12)

where α,b, ...,/ are combinations of second order coefficients of the beta
functional. For ε (and thus A*) small,

= Σ

|βαn(/c)| = 0 if hmin

By a linear transformation fα(k) = ΣAΆβζβ(k), where ^4αj3(ε) is uniformly bounded
β

in α, the matrix L(1) can be diagonalized to first order in ε:

, (5.14)
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where L(1) = diag(yε,y2~ε/6,y~ε/2) and L(2), β satisfy the same bounds as L(2\ Q,
with different constants. The result of this section is the

Theorem 5.2. There exist constant ε0 > 0, r > Osuch that if ε< β0, |ξ\0)| <r, |<f2

0)| < r,
(5.14) has a solution {&(*)}*%. «=4.2,2< with fβ(0) = 50), α = 4,2, α«<f £α(fc)-*0 as
fe-> oo exponentially fast. For all s with 0 < s < ε, r = r(s) can be chosen so small that

By the transformation

\βξβ(k ) (5.15)

this two-parameter family of solutions yields a two-parameter family of solutions
of the flow equations which go asymptotically to the fixed point as /c-κx), and a
sequence of effective potentials [V(k}}k^09 solving thus the ultraviolet problem in
the vicinity of the fixed point.

Proof. We use the contraction principle on the Banach space J*s,

}, (5.16)

and write Eq. (5.14) with the initial condition £α(0) = ξ(®\ α = 4,2 (we drop the bars
in the sequel), in the form of a fixed point equation:

V- — T (F\ fS \Ί\<5— lξ(Q)(ξ), \J.L I)

where TWξ) is defined by

where S(ξ) =
Notice the different treatment of the irrelevant 2'-direction ! Let

||ξ||s^r}. For ξe^s(r) and

2. (5.19)

[C', C", denote positive (g-independent) constants]. It follows that if ε is small and
0 < s < ε, then r can be chosen so small (depending on s) that

ξ)||s^r, (5.20)

i.e. ŝ(r) is mapped into itself.
Similarly, for ξ, η e $s(r),

+ C'ε2||ξ-η||s + C"'||ξ-η||/, (5.21)
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where in estimating |β(ξ) — β(η)|, use was made of

||ξM-η L^| |ξ-η| | |π|rW-ι. (5.22)

For ε small, 0 < s < ε, r small depending on s,

ηL (5.23)

for some θ = θ(ε, s) with 0 < θ < 1. The map Tξw is thus a contraction on the closed
subset ^s(r) of the Banach space &s. It follows that there exists a unique solution ξ
of (5.17) [or (5.14)] in @s(r). This solution has the properties

{.(0,-ίΓ, ,-4.2.

KMil-"r.

6. Conclusions

We have constructed a non- trivial fixed point of the renormalization group and a
two-parameter family of theories whose ultraviolet behaviour is governed by this
fixed point. This was done in the planar diagram approximation. One could extend
this result to all orders in a l/N expansion of the matrix tr^4 model, since, at fixed
order in 1/W, only Feynman diagrams with fixed Euler characteristic contribute.
The number of such diagrams is bounded by const" [8], with the same constant as
in the planar case.

A very similar analysis can be made for the infrared problem for ε < 0. This
would give a rigorous understanding of the ε-expansion of critical exponents of
statistical mechanics models in the planar approximation. We want, however, to
point out that taking a propagator l/p2~ε/2, rather than going to 4 + ε dimension
by means of some analytic continuation prescription, makes an important
difference : in the model we studied in this paper there is no anomalous dimension at
the non-trivial fixed point [see (4.7)] : the interacting field has the same dimension
as the free field. To treat the problems with nontrivial anomalous dimension one
has to modify slightly the formalism developed here, by introducing a rescaling at
each renormalization step.

Appendix. Solution of (4.4)

The first equation in (4.4) can be divided by λj, since all graphs contributing to β4

have four external lines and must all have at least one quartic vertex.
By rescaling /14 = ε ~ lλ%, λ2 = ε ~ 2/lf , λ2, = ε~ lλ\, we can rewrite the equations

as
λ^— — P444 + ε/4(A4, Λ2, A2') ,

(y2 - 1)4 = β244λ4 + β22,4λ2.Z4 + ε/2(4, 4, 4,) , (Al)

n

for some functions /4,/2,/2' analytic in |/L| < — and uniformly bounded in ε for
ε

|/y ̂  jR1? where R1 is chosen large compared to the second order coefficients βijk.
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These equations can be easily brough to the form

4 = £0) + 6/.tf) (A2)
n

with, say, |ί£0)| ̂  -r^ ; the implicit function theorem applies, and we get a solution

of the form (4.5).
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