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Abstract. We extend to φ\ the work of S. Breen on the leading behavior at large
order of φ\ perturbation theory. Using a phase space expansion to obtain new
estimates on the high energy behavior of φ\ Feynman graphs, and a rigorous
semiclassical expansion, we prove that the radius of convergence of the Borel
transform of the pertubative series for φ\ Euclidean field theory is the one
computed by the Lipatov method.

I. Introduction

The Lipatov method is a formal steepest descent method for finding the
asymptotic behavior at large order of perturbation series in the Euclidean path
integral formulation of quantum field theory. Following early work by Bender and
Wu [1] and Lam [2], the first calculations by Lipatov [3] were restricted to

2N
massless φ2N field theory in dimension ——-. The method was extensively

developed by Brezin, Le Guillou and Zinn-Justin [4] to compute the large order
behavior of general bosonic theories. After arguments by Parisi and't Hooft [5] it
was realized that the result should hold only for superrenormalizable theories. Yet
even there a general rigorous justification of the Lipatov method has not been
given. Let us summarize the work done in this direction and the difficulties.

For simplicity we limit ourselves in this paper to the perturbative expansion for
the pressure of the massive one-component φ4 model in dimensions 1, 2, or 3, in
which it is superrenormalizable. We rescale also the bare mass to be 1. Extensions
to arbitrary mass, to iV-component vector models and to general Schwinger
functions are easy, once this simple case has been rigorously understood, and we
do not discuss them here.

The partition function of the model in a volume Λ is defined by constructive
field theory [6,7] as:

Zx(g) = $e-9V(φ) + counteriermsdμx(Λ), (1.1)

in which V(φ)= SΛφ*(x)ddx, Λ = [-T/2, T/2]d and X = p (periodic) or D
(Dirichlet) specifies the two possible types of boundary conditions that we will
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consider. The counterterms to make the theory finite depend on the dimension d
and will be defined later. The mean zero Gaussian measure dμx(A) has covariance:

ίφ(f)φ(g)dμχ(Λ) = <f9(-Ax+lΓ1g>9 (1-2)

where <, > is the L2(A) inner product, and A x is the Laplacian with X boundary
conditions on Λ. The pressure may be defined at small g by a cluster expansion
[6-8]:

/>(<?)= lim —logZx(Λ), (1.3)
Λ->oo \Λ\

and is independent of the choice of the boundary conditions. It has a renormalized
perturbation series

Σ (-l)"απ<Λ (1.4)

which is known to be divergent [9,10] and Borel summable [11] for d= 1,2,3.
This last result makes use of constructive field theory, but by "cheap" perturbative
estimates one can prove the weaker result that the Borel transform B(f) of (1.4),
defined as °° α

«= o n\

is analytic in a disk of non-zero radius [12].
From the results [6-12] one gets the impression of a unity of the superre-

normalizable domain.
The Lipatov method applied to φί>2,3 gives always the same type of

asymptotic formulae:
an ~ n l ( f n b c ( l + 0 ( l / r i ) ) 9 (1.6)

w-> oo

where the coefficients α, b, and c depend on the dimension and have been explicitly
computed [4]. Only c may depend on the renormalization scheme. Of particular
interest is the coefficient α, which, if (1.6) is valid, is the inverse of the exact radius of
convergence R of the power series (1.5).

Let us define the functional S(φ) by:

-log J φ*(x)d"x (1.7)

for φ in the Sobolev space Wlt2(Rd)9 which is the completion of Q^R*) in the
norm

I?, 2= ί [(Fφ)2(x) + Φ2(x)]^x. (1.8)

The functional S(φ) is bounded below and attains its infimum (see Lemma IV. 5
below). The Lipatov prediction for α is:

α = R" 1 =limsup N^-l " =exp[-infS(φ) + 2] . (1.9)
n -»• oo |_ W I ! J

To summarize rigorous results, let us call "full justification" (of the Lipatov
results), a proof of (1.6) with the right values of α, 6, and c, and "partial
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justification", a proof of (1.9). Then a full justification has only been obtained for φ\
(anharmonic oscillator) [13], and a partial justification has been obtained for
regularized lattice models in any dimension [14] [with S in (1.9) replaced by a
lattice version of (1.7)], and for φ\ in the continuum [15]. Here we prove (1.9) for
φ\, extending therefore the partial justification of the Lipatov method to basically
all the superrenormalizable cases, where it is supposed to work. The extension to
φ\ has some interest in itself, since the three dimensional asymptotic formulae (1.6)
were used to optimize numerical computations of critical exponents in our three
dimensional world [16].

Let us sketch the difficulties met in proving a formula like (1.9) by a semi-
classical expansion.

In any dimension ά~ 1,2,3, one has to perform an infinite volume limit. This
problem can be solved by periodic and Dirichlet bracketing inequalities, and
lemmas relating the large order behavior of ordinary and connected functions
[14,15].

In dimensions 2 and 3, one has also to renormalize and to interchange large
order and ultraviolet limits. This was accomplished in [15] for a — 2 by introducing
an order dependent ultraviolet cutoff. We follow the same strategy. However, there
is a new difficulty. There exists in dimension 3 a mass counterterm which is not
linear in g; it renormalizes the logarithmically divergent graph of Fig. 1, which we
call the "blob":

Fig. 1. The "blob" B

Therefore we cannot use directly, as in [14, 15] an integral representation for the
nih order of unconnected perturbation theory, bn. In the case of φ\, where the only
renormalization is Wick ordering, one has:

bn=^U:φ4(x):d2xγdμ. (1.10)

For interactions which are not linear in the coupling constant, one may use the
following heuristic contour integral:

. , (1.11)

but it is difficult to justify. We prefer to establish some graphical estimates to
bound the high energy behavior of perturbation theory and the effect of the blob
counterterm, and use again an integral representation of type (1.10) with a cutoff
measure, for which we can do a rigorous Laplace expansion.

These graphical estimates may have some interest in their own and are
presented in Sect. III. In Sect. II notations and results are stated. Section IV
depends heavily on [15]. Some technical results on lattice propagators are
gathered in the Appendix.



62 J. Magnen and V. Rivasseau

We remark that for technical reasons we are unable to replace the lim sup in
(1.9) by a simple limit, as expected, except for the class of subtraction schemes
which subtract the blob at an energy sufficiently large compared to the bare mass.
For this class of schemes we have more detailed information than simply (1.9) (see
Sect. II).

Finally we believe that our graphical estimates, inspired by the phase space
technique of [17], have analogues in just renormalizable theories. In particular one
may hope to prove with such methods that the renormalization group improved
perturbation series for gφ^ with negative g, as defined in [18], should follow the
large order behavior computed by Lipatov's method in 4 dimensions. This may be
a key ingredient for a proof of existence of the first renormalon on the positive real
axis in the Borel plane of φ*.

II. Definition and Results

We have to introduce some definitions, most of them rather standard in
perturbation theory.

In φ\ the divergent graphs are those of Fig. 2:

Fig. 2

We renormalize the theory by the usual Zimmermann scheme of subtraction at
0 external momenta [19], but Theorem II. 1 below does not depend on this
particular choice.

We use two different types of ultraviolet cutoffs; an exponential cutoff as in
[17], convenient to derive graphical estimates, and a lattice cutoff, convenient for
the infinite volume limit and for the Laplace expansion [14,15]. These two cutoffs
are related by the technical estimates of the Appendix.

To define the exponential cutoff, we pick an integer M, fixed in Sect. Ill to a
large value. The propagator in x-space may be written, using a parametric
representation [17]:

Λ d3k elk(x"y^ 1 °p da -α- **~^
(x'y)==J(2πFTTF~ = (4^ί^e α (1 }

We define also: „ >-yp
α

(2.3)

cs(χ, y)=Σ Q(*, y) C(x, y) = Σ cf(x, y). (2.4)
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Cj can be thought of as a propagator with momentum cutoff of order Mj. Let us
define the regularized propagator Cδ on the lattice δZ3 as:

π/ί

^ l+2cΓ2 Σ (l-cos<$y
oc=l

(2.5)

where ^ is the usual discretization of the Laplacian. Cδ is a priori defined for
x, y e δΈ?, but we may consider it also as a piecewise constant function; since it
depends only on x — y, we evaluate it at the center of the cube of R3 of side δ,
centered on δ%3, to which x — y belongs.

The Gaussian measure with mean 0 and covariance Cδ is called dμδ. Similarly
the lattice propagator Cδ(Λ) in a finite volume Λδ = ΛnδZ3 with X = p or X = D
boundary conditions is defined as usual, the corresponding Gaussian measures
being called dμδ(Λ). We may ensure in the rest of the paper that, as in [15], δ is such
that the sides of A lie midway between lattice sites. We have the useful inequalities:

(2.6)

(2.7)
n — — oo

for x, y e A. (Recall that Λ = \_- T/2, Γ/2]3.)
Other technical estimates on the behavior of Cδ and Cl are proved in the

Appendix.
Perturbation theory expresses the coefficient an in (1.4) as a sum over all

connected Feynman graphs G without any external legs and propagators C, of
their renormalized Feynman amplitudes:

<*n= Σ /g, (2.8)
G

n(G) = n

/£= lim -1- J ... J Π d3xtt a-nC(Xe,ye). (2.9)
Λ-+OO I/I I A A v t

In (2.9) the products are taken over all vertices voίG and over all internal lines
{, Xj and y£ being the positions of the ends of the line /. The number of vertices and
lines of G are called respectively n(G) and /(G). A "graph" means always an
unlabeled graph. The renormalization operator acts in a way which can be
summarized by the following rules:

- if G - G! , G2, or G3, or if G contains a "tadpole" G4, then m Π Cfe, y,) = 0;
t

- in any other case 0t = Π (1 — ίβk), the product running over the blobs Bk in
k

G. We may define tBk, which subtracts the value of Bk at 0 external momenta,
directly on the x-space integrand of (2.9). Let us associate to each Bk one of its two
external lines, /fe, in such a way that the lines associated to different Bk's are
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different. Call yk the position of the vertex of Bk at the end of (^ xk the position of
the other end of /fe, and zk the position of the other vertex of Bk (see Fig. 3):

Fig. 3

Then tBk may be defined by

tBh ΓΠ C(x,,3v)] =C(xk,zJ Π C(x,,)v). (2.10)
e

Thanks to translation invariance, the integral (2.9) does not in fact depend on
the choice of the line (k.

We call G an ICW graph (irreducible connected Wick-ordered graph) if it is
connected (C), does not contain any blobs (/), and does not contain any tadpoles
(W). Under the same conditions except that G contains blobs, we call G a BCW
graph (B for blobs). Similarly we define CW, C, and W graphs; for instance a W
graph has no tadpoles, but may be disconnected and may or may not contain
blobs. Unless otherwise specified, all the graphs considered have n(G) = n fixed.
Then we introduce the following objects:

αn = αj? + αί, (2.11)

<£= Σ /g; *ί= Σ /g (2.12)
GBCW GICW

Similarly we define /Jp and I%iδ by (2.9) with the renormalization operator ̂
suppressed and C replaced, respectively, by C1 and Q, and we write

(2 14)v^"1^/

V τW,i. n1'1— V
2^ 1G •> an — 2L

GBCW GICW

GBCW GICW

We introduce also at finite volume Λ:

I^X(Λ) = U(δ3 Σ}Π Cj(Λ)(x,,}v), (2.17)
v \ xveΛόJ £

b™'δ'x(Λ)= Σ Π I%°'X(Λ), (2.18)
G W G k CG

where in (2.18) the G^'s are the connected components of G. Moreover we define

δ3 Σ <P4W, (2 2°)
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the Wick ordering being with respect to dμ*(Λ). One has also:

= 1 n2" ί [ Wf (φ/]/n)Ydμx

δ (Λ) (φ) , (2.21)

where in (2.21) it should be understood that the Wick ordering scales as in [15],
(1.14); if Cδ is the Wick constant:

Finally we define

b*n'
x(Λ) = ̂  π2" J \yδ(φl\Γn)γdμt(Λ) (φ). (2.23)

We have also to introduce the finite volume analogues of the function S(φ)
defined by (1.7). We consider:

A*X=-A*X + 1. (2.25)

SXίΛ is defined on piecewise constant functions φ in Λδ, with X = p or X = D. Its
continuum counterpart is:

Sx yi(φ) = 2"ί L(Vχψ}2(x}^~ψ2(x)^d3x — log J φ4(x)d3x (2.26)
A A

for φ E WQ'2(Λ) if X = D and φ e Wί>2(A) iίX = p; these spaces are respectively the

completion of C^(/L) and of periodic (^ί functions for the norm J \_(Vxφ)2 (x)
A

+ φ2(x)]d3x [15]. By Lemma IV.5 below, the functional S, SX,Λ, and SXtΛ are
bounded below and attain their infimum. Our main result is:

Theorem ILL Let R be the radius of convergence of the series (1.5). Then

[\a \Ύln

R ~1 - lim sup \-γ\ = exp [ - inf S(φ) + 2] . (2.27)
Π-+CQ [_ n. J

In our case (I component φ\ with mass 1) one can compute [4]:

4!
exp[-infS(φ) + 2]^ — - (36.091...)~1 =>R-4.72.... D (2.28)

π

To prove the theorem we put M': = πδ ~1 ̂  ̂ ε, where ε will be fixed later to a
small value, and we relate an in (2.27) to infS(φ) through 8 successive steps:

nW>ί L s j W ^ ) ~W,δ,X( Λ\^ L.W,δ,Xi
a - » a - -

(2.29)
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Section III (with the Appendix) corresponds to performing steps 1 to 2, and
Sect. IV to steps 3 to 8, which are basically the steps performed in [15].

The reader may convince himself after reading Sects. Ill and IV that Theorem
II.2 holds for any choice of the subtraction scheme. In fact the minus sign in the
renormalized amplitude of the blob creates difficulties in finding lower bounds
on an; to solve them we rely on the technique of [10]; the price to pay is that
one cannot replace the lim sup in (2.27) by a lim as expected. However, if one is
willing to use a scheme which subtracts the blob at large momentum μ, the
negative part of its amplitude is pushed far into ultraviolet region and may be
dominated by the positive low momentum part of its amplitude. One obtains the
more detailed result:

Theorem Π.2. Let a^ be the nth order of perturbation with subtraction of the blob at
momentum μ. If μ^> 1, α£ has the sign of (— l)n for n large enough, and:

α = Λ ~ 1 = lim -= =exp[-infS'(φ) + 2]. (2.30)
n->oo l _ W ! J

Therefore the Borel transform B(t) has a singularity at t= — R.

The proof of Theorem II.2 follows easily from the bounds derived in Sects. Ill
and IV and is left to the reader. We remark that to remove the (purely technical)
restriction μ large in our opinion requires a strict improvement of the bounds of
Sect. Ill, in particular of the speed at which the limit in (2.27) is attained.

III. Graphical Estimates

In this section we will prove graphical estimates and use them to introduce a lattice
cutoff of order nε and to remove the blob renormalization, hence to perform steps 1
and 2 in (2.29). We remark that by translation invariance, if G is ICW and F0 is a
fixed vertex of G:

I^ = IG=ΣIG.μ, (3-1)
μ

/&= f f Π d3x, Π Cif ( X f , y f ) \ X v = o, (3-2)
R3 R3 v Φ ι;0 A=G ' °

where, as in [17], μ is an assignment of momenta {^}, { e G, hence is in N^(G). For G
ICW, F any subgraph of G and any ί ̂  1 , our main technical estimate will bound
the amplitude ΓG F of G, computed by (3.2) but with full propagators C if f e F and
with propagators OiΐέφF [see (2.4)], by the amplitude ΓG computed by (3.2) with
all propagators replaced by C, losing a multiplicative factor exponential in the size
of F (but not in the size of G, which would be disastrous for our purpose).

More precisely let us consider the set s$'l¥ of assignments μ = {i^} such that ie ̂  i
and $ the set of all μ's such that i, ̂  i V/. Then ΓG> F = £ IG μ I also ΓG

'= Σ IGtμ>
 and we have:

μe^1

Theorem III.1. For M large enough, there exists a function K(M) > 0 such that for
any ICW graph G, any F £ G and any i ̂  1

Π (3.3)
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We will prove Theorem III.l by applying inductively a more precise version in
which the indices of the highest lines in an assignment μ are lowered down by one
unit. Probably this is not. the simplest proof of Theorem III.l, but it is the only one
we found. For any μ = {i^}, let us define i(μ) = max if and H(μ) = {feG, if = i(μ)} .

έeG

We introduce also a decomposition on length scales by considering, for any
j'^ 1, R3 as the disjoint union of A°, A], and A],

A] = {x, |x| ^4M~7'(logM)1/2} , (3.4)

Aj = {x, 4M^'(logM)1/2 < |x| < 3M"ϋ" 1}(logM)1/2} , (3.5)

A] - DC, 3M~(j~ 1}(logM)1/2 g |χ|} . (3.6)

For any j ^ 1 and F £ G we may want to know whether x^ — yf belongs toA^A^or
Aj. Therefore we call @>(F) the set of "length assignments" π which to /eF
associate a value π(/) = 0, 1 or 2 and we write

/G,μ= Σ I&μ, (3.7)

where 7G'Jμ is defined by the integral (3.2) with additional restrictions x^ — y€ e v4J(/)

for any / e F. We will call ί*(π) = {/ e F, π(f} = k}. Hence F = F°(π)uί4(π)uίf2(π)
Also we define F^1(π) =

Theorem III.2. For M large enough, there exist two positive functions K0(M)
^(MXwith lim K0(M) -0, such that, for any ICW graph G, any FgG, any i^ 1,

M^oo

any //£F, HΦ0, any ;>/, and any

Σ /^^[

H(μ) = H HgH(μ')

where π' is a function of π, which belongs to 0>(H-\π)) and is identically 0:π'Gf)=0
V/ e H- 1(π). Clearly, there is no more assignment for the lines of H in A2-, and the
lines of H in A?(jAj are in ̂ ^ in the right hand side of (3.8). D

Comment. The left-hand side of (3.8) is in fact an integral similar to III.2 with
propagators C on the lines of G - F, CJ~ x on the lines oΐF — H, and Cj on the lines
of H, and restrictions x^ — y^e AJ^} for £eH. The sum in the right-hand side of (3.8)
may be thought of as the same integral with propagators O on the lines of G — F,
Cj ~ 1 on the lines of F — H , C7 _ ί on the lines of H, and restrictions x^ — y^e A®_ l if
£€H-^(π). As announced, the lines of H have been lowered by one unit.

Proof of Theorem III.l, Assuming Theorem III. 2. Let us consider G, F, and i as in
Theorem III.l. We write:

4*= Σ . / G . μ = ' G + Σ Σ Σ. Σ /G1;/;. (3.9)
μe^p j>ί H i g F μiej^F πιe^(Hι)

H ι Φ 0 i(μι) = j

Applying (3.8) we get: #oω=ffι

4F^4+ Σ Σ [K0(M)r(Hl) Σ [KΛM)]'^"1" Σ. /^'/ΓS (3.10)
j> i Hι£F πιe^(fiΓι) /^ίe^

fί !Φ0 i(μί) = j- l

where πi e&(Hγ 1(π1)) and is identically 0.
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If 7 — 1 >i, we decompose again:

Σ . J$;kl = Σ Σ Σ , /G^Γ1, (3.1 1)
μΊe^f H2 π2e0>(H2) μ2e^F

i ( μ { ) = j-ί H1ζH2gF HU(πι)ςH§(7C 2 ) ί(μ2) = j-ί
H(μ[)2Hl H(μ2) = H2

and we apply again Theorem 111.2. We repeat this until we arrive at a large sum
with end contributions of the form:

H(μj-i)2HJ-l

which we can bound uniformly by ΓG. Therefore we obtain:

+ Σ Σ Σ

(3-12)

But since Hf^^π^-^QH^π^, a line in //^(π^i) is not in ff£(πfe)5 and thus
j-i

}. Furthermore each sum over πk is over at most
k=l

^(Hk) possibilities. We may choose M large enough, so that K0(M) ^ — . Then
(3.12) becomes: 2

ί

G Γι+ Σ Σ (i)
L j > i j 0 f C H ι ς . . . c H < / _ ί ς F

(3.13)

But we may bound the choice of H^{ by 2*(F\ the choice of Hj-i-ί by
etc...., and obtain, since ^(Hfc)^l for 1^/c^j — r.

Σ Σ Θ ...
j>ί 0CH 1 ς. . .ςH < / - I ςF

...1+ j; 2w(iy-^l+2w, (3.14)

which proves (3.3) with K(M) = 3Kl(M) if FΦ0 (if F = 0, (3.3) is trivial).

Froo/ o/ Theorem 111.2. We write

Σ. /£/;,= ί-ί Π d^ΠC^y,)
μe^p x^-^e^(^) i; Φ ι;0 ^F
ί(μ) = j teHJ

H(μ) = H

• Π C^ ̂ x,, ye) Π C/xΛ y/)|x o . (3.15)
°

i) If ̂  efί, πfcf) = 2, one has |x^-^|2^9M "^"^logM, and by (2.3) and the
rescaling α->M2α (using 1 = 8/9 + 1/10+1/90, ^2 since j>ί*tl, and assuming
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from now on that M^ 10):

I M- 2 u-2) ^α

55W „./„.„ ?«M

ii) If £ eH, π(/) = l, one has similarly:

2-I

J

^ — M2Cj_ !(*„?,). (3.17)

Applying inequalities (3.16) and (3.17) to the lines of Jί1(π)uH2(π) we get:

'WuH^π))

[M2]'<»'<«» J...J n d3*,

... Π « 40 Π C'(xΛ^) Π

Π Cj-^,^) Π (3.18)

Let us call Ha = HQ(n) and Hβ, β= 1,..., r the connected components of Ha.
Holding fixed the positions of the ends of the external lines of Ha which are not in
HΛ, we will bound the partial integrations over internal vertices of Ha in (3.18),
using the constraint that all internal distances in Ha are short relative to scale j. Let
us call nα = n(H^, f^ = /(#α), Ea the set of external lines of Ha, and ea the number of
lines in EΛ. We will bound:

jx ,-y,pM 2 (J-i)

J = f f ΓT d^x ΓT C (x v ) ΓT e 40

Π 0(xe,ye) Π C^1^,^) Π Cj-^y^,. (3.19)

Let us use an elementary lemma.

Lemma III.l. For any connected graph Hβ, there exists a subset Vβ of the set Vβ of
internal vertices ofHβ, ofnβ elements, with ft^=sup{l, I(nβ/4)}, (I meaning ''integral
part of", and nβ=n(Hβ)), such that for any veVβ there is a chain of at most 6 lines of
Hβ joining v to a vertex of Vβ. If v0 e H β , one may further require v0 e Vβ. Π
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Proof. Take a tree of Hβ, draw it on the plane, number the vertices (starting from υQ

if v0 e Hβ) by "turning around the tree in the plane," as in [17], and choose for Vβ
the vertices with numbers 1, 8,12,16, etc.... It is tedious but easy to check that this
is a convenient choice of Vβ.

We can split Vβ into the disjoint union of n'β subsets Vβ', w e Vβ such that if υ e Vβ'
there is a chain of at most 6 lines in if ^ joining v to w, and such that w e V^ for any
W G Vβ.

Now we use a one-to-one change of variables which is made of partial
rescalings with local rescaling centers in Vβ, for /J = l,...,r. More precisely we
define (assuming M>56(logM)1/2):

< = [M/56(logM)1/2]xι;-{[M/56(logM)1/2]-l}xw

if v e Vβ' for some β = 1,..., r and some w G Vβ;

x'v — xv otherwise. (3.20)

Remark. We use "local, partial rescalings" to control the short distance region. The
reason is that with a single rescaling of Hβ with one scaling center as in [17],
holding the ends of the external lines of Hβ fixed, a problem occurs for nβ large. Far
from the scaling center, external lines of Hβ, although of lower frequency, "feel" the
scaling in the sense that the ratio between the external propagators before and after
the scaling may be of order enβ. If there are many such legs (~%), this gives a
disastrous factor enl. Moving also the external lines of Hβ seems untractable, and
"breaking" them (as in [17] or Lemma III.2 below) seems to lead inevitably to the
loss of some Kn(G\ It is this difficulty which is solved by organizing the scaling into
local partial ones and losing a fraction of the power counting in a manner typical of
superrenormalizable theories. Clearly this should be improved if we were to apply
this technique to — grφj.

Rescaling α's into MVs for /e#α, the integral (3.19) becomes (since the
r

jacobian of (3.20) is [56(logM)1/2/M]3<* = '("'i~"ίi)):

' j l " J...J
xf-VfeAj

if *fetfαu[£α

Π d3x'a Π Dj.^x^y,)...

_

Π e 40 Π C''(x,,;y,) Π

Π (3.21)

where

^ x 1 M 2

Γ°
 2) dα

In (111.21) Xj and y£ are functions of x^, y'£ by inversion of (3.20).
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For /e#α, let us call x^ = xf;ι, yt = xΌ2, t;x e 7/1, t;2e F/2. Since

andM>56(logM)1/2:
2] [x, - jv| + |xwι - xW2|]

. M <

~ '

where we used the constraints in (3.21), the fact that wί is linked to w2 via vl9 £ and
v2 by at most 6 + 1 + 6 = 13 lines, and the triangular inequality. (3.22) implies:

(3.23)

,), (3.24)

since

if M-2o -D^α^1 and ix -y

Similarly if <fe£α, we have

^ 12 [4M^'(logM)1/2] [(M/56(logM)1/2)- 1] ̂ M~(i'l) . (3.25)

Now using Lemma A.I in the Appendix, and (3.25):
a) If ( e £α and <f φ F, since i <;',

Cl(xf,ye)£KCt(x?e,y'e). (3.26)

b) I f/e£ α nFandίf^H,

C'- l(xe, ye) ̂  KCj-\x'f, y'() . (3.27)

c) If /e£αnH and π(/) = l, Ix^-j ̂ M^-^logM)1/2, hence

1; (3.28)
and

;_ !(x^, /,) , (3.29)

|x - v |2Ί -1*' -y i 2

since exp| — hgl^M 4e 4α if α^M~2 ( 7"1 ) and x^ — y^

d) If /e£ α nH and π(^ = 2, \xe- ye\
2

-M'20"1', and therefore

4α . 2α
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r|x,-3V Ir x , - 3 V M - - M - - - |
l 2α 4α Jand for ^M~2(j~l\ e 2α 4α ^e 2 . B u t since

x,-;y,e A?, fe-j /^M-^^logM)1/2!^-^!, and

4°
(3.30)

400

provoded M^e 9 , K^e1/4, which we assume now.
Putting together (3.23), (3.24), and (3.26H3.30), we obtain

. Ke«(M4/(£αnH1(π)) J . . .J
x, -yeeA°-ι

if ^eJffαufEαnH^π)]

Π ^3< Π C'(χ^/,) Π C^Xx',,/,)
yeflα.i Φ t o ^e£α ^E^r\F

έφF JφH

Π C^to, /,)!,„ =0. (3.31)
^eHαu(£αn/ί) °

9w
Putting ^ - ̂  (H^) one has 3(nβ - n'β} = 3nβ-3 if nβ ̂  7, 3(nβ -ri^--'ύn^Z.

Therefore, 3(nβ — riβ) — £β ̂  £ββ if nβ^8 (since £β^2nβ), and 3(nβ — nβ) — ̂ β — 3nβ

— ̂  — 3^ 1^^/14 iϊnβ^l, since 3nβ — ̂ β — 3 is the convergence degree oϊ Hβ,
always bigger than one since G is 1C W. Therefore, since *fα = Σ ^ and nβ~n/β^^β:

L M J =
Putting together (3.31), (3.32), and (3.18) achieves the proof of Theorem III.2 with
K1(M)-M6,and

K0(M)= - ΰ - , (3.33)

since eα^6/α, and e/M^K0(M).
When a graph has many lines of high momenta we may use a cruder bound on

its amplitude by "breaking" all but one of the external legs of its high momenta
components:

Lemma III.2. There exist constants Kl>0, K2>Q and a function K'0(M) with
lim KO(M) = 0, such that for any ICW graph G and any assignment μ = {i,}, f e G,

M->oo

one has Σ .

IΓ>Iir>Ir>Kι Vϊ D G 35)Cr ^Ξ: Cr ^= Cr ^̂  2 * — \ * /

Proo/. The upper bound is a straightforward consequence of [17]. The lower
bound may be obtained as in [9],
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For the rest of the paper M is now fixed to a large value such that Theorem III.l
holds, and such that suρ(K0(M), K'0(M)) is less than 1/12. s(n) will be the generic
name for a positive function of n which tends to 0 as n goes to infinity (in fact the
reader may verify that all the s(n) used in this paper tend to 0 at least as

const (J/loglogn) ~ 1 . Finally i is fixed to be the integer part of ε log n/log M, so that
Ml~nε.

Lemma III.3
D (3.36)

Proof. Inequality (3.36) is a simple consequence of

VGICW, Σ 4,F^4(1+Φ))% (3.37)
FςG

where 4,F= Σ z /o.μ, ^{fri^ioteF}. Obviously 4,F^4F.

We say that/is small if ̂  (f) ̂  π/(logn)1/2, and large if /(F) > n/(logrc)1/2. Then
using Theorem III.l and Lemma III.2:

Σ J'G.F^ Σ
F small F small

«/(logn)i/2

Σ
F large

[ oo ~|/

Σ (V12) fc

fc = 0 J

(3.38)

1| (I/O) icgM pβ

]". (3.39)

Together, (3.38) and (3.39) prove (3.36).
Now we are going to bound the B graphs, which do contain blobs. When these

graphs contain more than rc/(logn)1/2 blobs, there are so few of them that one may
just use the overwhelming number of irreducible graphs to bound them. But when
these graphs have only a few blobs one should compare them to irreducible graphs
with the same structure. More precisely, let us introduce as in [10] the
"simplification" operator S, which associates to a graph G the graph obtained by
reducing every maximal chain of blobs in G to a single line:

Fig. 4. The simplification operator S

Applying repeatedly S to a graph G one arrives after a finite number of steps at
an irreducible graph called 5^(0) as in [10]. S^ is a projection of the B graphs onto
the / graphs.
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Lemma III.4. There exist numerical constants K3 and K4 such that:
a) The number of ICW graphs with n vertices is at least n!
b) The number of graphs G with n vertices such that S^G) = G' has n' = n — 2k

vertices is bounded by Kn

3n
n~2k.

c) For a given ICW G' with n' vertices, the number of CW graphs G with
n = n' + 2k vertices such that S00(G) = G/ is bounded by [K^n/k~\k.

d) To a given ICW graph Gx with n' vertices and to any subset W of the vertices of
G' with ΦW^n'/2, we can associate at least [K4n/k]2k ICW graphs G with
n = n' + 2k vertices, k^n'/4, obtained by inserting in G'2k "bubbles" (see Fig.5)
which, when contracted, give reduction vertices which belong to W. The set of such
graphs G is called D(Gf, W, k), and we write

D(G',k) = U D(G',W,k). D

Fig. 5. The bubble

Proof, a) follows from an easy adaptation of an argument in [9] and was used
already in [10]. b) and c) can be considered as simple corollaries of the more
complete combinatoric analysis in [20, Appendix C]. Finally d) is trivial: we

choose 2k vertices in W I there are I 1 ̂  —γ- possible choices j and

expand each of them into a bubble.

Lemma III.5. Let G be a CW graph with n vertices and k' blobs; G/ = S00(G) has
n' = n — 2k, k'^k, vertices. There exists a constant K5 such that:

G,? (3.40)

(3.41)

Proof. Inequality (3.41) is an old result ([7, 12]). For (3.40), let us consider the graph
G" obtained from G by replacing every maximal chain of r blobs by a special line
• / which has a propagator (const)' (p2 + l)~2 + ε ' for a small positive £x (this is
an elementary bound on the behavior of the renormalized chain). Then obviously
for some constant K5 one has:

G,,. (3.42)

Similarly since the blob is logarithmically divergent:

gnflG,, (3.43)

(recall that Ml~nε). Now Gx is obtained from G" by reducing in G" a convergent
graph with 2(fc'-fc) vertices. In [17] such an object is bounded at any momentum
by (const)fe'~k. This achieves the proof of (3.40).
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Lemma III.6. There exists a numerical constant K6 such that for any ICW graph G'
with n' vertices ana for any k less than n'/4, we have:

IG,^K6k/n]2k Σ IG Π (3.44)
GeD(G',k)

Proof The "bubble" decays at large energy, hence its insertion may reduce the
value of a graph. Therefore we decompose 1G, as Σ J<?',μ', and consider two cases.

μ'
3 \~2K ~\

i) If μ'~ {if} is such that X %> > - n'log — ~ L where Kl and K2 are as in
S'eG1 2 |_ K2 J

Lemma III.2, we say that μ' is large, and we apply (111.34) to get:

Σ W
μ' large

μ' large

, (3.45)

where we used Xό(M)^l/12=l/3 1/4, Iog3^1, and assumed K^19 K^K2

(recall that n'^n = n' + 2k^3n'/2).
For any GeD(G\k), using (3.35), Lemma III.4,d) and k^n'/49 we get:

ίK4n/k]2h Σ IG'μ'^ Σ IG (3.46)
μ'large ' GeD(G',k)

ii) If μ' is small ( such that Σ i'r ^ ~ ft'log —- 1, there exists at most n'/4
V £'*& 2 K2 J

7 K
lines of G' with z^ ̂  6 log -τ~- Hence there are at least ri/2 vertices z; of G' such that

every line hooked to v has i'f, ̂  6 log -7—-. Let Pf(//0 be the corresponding set of
^2

vertices. We will prove that for some constant KΊ and for any G in ^(G', W(μf), k):

Σ IG,μ> (3-47)
μ near μ

where "μ near //" means that ̂  = z^ if f is a line of Gx, but not an external line of any
bubble inserted in W(μ")9 that if — if

f or ϊf +1 if (is an external line of such a bubble,
and that ie = anything if/ is an internal line of such a bubble. Indeed in momentum
space it is trivial to verify that the amplitude of the bubble as a function of its 4
external momenta pί9 p2, p3, p4, verifies (very sloppy bound...):

/b»bWe(Pι,P2,Λ^4)έ(const) Π (Py2 +1)"1 (3.48)
J = l

The left-hand side of (3.47) is computed with propagators Cv whose Fourier
transform

Ci,(p) = (const)'(p2+lΓ1[_e-M~2ί'(p2 + i}~e~M-2(ί'-ί)(p2 + ί^

verifies (p2 + l)~1[_Cί,(p} + Ci, + ί(p)~]^KsCί,(p). (Ks does depend on M and on
7 = 61og(2X1/K2)). Therefore summing now on every small assignment μ', we get,
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using again Lemma IΠ.4,d) (with K7 = K%),

(K4n/k)2k Σ IG>,μ>^Kk Σ /G.μ (3-49),
μ' small GeD(G',W,k)

W(μ') = W μ near μ'

Hence summing over all possible W's

(K4n/k)2k Σ /<;..„. g(2*K7)» Σ IG (3.50)
'//'small G<=D(G',k)

Indeed for a given G e D(G\ fe) and a given μ, the piece of amplitude IGtfl can
appear at most 24fc times in the sum over W's of the right-hand side of (3.49), since
there are at most 24fe assignments μ' such that a given μ is near μ'.

Putting together (3.46) and (3.50) achieves the proof of (3.44).

Lemma IΠ.7
ίn))". D (3.51)

Proof. Consider a BCW graph G, G'^SJG), and n(G') = n' = n-2k. We
distinguish two cases:

i) k small (k^w/(logπ)1/2). Using Lemma ΠI.4c) and Lemma III.5 we have:

ΊG,. (3.52)

Moreover, it is easy to verify that for a given ICW graph G with n vertices, the

number of graphs G' such that GeD(Gx, k) is bounded by (const)fe I
\2/c

n/k)2k (hint: this bounds the choice of 2fc bubbles in G). Therefore using
Lemma III.6 and (3.36),

Σ
GBCW
k small

.. ...̂  fl̂ fl..; (1+φ)r (353)

t=ι \ fc /

ii) k large (fc>n/(log«)1/2). Using Lemma IΠ.4b) and Lemma III. 5:

GBCW ' fc^n/Oogn)1/2 [_ n2 J
k large

But from (3.35) and Lemma IΠ.4a), cfc^n'Kl, hence the left-hand side of
(3.54) is bounded by αj '[constlogrc]"e~2/ί]/I^", hence by ^(1+ε(rc))M. This
achieves the proof of (3.51).

Lemma III.8. For any ICW grαp/z G:

(3.55)

•',/£•'}. Π (3.56)

Proo/. (3.55) is trivial (for instance using Lemma A.4 and (3.35). To prove (3.56), let
us consider length assignments on the lines of G, as in the proof of Theorem IΠ.l
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but now if π(f)= 1, it means if x = x^ —y^, that δ\\ogδ\^x^ |x|5^1og|log<5|, where
x = inf{|x1 |, |x2|, |x3|}; π(f) = 0 means that x^<5|log<5| and |x|^ilog|log<5|, and
π(f) = 2 means |x|^ilog|log<5|. Let us introduce r0(π)= Φ/, π(^) = 0, r2(π)= #zf,
π(/) = 2. Then:

- If r2(π) ̂  n/l/loglogw, let us say that π is "long." By Lemmas A. 1 and A.4 and
a standard analysis of type [17]:

C "

V i π ^ TW * ̂  ^ Γ /-!„•- ~^ lθg lθg

r ' ' 5 2-

[π long π long

^c/»e-C,(Iθ8lo.B)./2> (35?)

Hence by (3.35) and (3.55)

sup { Σ /G 1 ' 1*, Σ
[π long π long

- If r0(π) ̂  rγ/j we say that π is "short." We can pick a tree of G with at
(logn)

least — -jj2 "short" lines with π(/) = 0. We bound the corresponding integral

using Lemmas A.I or A.4. Let us call f(T) the product over the lines of this tree of
the exponentially decreasing factors in (A.I) or (A.29), and g the rest of the
integrand. We apply a standard Holder inequality to bound J α /(T) by

1 +β' ε'

[ίfl f l + ε '] ( 1 + f i ' )~1[/(Ό ε ]1+ε with ε/ verY small. For such an ε', by superre-
normalisability and the fact that G is ICW we satisfy the conditions of "generalized
convergence" of [17] therefore, the first integral is bounded by cm, and it is easy to
exhibit the "small volume" effect of the short lines in the second integral. Therefore
one gets:

sup ί Σ /J ' , Σ #'"'
π short π short

.2< l o8»>1 / 2. (3.59)

Again by (3.35) and (3.55) one concludes (since δ~n~ε):

sup { Σ / G ' ί > π > Σ ^G'5'πl

τ short π short

U 1̂. (3.60)

If r2(π) ̂  n/|/log logn and r0(π)^π/(logw)1/2 we say that π is "normal." Let us
remark that in momentum space if c^ 1, c'^ 1,

(3.61)
p2 + c ~ c p2 + Γ p2 + 1 ~ p2 + c''

Therefore

Σ /^'^^[c^2^10810^ Σ 7 '̂̂ , (3.62)
π normal π normal
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where j^p'π has propagators Cc on lines f with π(/) = 0,2, and propagators O on
lines f with π(/) = 1. Then, using Lemma A.2 and (A.35):

Σ /^^"^(l+είn^CcVc]211^10810*11 Σ
π normal π normal

)"/^. (3.63)

Similarly, by Lemma A.2 and (A.35):

Σ /^4 «^(l+8(n))"[c02B/l/i;iiI5«" Σ ίcΓ ' ", (3.64)
π normal π normal

where /^ ' ί? π has propagators C\ on lines t with π(/) = 0 or 2 and propagators C on
lines t with π(ίf) = 1. Going to momentum space and using (3.61) one gets again:

Σ I%'δ>π^(l+£(n))nlc'/cγn/]°n Σ /gr i π^(l+ε(n))"/^ ί. (3.65)
π normal π normal

Together, (3.58), (3.60), (3.63), and (3.65) prove (3.56).

Lemma III.9. aw, t ̂  (1 + ε(w))«αf ,« , (3.66)

''. Π (3.67)

Proo/. (3.66) is a trivial consequence of Lemmas III.7 and III.8. Moreover, for the
same reason that (3.40) is true, one may show that if G is BCW and G' — Sm(G) (with
k as in Lemma III.5): ,„ , , , ,

I^'^lK.slogn^I^. (3.68)

By Lemma IΠ.8, since G' is ICW,

γiβ.. (3.69)

Therefore the proof of Lemma IΠ.7 can be reproduced without any change,
leading to the following analogue of (3.51):

(3.70)
By (3.70) and Lemma III.8:

)"flf •', (3.71)

which achieves the proof of Lemma III.9.
The following result will be proved in the next section:

Theorem III.3. Let α = exp[-inf £(<?) + 2] as in (2.27). Then (recall that

α"Γ"5>°λ' α= lim [αf >!]1/n. D (3.72)
R-> 00

Assuming Theorem III.3, let us complete the proof of (2.27):

Proof of Theorem ILL

A) Upper Bound. By Lemmas III.3, III.7, and (3.66), and since al^^a^Λ\

\an\^al

n + \al\<,a{\\ +<&»"£ a? •> (I +s(n))n (3.73)

(3.72) and (3.73) imply that lim sup [k|/n!]1/B^α.



Lipatov Argument for φ\ Perturbation Theory 79

B) Lower Bound. Let us suppose that limsup[|αw|/n!]1/π<0. Then there exists
n0 and b < a such that for n ̂  n0, \an\ ̂  n! bn. Therefore for any λ such that \λ\ ̂  1,
one has:

Σ 1«anλ
π = l

for some Ano independent of q. Now it is proved in [10] (first part of Eq. (31)] that,

with the notations of this paper, for some constant M4 and λq=

Σ T w
β Λ

n = l

But by (3.51), (3.67), and (3.72):

^α^>

, one has:

(3.74)

w l

>

1/2
'

I/I |«<yl' βl ^^"o

This implies

hence

which obviously contradicts α > b for g large enough.
For completeness, let us give a:

Scheme of the Proof of (3. 74) . In the "simplification" operation S, the reduction of

a blob gives a factor |/l|2 which, if \λ\~ —=, allows us to decide in the reverse
1/9

operation on which line this blob is inserted. In this way one can bound graphs of
order n with blobs by graphs without blobs of lower order. Hence one obtains a
lower bound only on partial sums of the perturbative expansion.

IV. The Semi-Classical Expansion

In this section we prove Theorem IΠ.3, following Sects. 2 and 3 of [15] as closely as
possible. We will indicate with parentheses the corresponding steps in (2.29) and
references. We remark also that in most of this section φ is a discrete field on the
lattice (which is called q in [15]).

Lemma IV.l (Step 3; [14], Lemma 2, [15], Lemma 1.4). For any n and A = [- Γ/2,
T/2Ί-

1 ] a^D(Λ)^a^^a^\Λ). D (4.1)

Proof. As in [14].
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Lemma IV.2 (Step 4; [15, Corollary 1.3]).

(4.2)

Proof. We can apply the proof of Corollary 1.3 in [15] without any change. With
the notations of [15], we can check that lim (^/bfc)

1/k=l follows also from
fe ^ oo

Lemma IV.3 below and from the existence of lim b\ln, which follows from
Lemmas IV.4 and IV.6 below. n^oo,neven

Let us introduce p(ή) and q(n) which are equal to n if n is even and are
respectively n— 1 and n+ 1 if n is odd. Then:

Lemma IV.3.

^b? δ x(Λ)^b%tf x(Λ)(l+ε(ri))n. D (4.3)

Proof. We decompose b^tδtX(A) as the sum of the corresponding regularized Wick
ordered amplitudes, which are all positive. The technique of "bubble insertion" of
Sect. Ill (see Fig. 5) allows us to bound the amplitude of G by const n8ε times the
amplitude of any graph obtained from G by inserting one bubble in any vertex of
G; indeed the bubble decays at large energy, but since there is an ultraviolet cutoff
of order nε, the sloppy bound (3.48) implies that to insert one bubble does not
decrease the value of the graph by more than (π2ε)4 (up to a constant). Then a trivial
counting argument achieves the proof of (4.3)

Using Lemma IV.3 we may assume now that n is even, which is a source of
considerable simplification in Sect. 2 of [15].

Lemma IV.4 (Step 5; [15, p. 188]).

n! J

Proof. Since n is even, we have

~b? ' x(Λ)

n
D (4.4)

n\

1/11

!

(4.5)

By Stirling's formula, the hypercontractive estimate as in [15], (2.17), and since the
tadpole is now linearly divergent in three dimensions one gets:

l^ll^/(^)-^(W^)L
^(n-l)\\Wx(ψ/]/n)-Vδ(φl]fn)\\2

'n-Γ

(4.6)

which implies (4.4) if ε is fixed to a small value.
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Lemma IV.5 [15, Lemma 2.1]. The functionals SX)Λ, SXtA, and S all attain their
infimums. D

Proof. The proof in [15] uses a Sobolev inequality and the Rellich-Kondrachov
theorem, still valid here in dimension 3.

Lemma IV.6 (Step 6; [15, pp. 185 and 189]).

n even ->• oo

Proof. As in [15], we prove (4.7) by a lower and an upper bound. The lower bound
uses Jensen's inequality exactly as in the first part of page 185 of [15]; it is even
simpler since we have to use Vδ instead of W* in (4.7) (VQtδ instead of Vδ with the
notations of [15]). The upper bound is similar to the first part of [15] page 189, up
to trivial changes: the dimension being three, the number of lattice points in Λ goes

as (T/δ)3 =\-nε\ , and the log appearing between Eq. (2.21) and (2.22) of [15]
Lπ J

again has to be replaced by the "linearly divergent" factor nε. This does not affect of
course the proof.

Lemma IV.7 (Step 7; [15, Lemma 2.3]).

]imMS*XA = MSXA, for X = p,D. D (4.8)
δ^O

Proof. Let us call qc9 as in [15], a (lattice) field such that SXtA(qc) = infSXtA. The
proof of (4.8) is exactly similar to the proof of Lemma 2.3 in [15], except for the fact
that (2.28) is no more valid, since the L4 norm of Cf is not uniformly bounded as δ
->0, since the graph G2 in Fig. 2 is divergent. Hence we have to find another proof
of the L4 convergence of qc towards φ (with the notations of [15]). Instead of
proving, as in [15], that l lg j^ remains uniformly bounded as <5-»0 (and that H ^ H ^
is finite), we will prove that \\qc\\ 12 is uniformly bounded as <5-»0, (and that \\φ\\ 12 is
finite) which is enough, by a standard Holder estimate, to ensure the desired L4

convergence.
By Holder inequality one has:

llcjWtefGOII^IIcftx, ) U 5 / 2 l k 3 l l 5 / 3 , (4-9)
and

(4.10)
As in [15], qc satisfies the classical equation:

qc(X) = 4 j Cϊ(x,y)qϊ(y)d3y/\\qe\\l. (4.11)
Λ

Therefore, we have the following analogue of [15], (2.28):

£ 4 . Γ J
\_

l k c l l i 2 £ 4 . Γ J l l C f ^ . ) ! ! ^ 1 / 1 2 - - . (4.12)
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Hence

- Jί19. (4.13)

This proves that \\qc\\ 12 is uniformly bounded as (5-»0, since by power counting it is
easy to verify that || Cj || 5/2 is uniformly bounded as <5-^0. Also as in [15] \\qc\\4 does
not approach 0. The rest of the proof is as in [15]. Of course the numbers chosen
are largely arbitrary... .

Lemma IV.8 (Step 8; [15, Lemma 3.1]).

lim mfSXtΛ(φ) = mfS(φ) for X = p,D. D (4.14)
Λ-+OO

Proof. The proof in [15] remains valid up to dimension 3.
Together, Lemmas IV.1-IV.8 prove Theorem III.3.

Appendix

This Appendix is devoted to the proof of technical results on propagators with
"exponential" or lattice cutoffs which are useful in particular for the proof of
Lemma III.8.

Since the propagators considered are translation invariant, we will write
systematically C(x — y) instead of C(x, y) to simplify notations. The letters c, c', K
will be used for positive unimportant numerical constants, c for a small one (with
respect to 1) and cf or K for a large one.

Lemma A.I. There exist constants c, c\ K such that:

e-|*l
—- if |x|>M~', (A.1)

M
Ml if |x|^3M~ f, (A.2)

Ck(x)^KCk(y} if k^j,\\x\-\y\\^M~j. D (A.3)

Proof. By definition (2.4) one has

Moreover

'ί 1 da ~2~Λ^Γ -^ c —9/4 ^^
•— C j 2/2 =^ j ^ 3/2

μi2 a \x\2 a

b) If \x\^K\ for some constant K'>2 large enough,

<A 5>

(A.6)
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|C(x)-C'(x)| = c M J '~e~"~^
0 OC

since |x| ̂  1 therefore choosing Kf such that 2K"e s ^e κ\ one has for |x| > K'\

-i- g - W , (A.7)
x 2|x|

which proves (A. 6).
c) If 1^1*1 '̂: _^

C'M^cί-^e 4« ^c^c-j-r-. (A.8)
1 UC |Λ|

Together (A.4)-(A.6) and (A.8) imply (A.I). Moreover for |x| ̂  3M"f, |x|2 ^9JVΓ2ί,
and therefore:

00 ΛQ,

^ f -3/2 e-*^c'Ml. (A.9)

Let us finish the proof of Lemma A.I using (A.I) and (A.2).
i) If \y\^2M~k\x\^2M-k + M~j^3M~\ and (A.2) proves (A.3).

ii) If |j;|^2M~k

? \x\^2M'k-M'j^M~\ —. ^2, and by (A.I):

This achieves the proof of (A. 3).
The following lemmas control the behavior of lattice propagators. They are not

rotation invariant. Let us suppose, by symmetry, that χ = (χl5 χ2, χ3) eR3 is such
that 0^x1^x2 =

 :x3 If xe<5Z3, x 1=δn 1, x2 = δn2, x3 = δn

Lemma A.2. TTz^r^ exwί s α function ε(δ) which tends toOasδ tends to 0, such that, if

if δ\log)δ\^xl ^\x\ ̂  1/4 log (log (5(. D (A.10)

Proof. We will use the Fourier representation of Cδ and Cl:

d3keίk χ

-πfδ
^7^ T.. . T

+00 +00 A^lfs,ikχ-δ2k2/π2

(2π) -a, -oo

i J...JΓ'(fc)d3fc.
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We write χ = y + ζ, with |(|<<5 such that Cδ(x) = Cδ(y) (recall that Cδ is piecewise
constant). Using (2.3)-(2.4) one has:

If α^|x|5|log^|1/2, since |

I*l 2 ~|y | 2

4α

2__ « _dα_ -«-MiΓ. ^̂ -
\3/2 J 3/2 ^

If α^|x|<5|log(5|1/2 since |x|^<5|log(5| one has α^|x|2/|log(5|1/2; therefore:

_H_ \x\2

"
If |x| ̂  1, using (A.I) we bound the right-hand side of (A. 15) by:

If l<Ξ|x |^ , we put a' = 2a and bound the right-hand side of (A. 15) by

Jlog^l1/2 _ ( _ ^^ ^21^1108^1/2 ^ - α ' -Wi

Since |x — y| ̂  δ, (A.15)-(A.17) remain true with x replaced by y. Also by (A.I), Cl(y)
^c7Cl'(x). Therefore, (A.14HA.17) together with this remark imply:

\Cί(x)-Ci(y)\^ε(δ)Cί(x). (A.18)

Using (A. 18), it is enough to prove (A.10) when xeδZ3. Let yα(x) be such that:

^α'TαW — Omodπ, and

We consider the region D! : |fcj ̂  yα(x), for any α = 1, 2, 3. In D x we can expand,
since δγa(x) <ζ I :

Hence

^-^/π* ! Π(frlr2Λ

(A.21)
l+/c 2 3 1+k2 '

and ° =1

(1 — cosc5fcα)

yα(x). (A.22)
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Since |x|< l/41og|log<5| and Xι^:δ\logδ\, we can bound the right-hand side of
(A.22), using (A.1), by:

c\ Π

(A'23)

It remains to bound the integrals of Γδ and Γl over the complement D2 of Dx

(respectively in [ — π/δ, π/<5]3 and in R3). This can be done by repeated integration
by parts, the surface terms being 0 by our choice of x and yα(x). In D2, either |/c3| is
bigger than y3(x), or |fc3 | is smaller than y3(x) and |feα | is bigger than yα(x), α = 1 or 2.
Then integrating with respect to fcα, one gets in the first case (with Γ = Γδ or Γl):

and in the second case:

IM^ ?«(*); I

(A.24)

d5Γ/(dka}
5d3k. (A.25)

Since for the lattice integrand \kΛ\ ̂  π/<5, we can bound in both cases d5/(d/cα)5 Γ(fc)
by c'(\ + /c 2)~ 1~ 5 / 2. This bound when inserted in the right-hand side of
(A.24HA.25) gives:

c' p. I*'
<), (A.26)

which, together with (A.23), achieves the proof of (A. 10).

Lemma A.3. There exist constants c and c' (c small, c' large) such that:

cQ(0, 0, X! + x2 + x3) ̂  Q(x) ̂  c'C,(0, 0, x3) . Π (A.27)

Proof. We use Symanzik's path representation of the lattice propagator:

Q(x)=lA3 Σ [l/(6 + W, (A.28)

where ω runs over all paths in δZ3 made of |ω| steps, starting at 0 and ending at x.
Let us prove first the lower bound on C. Consider e±= (5,0,0), e2 = (0,5,0),
e3 = (0, 0, δ). In (A.28) we may consider the paths from 0 to (0, 0, xί + x2 + x3) as an
ordered list of P! steps e^p^ steps —e^p2 steps e2,p2 steps — e2, nl+n2 + n3+p3

steps β3 and p3 steps — e3. Also the paths from 0 to x may be considered as ordered
lists of n1 +PI steps el9 p\ steps — e1, etc... .

- If pί ^p2 + nl and p2 ^p3 + n2, we make a correspondence between paths of
the first and of the second kind by changing first nί + n2 steps e3 into steps e2, then

ΠΛ steps e2 into steps e*. The combinatoric factors are 1 2 3

)
- 1 i j^lin the direct way and ,

V «ι /

. ιin the reverse way.
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Since pt =p\, p2~P2 and nl^n2^n3, one has:

X+pΊ N

1 ' ' / = \ / I I 'n,+n2 J \ n, + n2 J \ n, J

- If Pι^p2 + ̂ ι and P2^p3 + π2, we consider a similar correspondence by
changing first n1+n2 steps e3 into steps e2, then n1 steps — ̂  into steps — e2. The

,. , , u r + • 1direct and reverse combmatoπc factors are respectively
(P\ in +p'\ \ «ι + H2 J

and ( I, ( J. Since p2 = p2 + nί, and n2^n3:
\nlj \nl+n2/

p

n

The two last cases (p2^pι + n2 and p1^n1 + n2 + p3, and p2^
p! ̂ «! -fft 2 + p3)

 are similar and left as an exercise. The lower bound in (A.27) is
thus proved with c = 1/4 (since there are 4 cases). The upper bound is in the same
spirit and is true with c' = (6 + δ2)2^49 (hint: change I(nJ2) steps ^ into steps
— e1; if n1 is odd, add one step —e1. Do the same in the other direction e2. The
combinatoric factors are o.k..

Lemma A.4. There exist constants c and cf (c small, cx large) such that

rp~c'\χ\ '~c\x\
- if \xfeδ, (A.29)

if \x\^δ. Π (A.30)

Using Lemma A.3 it is sufficient to prove (A.29)-(A.30) when x = (0, 0, δπ3),
n3 ̂ 0. If n3 = 0, (A.30) follows obviously from representation (A.ll). It remains to
prove (A.29) for x3 — δn3>0. Shifting the fc3 integration contour in (A.ll), one
obtains by Cauchy's formula

1 π/0 π/δ

^dv^5 ~? ^j/ /o \3 J J
(2π) -njδ -π/δ

where fc3>0 is defined by:

ι r c r / ι i^ Λ l 2cosh Iδk^k, , fc2)] - 1 + - ̂ - 2^12 - - ̂ -̂ - . (A.32)

Since l/c^ and |fe2 | are bounded by π/δ, one has

)']^c/(k2

ί + kl). (A.33)

Hence if £ = (fc l 5 fe2):

cO + I^D^^^cXl + l^). (A.34)

Combining (A.34) with (A.31), it is easy to achieve the proof of (A.29).
One remarks that if Om is the propagator with exponential cutoff Ml and bare

mass m instead of 1, Lemma A.I and A.4 imply that for some constants c and c7 (c
small, c' large):

Vx cQίx^CΛx^c'C&c). (A.35)
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Note added in proof. The simplification operator S introduced after Lemma III.3 might create
tadpoles G4. Therefore it should be replaced, throughout the paper, by S°T, where T in the
simplification operator which transforms every maximal chain of tadpoles into a single line.
The corresponding modifications are trivial. The change of S into S ° T should also be made
in [10].




