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Abstract. The continuum ambiguity in the determination of phase shifts from
scattering data consists of a family of amplitudes which have in general an
infinite number of partial waves. In practical computations, however, the
partial wave series is necessarily truncated. We discuss the relation of the
resulting (truncated) amplitudes to those representing the true continuum
ambiguity. In particular, we show that each of the latter is approximated
increasingly well, as the cut-off tends to infinity, uniformly inside an ellipse in
the cosθ plane.

1. Introduction

It is well known that the determination of an elastic scattering amplitude from data
on elastic scattering (differential cross-sections, polarizations, etc.), at a fixed
energy over the whole angular range, generally suffers from a continuum
ambiguity when the energy is such that inelastic channels are open. The family of
amplitudes making up this continuum ambiguity can be explored by means of a
generalization to function spaces of the implicit function theorem [1,2]. However,
in the practical implementation of this method for the determination of
ambiguities [3], the partial wave series is necessarily truncated, whereas the true
continuum ambiguity contains amplitudes with an infinite number of partial
waves. In earlier work [3], it was generally assumed that the truncation error was
unimportant: in this paper we discuss in a precise manner the relation between the
truncated amplitudes produced by the computer and those belonging to the
continuum ambiguity. There are two facets of this problem: i) on the one hand, one
must show that, for any member of the continuum ambiguity, one can generate a
sequence of increasingly better approximants by letting the truncation point
recede to infinity; ii) if the finite algorithm of the computer generates a solution,
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one has to find a criterion to verify whether there corresponds to it a member of the
true continuum ambiguity and, if so, estimate the error. The numerical work,
which has been recently re-examined [4] with greatly improved accuracy, thus
receives a detailed theoretical description.

In the case of spinless particles, the equations determining the absorptive part
of the partial wave amplitudes from the differential cross-section are as follows:

At = Aj + Dj + I,9 (1.1)

D,= ^ § dzQ,{z)[_σ{z)-A2{z)γi\ (1.2)

A(z)= Σ ( 2 / + l ) P X z ) ^ . (1.3)

In (1.2), the integration in the z = cosθ plane is taken around the circumference of
the small Lehmann-Martin ellipse:

and σ(z), the normalized differential cross-section is a given function, holomorphic
inside E(z0) and continuous in E(z0). The inelasticities J Λ limited to [0,1/4], are
taken to be given real numbers, such that

| | I | | 1 = s u p V Q X z 1 ) < o o , (1.5)

where zί lies in the interval (z0, 2ZQ — 1). The amplitude F(z) is given by

A proof has been given [1] that the system (1.1)—(1.3) defines Ae as an implicit
function of/^ for fixed σ(z), and that the inelasticities can be varied in a continuous
manner, thereby generating a continuum of amplitudes that correspond to
precisely the same cross-section.

If the analytic continuation of σ(z) to E(z0) has a finite number of zeros, then, if
two solutions Fx(z), F2(z), of the set of Eqs. (1.1)—(1.3) are sufficiently close to
each other, they will differ in the physical region by a phase factor

with φ(z) holomorphic in E(z0). In general, every solution of Eqs. (1.1)—(1.3) has an
infinite number of partial waves F€\

Ft = Όe + iAe. (1.8)

If, by chance, there exists a solution of (1.1)—(1.3) with a finite number of partial
waves, Ft, then one can easily show that all solutions of the system that are
sufficiently close to it necessarily have an infinite number of non-vanishing partial
waves.

In this paper, we analyze a system that is different from (1.1)—(1.3) in that only
the first N partial waves are considered, although σ(z) is kept unchanged, as is the
case in practice.
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In Sect. 2, we show that, if a solution A(z) of the infinite system exists, then, if N
is large enough, the truncated system has a solution, AN(z), which approximates
A(z) as well as one wishes, uniformly inside any ellipse E(zr), z/<zί, where zί is
given in (1.5).

In Sect. 3, a different point of view is taken: the truncated system yields the
exact solution for an infinite system, where the cross-section has been slightly
changed. It is shown that the difference between this effective cross-section and the
original one tends to zero in norm as the cut-off point goes to infinity. Thus the
results of the computer search for ambiguities show in fact the instability of
polynomial amplitudes under small changes of the cross-section.

This leads to the following situation: assume we are given the results of a
computer search for ambiguities; in general, as is shown in [5], to each
approximate cross-section σ^ (corresponding to the result AN), there exists a
neighbourhood U of possible cross-sections σ, such that the complete system of
Eqs. (1.1)—(1-3) has a solution A = A(σ, IN) (with the same inelasticities, le, up to the
Nih partial wave, and zero for ί^N +1) close to AN. Essentially, the result, AN,
produced by the computer, corresponds to a true continuum ambiguity if the
neighbourhood U extends up to the true σ. In fact, one should allow also the
inelasticities with t ^ JV 4-1 to be free. In Sect. 4, we establish sufficient conditions
under which, to each finite result, there corresponds a true continuum ambiguity.

Finally, in Sect. 5, we extend these results to the case of spin 0 - spin \ scattering,
in which both the polarization and the cross-section are given on the whole
angular interval.

2. The Approximation of the Continuum Ambiguity

We rewrite the system (1.1)—(1.3) as the non-linear operator equation:

S(A9 σ91) = £ ( ^ + 1) LA, - Aj - Dj - /,] P,(z) = 0, (2.1)
f0

with Ό^ — Όe{σ, A) defined by (1.2). It is shown in ref. 5 that, if {Ie} belongs to the
space Bx of sequences with the norm (1.5) (denoted by || \\λ\ and if σ(z) is an
element of Bo, the space of holomorphic functions in E(z0), continuous in £(z0),
with the norm || σ || 0 = sup |σ(z)|, then S maps B1 into itself. We call the ambiguity,

dE(z0)

F(σ), associated with σ, the set of all solutions {Ae} of (2.1) lying in Bu obtained as
{Ie} sweeps over Bu with i^e[0,1/4] and such that: i) the Frechet derivative
SA(Aί) = (dS/dA)(A1) has a bounded inverse; ii) the function D(z)
= {σ(z)-A2(z)}1/2 is holomorphic in E(z0); iii) the value A(l) is fixed (since the
forward amplitude can be unambiguously determined, thanks to the optical
theorem); iv) we add the technical restriction that inf|σ(z) — A2(z)\ for zedE(z0)
should be non-vanishing. In the following, we shall ignore conditions ii) and iii) in
the definition of F(σ): they may be incorporated by a finite-dimensional
modification of the operator S in Eq. (2.1), as was shown in [1].

The approximate operator, SN(AN, σ, /), mapping RN+ί into itself is defined as
in (2.1), by restricting the summation to the first N+ 1 terms; AN(z) is defined by
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(1.3), also restricted to the first JV + 1 terms. In this section, we prove the following
theorem: let Λ0(z) belong to F(σ). Then, for any ε > 0, there exists an JV0(ε, z'9 AQ),
such that, for any N>N0, i) the approximate equation

SN(AN,σJ) = 0 (2.2)

has a solution AN, and ii) for any real 1 <z / <z 1 ,

sup \AN(z)-A0(z)\<ε. (2.3)
zeE(z')

Consequently, any member of F(σ) may be approximated as well as one wishes by
solving the truncated system (2.2), for JV large enough.

The proof uses many results of [5]. To describe it, we introduce first

7o(z)= Σ (2^+l)4?P/z), (2.4)

and define

SNιy(AN9 σ, /) = Σ W + 1) lAj + Dly + /,]P,(*), (2.5)

which is a non-linear mapping from RN + 1 to RN+1, with

D O = T ^ ί d z Q Λ z H σ φ - C ^ ω + ^ z ) ] 2 } 1 ' 2 . (2.6)
Z7Π 5£(z0)

Clearly, if

40(z) = 4jJ(z) + yo(z), (2.7)

then

SN,yo04ft,σ,J) = 0. (2.8)

In fact, if PNx is the restriction of x G BX to the subspace l?^4"1 spanned by its first
JV +1 components, then, by construction

PNdS/dA(A0) = 3 ^ > y o / 3 ^ K ) . (2.9)

One should also notice that SN is in fact SNt7 for 7 = 0.
The first step of the proof will be to show that dSNtyJdA{A%) has a bounded

inverse if dS/dA = SA(A0) has one, and JV is large enough. We conclude then from
the implicit function theorem that there exists a neighbourhood of y0, such that
SNi7(AN,I) = Q can be solved for AN = AN(y,I). In order to show that this
neighbourhood contains y = 0, and to estimate the deviations of ΆN = AN(0,1) from
Ao, we shall verify that the conditions of the more precise theorem of Kantorowich
[6] are fulfilled, if JV is sufficiently large. Application of the theorem will prove then
our statement.

A sufficient condition for dSNtyJdA(A%) to have a bounded inverse is that a
number c>0 exists, such that, for all xePNBί = RN+1,

\\dSNJdA(A°N)x\\N^c\\x\\N, (2.10)
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where || Ĥ  is a norm on PNBl9 defined by the restriction of (1.5) to the first N+ 1
terms. To verify (2.10), we write (as in [5]),

(2.11)

with K(A0) a compact operator [5] and conclude that, with ||x[|jv. = 1,

\\δSN,JdA(A°N)x\\N^ inf \\SA(A0)x\\1- sup ||Kw&c|li
xeRN+1 xeRN+ί

^co-fN (2.12)

In Eq. (2.12) we have used (2.9), the notation RN = 1—Pm the fact that | |x | |N^ 1
implies ||x||± ^ 1 [for the norm (1.5)] and that, by hypothesis, SΛ(A0,Γ) has a
bounded inverse, so that a c0 > 0 exists such that (2.12) is true. It remains to show
that fN->0 as iV-»oo, using the explicit form oϊK(A0). This, however, follows from
the estimate [5]

sup ||l?J VKx||1= sup sup
xeRN+ί xeRN+ι ί>N

S c o n s t s u p ~ f , l • ( 2 . 1 3 )

N

In Eq. (2.13) we have used the notation x(t) = Σ (2/+ \)x^P^(t), the majorizations
^=o

|D,|<constβ,(z0) following from (1.2), inf |σ(ί)-v4 2 (ί) | 1 / 2 >n>0, following
tedE(zo)

from condition iv) in the definition of F(σ), as well as the inequality: sup

sup \x(z)\ <(zί — ZQ)" 1 , following from (1.5) and the Heine formula. Since the
zedE(z0)

last factor in (2.13) tends to zero for large JV like [_zj{2zl -1)]^, condition (2.10) is
fulfilled for any c = c0 — ε, ε>0, as soon as N>N0(A0,έ), for some No.

Now according to Kantorowich (Theorem 6, Chap. XVII, [6]), if i) the
operator SN(AN, I) has a continuous second derivative with respect to AN in a
certain domain Ur: \\AN — Aχ\\ < r; ii) (dSN/dAN) (A^, I) has a bounded inverse; iii)
the quantity

A^rΨs' sup \\d2SN/dA2

N\\N \\SN(A0

NiI)\\N (2.14)
ANeUrobeys h<l>; iv) the quantity

(2.15)

obeys r o < r , then the equation ^ ^ ( ^ ^ = 0 has a solution in a neighbourhood
Uro: \\AN — Anil <r0 of A%, which may be constructed by the Newton-
Kantorowich iteration (see [1, 6]).

We next sketch how one can verify that conditions i)—iii) are fulfilled if JV is large
enough and that, in fact, the bound r0, Eq. (2.15), tends to zero as JV->oo. To verify
condition i), we notice first that, as a consequence of iv) in the definition of F(σ), we
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may choose N so large that, for any ε( = η/&, say), inf (σ{t) — (A%)2(t))>n
te6E(z0)

— ε>0. This follows from the fact that sup \A0(t) — A^(t)\ may be made as
teδE(z0)

small as one wishes, by letting N increase, since zo<zί. Further, for all AN(t)

obeying H ^ — ^ H ^ ε ^ — z o ) / 2 | | ^ | | o , the Heine formula implies inf \σ(t)
tedE(zo)

— Aχ(t)\>n — 2ε. With this, the majorizations needed to verify the boundedness
of d2SN/dAχ in Ur, with r = n(z1—z0)/4\\A^\\0, are straightforward.

Condition ii) requires the existence of a bounded inverse of 3SN/dAN(Aχ, /),

provided ||yollo= S U P lyo(z)l *s s m a U enough. To do this, we show that the
zeδE(z0)

bilinear mapping d2SNf7/dANdy from RN+1 x Bo into RN+ί is bounded. Indeed, if
the latter is the case, we may apply a generalized mean value theorem [7, p. 45] to
conclude that:

\\[dSN,jeAN-dSN/dAN-](A°N)\\NS sup \\d2SNtλJdANdγ(A°N)\\.\\γ0\\0,
o < x < l

(2.16)

so that dSN/dAN(Aχ) may approach in norm arbitrarily closely to dSN, yo/δAN(Aχ),
as N-+OO. Then (2.16) implies:

(2.17)

for N large enough, which is condition ii). Thus we only have to verify the
boundedness of \\d2SNi7/dANdy\\ for small ||y||0. As in condition i), this is ensured if
\σ(z) — [Aχ(z) + y(z)]2 | is non-vanishing on dE(z0), and this is in turn true if N is so
large that sup \AN(z) — A%(z)\ < n/81| Ao \\ 0 and ||γ \\ 0 < n/8 \\A0 \\ 0 . This disposes of

zeδE(zo)

condition ii).
Using again the mean value theorem of (2.16), together with Eq. (2.8), we see

that:

\\sN(A°Nj)\\N^ sup | | ^ / δ y ( Λ α y o ) I U llyollo^cillyollo (2.18)
0<λ<l

if γ0 is restricted to a neighbourhood of the origin of Bo, where the derivative
dSN/dy may be uniformly bounded. This is in turn possible if, as above, ||y||0 is
chosen so that inf |σ(z) — ( ^ + y ) 2 | > n 1 > 0 , for some n1.

zedE(zo)

From (2.18), (2.17) and the boundedness of d2SN/dA2

N in Ur, we see that the
quantity h of Eq. (2.14), in condition iii), may be made to obey the bound h <^if we
only choose ||yollo small enough, i.e. we let N increase correspondingly. In fact, we
can make h as small as we wish, and thus also r0 of Eq. (2.15), by allowing N to be
large enough.
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We conclude that all the conditions of the Kantorowich theorem are fulfilled.
Consequently, the system SN(AN, I) = 0 has a solution if N is large enough and its
solution departs from A^ in norm || \\N by a quantity which can be as small as one
wishes if N is increased correspondingly. This is equivalent to the statement of our
theorem, since, for any z'<zl9

sup \ΆN(z)-A0(z)\S sup {\ΆN(z)-A°N(z)\ + \A°N(z)-A0(z)\}
zeE(z') zeE(z')

^ / ( ^ - z Ή sup \A°N(z)-A0(z)\, (2.19)
zeE(z)

and both quantities vanish as iV^oo.
Thus, given any precision ε, we may find N(ε,z\A0), so that A0(I) is

approximated better than ε by the solution of SN(AN, /) = 0 [in the sense of (2.3)]. In
fact, given Aθ9 there exists a neighbourhood U(A0) of it in Bί9 in which the
approximation will be uniform if the system (1.1)—(1.3) is truncated after N(ε9 z'9 Ao)
waves. By extracting a finite cover from the infinite covering with U(A0) of a
certain compact set K of amplitudes in F(σ), we may obtain an order of truncation
JV(ε, z\ K) for which approximation within ε occurs uniformly over K. Of course,
since F(σ) is unknown, we do not know a priori how good our approximation is.

3. Approximation of the Cross-Section

Another consequence of the previous section is that the dispersive parts of the
approximating amplitudes:

DN(z)= Σ

§ dy[σ(y)-A2

N(y)V>2QAy) (3.1)
(z0)

dE(z0)

tend to the true dispersive part uniformly in any ellipse, strictly contained in E(z0).
Indeed, using the truncated Heine formula [8, p. 179], one may write

DN(z) = {σ(z) - Aliz)}'l2 -(N +1) {PN+1(z)RN(z)-PN(z)RN+ &)} , (3.2)

with

i ^ O . (3.3)

Now, using the theorem of the previous section, given a sufficiently small ε, we may
find AΓ0, such that, for all N>N0,

sup \AN(z)-A0(z)\<s (3.4)
zedE(zo)

and

inf |σ(z)-^(z)|>n 1>0 (3.5)
z e dE(z0)
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for some nί. Consequently, for N>N0 and z strictly inside E(z0),

RN(z)<k(z)QN(z0). (3.6)

Then, for such JV's,

\DN(z) - D0(z)\ < \{σ{z) - Λ2

N(z)}1/2 - {σ(z) - Λ2

0(z)} "*\ + kQN(z0)PN + ,(z)

, (3.7)

which proves our statement. It follows easily that the differential cross-sections
σN(z) obtained from the truncated solutions ΛN(z) tend to the true differential
cross-section, uniformly in any ellipse strictly contained in E(z0).

This is not surprising; however, it is not necessary to assume the whole strength
of the theorem of Sect. 2, in order to achieve convergence of the differential cross-
sections. Indeed, assume we have a sequence of truncated equations SN(AN9 IN) = 0,
which have solutions, AN(z), such that there exists an Ao of F(σ), with the property
that, uniformly in N9

sup \AN(z)-A0(z)\<R (3.8)
zedE(zo)

for some R. Then it is still true that σN(z) tends to σ(z) uniformly inside any ellipse
E(z2), z2<z0. Indeed, the estimate (3.6) remains true and therefore

\DN(z) - {σ(z) - A2

N(z)} ι'2\ < k(N + l)PN+ MQM (3-9)

Consequently,

\σN(z) - σ(z)\ = \D2

N(z) + A2{z) - σ(z)|

S\DN(z) + {σ(z)-A2(z)}^2\k(N+\)PN+ί(z)QN(z0). (3.10)

Using (3.8) and (3.9), it follows that a constant k' exists, independent of N, so that,
for z e E(z2),

and the upper bound tends to zero, as iV->oo, for z^z2<z0.
This result is interesting insofar as we did not use anywhere in its derivation the

fact that the inelasticities JΛ / = 0,..., JV of the truncated system reproduce the
inelasticities of the exact infinite system. Therefore, AN(z) may simply tend, as
N^KX), to a member of F(σ) different from A0(z). This leaves one, however, with
the problem of deciding whether or not this is really so. More, precisely, given a
solution AN(z) corresponding to the truncated system and to a set of inelasticities
Ik,k = 0,...,N, the problem is whether there exists a solution A0(z) of the infinite
system, corresponding to the JV+1 inelasticities supplemented by some set
T={Ij}f=N+1 and to the same σ(z). If so, then AN(z) may be interpreted as an
approximant of A0(z); if not, it is simply an instability generated in the search for
continuum ambiguities.

From a practical point of view, this problem is of no relevance, since if we
simply verify that the output of a certain run leads to a differential cross-section
that departs from σ(z) in the physical region [which is much weaker than (3.11)] by
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less than a number ε, smaller than the experimental errors, it is an admissible
amplitude. Nevertheless, in the next section, we shall establish sufficient criteria for
a positive answer to our question.

4. The Information Contained in the Truncated System

In this section we shall assume N is fixed, a solution ΛN(z) of the truncated system is
available and the inverse of the N dimensional Frechet derivative exists. The first
JV 4-1 inelasticities i 0,. . ., IN - the set ΪN - are fixed. Further, inf |σ(z) - A%(z)\

^ ze δE(z0)

>n1>0. The question we ask is: does there exist a set ΓN of inelasticities ΓNsBli

0<7 ί f <^, so that the infinite dimensional system

S(AJN9Ϊ'N) = O (4.1)

has a solution A(z), F(σ), with F(σ) defined in Sect. 2?
We shall derive sufficient conditions for a positive answer from Kantorowich's

theorem, already used in Sect. 2. We have thus the task to i) estimate
\\S(AN, IN, Ϊ'N)\\ 1? and ii) find a bound on IKS^G^JV))" *1| l 5 where S is the operator of

i) An estimate of \\S(AN,INiΓN)\\1 is easy to obtain:

S(AN,INJ'N)= - ^Σ+iDJ(AN)P,(z)(2/+l)-ΓN(z), (4.2)

so that

where the constants BN, CN depend on σ(z) and AN(z).
ii) To estimate H S ^ G ^ N ) 1 ! ! !

 w e compute, as in Sect. 2, a lower bound on
\\^A(^N)X\\I for | | x | | i ^ l , using the lower bound

cOίN= inf \\dSN/dAN(AN)x\\N (4.4)
\\X\\N=1

which can in principle be evaluated numerically. To this end, we consider a number
k> 1 and write

inf
| |* | | i =

= min j inf \\SA(AN)x\\u inf \\SΛ(AN)X\\I}=min{α,b}. (4.5)
I Γ P Λ Γ J C I I I ^ X - I I P N * I I I < £

I I | Λ | | I = 1 I I * I I I = 1 J

With the definition of Sect. 2, we write

a^ inf Wx-KiA^P^W,- sup | |X(^)^^ll i^ °ψ -dN,

ll^lli = i (4.6)
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where we have used the fact that || x || x ̂  || x || N. The quantity dN may be estimated as
in Sect. 2; it goes to zero as iV->oo, and is thus expected to be a small number for
the JV used in calculations. On the other hand,

b^ inf \\RNxh- sup \\KRHX\W

11***11 I < £ \\PNX\\ i < {

- sup WPSX-PNKPHX^- sup | | 1 V
\\PNX\\I<%- \\PNX\\I<J

ll*lli = i ll*lli = i

= l~l-dN-j\\l-K(AN)\\N-jfN, (4.7)

where fN is used also in Eq. (2.12). Letting eN= ||1 — K(AN)\\N, we conclude that

I I S ^ Π ^ (4.8)

α0

with

j l l±^±k ^ (4.9)
provided α0 >0. In (4.9), dN, fN are expected to be small numbers, whereas eN stays
finite for N large. We can choose k so that α0 is as large as possible. It is easy to see
that this is achieved for k = 1 + eN+fN + c0tN. The condition α 0 > 0 is fulfilled if c0> N

>dN(l+eN + fN + cOtN), which is true if dN is small.
iii) By considerations strictly similar to those of Sect. 2, we may find a certain

neighbourhood Uί of AN in Bu

) , (4.10)

such that, for A e Uu \\d2S/dA2(AN)\\ί < C l 5 for some C t ; Δ(jι^) can be estimated
knowing nu determined by ^4 .̂

We can now verify Kantorowich's conditions, which ensure that in the
neighbourhood t/ l 5 Eq. (4.10), there exists one solution of the infinite system.
Comparing with (2.14), we see that they are

a) Λ<C 1 (C J V +| | f j v | | 1 )/α§<i, (4.11)

b) α o - { α g - 2 C 1 ( C i v + | | / ^ | | 1 ) } 1 / 2 < z l ( n 1 ) C 1 . (4.12)

According to Kantorowich, if we add the condition

c) αo + K - 2 C 1 ( C N + | | / l ί | | 1 ) } 1 / 2 > z l ( n 1 ) C 1 , (4.13)

then the ball U1 contains a unique solution of the infinite system (4.1).
Now conditions (4.11) and (4.12) are likely to be satisfied if CN, \\ΓN\\ are small.

We see that, if (4.11) and (4.12) are fulfilled, then to each amplitude AN obtained
from the truncated system, there corresponds a whole set of amplitudes for
different choices of T'N, subject to (4.11) and (4.12).
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Therefore we may state that the points of an ambiguity patch obtained from a
numerical calculation may be separated into two classes: those for which
conditions (4.11)—(4.13) are fulfilled and those for which they are not. We know that
points of the first class correspond to true continuum ambiguities; for points of the
second class, we may conservatively only state that they represent instabilities of
the amplitude under perturbations of the cross-section. However, this refers only to
the criterion (2.11)—(2.13), based on the Kantorowich theorem, and we certainly
cannot exclude that other methods could nevertheless show that they also
correspond to true continuum ambiguities.

We now indicate the modifications needed to include the analyticity of D(z) in
E(z0) and the constraint of the optical theorem. As shown in ref. 1, this is done by
replacing the operator S:B1-^B1 of Eq. (2.1) by an operator S defined on B1 x Rk

xRk + 1, where the components of the first Rk are the coordinates of the k zeros of
D(z) inside E(z0) and those of Rk+ί are fe+ 1 inelasticities, denoted collectively by
/0 and taken to be independent variables. The operator S has values in Bί x jRfc

xRkxR given by the following components:

§(A,Iθ9zi9l) =

S(AJ0J)

ί=l,2,...,fc (4.14)

A member of F{σ) defined by conditions i)-iv) of Sect. 2 is the component in B x of a
solution of §(A,Iθ9zi9J) = 0, given an element I = {Ik+ί, Ik+2, •••} of RkBu for
which the Frechet derivative of S has a bounded inverse. The Frechet derivative of
S may again be written as an invertible operator plus a compact one and all the
proofs of Sects. 2 to 4 may be carried through with sufficient, but not profound,
care and so we shall skip them.

5. Spin 0 - Spin \ Scattering

In this section we sketch the generalization of the above results to the case that one
of the particles has spin \ (e.g., pion-nucleon scattering). In the Barrelet formalism
[9], the mapping S(A,I), Eq. (2.1), is replaced by

) = A(Q- £

( 5 2 )

(5.3)

Ξ(ζ) = 4A(ζ)A(Γι) M O - A(ζ)A(ζ ~1)} + Q\ζ), (5.4)

= Σ C/+τ)lP/CM/O, (5.5)
ϋf = — 00
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with

and j = ± (£+χ) according to whether £ ̂  0 or £ < 0, Ω(ζ0) is the annular image in
the ζ plane, Eq. (5.6) of the small Lehmann ellipse, Ψ^ and Q^ are the Barrelet
generalizations of the Legendre functions of the first and second kind [see ref. 2].
The physical region is |ζ| = l5 on which σ(ζ) and —ίρ(ζ)/σ(ζ) reduce to the
differential cross-section and to ( + /-) the polarization. It is profitable to
introduce τ(ζ) = σ(ζ)-\-iρ(ζ), which for |£| = 1 obeys

τ(ζ = eiβ) = \D(ζ) + iA(ζ)\2. (5.7)

We look for solutions of (5.1)—(5.5) in the space B\ of functions A{ζ)
holomorphic and real analytic in the annulus Ω(ζ1) - the image under (5.6) of the
large Lehmann ellipse; Ci<(o - with the norm sup K?l/Q/Ci)> a s the sequence

JγG[0,i] varies in B\. The set of solutions F(τ) obtained in this way is the
continuum ambiguity. As in Sect. 2, we add to this definition the conditions: i) the
Frechet derivative of S has a bounded inverse at points of F(τ); ii) D(ζ) is
holomorphic in Ω(ζ0); iii) A{\) is given; iv) for simplicity we assume that, for
ζedΩ(ζo\Ξ(ζ)*0,A(ζ)Φ0.

If condition iv) is fulfilled, then one may show that the first and second Frechet
derivatives of S [Eqs. (5.1)—(5.5)] exist at points of F(τ) as bounded operators from
B\ (or B[ x B\) into B[. The Theorem of Sect. 2 may then be formulated for this
situation merely by replacing £(zθ by Ω(ζ'). Its proof follows certainly the same
lines as in Sect. 2, with the use of the inequality,

the generalization of the Heine formula,

Σ O + ± ) P Λ 0 Q Λ O = I ^ 7 I Λ F , (5-9)

as well as the fact that for /-KX),

QKCo)/QXCi)-0. (5.10)

These formulae are already listed or may be obtained from the properties of P^, (Q̂
derived in Appendix B of ref. 2.

A direct estimate of how close the differential cross-sections generated by the
truncated system are to the true ones may be obtained by comparing the analytic
continuation into Ω(ζ0) of Eq. (5.7), i.e.,

[DN(ζ) + iAN(01 lDN(ζ~') - ιAN(Γ1)-] = τN(ζ), (5.11)

with

C- 1)-ίΛ(C- 1)] = τ(C), (5.12)
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where DN(ζ), the solution of Eq. (5.12), differs from DN(ζ) of (5.11) by the addition of
an infinite tail of partial waves:

N(ζ)-DN(ζ)=-^ § dη(l-η-2)DN(η)
oπidΩ(ζ) \

We show in the Appendix that if |(| < \η\ = ζ0, then

Σ pχoQ,ωo>i)<constιc/c0r, (5.14)

which implies that τN(ζ) and τ(ζ) differ by an amount of the same order.
The developments of Sect. 4 may also be repeated for this case where the

definition of F(τ) differs somewhat from the scalar case. Apart from requiring that
the zeros of Ξ(ζ) stay double, one may also be obliged to allow for the exceptional
circumstance that for some ζ in Ω(ζo\ simultaneously a) ρ(ζ) = O, A(ζ) = 0 and
A(ζ~x) = 0 or b) σ(ζ) = 0, ρ(ζ) = 0 and A(ζ~x) = 0. This is handled by modifying the
operator S of Eqs. (5.1)—(5.3) as shown in detail in [2].

Appendix. Evaluation of a Sum

We derive a formula for

HL(ξ,ζ)= Σ
£= -L

Using the definition of P/C), Q/Q in terms of Legendre functions [2], together
with

(A.3)

one verifies readily that

iϊL(&0 = (z 2 -lΓ 1 / 2 + Σ
L 2/4-1

The first sum is the truncated Heine formula, which may be either looked up in ref.
8, or evaluated by multiplying the sum by (x — z) and using the recurrence relations
for xPs(x) or zQ^(z). One obtains [see also Eq. (3.2)]

e{x)Qί(z)=

(A.5)



304 D. Atkinson and I. S. Stefanescu

For the second sum, multiplication by x — z and use of the recurrence relations for
xPj(x) [or zQj(z)-] leads to

Addition of (A.5) and (A.6) leads in the limit L->oo to the Heine-type formula for
5V Q^ [Eq. (A. 3) of ref. 2]. The rest of the series, cut off at a finite L, may be
obtained immediately from (A.5) and (A.6). This leads to the majorization used in
Sect. 5.
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